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 Map Reduce is the preferred computing framework used in large data 

analysis and processing applications. Hadoop is a widely used Map Reduce 

framework across different community due to its open source nature.  

Cloud service provider such as Microsoft azure HDInsight offers resources to 

its customer and only pays for their use. However, the critical challenges of 

cloud service provider is to meet user task Service level agreement (SLA) 

requirement (task deadline). Currently, the onus is on client to compute the 

amount of resource required to run a job on cloud. This work present a novel 

memory optimization model for Hadoop Map Reduce framework namely 

MOHMR (Optimized Hadoop Map Reduce) to process data in real-time and 

utilize system resource efficiently. The MOHMR present accurate model to 

compute job memory optimization and also present a model to provision the 

amount of cloud resource required to meet task deadline. The MOHMR first 

build a profile for each job and computes memory optimization time of job 

using greedy approach. Experiment are conducted on Microsoft Azure 

HDInsight cloud platform considering different application such as text 

computing and bioinformatics application to evaluate performance of 

MOHMR of over existing model shows significant performance 

improvement in terms of computation time. Experiment are conducted on 

Microsoft Azure HDInsight cloud. Overall, good correlation is reported 

between practical memory optimization values and theoretical memory 

optimization values.   
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1. INTRODUCTION  

Many organizations such as industrial, government and education institution collects massive 

amount of data from various sources such as sensor network, social network, bioinformatics and World Wide 

Web etc. for various application uses. Performing scalable and analysis on these unstructured data is most 

desired across many organizations. The state-of-art model finds difficulties in performing real-time analysis 

on continuous/stream data. For performing real-time analysis for data intensive applications, Google have 

come up with parallel programming model called Map Reduce framework [1]. It is highly scalable, 

fault tolerant and parallelize execution in distributed nature across cluster of computing nodes. Hadoop Map 

Reduce framework [2] has been widely adopted across various organization when compared with counter 

parts Phoenix [3], Mars [4] and Dryad [5] due to open source nature [6].  

The Hadoop Map Reduce model predominantly consist of following phases, Setup, Map, Shuffle, 

Sort and Reduce which is shown in Figure 1. The Hadoop frameworks consists of a master node and a cluster 

of computing nodes. Jobs submitted to Hadoop are further distributed into Map and Reduce tasks. In setup 

phase, input data of a job to be processed (residing generally on the Hadoop Distributed File Systems 
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(HDFS)) is logically partitioned into homogenous volumes called chunks for the Map worker nodes. 

Hadoop divides each Map Reduce job in to set of tasks were Map worker processes each chunk. Map phase 

takes input as key/value pair as (𝑘1, 𝑣1) and generate list of (𝑘2, 𝑣2) intermediate key/value pair as output. 

Shuffle phase begins with completion of Map phase that collects the intermediate key/value pair from the 

entire Map task. A sort operation is performed on the intermediate key/value pair of map phase. 

For simplicity, sort and shuffle phases are cumulatively considered in the shuffle phase. Reduce phase 

processes sorted intermediate data based on user defined function. Output of reduce phase is stored/written 

to HDFS. 

 

 

 
 

Figure 1. Hadoop map reduce computation model 

 

 

The Azure HDInsight Cloud aid in achieving scalable performance i.e. user can set up and run 

Hadoop application on a large-scale cluster. Azure HDInsight Cloud allow user to configure the amount of 

resource (virtual computing node) required to perform certain task. However, at present Hadoop job with 

deadline requirement is not supported in HDInsight cloud. The onus is on the cloud user/client to compute 

the amount of resource requirement to meet task deadline, which is a challenging task. Therefore, Hadoop 

memory optimization modelling has become an important criterion in computing amount of resources 

required to meet task deadline. It should be noted that memory optimization modeling is a challenging task 

since Hadoop jobs involves multiple processing stage which composed of three core stage (i.e. Map, Shuffle 

and Reduce stage). Moreover, the first wave of shuffle stage is generally processed in parallel fashion with 

Map stage (i.e. overlapping phase) and rest of the waves of the Shuffle stage are processed post completion 

of Map stage (i.e. non-overlapping phase). To utilize the cloud resources efficiently, numerous memory 

optimization models for Hadoop is presented [7, 8]. However, these approaches are not accurate and incurs 

high computing overhead/time. Since these approaches did not consider overlapping and non-overlapping 

phases of the Shuffle stage.  

In recent years, to enhance the performance of Hadoop application, various efficient Hadoop models 

are presented by numerous researchers [9-14]. A comprehensive information for job prediction and 

optimization can be presented using Starfish [9] model, which gathers an active Hadoop task profile at a 

satisfactory granularity. Elasticiser [10] is presented for resource allocation based on VMs, which is 

considered above Starfish.  However, gathering an active Hadoop task profile with comprehensive 

information can lead to large overhead and hence high over-predicted task run-time. In [11, 13] utilizes both 

overlapping and non-overlapping phases of shuffle stage and for task prediction a conventional linear 

regression method is used. This application also helps to predict the required number of resources for various 

tasks with deadline constraints. CRESP [14] predicts task execution efficiently and helps to allocate 

resources based on Map Reduce slots. However, in CRESP application models, the effect of number of 

reduced jobs are discarded. In [13, 14], the number of reduced jobs are constant. In CRESP model,  
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a single wave of a reduced stage is used. Moreover, in this model, reduced job number must be same as 

reduced slot number. It is very impractical to keep similar number of reduced jobs or for every job, a single 

wave of reduced stage. Practically, the reduced job number, rely upon the dataset size, type of Hadoop model 

and subscriber’s need. Moreover, the use of multiple waves in a reduced stage can helps to analysis huge data 

with much faster rate and with less number of resources in contrast to single wave. Moreover, the use of 

multiple waves can enhance the resource utilization of an I/O disk whereas single wave can decrease the job 

setup delay. 

To address the research challenges this work present an accurate and efficient memory optimization 

model for Hadoop Map Reduce framework namely MOHMR (Optimized Hadoop Map Reduce) to process 

data in real-time and utilize system resource efficiently. The MOHMR present accurate model to compute job 

memory optimization time and also present a model to provision the amount of cloud resource required to 

meet task deadline. The MOHMR first build a profile for each job and computes memory optimization time 

of job using greedy approach. Furthermore, to provision amount of resource required to meet task deadline 

Lagrange Multipliers technique is applied. 

The Contribution of research work is as follows: 

1. This work present an accurate memory optimization model for HMR aiding performance improvement. 

2. Experiments considering diverse cloud configurations and varied application configuration. 

3. Correlation between theoretical memory optimization model and experimental values. 

The rest of the paper is organized as follows. Extensive research survey is carried out in section II. 

In section III the proposed memory optimization modelling for Hadoop Map Reduce framework is presented. 

In penultimate section experimental study is carried out. The conclusion and future work is described in  

last section. 

 

 

2. RELATED WORK  

Explaining In this section, a detailed literature is presented about the conventional state-of-art data 

analytic techniques. In [9], a locality based Hadoop cluster model is adopted which rely upon the distance 

between input information and processing nodes. This technique try to overcome from various issues of  

state-of-art techniques such as high overhead, required large storage capacity and expensive in real time. 

However, it also induces large delay and causes performance degradation. 

In [10], a cloud based optimization framework is adopted to meet deadlines and accomplish data 

locality. They presented heuristic technique to provision task SLA requirement of cloud user. This technique 

presented an optimization technique to meet task dead line and minimize the number of nodes required for 

task processing. They solved single node failure and presented a tradeoff between minimizing deadline and 

locality constraint. Outcome shows reduction of storage and computation overhead. However they did not 

considered task deadline aware scheduling and performance evaluation considering compute intensive 

application.  

In [11], a performance enhancement technique is introduced for Hadoop model based on metadata 

of interrelated tasks. This technique permits Name Nodes to find block which are preset in the cluster to store 

specific data. Their model attained superior performance than Hadoop framework. For performance 

evaluation they considered Bioinformatics application. Experiment outcome shows good performance in 

terms of I.O cost minimization and memory optimization time reduction. However, they did not considered 

performance evaluation considering different application and they considered performance evaluation for 

small genomic data size. 

In [12], a Hadoop model is presented based on Map Reduce performance modules to reduce delay 

and contention in the network and enhance performance of the system. And it also helps to decrease 

synchronization delay and schedule different tasks at a time. They also presented a theoretical evaluation of 

their memory optimization model. Attained good accuracy and performance evaluation is carried out for 

word count applications. However, they did not considered performance evaluation considering diverse 

application and evaluation on cloud platform.  

In [13], an Afford-Hadoop application is adopted to reduce cost in finishing various tasks and to 

allocate data and schedule tasks and hence efficiency of system get enhanced. However, a NP-hard problem 

occurs while scheduling different tasks in state-of-art technique. To address NP-hardness, they adopted 

integer programming techniques and heuristic reduction and optimization to enable an optimal solution. 

Experiment are conducted considering Word count and Sort application attained good results in terms of cost 

minimization. However, theoretical accuracy performance evaluation is not presented. 

In [14], a Hadoop model is proposed to predict tasks run-time and allocate some specified resources 

to accomplish tasks in an assigned time period. Hence, the deadline constraints are met. It uses multiple 

waves of a shuffle stage. Experiment are conducted considering word count and sort application.  
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Theoretical accuracy performance evaluation of memory optimization model is presented shows good 

accuracy. However, it induces high overhead to finish tasks and data intensive and diverse application such 

as bioinformatics application is not considered for performance evaluation.  

In [15], A Hadoop model is adopted to optimize Hadoop parameters with the help of programming 

based PSO. The PSO technique helps to find optimal parameters in Hadoop networks for a specified task. 

However, performance evaluation under cloud computing environment is not considered. In [16], a Big-Data 

computational model is adopted to reduce cost with the help of geo-distributed datacenters. This technique 

helps to decide the parameters to select the final data center.  Here, a framework for efficient information 

movement and to provide resource allocation and to select a required data center to decrease cost of the 

system is described. However, task deadline requirement of task is not considered. 

Extensive research survey carried out shows numerous approach is presented to minimize cost, time 

and amount of resource required to compute a task on Hadoop Map Reduce framework. The survey shows 

need to develop a new memory optimization model that minimize amount of resource required to task 

deadline with good accuracy considering diverse application. In next section the proposed memory 

optimization model for Hadoop Map Reduce framework is presented. 

 

 

3. DYNAMIC MEMORY MANAGEMENT FOR HADOOP MAP REDUCE FRAMWORK  

This work present a novel memory management model for Hadoop Map Reduce (HMR) framework 

for execution of both stream and non-stream application. 

 

3.1.  System architecture 

This section presents the system architecture of Mammoth and how to reform the Map Reduce 

execution model. To improve the memory usage, a thread-based execution engine is implemented in 

Mammoth. Figure 2 shows the overall architecture of the Execution Engine in Mammoth. The execution 

engine runs inside a single JVM (Java Virtual Machine). In Mammoth, all Map/Reduce tasks in a physical 

node run inside the execution engine, and therefore in a single JVM, which is one of the key architectural 

differences between Mammoth and Hadoop. Mammoth retains the upper cluster management model in 

Hadoop, i.e. the master Job-Tracker manages the slave Task-Trackers through heartbeats. When the  

Task-Tracker obtains a new Map/Reduce task, the task is assigned to the execution engine through RPC 

(Remote Procedure Call) and the execution engine informs the Task Tracker of the task’s real-time progress 

through RPC too. 

 

 
 

Figure 2. Architecture of proposed memory optimized HMR 

 

 

3.2.  Memory optimization for hadoop cache scheduler  

 This section presents a memory optimization for Hadoop cache scheduler for improving system 

efficiency. To attain the following issues needs to be resolved. Firstly, there exist different data 

capacity/buffers. As a result memory allocation to these buffers needs to properly design. Secondly, 

the memory allocation design should be dynamic in nature. Since, different memory is required for different 

stage of Map Reduce task. The capacity of various buffers can be computed by Cache List (CL) using 

following equations. The total size 𝒯𝒮 of cache list is obtained as follows 
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𝒯𝒮 = 𝒮↑ − 𝒟𝑙𝑖𝑠𝑡𝒮
− ℳ𝒞𝒮

 (1) 

 

where 𝒮↑ is the maximum memory size that can be utilized for intermediary data, 𝒟𝑙𝑖𝑠𝑡𝒮
 is the total size of 

Data pair list, and ℳ𝒞𝒮
 is the total size of memory utilize by I/O Scheduler for the I/O buffer. 

Similarly, the MMC size 𝑀𝑀𝐶𝒮 (i.e., the memory size that MMC can utilize to assign among Map 

tasks) is obtained as follows 

 

𝑀𝑀𝐶𝒮 = min(𝒪𝒞𝒮
+ 𝒫𝑡𝑟𝑛𝑠𝒞𝒮

, 𝒯𝒮) (2) 

 

where 𝒪𝒞𝒮
 is the sort capacity (buffer) size, and 𝒫𝑡𝑟𝑛𝑠𝒞𝒮

 is the present size of transmission capacity. 

The sort capacity size is obtained as follows 

 

𝒪𝒞𝒮
= {

𝑀𝒪↑ ∗ 𝑀𝑛  𝑀𝒪↑ ≠ 0

𝒫𝒪𝒞𝒮
          𝑀𝒪↑ = 0

 (3) 

 

where 𝑀𝒪↑ is the maximum size of sort capacity in the prior history of Map Reduce tasks i.e., the highest 

size of each map task’s sort capacity, 𝒫𝒪𝒞𝒮
 is the present size of sort capacity., and 𝑀𝑛 is the number of Map 

jobs that is running presently. Finally, the RMC memory size 𝑅𝑀𝐶𝒮 which can be utilized among Reduce 

task can be obtained as follow 

 

𝑅𝑀𝐶𝒮 = 𝒯𝒮 − 𝑀𝑀𝐶𝒮 (4) 

 

The proposed memory optimized Hadoop scheduler (MOHS) model avoid frequent memory 

recycling from transmission and collection buffer when the memory is controlled and possess or keep enough 

memory for map jobs. When one Map job is initialized or finished, it will record or unregister to MMC.  

In this manner, the MMC can obtain the parameter of 𝑀𝑛. MergeSort request (.i.e., reserve) the cache data for 

Sort Capacity from MMC, and Transmission Worker returns (i.e., unreserve) the cache units that been 

shuffled from Transmission Capacity and give it back to MMC. In this way MMC computes 𝒪𝒞𝒮
 

and 𝒫𝑡𝑟𝑛𝑠𝒞𝒮
. Each Map jobs computes it’s 𝑀𝒪↑ dynamically (i.e., runtime), and just before it is finished, 

and it informs to MMC its 𝑀𝒪↑. Then MMC reports CMC when the parameter of these variables changes 

and CMC finalizes the heap size for MMC and RMC, as shown in Algorithm 1.   

 

Algorithm 1: Central memory Controller (CMC) schedules memory among Map Memory Controller 

(MMC) and Reduce Memory Controller (RMC)  

Input: MMC updates CMC. 

Output: MMC has higher selectivity than RMC.  

Step 1: Start 

Step 2: 𝒯𝒮 is initialized at establishment, MMC updates CMC about the recently updated value. 

Step 3: if 𝑀𝒪↑ = 0 then 

Step 4:    𝒪𝒞𝒮
← 𝒫𝒪𝒞𝒮

 

Step 5: else 

Step 6:    𝒪𝒞𝒮
← 𝑀𝒪↑ ∗ 𝑀𝑛 

Step 7: end if 

Step 8: 𝑀𝑀𝐶𝒮 ← min(𝒪𝒞𝒮
+ 𝒫𝑡𝑟𝑛𝑠𝒞𝒮

, 𝒯𝒮) 

Step 9: setMCHeap(𝑀𝑀𝐶, 𝑀𝑀𝐶𝒮) 

Step 10: setMCHeap(𝑅𝑀𝐶𝒮 , 𝒯𝒮−𝑀𝑀𝐶𝒮) 

Step 11: End. 

 

Similar to Map, when a Reduce job is initialized or completed, it indexes or un-indexes to RMC, 

and RMC then partition the 𝑅𝑀𝐶𝒮 uniformly among the running Reduce jobs. CollectionWorker obtains the 

memory for the Collection Buffer (CB) from RMC, while PushWorker un-reserve the resource from the CB 

and gives it back to RMC. RMC reports CMC of its memory utilization status, which is then utilized to 

establish when memory resource is a constraint for the Map jobs (this process will be defined in  

Algorithm 2). During whole execution process of jobs, the memory utilization for CMs will vary and their 
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resource utilization will be optimized dynamically. When the optimized heap size for MC is greater than 

previous updation, then there is no memory bottleneck for the jobs to utilize. However, when the optimized 

heap size is lesser than previous updation, it depicts that the resource is not adequate and certain area of the 

capacity/buffer have to be cleaned to the disk quickly.        

 

Algorithm 2: Memory resource optimization of MMC 

Input: job identifier, request type, request size  

Output: a cache data 

Step 1: Start 

Step 2: CMC initialize 𝑀𝑀𝐶𝒮 dynamically (i.e., in runtime), 𝒰 is a statistical parameter. 

Step 3: 𝒯 ← 𝒮 +  𝒰 

Step 4: if (𝒯 > 𝑀𝑀𝐶𝒮) then 

Step 5:     leftover resource cannot fit 𝒮 

Step 6:     if (𝒯 > 𝐶𝑀𝐶. 𝒯𝒮) then 

Step 7:         CMC obtains resource from RMC 

Step 8:         CMC.set𝑅𝑀𝐶𝒮(𝑅𝑀𝐶𝒮 − 𝒮) 

Step 9:      else if (𝒫𝑡𝑟𝑛𝑠𝒞𝒮
> 𝒮) then 

Step 10:        MMC obtains resource from transmission capacity or buffer 

Step 11:        𝑐𝑙𝑒𝑎𝑛(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝒮) 

Step 12:     else 
Step 13:         MMC obtains resource from Sort capacity 

Step 14:           𝑐𝑙𝑒𝑎𝑛(𝑆𝑜𝑟𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝒮) 

Step 15:      end if 

Step 16: end if 

Step 17: obtain a cache data from cache list. 

Step 18: 𝒰 ← 𝒰 + 𝒮 

Step 19: 𝑟𝑒𝑝𝑜𝑟𝑡(𝐶𝑀𝐶) 

Step 20: get cache data. 

Step 21: end. 

 

Algorithm 2 describes the working structure of a Map job keeping the memory from MMC. 

Further, there is a threshold defined for memory utilization for MCs and similarly for MMC, the threshold is 

defined as 𝑀𝑀𝐶𝒮, which is obtained using (2). When a Map jobs request exceeds𝑀𝑀𝐶𝒮, some capacity data 

required to be released. Considering the case, the type of capacity with low allocation selectivity has high 

overturning selectivity, as shown in algorithm 2 (line 6 and 15). Since the ReceiveWorker capacity has low 

allocation selectivity, MMC first checks CMC of RMC’s memory state (Line 5). If RMC has sufficient 

memory, CMC will push certain quantum of memory from RMC to MMC in order to meet the demand 

(Line 6 to 8). 

 

3.3.  I/O optimization for HMR framework 

This section presents an I/O optimization for HMR framework for minimizing disk seek and attain 

better parallel I/O performance. Further, optimization is carried out for performing MergeSort operation  

in HMR. In HMR, performing parallel I/O operation can incur huge disk seek overhead. Since jobs are 

executed in individual JVM and they do not communicate with each other. As a result, decrease I/O 

performance. To attain better I/O performance, this work presented sequential I/O and overlay the CPU 

execution and dis I/O. The proposed I/O scheduler is composed of two component namely, ReadWorker 

(RW), and CleanWorker (CW) which is accountable for read and write operations respectively. Both RW and 

CW possess request capacity pools, with each pools associates with one I/O request, these capacity are called 

multi-capacity or multi-buffer. Each capacity pool has a selectivity, utilized by RW and CW to rearrange the 

read/write operations.    

In proposed model, the I/O operation is composed of two types such as active and passive I/O.  

An active I/O, reads the input from Hadoop distribute file system, and write the final output to Hadoop 

distribute file system, and also write Map jobs intermediate output for attaining fault tolerance. Active I/O 

has higher selectivity than passive I/O. Since active I/O is more essential for job execution and should be 

carried out in prompt manners as possible. On the other side an I/O operation is known as passive I/O, if I/O 

is initialized because the intermediate data cannot be kept into the buffer and they are cleaned to the disk 

temporally. Passive I/O, operates on buffer with high allocation selectivity possess the low clean selectivity 

and high read selectivity. 
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As described in Algorithm 3, when write request is given to the I/O scheduler, the scheduler will 

allocated this request a selectivity based on its class ℂ (𝐿𝑖𝑛𝑒 3 𝑡𝑜 11), then set a pool and add the pool to the 

pool list in CleanWorker. Line 14 to 22 describes how CleanWorker cleans the data in different pools. 

Requests with high selectivity will be satisfied first. However, for request with same selectivity, 

CleanWorker will poll their pools and write one block per instance in round robin manner, which in this work 

we represent it as interleaved-I/O. ReadWorker perform a read request in similar manner as CleanWorker. 
 

Algorithm 3: Clean in I/O optimization HMR scheduler 

Step 1: Start 

Step 2: Establish the selectivity for this task demand.  

Step 3: if (ℂ = 𝒜 ) then 

Step 4:    𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ← 𝐴 

Step 5: else if (ℂ = 𝒞) 

Step 6:     𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ← 𝐵 

Step 7: else if (ℂ = 𝑡𝑟𝑛𝑠) 

Step 8:     𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ← 𝐶 

Step 9: else if (ℂ = 𝒪) 

Step 10:     𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ← 𝐷 

Step 11: end if 

Step 12: 𝑝𝑜𝑜𝑙 ← 𝑖𝑛𝑧𝑃𝑜𝑜𝑙(𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) 

Step 13: add 𝑝𝑜𝑜𝑙 to Cleaner’s 𝑝𝑜𝑜𝑙𝐿𝑖𝑠𝑡 

Step 14: Cleaner cleans the data in buffer pools 

Step 15: while 𝑝𝑜𝑜𝑙𝐿𝑖𝑠𝑡 ≠ ∅ do 

Step 16:      𝑠 ← highest selectivity of pools 

Step 17:      ∀𝑝𝑜𝑜𝑙 ∈ 𝑝𝑜𝑜𝑙𝐿𝑖𝑠𝑡 do 

Step 18:         if (𝑠 = 𝑝𝑜𝑜𝑙. 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) then 

Step 19:              clean(𝑝𝑜𝑜𝑙[0]) 

Step 20:          end if 

Step 21:       end for 

Step 22: end while 

Step 23: end. 
 

In our work, the merge-sort operation are mainly carried out on the data kept in the memory, 

which in this work we call it as in-memory merge-sort. However, in HMR we call it as external sort. Since 

sort algorithm is carried out over the data kept in the disks. As result, incurs disk I/O and CPU-bound sort 

operation are interleaved in executions. Subsequently, once buffer is filled with full of sorted data, the CPU 

must block and wait. However, with multi-capacity can use non-blocking I/O. As for the CleanWorker,  

the units of a cache data are added to the CleanWorkers capacity pools. Post that cache units is written back 

to the disk and will be given it back to CacheList immediately. In next section the performance evaluation of 

proposed memory optimized HMR scheduler over state of art technique is shown.  

 

 

4. RESULT AND ANNALYSIS 

This section present performance evaluation of proposed MOHMR over state-of-art Hadoop Map 

Reduce Framework [11]. Hadoop is the most widely used/adopted Map Reduce platform for computing on 

cloud environments [17], hence it is considered for comparisons. Hadoop 2.0 i.e. version 2.7 is used and is 

deployed on azure cloud using HDInsight. The Hadoop cluster is composed of one master worker node and 

four worker/slave nodes. Each worker node is deployed on A3 virtual machine instances which composed of 

4 virtual computing cores, 7 GB RAM and 120 GB of storage space. Uniform configuration is considered for 

both MOHMR and HMR. For experiment analysis different application are considered such as Gene 

sequencing (Bioinformatics), Word frequency statistics computation and Hot-word detection. 

 

4.1.  Bioinformatics application performance evaluation 

Gene sequence alignment is a fundamental operation adopted to identify similarities that exist 

between a query protein sequence, DNA or RNA and a database of sequences maintained. Sequence 

alignment is computationally heavy and its computation complexity is relative to product of two sequences 

being currently analyzed. Massive volumes of sequences maintained in the database to be searched induces 

additional computation burden. BLAST is a widely adopted bioinformatics tool for sequence alignment 

which perform faster alignments, at expense of accuracy (possibly missing some potential hits) [18, 19]. 
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Experiment are conducted to evaluate MOHMR and HMR performance for performing gene 

sequence alignment. The dataset for experiment analysis is obtained from NCBI [20]. For performing 

alignment Drosophila database as a reference database and Query sequence of varied sizes of from Homo 

sapiens chromosomal sequences and genomic scaffolds is considered similar to [19] which are tabulated in 

Table 1. All four experiment are conducted using BLAST algorithm on HMR and MOHMR frameworks. 

The total makespan time of both HMR and MOHMR for all six experiment is noted and graph is plotted as 

shown in Figure 2. It must be noted that the initialization time of the VM cluster is not considered is 

computing makespan as it is uniform in both MOHMR and HMR owing to similar cluster configurations.  

The total makespan of MOHMR and HMR is dependent on task execution time of virtual 

computing/worker nodes during Map and Reduce phase. The total makespan observed in BLAST sequence 

alignment experiments executed on HMR and MOHMR frameworks is shown in Figure 3. The outcomes 

shows significant performance in terms of reduce makespan times of MOHMR over HMR. A makespan 

reduction of 46.37%, 46.72%, 58.52%, and 65.51% is obtained for four experiment by MOHMR over HMR. 

An average makespan reduction of 54.28% is achieved by MOHMR over HMR across all experiments. 

Similarly, the total memory usage observed in BLAST sequence alignment experiments executed on HMR 

and MOHMR frameworks is shown in Figure 4. The outcomes shows significant performance in terms of 

memory usage reduction of MOHMR over HMR. A memory usage reduction of 39.99%, 38.88%, 43.47%, 

and 48.48% is obtained for four experiment by MOHMR over HMR. An average memory usage reduction of 

43.81% is achieved by MOHMR over HMR across all experiments.    
 

 

Table 1 Gene sequence considered for experiment analysis 
Experiment Id Query genome Query genome size  Experiment Id Query genome 

1 NT_007914 14866257 Drosophila database 122,653,977 

2 AC_000156 19317006 Drosophila database 122,653,977 

3 NT_033899 47073726 Drosophila database 122,653,977 

4 NT_022517 90712458 Drosophila database 122,653,977 

 

 

 
 

Figure 3. BLAST sequence alignment total makespan time observed for 

experiments conducted on OHMR and HMR frameworks 

 

 

 
 

Figure 4. BLAST sequence alignment memory used for 

experiments conducted on OHMR and HMR frameworks 
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4.2.  Non-stream analysis/Word frequency statistics computations 

For non-stream data analysis, this work considers word frequency statistic algorithm and is 

developed using Java programing language. The Wikipedia non-stream dataset [21] is considered for 

experiment analysis. The Wikipedia dataset is huge in size (i.e. >100 GB) and is split into 4048 MB each and 

stored in Azure cloud storage container. For experimental analysis this work consider 16GB of data. 

The word frequency statistics algorithm were executed on both MOHMR and HMR framework and the 

results obtained are noted. The outcomes shows significant performance in terms of reduce makespan times 

and memory usage of OHMR over HMR. A makespan reduction of 44.92%, 45.07%, 46.55%, and 55.17% is 

obtained for data size of 4096 MB, 8192 MB, 16384 MB and 32768 respectively by MOHMR over HMR as 

shown in Figure 5. An average makespan reduction of 47.92% is achieved by MOHMR over HMR across all 

experiments. Similarly, memory consumption reduction of 55.91%, 60.28%, 64.93%, and 64.64% is obtained 

for data size of 4096 MB, 8192 MB, 16384 MB and 32768 respectively by MOHMR over HMR as shown in 

Figure 6. An average memory usage reduction of 62.8% is achieved by MOHMR over HMR across all 

experiments. 

 

 

 
 

Figure 5. Non-stream data makespan time for experiment conducted on MOHMR and HMR frameworks 

 

 

 
 

Figure 6. Non-stream data memory used for experiment conducted on MOHMR and HMR frameworks 

 

 

4.3.  Stream analysis/hot-word detection computations 

For stream data analysis, hot-word detection algorithm [22] is developed using Java programing 

language. The “Movietweetings” dataset [23] is considered for experiment analysis and stored in Azure cloud 

container. Tweets consisting of 10000, 20000, 40000, and 80000 movies is considered and is represented as 

10K, 20K 40K, and 80K. The hot-word detection algorithm were executed on the MOHMR and HMR 

framework and the results obtained are noted. The total makespan time of MOHMR and existing model is 
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noted and is shown in Figure 7 and memory consumption is shown in Figure 8. Experiment analyses shows 

as number of tweets increases the computation time of both MOHMR and HMR increases. The outcomes 

shows significant performance in terms of reduce makespan times of MOHMR over HMR. A makespan 

reduction of 56.63%, 48.55%, 62.65%, and 61.07% is obtained for tweet size of 10K, 20K, 40K, and 80K 

respectively by MOHMR over HMR as shown in Figure 7. An average makespan reduction of 58.64% is 

achieved by MOHMR over HMR across all experiments. Similarly, memory usage reduction of 62.95%, 

65.55%, 72.14%, and 71.81% is obtained for tweet size of 10K, 20K, 40K, and 80K respectively by 

MOHMR over HMR as shown in Figure 7. An average memory usage reduction of 68.11% is achieved by 

MOHMR over HMR across all experiments. 

 

 

 
 

Figure 7. Stream data makespan time for experiment conducted on MOHMR and HMR frameworks  

 

 

 
 

Figure 8. Stream data memory used for experiment conducted on MOHMR and HMR frameworks 

 

 

4.4.  Result and discussion 

In this section the execution of the imprecise and bioinformatics applications namely word 

frequency statistics, hot word detection, and gene sequencing (BLAST) is presented. The results presented 

here prove that the OHMR model reduces the makespan observed due to the optimized makespan model 

incorporated in to HMR. An average reduction of 58.64% for stream data analysis and 47.92% for the  

non-stream analysis is reported and 58.64% for the gene sequencing (BLAST) considering the MOHMR 

model when compared to the existing HMR model [11]. Further MOHMR reduces an average memory 

consumption by 43.81% considering bioinformatics and text mining application. A memory performance 

improvement of 42.81% is achieved by MOHMR over existing HMR model [11] considering bioinformatics 
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application. The cumulative analysis over state-of-art technique in Table 2 shows the efficiency of MOHMR 

over state-of-art technique in terms of robustness and scalability. Since, MOHMR support execution of 

different application such as Bioinformatics and text mining over cloud platforms. Our MOHMR model 

aided in better cloud resource utilization. Adoption cloud platform aid in proving scalability of processing of 

large amount of data of various types on large computing clusters. All these feature attributed to the 

performance improvement of MOHMR over state-of-art models.  

 

 

Table 2. Comparson with state of art technique 
 [11] [12] [13] [14] [15] MOHMR 

MapReduce platform 

considered 

Hadoop Hadoop Hadoop Hadoop Hadoop Hadoop 

Cloud adopted Yes NO Yes Yes No Yes 

Application considered  Bioinformatics Word 

count 

Word count 

and Tera sort  

Word count 

and Sort 

Word count 

and Sort 

Bioinformatics 

and text mining  

Average makespan 

percentage improvement 

over HMR framework 

40.01% 13.01% 34.08% 27.1% 43.67% 51.16% 

Average memory 

consumed percentage 

improvement over HMR 

framework 

15% - - - - 57.81% 

 
 

5. CONCLUSION 

This work discussed the drawback of Hadoop MapReduce framework are discussed. Further,  

the significance of memory and I/O requirement for designing efficient HMR framework are discussed here. 

This work aimed to minimize makespan by presenting novel thread based execution of MapReduce task. 

Further to realize global memory management, optimization of memory and I/O for HMR is presented. 

MOHMR solve issues of Garbage Collection (GC) in the VM and reduce Disk I/O seek. To evaluate the 

performance of MOHMR framework bioinformatics, stream and non-stream application is used. Performance 

of MOHMR framework is compared with HMR framework in terms of makespan time. Average overall 

makespan times reduction of 54.28%, 58.64%, and 47.92% is achieved using OHMR framework when 

compared to HMR framework for bioinformatics, stream and non-stream applications respectively. Similarly, 

average overall memory consumption reduction of 43.81%, 68.11%, and 62.92% is achieved using OHMR 

framework when compared to HMR framework for bioinformatics, stream and non-stream applications 

respectively. Experiments outcome presented prove robustness of MOHMR framework, its capability to 

handle diverse applications on public cloud platforms. Results presented through experiments conducted 

prove superior performance of MOHMR against Hadoop framework. The future work would consider 

performance evaluation considering different application and also would further consider optimization of 

MapReduce scheduler for further reduction of computation time.  
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