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 The electrical output performance of photovoltaic (PV) modules are sensitive 

to temperature variations and the intensity of solar irradiance under 

prolonged exposure. Only 20 % of solar irradiance is converted into useful 

electricity, and the remaining are dissipated as heat which in turns increases 

the module operating temperature. The increase in module operating 

temperature has an adverse impact on the open-circuit voltage (Voc), which 

results in the power conversion efficiency reduction and irreversible cell 

degradation rate. Hence, proper cooling methods are essential to maintain  

the module operating temperature within the standard test conditions (STC). 

This paper presents an overview of passive cooling methods for its feasibility 

and economic viability in comparison with active cooling. Three different 

passive cooling approaches are considered, namely phase change material 

(PCM), fin heat sink, and radiative cooling covering the discussions on  

the achieved cooling efficiency. The understanding of the above-mentioned 

state-of-the-art cooling technologies is vital for further modifications of 

existing PV modules to improve the efficiency of electrical output. 
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1. INTRODUCTION  

Photovoltaic (PV) modules convert sunlight into electricity with the aid of semiconductor material 

through the photovoltaic effect. However, the output performance of the PV module significantly depends on 

several external factors such as solar irradiance and ambient temperature, causing the reduction of electrical 

output and its life span [1]. The main problem which limits the electrical performances of PV technology is 

the overheating of the PV module. The literature has shown that only 20% of the absorbed solar radiation is 

converted into useful electricity, and the remaining part of solar radiation is dissipated as heat [2].  

The temperature increment of the PV module can reach values up to 80 ⁰C. Based on the previous study,  

for every 1 ⁰C increase in module temperature causes the decrease of output power by 0.4-0.5% depends 

upon the PV cell technology used [3-5]. For this reason, there is a need to understand the proper cooling 

techniques to solve the temperature problem. 
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Several cooling techniques have been investigated to remove the heat generated by the PV module 

and hence lowering its temperature. The temperature regulation of PV modules can be classified by two 

general methods, namely, passive and active approach. The active cooling requires additional components 

(pump or blower) for the flow circulation of the coolant. The main issues related to such a method are their 

applicability and economic viability [6]. Recently, the following active cooling methods have been 

investigated by several researchers such as buried heat exchanger [7-9], pulsating heat pipe [10, 11], water 

cooling [12-14], and airflow cooling [15-18]. Despite a significant reduction of module operating 

temperature, the overall initial investment cost is still a considerable concern. 

On the other hand, several researchers have worked on a passive cooling approach. This approach is 

based on the natural convection principle utilising the ambient airflow to reduce the PV panel temperature. 

Passive cooling methods are more attractive because it requires no additional input power. Currently,  

the following passive cooling methods have been investigated such as phase change material (PCM) [19-26], 

passive fin heat sink [27-33] and radiative cooling [34-36].  

The understanding of the above-mentioned state-of-the-art cooling techniques is crucial to improve 

the efficiency of electrical output. Several researchers have conducted extensive reviews on various cooling 

methodologies, but to the best of our knowledge, there is limited review focusing only on passive cooling 

approaches [37, 38]. Setting it apart from the aforementioned papers, the focus of this paper is to review the 

passive cooling methods for PV module that have been reported in the literature over the past two years.  

The article is structured as follows. First, the parameters that influence the performance of a PV module, 

including the derating factors, are discussed. Second, the paper details the literature conducted over the past 

two years on the passive cooling method for PV modules which includes cooling with phase change materials 

fins heat sinks and radiative cooling. Finally, the comparison between the aforementioned passive cooling 

methods is discussed. From the comparison, the most promising approach is suggested and elaborated at  

the end of this paper.  

 

 

2. PERFORMANCE PARAMETERS 

A typical crystalline silicon PV module consists of several interconnected cells (usually 36 cells are 

connected in series) encapsulated into a long-lasting and stable unit. The primary purposes of the PV module 

encapsulation are to protect the electrically connected solar module from damage due to uncontrolled 

environmental factors such as humidity, dust, shading, and others [39]. The module lifetimes and warranties 

of PV modules are typically about 25 years, indicating the encapsulation robustness [40]. However,  

an undesirable impact of the encapsulation is that it contains the heat flow into and out of the module lead to 

an elevated module operating temperature [41]. The module operating temperature is defined by the energy 

balance equation between heat generated by the sun and heat loss from the module to the surroundings [42]. 

The electrical output of the PV module under real operating conditions differs from Standard Test Conditions 

(STC), generally measured at 25 ⁰C and 1000 W/m2. Based on the temperature dependence of the open-

circuit voltage, a reduction in the power conversion efficiency by 0.2–0.5% is observed with an increment of 

1 °C [37]. The increase in module temperature causes a linear reduction of the output power [43-45].  

This value denoted as a temperature coefficient and can usually be found in the manufacturer datasheet.  

The performance of different module technology depends significantly on environmental conditions 

such as the intensity of solar irradiation, wind speed, inclination angle, and the accumulation of dust [45]. 

Figure 1 shows the thermal images of two different module technologies recorded under the influence of  

the same environmental conditions. The recorded module temperature is higher in monocrystalline silicon 

(44.59 ⁰C) as compared to thin-film technology (42.88 ⁰C). The monocrystalline module performs poorly at 

elevated temperature due to the issue (but not limited to) of front-to-back contact interconnection. Unlike  

the thin-film PV module, that is a monolithically single unit and does not require individual interconnection, 

hence demonstrates better performance at higher temperatures [46]. 

 The electrical output power of PV modules under real operating conditions can be estimated 

analytically by considering the derating factors due to the module mismatch (kmm) (either positive or negative 

power tolerance), temperature (ktem), the peak sun factor (kg), dust accumulation (kdirt), and ageing (kage).  

The derating factor due to the module mismatch (kmm) is calculated based on given power tolerance in  

the manufacturer datasheet [47]. On the other hand, for dust (kdust) and ageing (kage) factors, they are 

estimated based on the year of installation and manufacturing respectively. The derating factors due to 

temperature (ktem) and solar irradiation (kg) significantly affect the value of voltage and current, respectively 

and calculated based on the following equations: 

 

 𝑘𝑡𝑒𝑚 = 1 + [(
𝛿

100%
) × (𝑇𝑚 − 𝑇𝑠𝑡𝑐)] 
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where ktemp is the derating factor due to temperature, 𝛿 is the temperature coefficient of electrical quantities  

(% / ⁰C), 𝑇𝑚 is the module efficiency at ROC (⁰C), and 𝑇𝑠𝑡𝑐 is the module temperature at STC (⁰C). Note that, 

𝛿 is representing 𝛼, 𝛽 and 𝛾 for power, voltage and current respectively. Based on Ross-thermal model,  

the module temperature can be analytically estimated using the following: 
 

 𝑇𝑚 = 𝑇𝑎𝑚𝑏 + [(
𝑁𝑂𝐶𝑇−20 ℃

800 𝑊𝑚−2 ) × 𝐺] 

 

or 𝑇𝑚 = 𝑇𝑎𝑚𝑏 + 𝑇𝑒𝑙𝑒𝑣𝑎𝑡𝑒𝑑  
 

where 𝑇𝑎𝑚𝑏  is the ambient temperature (⁰C), and 𝑇𝑒𝑙𝑒𝑣𝑎𝑡𝑒𝑑  is the elevated module temperature during 

operation. Based on Australian Standard 1995, 𝑇𝑒𝑙𝑒𝑣𝑎𝑡𝑒𝑑 = 25 ⁰C. The derating factor due to irradiance (kg), 

can be determined as: 
 

 𝑘𝑔 =
𝐺

1000
 

 

where kg is the derating factor due to solar irradiation, G is solar irradiance (W/m2). By combining all the 

derating factors, the estimated electrical outputs of a PV module at ROC (PROC) can be calculated as follows: 
 

𝑃𝑅𝑂𝐶 = 𝑃𝑆𝑇𝐶 × 𝑘𝑝𝑜𝑤𝑒𝑟_𝑑𝑒𝑟𝑎𝑡𝑖𝑛𝑔 

 

𝐾𝑝𝑜𝑤𝑒𝑟_𝑑𝑒𝑟𝑎𝑡𝑖𝑛𝑔 = 𝑘𝑚𝑚 × 𝑘𝑡𝑒𝑚 × 𝑘𝑔 × 𝑘𝑑𝑖𝑟𝑡 × 𝑘𝑎𝑔𝑒  

 

where PSTC is power rated at STC and electrical efficiency is determined by the module’s efficiency at STC 

and temperature coefficients as per the manufacturer datasheet. The effect of module temperature increment 

can be analysed using the following equation: 
 

 𝜂𝑚 = 𝜂𝑠𝑡𝑐[1 − 𝛽𝑠𝑡𝑐(𝑇𝑚𝑜𝑑𝑢𝑙𝑒 − 𝑇𝑠𝑡𝑐)] 
 

where 𝜂𝑚 is module efficiency under real operating conditions, 𝜂𝑠𝑡𝑐 is the module efficiency as per datasheet,  

𝛽𝑠𝑡𝑐 is the temperature coefficient (%/⁰C), 𝑇𝑚𝑜𝑑𝑢𝑙𝑒  is module temperature at ROC (⁰C) and 𝑇𝑠𝑡𝑐 is module 

temperature at STC (⁰C). Based on IEC 61215, the difference between estimated and measured values must 

be less than 5% for acceptable percentage error. 
 

 

 
 

Figure 1. Thermal images of (a) thin-film and (b) monocrystalline PV module 

 

 

3. CURRENT STATE-OF-THE-ART ON PASSIVE COOLING TECHNOLOGIES 

This section discusses recent literature on passive cooling methods. The main objective is to provide 

a brief overview of obtaining useful information for further improvements. A detailed review of the most 

current passive cooling techniques for PV module is essential for further modifications of existing PV 

modules to improve the efficiency of electrical output.  
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3.1.  Passive cooling using phase change materials  

Extensive research studies have been investigated to propose an efficient cooling technique by 

integrating phase change materials (PCMs). This process is known as the passive cooling method as no 

external powers required. It occurs during the solid-liquid phase transition when the heat produced from  

the PV module is absorbed in PCMs as latent heat at constant phase temperature [48].  

Wongwuttanasatian et al. [19] have designed grooved tube and finned containers of the same 

volume (3000 cm3) filled with palm wax as PCM. It was observed that by introducing PCM cooling in  

a finned box could enhance the module efficiency by up to 9.82 %. This approach contributes to a 5.3% 

improvement in electrical efficiency. However, their study reveals the electrical efficiency of the module 

could be significantly enhanced if the irradiance level is more than 500 W/m2, and the use of PCM is not 

feasible for low irradiance location. 

Authors in Ref. [48] examined the performance of salt hydrate (PCM32/280) as a PCM.  

A polycarbonate sheet was used to fill the PCM and attached under the absorber plate. The study was 

conducted with PCM cooling exposed under both natural and forced convection. The PCM integration helps 

to improve the PV module temperature by 4.3 ⁰C and 3.6 ⁰C under the natural and forced cooling, 

respectively. The study shows that the use of PCM under natural convection outweigh forced convection. 

Nada et al. [21] have reported the experimental study analysing the performances of hybrid 

nanoparticles and paraffin/wax insertions to reduce the module temperature. Paraffin/wax is used as  

the PCM, and aluminium oxide powder Al2O3 is used as nanoparticles aimed to enhance the thermophysical 

properties of the cooling medium. As a result, the PV module with the pure PCM and enhanced PCM with 

2% of Al2O3 can reduce the module temperature by 8.1 ⁰C and 10.6 ⁰C respectively. Similarly, Baygi and 

Sadrameli [23] have experimentally examined the use of polymer grade PCM to be incorporated as a coolant. 

The melting point of polyethylene glycol 1000 of nearly 40 ⁰C seems ideally suited for this approach. Eight 

rectangular-shaped of aluminium containers were filled with PEG-1000 were installed at the rear side.  

The authors indicate that by incorporating PEG-1000, the module temperature was recorded at lower value of 

47 ⁰C at solar noon while the electrical efficiency was enhanced up to 8%.  

Hachem et al. [24] have conducted an experimental study of combined PCM to regulate the module 

temperature. The combined PCM consists of white petroleum jelly (70%), copper (20%), and graphite  

(10%). The experimental results indicate that the output power had been increased by up to 3% with pure 

PCM and 5.8% with combined PCM.  

 

3.2.  Passive cooling with fin heat sink 

Many researchers have contributed to the fin structured heat sink development attached at the rear 

side of the PV module under natural convection. Hernandez-Perez et al. [33] examined the performance 

enhancement of PV modules incorporating multiangular aluminium fins, which intended to increase  

the vortex generation by allowing multidirectional and less restrictive airflow. A numerical model was 

developed using ANSYS FLUENT for design optimisation in terms of fin length, material, and heat transfer. 

Using this heat sink method, the achieved theoretical and experimental temperature reduction of the PV 

module was as high as 9.4 ⁰C and 10 ⁰C, respectively. The electrical efficiency was improved by 4 % with the 

proposed segmented aluminium heat sink. Fatih et al. [49] analysed similar design called staggered array 

with ten different aluminium fin configurations of various parameters. It was observed that the energy and 

exergy efficiencies increased by 11.55% and 10.91%, respectively. 

The effect of fin thickness and fin height has been further investigated by Amr et al. [28]. They have 

designed and developed an array of longitudinal aluminium fins attached at the back of the PV module.  

The experimental set-up consists of two 250 W Si-poly, tested under Egyptian condition. The optimum 

dimensions obtained from numerical analysis consists of 10 aluminium fins with the height and thickness of 

10 cm and 0.2 cm, respectively. However, the authors found that the effect of fin thickness and thermal 

conductivity are not significant. 

Elbreki et al. [50] carried out a numerical and experimental investigation on heat transfer 

performance of Lapping fins with planar reflectors. The results illustrated that the PV module temperature 

was reduced from 64.3 ⁰C without cooling to 39.73 ⁰C with the fin height of 200 mm. The authors found that 

the fin thickness above 2 mm does not affect output performance of the PV module. The use of lapping fins 

and planar reflectors improved the efficiency of the PV module from 9.81% (without cooling) to 11.2% (with 

cooling fins).  

Authors in Ref. [32] have undertaken an experimental analysis of a cooling PV module with porous 

metal foams as a fin heat sink. The metal foam (6 and 10 mm) consists of a cellular structure of metal with 

high porosity characteristics ranging from 75 to 95% were used in this study. It was observed that the PV 

module temperature was improved from 49 ⁰C to 48 ⁰C at solar noon. The inefficient cooling was due to 

uneven metal foam structures that caused heat accumulation. Similarly, Cabo et al. [29] have investigated  
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the passive cooling effects on a PV module energy conversion efficiency. Two fin geometries were 

considered in the study. The first orientation was parallel positioned L profile, and the second orientation was 

randomly placed and perforated aluminium fins. The experiments were performed under solar radiation 

between 200 to 900 W/m2. The second fin geometry was observed to perform better than the first geometry. 

The perforated and randomly positioned fins gave better output performance by 2%. 

Chandra et al. [51] have designed cooling fins known as a thin flat metallic sheet (TFMS).  

The experimental set-up was measured under the following parameters; fin numbers (0 to 4) and controlled 

solar intensity in the range of 200 to 700 W/m2. It was found that the maximum thermal and electrical 

efficiency were recorded at 56.19% and 13.75% respectively for four numbers of fins at 0.14 kg/s and  

700 W/m2 solar radiation. Such structural modification will be effectively integrated into buildings.  

 

3.3.  Passive cooling with radiative cooling 

Radiative cooling is a method based on a high transparency atmospheric window at the wavelength 

range of 8-14 µm [52]. Zhao et al. [53] investigated the hybrid cooling method incorporating PV and 

nighttime radiative cooling. The set-up consisted of a low-density polyethylene transparent cover (TPT),  

PV panel, insulation material, and six copper pipes welded on the rear side of the PV module. The use of  

a transparent TPT layer shows promising effects for its high thermal emissivity and excellent insulation 

material. The average electrical efficiency evaluated at sunny days nearly reached 14.9%, lower than 

morning and afternoon, and net radiative cooling power of 72.94 W/m2. This scenario revealed the negative 

effect of the higher operating temperature of the solar cell. It was found that the performance of radiative 

cooling significantly depends on the atmospheric humidity of a specific location.  

A group of researchers [35] established a thermal electric coupled model to evaluate  

the effectiveness of a selective spectral and radiative cooling at different ambient conditions. The top glass 

cover was modified such that it works as a filter to the solar wavelengths and highly emissive at the infrared 

spectrum known as RC emitter. The efficiency of the PV module could be improved by 4.55% for this 

combined cooling approaches. It was found that the efficiency could be further enhanced by at least 2-2.5% 

at relatively lower humidity locations around China.  

Another comprehensive photonic approach has been investigated based on nocturnal radiative 

cooling [54]. The selective plate was designed by incorporating a 500 µm-thick silica as a photonic crystal 

structure at the front side of the solar cell. Alternatively, the rear side was layered with multilayer materials 

such as SiO2, TiO2, and MgF2. The electricity output of diurnal photovoltaic was recorded at 6.9% with an 

output power of 99.2 W/m2. This photonic approach can be applied to any other solar cells. The various 

passive cooling methods discussed in this section are summarised in Table 1. 

 

 

Table 1. Summary of the passive cooling methods 
Ref. Cooling method PV Technology Year Type of work Power Conversion 

Efficiency Improvement 

[19] PCM (palm wax) Si-poly (20W) 2020 Experimental 5.3 % 
[48] PCM (salt hydrate) Si-mono (90W) 2019 Experimental 4.3 % 

[21] PCM and Al2O3 Si-poly (30W) 2018 Experimental 5.7 % 

[23] PCM (PEG 1000) Si-mono (40W) 2018 Experimental 8.0 % 
[24] PCM (copper & graphite) Si-poly (30W) 2017 Experimental 5.8 % 

[33] 

[50] 
[49] 

[28] 

[32] 
[29] 

[53] 

[35] 
[54] 

Fin heatsink (segmented) 

Fin heatsink (lapping, reflector) 
Fin heatsink (staggered array) 

Fin heatsink (longitudinal) 

Fin heatsink (porous metal) 
Fin heatsink (Perforated-L) 

Radiative cooling (hybrid) 

Radiative cooling (TE coupled) 
Radiative cooling (photonic) 

Si-poly (15W) 

Si-poly (40W) 
Si-poly (75W) 

Si-poly (250W) 

Si-poly (75W) 
Si-poly (50W) 

Si-mono (n/a) 

Si-mono (n/a) 
Si-mono (n/a) 

2020 

2020 
2019 

2019 

2018 
2018 

2019 

2019 
2018 

Experimental & Numerical 

Experimental & Numerical 
Experimental 

Experimental & Numerical 

Experimental 
Experimental 

Experimental 

Numerical 
Numerical 

10.0 % 

11.2 % 
11.5 % 

5.0 % 

1.0 % 
2.0 % 

n/a 

4.55 % 
4.6 % 

 

 

4. CONCLUSIONS 

This review has described three main techniques in the temperature regulation of PV modules using 

passive cooling techniques such as phase change materials (PCM), passive fin heatsinks, and radiative 

cooling. In this rapidly developing field, we expect more to appear soon. All have their merits and 

drawbacks, with some being better suited than others to specific environmental conditions. The most studied 

cooling method is the use of phase change materials (PCM). Different types of organic and inorganic PCMs 

have been investigated to achieve PV module cooling. However, its application is limited by its high cost, 

low thermal conductivity, phase-segregation, and fire safety.  
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PV Cooling based on the radiative cooling concept, although sounds attractive, is only achievable 

under suitable atmospheric conditions. In the past few decades, nocturnal radiative cooling has been 

successfully demonstrated. However, to implement the concept for PV cooling application during the day 

under direct sunlight remains a challenge and only recently a few lab-scale applications has been proven 

successful, indicates its potential as a practical passive cooler during the day. Such techniques would require 

further research and developments since it would involve modifications of commercially available silicon 

solar cells.  

PV cooling via fin heat sink offers enhanced heat transfer area to promote a more significant heat 

transfer rate from the rear surface of the PV module to the ambient mainly via natural convection.  

This method can be considered as the most economical in comparison to the other passive cooling 

techniques, technically feasible under different climatic conditions, and easy to implement or install.  

In the heat transfer mechanism by natural convection, the heat flow is highly dependent on the geometry of 

the surface (heatsinks) and its orientation. Hence, if adequately designed and computer-simulated,  

for example, by using a suitable computational fluid dynamics (CFD) software, the designed heat sinks may 

promote turbulent natural convection heat transfer that promotes better cooling rate. Besides, it is essential to 

optimise the surface area of the fin heat sink to achieve a balance between the rate of heat dissipation and 

manufacturing cost. 

In summary, the passive cooling technique using fins heat sink is attractive. Therefore, there is  

a strong need for continuous research and development (R&D) for this type of cooling technique with more 

innovative design and configuration to further enhance its capacity as a reliable PV passive cooling 

technology. 
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