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integer integrator which is approximated by a J+1 dimensional modal system 
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1. INTRODUCTION 

The aim of any system identification technique is to establish a mathematical model able to 
reproduce the dynamic behaviour of a system. Many methods have been developed using continuous time 
models [1], [2], [3]. 

Studies on real systems such as thermal [4] or electrochemical [5], reveal inherent fractional 
differentiation behavior. The use of classical methods (based on integer order differentiation) is thus 
inappropriate in identifying these fractional systems. Thus, fractional models, using fractional differentiation, 
have been developed [6], [7], [8], [9].  

A fractional model is defined by an equation or a system of differential equations characterized by 
real derivative orders, integer or not integer, i.e. in the monovariable case: 

 
)())(())(()())(())(())(( 0011 111

tubtuDtuDbtyatyDatyDatyD mmMmmNm MNN


      (1) 

 
Where )(tu  and )(ty  are respectively the input and the output of the system.  

The fractional derivative orders verify: 
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In the context of parameter estimation, the study of Equation (1) reveals that the 

differentialoperators coefficients act linearly whereas the derivative orders act non-linearly. Two cases of 
study are then to distinguish.  
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The first is the case of a dynamic system where the derivative orders are fixed a priori. Only the 
coefficients of operators are then subject to parametric estimation. Based on the equation error method, the 
optimization techniques used are linear towards the parameters and allow a direct estimate. 

In the second case, presented in this paper, the derivative orders have to be estimated in the same 
way that the coefficients. Based on the output error method, the optimization techniques used are non linear 
towards the parameters and algorithms involve non linear programming (NLP).  

The paper is organized as follows. Definitions related to fractional integration in section II. After a 
reminder of principles related to state-space representation of the fractional integration operator in section III, 
the state space model of a fractional system is presented in section IV. An output error technique is presented 
in section V. Using the Matlab toolbox, the frequency domain approach and the modal approach of the non 
integer integrator, an application to numerical simulation on an example is presented in section VI. Finally, in 
section VII, we propose a comparison between the identification techniques. 
 
 
2. FRACTIONAL DIFFERENTIATION AND INTEGRATION 

Fractional integration is defined by the Riemann-Liouville Integral [10], [11], [12], [13]. The nth 
order integral (nreal positive) of the function )(tf  is defined by the relation: 
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1  is the gamma function. 

))(( tfI n is interpreted as the convolution [11] of the function )(tf  with the impulse response: 
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Of the fractional integration operator whose Laplace transform is: 
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Fractional differentiation is the dual operation of the fractional integration. 

Consider the fractional integration operator )(sIn  whose input/output are respectively x(t) and y(t). 

Then:    
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Reciprocally, x(t) is the nth order fractional derivative of y(t) defined as: 
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Or 
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Where ns  represents the Laplace transform of the fractional differentiation operator (with zero 
initial conditions). 

 
3. SATE-SPACE REPRESENTATION OF THE FRACTIONAL INTEGRATION OPERATOR  
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3.1.  Fractional integrator based on a frequency approach 
3.1.1.  Principle 

Let us consider the Bode plots of a fractional integrator truncated in low and high frequencies 
(Figure 1) [14]. 

 

 
 

Figure 1. Bode Diagram of the Fractional Integrator 
 
 

It is composed of three parts. The intermediary part corresponds to non-integer action, characterized 
by the order n. In the two other parts, the integrator has a conventional action, characterized by its order equal 

to 1. In this way, the operator )(
~

sIn  is defined as a conventional integrator, except in a limited band ],[ hb 

where it acts like ns . The operator )(
~

sIn is defined using a fractional phase-lead filter [10] and an integrator 
1s .
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The coefficient Gn is a normalized factor, such as )(
~

sIn  and )(sIn  are identical on ],[ hb  . 

This operator is completely defined by the following relations demonstrated by A. Oustaloup [10]: 
 
'
jj w  with 1  

jj
 



'
1

with 1                     (11) 




log

log
1n  

 
 and  are recursive parameters related to the non integer order n. When J is sufficiently large, the bode 

diagram of )(
~

sIn  tends towards the ideal one of Figure1. 

 

3.1.2.  State-space model )(
~

sIn  

There is an infinite number of possibilities to represent )(
~

sIn by a state space model. Practically, we 

have chosen the one where the state variables correspond to the outputs of the elementary cells of )(sAv . 

Let: 
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Where v(t) is the input of )(
~

sIn and )()( txtzJ  its output. The corresponding state space model is: 
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3.2.  Fractional integrator based on a time approach 
3.2.1.  Principle 

Diffusive representation, used by D. Matignon [15], [11] and G. Montseny [16] provides the 
theoretical basis for a time approximation of )(sIn . 

Consider a linear system such as: 
 

)(*)()( tvthtx             (15) 

 
Where h(t) is its impulse response. 

Let us define the function )( : it represents the diffusive representation (or the frequency 

weighting function) of the impulse response h(t). h(t) and )(  verify the pseudo Laplace transform 

definition [16]: 
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A continuous frequency weighted state space model is associated to )( , according to: 
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For a fractional integration operator, it has been demonstrated [15], [16] that: 
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3.2.2. Discrete frequency state model  
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This continuous frequency weighted model is not directly usable. A practical model is obtained by 
frequency discretization of )( , where the function )(  is replaced by a multiple step function (with K 

steps) (refer to Figure 2). 
 

 
 

Figure 2. Frequency discritezation of )(  

 
 

For an elementary step, its height is )( k , and its width is k . Let kc be the weight of the kth element: 
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Thus, the continuous distributed model (17) becomes a conventional state model with dimension 

equal to K. 
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Or equivalently:  
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With this approach, we obtain a discrete state-space model which is frequency distributed with the 
constraints: 01  , K  et 1K . 

It is easy to transform the model (14) of )(sIn into a modal form because the j  are known a priori. 

This transformation is based on the following definition by decomposition in simple elements: 
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Where 0c  and jc coefficients are linked to nG , j  and '
j  by the relation: 
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This second definition of )(sIn  corresponds to a modal state model: 
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With: 
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In the frequency domain approach, the modes j  are indirectly obtained by )(sIn  in the ];[ hb 

interval, they correspond to the modes of the modal approach. The interest of this last representation is that 
the modes are decoupled, which allows fast computations. Moreover, the interest of 00   is to reject static 

error in simulation applications. 
 
 

4. STATE-SPACE OF FRACTIONAL MODEL   
In the context of non integer system simulation and particularly for output error identification, the 

state space representation (17) of the operator is inserted in a non integer state representation describing the 
system to be simulated. 

Consider the following transfer function with two non integer derivative orders: 
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This transmittance corresponds to the fractional differential equation:   
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The pseudo state-space representation of this system is: 
 





















)()()(

)()()(
)(

)(
)(

2110

2110
2

2
1

2

2

1

1

txbtxbty

txatxatu
dt

txd

tx
dt

txd

n

n

n

n

                 (28) 

The global state-space representation: 
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Where ( '

1I
A ,

'

1I
B ) and ( '

2IA ,
'

2IB ) are matrix defining the two integrators )(
1

sIn  and )(
2

sIn . 

Remark: (28) is the pseudo state space model of the system because 1x  and 2x  are not true state 

variables. 
 
 

5. OUTPUT ERROR METHOD 
Next, we present a method allowing the estimation of derivative orders as well as the coefficients.  
Whereas parametric estimation can be performed by a linear optimization technique in case only the 

coefficients are estimated, the estimation of the derivative orders and of the coefficients requires the use of a 
nonlinear programming algorithm. 

The method suggested by Trigeassou, Lin and Poinot, is based on the definition of non integer 
integration operator limited in frequency. 

The model of the system is in continuous time representation, thus it is preferable to use an output 
error technique (OE) to estimate its parameters [17]. 

The state-space model of the non integer system is: 
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For the model )(

21 , sH nn , the parameter vector is defined by: 

]           [ 211010 nnbbaaT   

 
The state-space model is simulated using a numerical integration algorithm, thus one gets: 
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Where î  is an estimation of   at iteration i. 

The optimal value of )(ˆ opt is obtained by minimization of the quadratic criterion: 
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We obtain: 
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Where   depends on the optimization algorithm. 

We can use a black box technique such as the Matlab toolbox functions in order to minimize cJ  In 

this case we seek to obtain the optimal opt  without worrying of how we reach that point. But this technique 

presents some defects such as the absence of direct informations on the criterion at the optimum, thus in 
particular on the precision (sensitivity of cJ  in comparison with the different estimates). 

To remedy this defect, we use sensitivity functions of the output. Because )(ˆ ty  is non linearin ̂ , a 

Non Linear Programming technique is used to estimate iteratively î : 



IJECE ISSN: 2088-8708  
 

A Comparative Study of Identification Techniques for Fractional Models (Abdelhamid JALLOUL) 

193

 
i

JIJii


 



 



 

ˆ

'1"
1  ˆˆ          (34) 

 
With [18], [20]: 
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This algorithm, known as Marquardt's one [18], often used in non linear optimization, ensures a 

robust convergence in spite of a bad initialization of ̂ . A good precision on the output sensibility functions 

ik  ,  [17], is however necessary to ensure a good convergence and precision. 

 
 

6. APPLICATION 
In order to compare the identification techniques of a non integer system, an illustrative example is 

treated to exhibit the performances of each technique.  
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With: 
 

5.00 a , 5.11 a , 10 b , 21 b , 6.01 n , 5.02 n  

 
The data set is composed of K data pairs  *, kk yu  with ekTt   ( eT : sampling period) and K=500, 

sTe

410 . 

 
6.1. Identification using matlabtoolbox 
 

 
Figure 3. Identification using Matlab Toolbox 
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The Curve Fitting Toolbox uses the nonlinear least squares formulation to fit a nonlinear model to 
data. A nonlinear model is defined as an equation that is nonlinear in the coefficients. 

Fitting requires a parametric model that relates the response data to the predictor data with one or 
more coefficients. The result of the fitting process is an estimate of the model coefficients.To obtain the 
coefficient estimates, the least squares method minimizes the criterion cJ .It uses a predefinedfunction 

“LSQNONLIN”, an implementation of the Levenberg-Marquardt algorithm, to minimize a nonlinear 
function of several variables. We obtain the identification results from Figure 3. 

 
6.2. Identification using frequency domain approach  

In this section, we present the identification results on Figure 4 and performed by the frequency 
approach.  

This method is based on the simulation of the sensitivity functions. It gives better results than the 
direct approach, but it leads to an important calculation load.   

 

 
Figure 4. Identification by frequency approach 

 
 

Moreover, the analytical calculation of sensitivity functions can be inextricable, even unnecessarily 
complex, concerning the output sensitivity of the parameter in  (with respect to the coefficients: i i ). For 

this reason we prefer now to use the modal model. 
 
6.3. Identification using modal approach  

The modal formulation is not adapted to the calculation of 
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complicated functions of n. It is possible to simplify and proceed directly the calculation of the sensitivity 
functions [19], [20], [21], [22] by numerical differentiation, in the form:   

 

n

tnxtnnx

n

tnx
n 









),ˆ(),ˆ(
lim

ˆ
),ˆ(

0
         (36) 

 
A preliminary study is essential for the choice of n . In the general case,   is difficult to choose 

because   can vary from 0 to  . Because 10  n , it is easy to find an optimal value of n , which will be 
always the same. Then the calculation becomes more simple. 

The simulation of the modal model is simple and powerful. This modal representation guarantees 
precision and reduces calculation time. We have represented on Figure 5 the identification result using the 
modal representation. 
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Figure 5. Identification by modal approach 

 
 

7. COMPARISON OF THE METHODS 
The use of the Matlab toolbox as a black box technique is simple, but this technique presents some 

defects such as the absence of direct informations on the criterion at the optimum and the precision. 
Moreover, the convergence appears to be very slow. 

The method of the fractional integrator is more complex to implement. However, it relies on a state-
space representation allowing to generalize the fundamental concepts related to ODEs. 

Finally, the use of the modal representation of the fractional integrator reduces the convergence time 
compared to poles/zeros approach and its programming is much simple, which is an important feature in the 
context of more complex systems. 

 
 

8. CONCLUSION  
In this paper, we have presented and compared some techniques for the identification of fractional 

systems. We have presented the output error method based on the definition of a fractional state space 
representation. The modal model has confirmed the interest and the validity of this new approach for 
calculation time and simplicity compared to the frequency approach and the Matlab toolbox techniques. 
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