
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 10, No. 1, February 2020, pp. 377~386

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i1.pp377-386 377

Journal homepage: http://ijece.iaescore.com/index.php/IJECE

Analysis and implementation of the impact of change:

application to heterogeneity algorithms in enterprise

architecture

Jihane Lakhrouit
1
, Karim Baïna

2

1Department of Computer Science, Higher Institute of Engineering and Business, ISGA Marrakech, Morocco
1,2University Mohammed V, ENSIAS Alqualsadi research team on Enterprise Architecture, Morocco

Article Info ABSTRACT

Article history:

Received Jan 16, 2019

Revised Jul 31, 2019

Accepted Aug 29, 2019

 Measurements play an important role in many scientific fields in general and

in the analysis of enterprise architecture in particular. In software

engineering, the measures are used to control the quality of the software

product and better manage development projects to control the cost of

production. In this article we proposed firstly models and measures to

evaluate and analyze the complexity of the enterprise architecture and

especially the heterogeneity of components and relationships, and secondely

we developed a model to automatically detect the change of measures and

their impact on enterprise architecture.

Keywords:

Analysis of EA

Complexity

EA patterns

Enterprise architecture EA

Heterogeneity Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Jihane Lakhrouit,

Higher Institute of Engineering and Business, ISGA Marrakech,

Department of Computer Science, University Mohammed V, ENSIAS,

Morocco.

Email: jihane.lakhrouit@gmail.com

1. INTRODUCTION

Today, many organisations are concerned with how to successfully transition to organisations

utilising information technology to its fullest strategic extent. It has become widely recognised that an

organisation's enterprise architecture plays a key role in the transition and many organisations are now

investing significant amounts of resources into developing or improving their enterprise architecture [1].

The enterprise architecture (EA) is the organizing logic for business processes and IT infrastructure,

reflecting the integration and standardization requirements of the company’s operation model, to analyze

the result of enterprise architecture we present in this paper, a complete methodology for analyzing

the heterogeneity of enterprise architecture. Our objective is to propose an evaluating methodology for

guiding designers and architects in evaluating and improving the EA models. Furthermore, our enterprise

architecture patterns system will be used for an automated support to manage the evaluation of enterprise

architecture complexity

The goal of this paper is to (1) present the enterprise architecture component regarding agility and

complexity measurement, (2) identify and apply the heterogeneity metrics to enterprise architecture

components and relationships (4) Detect changes in an enterprise architecture and update relevant metrics.

The paper is structured as follows: the second et alion describes the state of the art of our research, the third et

alion presents our proposed approach and presents some of our results, the fourth et alion presents

the pototype of our contribution and finally, the last et alion is dedicated to conclude our paper.

mailto:jihane.lakhrouit@gmail.com

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 377 - 386

378

2. STATE OF THE ART

 Enterprise architecture (EA) has in recent years tremendously increased across industries,

many organizations continue to encounter challenges which affect the development, implementation,

and practice [2]. Enterprise Architecture (EA) is a strategy to attain alignment between an enterprise’s

business and Information Technology (IT) to increase the competitiveness of an enterprise [3].

Among the success factors of this alignment is the study of complexity.

 Complexity is considered one of the most critical issues to deal with because of the constraints and

difficulties that surround it [4], many companies seem to consider it as a general problematic source, it is held

responsible for the rise in coordination efforts [5], operating costs, and also increased effort to make changes,

which significantly hinders the agility and alignment of the information system [6, 7]. The Cambridge

Dictionary defines complexity as ―the state of having many parts and being difficult to understand or find an

answer to‖. Much of the existing architecture research endorses this view, by relating complexity to

the number of components or elements, their relationship, and totheir variation/variety, and

heterogeneity [8-11] adds that the total complexity of an EA must take into account complexity within each

domain, as well as the complexity of the interrelations between domains [12]: According to Davis and

LeBlanc [13] the complexity of application architecture is ―number of its components or elements, kind or

type of elements and structure of the relationship between elements‖. On the infrastructure architecture level

defined complexity as ―The complexity can be defined here as the dramatic increase in the number and

heterogeneity of included components, relations, and their dynamic and unexpected interactions in IT

solutions‖ [14], another definition proposed by [15] covers all aspects of complexity ―The complexity can be

defined on the basis of the number and variety of components and interactions plus the rate of change of

these‖. From the different definitions cited we can notice that the complexity is a fuzzy term, because

different stakeholders have generally different views and conceptions of complexity term. From these

different definitions we will clarify the dimensions of complexity and proposed a global definition:

―The complexity of architecture is the description of its structure and quantification of the numbers and

heterogeneity of components and relations between them over the time‖ [16]. In this paper, we will discuss

the dimension of enterprise architecture heterogeneity (components and relations) and also the rate and

impact of change of heterogeneity dimension.

During the analysis of the identified contributions wich discussed enterprise architecture evaluation

complexity only few methods were presented to quantify complexity and the existing methods merely cover

parts of an EA, not the EA as a whole. Often the application is so specific that it is not possible to transfer

the method to other dimensions of an EA. In the paper [17] it discussed the metrics for EAs and application

landscapes are introduced as decision support techniques based on analysis of structural dependencies.

The approach emphasizes on operational risk, failure propagation and availability, based on a practitioner

survey. In order to explicate the structural dependencies analyzed in the paper, an information model with

derived attributes is used, along with Bayesian calculation formalism. An EA level application example is

also given in the paper [17] with visual analysis of ex post information about failure propagation to compare

different project proposals for the evolution of the application landscape. Thus, the project portfolio

management process is supported. Lagerström et al. [18] proposed to use an approach pervasive in

the software architecture discipline— Design Structure Matrix—to visualize the hidden structure of an AL

and thereby identify spots of increased complexity. Schuetz et al. [19] introduce a metric to quantify

the structural complexity of an IT landscape, which is also applicable to application landscape. The proposed

approach of Schutz [19] revolves around the conceptualization of the complexity of EA by adopting

the concept of the system to the context of EA. This approach presented a holistic conceptualization of

complexity but don’t apply it in the different layers of EA. After define and clarify the dimensions of

complexity we present our contribution to modelise and evaluate EA complexity.

3. OUR PROPOSAL PATTERNS FOR MODELLING

This et alion presents the information patterns for the analysis of the enterprise architecture.

We define firstly the patterns to analyze and implementing enterprise architecture heterogeneity algorithms

and secondly we detail our approach to modelize the impact of the changing algorithms.

3.1. Definition and conceptual foundation

Heterogeneity is defined as the diversity of elements or relationships of a system according to its

characteristics [20]. More precisely, in computer science, the heterogeneity of a computer landscape is

a statistical property that presents the diversity of the types of elements that compose it [17, 21] taking as an

example the heterogeneity of database management systems (DBMS). This heterogeneity can be understood

as a frequency distribution [22, 23] and can be expressed in graphical form as shown in the Figure 1.

Int J Elec & Comp Eng ISSN: 2088-8708

Analysis and implementation of the impact of change: application to heterogeneity ... (Jihane Lakrouit)

379

Figure 1. The number of instances per DBMS

In the literature the most widely used method for measuring heterogeneity is the use of concentration

measurements, which is entropy measure ∑

 () [23, 24].

3.2. Analyzing enterprise architecture heterogeneity

Based on the information pattern I-50 presented on the paper [25] we present three types of concepts

in which we apply the measure of entropy. Concept 1 represents only the heterogeneity of a single

component of the enterprise architecture, concept 2 represents the relationship between two components and

calculates heterogeneity with respect the relation and the concept 3 is an exceptional case from concept 2 it

presents a relationship path that connects several components. These concepts are summarized in the Table 1.

The I- pattern I-52 presents the measurements detailed in the Table 1. The measurements are illustrated and

numbered from 1 to 8 in the diagram (Figure 2).

Figure 2. The I-Pattern diagram "Analysis of Heterogeneity" I-52

Table 1. The application of heterogeneity to the threeconcepts of the heterogeneity measurements

Concept

Type

Concept of

Heterogeneity
Number of instances The Heterogeneity of the Concept

Type 1

Application Components
Number of Application

Components
Concentrations of applications by vendor or type
(developed, purchased and adapted, purchased).

Application Interface Number of Interfaces Concentrations of the types of interfaces.

Computer Number of Computers Computer Concentrations by Type
Operating System Number of Operating System Operating System Concentrations by Type

Database Number of databases Database Concentrations by Type

Type 2/3

Implemented Processes
Number of Implemented

Processes
Concentration of implemented processes by

component

Using application

components

Number of components used by

organizational units
Concentration of processes by organizational unit.

Using Databases
Number of database instances

used.
Concentration of databases by component

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 377 - 386

380

3.3. Implementation of analysis algorithms

To propose an evolutionary implementation we must consider several constraints: 1- these

algorithms can evolve over time, 2- we can have several versions of the same algorithm during the life cycle

of our system and each version can represent an adaptation or an optimization of the old version, 3- we also

want to isolate the algorithms compared to others to facilitate their use their implementation and

maintenance. These cited constraints were managed and resolved by the "Strategy" design pattern; for that

we will adapt the design pattern "Strategy" and apply it to our context. The Figure 3 shows the application of

the design pattern to our context. We create a ―StrategyInterface’’ interface, we add an ―applyAlgorithm‖

method that will be the method that applies our strategy or in other words that implements our algorithm.

Concrete classes created implement this interface to encapsulate the algorithms and to redefine

the ―applyAlgorithm‖ method for implementing the algorithm of each class. In our contribution we proposed

an algorithm hierarchy using the notion of "Abstract Class", we represent two large families of algorithms;

the heterogeneity algorithms "AlgorithmeHeterogeneite" divided into two subtypes; type 1 algorithms

and type 2 algorithms The Figure 4 shows an example of implementation and use of the database

concentration algorithm.

Figure 3. The implementation of strategy design pattern in our context

Figure 4. An example of the implementation of Concetration databases algorithm

Int J Elec & Comp Eng ISSN: 2088-8708

Analysis and implementation of the impact of change: application to heterogeneity ... (Jihane Lakrouit)

381

3.4. Analysis the impact of change

Among the dimensions of complexity presented in the et alion 1, we have specified the impact of

change as an important dimension to consider; in this et alion we will propose an implementation to resolve

this need. The impact of managed change in our contribution is to automatically update the new measures

and to progressively follow the changes of our proposed system proposed in the I-Pattern I-52 "Heterogeneity

of Enterprise Architecture". In this et alion we will propose an implementation that detects the change of

the considered components and reflects this change at the level of the measurement algorithms.

To handle these constraints we propose to use the observer design patten. This pattern presents a solution to

send a notification to modules that play the role of observers. In the event of notification, the observers take

the appropriate action according to the information that arrives from the modules they observe

(the "observables").

The diagram of the Observer pattern illustrated in the Figure 5 presents the proposed solution,

it defines two interfaces and two classes: The Observer interface will be implemented by any class that

wants to be an observer. This is the case of the ObservatorConcret class which implements the Observable

method, this method will be called during a state change of the observed class. There is also an

Observable interface that will be implemented by the classes that we want to observe. The

ObservableConcret class implements this interface, which allows it to keep observers and informed by

notifying them. Each ObservableConcret class has an attribute (or several) that we want to observe and a list

of observers. The state is an attribute whose observers wish to follow the evolution of its values. The list of

observers is the list of observers who are listening. The ObservableConcret class in our context is the

EAModel class, it represents our ArchiMate models. This class will contain two elements: components and

relationships. The EAModel class has the states that we want to observe, which are all the nodes and

relationships of the enterprise architecture landscape.

The EAModel class also contains all observers who will receive notifications on each change.

The ObserversConcret who are listening are the implementation classes of the analysis algorithms.

If a component or relationship is added, deleted, or modified, the observers concerned with this model update

are refreshed automatically. In our model the concrete observers are the algorithms of heterogeneity as shown

in Figure 6.

Name: calculation of process concentration by component

Variables: BS: all business processes
CP: the application components

 Map instances = map <String componentType, Integer processNumber>

Double sum
Double percentage

Integer Comp

Double heterogeneity
Create a map = instance: its key is a String for the application components and an integer for the number of processes

For all cp in CP do

For all r in cp.relations do
 If (r.target = bs) then

count = count + 1

 If instances contains componentType = cp.name
For any instance in the instances map

If (instance.composingType == cp.name)

Increment the number numberProcess by 1
End if

endfor

 If not
Add a new entry in the map with the key cp.name and value 1

 End if

 If not
Do nothing and move on to the next relationship

 End if
End For

End For
For any instance in the instances map
// Divide instance.numberProcess by count
Double percentage = instance. numberProcess / comp

sum = sum + percentage * ln (percentage)
endfor

heterogenity = -som

return heterogenite

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 377 - 386

382

Figure 5. The implementation of observer design pattern in our context

Name: calculation of the heterogeneity of operating systems and computers
Variables: SSD: All Instances of Operating Systems Deployed SystemSoftwareDeployment

Map instancesSE = map <String instanceType, Integer numberInstance>

Map instancesComputer = map <String instanceType, Integer numberInstance>
Double sum, sumDorDI

Double percentageSE, percentage ORDI

Double heterogeneity ORDI, heterogenite
Integer numberInstanceSE, numberInstanceORDI

Create a map = instanceSE that has a String for the OS type and an integer for the number of instances
Create a map = instanceComputer that has a String for the computer type and an integer for the number of instances

For all ssd in SSD

If instanceSE contains instanceType = ssd.systemSoftware
numberInstanceSE = instanceSE.get (ssd.systemSoftware)

Increment the number numberInstanceSE by 1

instanceSE.get (ssd.systemSoftware) .SetValue (nombreInstanceSE)
If not

Add a new entry in the instanceSE map as ssd.systemSoftware key and value 1

InstanceSE.add (ssd.systemSoftware, 1)
End if

If the computer instance contains instanceType = ssd.device
numberInstanceORDI = instanceComputer.get (ssd.device)

Increment the numberComputer instance by 1

instanceSE.get (ssd.device) .SetValue (nombreInstanceORDI)
If not

Add a new entry in the computer instance instance as ssd.device key and the value 1

instanceOrdinateur.add (ssd.device, 1)
End if

End For

For i ranging from 0 to N = SSD.size ()

 // divide numberInstance by N

Double percentage = instancesSE.get (i) .getValue () / N
sum = sum + percentage * log (percentage)

 endfor

heterogeniteSE = -som

 sum = 0

For i from 0 to N = SSD.size ()
 // divide numberInstance by N
Double percentage = computerInstance.get (i) .getValue () / N
sum = sum + percentage * log (percentage)

 endfor

heterogeniteORDI = -som

Int J Elec & Comp Eng ISSN: 2088-8708

Analysis and implementation of the impact of change: application to heterogeneity ... (Jihane Lakrouit)

383

Figure 6. An example of the implementation of observer design pattern

4. PROTOTYPE

The application architecture is divided into three layers: an information management or backup layer

that stores data from a model or from existing source files in a data warehouse, a reporting layer that presents

the results as shwon in Figure 7. Heterogeneity measures in graphical form and an interaction layer that

offers the possibility of modeling the desired points of view.

Figure 7. The three layers of prototype

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 377 - 386

384

The interaction layer represents the applications that will allow decision makers to model the views

of the enterprise architecture and enrich it with existing data. The modeling editor is as shown in Figure 8.

The illustrated tool represents the first step which is the modeling of the enterprise architecture by graphically

describing the elements and existing relations, it is an ArchiMate point of view modeled by the Archi

interface. It consists of an element set of each layer. The description of the AE is stored in two Comma-

separated values CSV files. To manage this metadata, we have developed a desktop application java,

illustrated in the Figure 9, which allows us to manage this metadata, to apply the heterogeneity measurement

algorithms and to visualize the output graphs.

Figure 8. The modeling interface

Figure 9. The Meta data management of EA components and relationships

Int J Elec & Comp Eng ISSN: 2088-8708

Analysis and implementation of the impact of change: application to heterogeneity ... (Jihane Lakrouit)

385

To manage this metadata, we have developed a java desktop application, illustrated in Figure 10,

that allows us to load relationships and components from csv files, view them and make changes if necessary.

Figure 11 show the report generated for the distribution of databases instances.

Figure 10. The interface to generate the heterogeneity graphs

Figure 11. The report generated for the distribution of databases instances

4 CONCLUSION

Enterprise Architecture (AE) is a cross-cutting discipline that deals with the process, models, tools

for describing organizations and building their IS. It also helps to plan the possible changes at

the organizational level and the architecture level. As a result, different approaches have been employed to

ascertain the challenges, yet they persist. Thus, the objective of this paper is to propose an evaluating

methodology for guiding designers and architects in evaluating and improving the EA models and especially

the impact of the change of the different components at the level of the complexity measures.

REFERENCES
[1] M. Hall and Tideman, ―Measures of Concentration,‖ Journal of American Statistical Society, vol. 62, pp. 162-168,

1967

[2] T. Iyamu, ―Understanding the complexities of enterprise architecture through structuration theory,‖ Journal of

Computer Information Systems, vol. 59, pp. 287-295, 2019.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 10, No. 1, February 2020 : 377 - 386

386

[3] Rouhani, B. D., Ahmad, R. B., Nikpay, F., & Mohamaddoust, R. (2019). CRITICAL SUCCESS FACTOR

MODEL FOR ENTERPRISE ARCHITECTURE IMPLEMENTATION. Malaysian Journal of Computer Science,

32(2), 133-148.
[4] C. Lucke, S. Krell, and U. Lechner, ―Critical issues in enterprise architecting: A literature review,‖ In Americas

Conference on Information Systems, Lima, 2010.

[5] C. B. Daniels, and W. J. LaMarsh II, ―Complexity as a cause of failure in information technology project

management,‖ In IEEE International Conference on System of Systems Engineering, 1– 7, San Antonio, TX, 2007.

[6] K. Wehling, D. Wille, C. Seidl, and I. Schaefer, ―Decision support for reducing unnecessary IT complexity of

application architectures,‖ In 2017 IEEE International Conference on Software Architecture Workshops, 161–168,

2017.

[7] C. Schmidt, ―Business architecture quantified: How to measures business complexity,‖ In D. Simon and C. Schmidt

(Eds.), Business Architecture Management. Springer, 243–268, 2015.

[8] J. S. Davis, and R. J. LeBlanc, ―A study of the applicability of complexity measures,‖IEEE Transac- tion on

Software Engineering,14(9), 1366–1372, 1988.

[9] R. L. Flood, and E. R. Carson, ―Dealing with complexity: An introduction to the theory and applica- tion of

systems science,‖ In Dealing with Complexity: An Introduction to the Theory and Application of System Science,

23–38, Springer, 1993.

[10] W. Kinsner, W., ―Complexity and its measures in cognitive and other complex systems,‖ In 7th IEEE International

Conference on Cognitive Informatics, 13–29, Stanford, 2008

[11] A. Schütz, T. Widjaja, and J. Kaiser, ―Complexity in enterprise architectures – Conceptualization and introduction

of a measure from a system theoretic perspective‖ In Proceedings of the 21stEuropean Conference on Information

Systems, Utrecht, Netherlands, 2013.

[12] Iacob, M. E., Monteban, J., van Sinderen, M., Hegeman, E., & Bitaraf, K. (2018). Measuring Enterprise

Architecture Complexity. 2018 IEEE 22nd International Enterprise Distributed Object Computing

Workshop (EDOCW). doi:10.1109/edocw.2018.00026.
[13] J. S. Davis and R. J. LeBlanc, ―A Study of the Applicability of Complexity Measures,‖ IEEE Transactions on

Software Engineering, vol. 14, pp. 1366.

[14] Y. Y. Yusuf and E. O. Adeleye, ―A comparative study of lean and agile manufacturing with related survey of

current practices in the UK,‖ International Journal of Production Research, vol. 40, pp. 4545-4562, 2002.

[15] S. L. Schneberger and E. R. McLean, ―The Complexity Cross: Implications for Practice,‖ Communications of

the ACM, vol. 46, pp. 216-225, 2003.

[16] J. Lakhrouit and K. Baïna, ―A pattern based methodology for analyzing enterprise architecture landscape,‖

International Journal of Computer Science Issues (IJCSI), vol. 13, pp. 15, 2016.

[17] Widjaja T., et al., ―Heterogeneity in IT landscapes and monopoly power of firms: a model to quantify

heterogeneity,‖ The international conference on information systems (ICIS), Orlando, FL, 2012.

[18] Lagerstrom R., et al., ―Visualizing and measuring enterprise application architecture: an exploratory telecom case,‖

School working paper 13-103. Harvard Business, Cambridge, MA, 2013.

[19] Schutz, et al., ―Complexity in enterprise architectures—conceptualization and introduction of a measure from

a system theoretic perspective,‖ The European conference on information systems (ECIS), Utrecht, The

Netherlands, 2013.

[20] J. S. Davis and R. J. LeBlanc, ―A Study of the Applicability of Complexity Measures,‖ IEEE Transactions on

Software Engineering, vol. 14, pp. 1366-1372, 1988.

[21] C. B. Garrison and A. S. Paulson, ―An Entropy Measure of the Geographic Concentration of Economic Activity,‖

Economic Geography, vol. 49, pp. 319-324, 1973.

[22] J. E. Kwoka Jr, ―The Herfindahl Index in Theory and Practice,‖ Antitrust Bull., vol. 30, pp. 915-947, 1985.

[23] F. M. Gollop and J. L. Monahan, ―A Generalized Index of Diversification: Trends in U.S. Manufactoring,‖

The Review of Economics and Statistics, vol. 73, pp. 318-330, 1991.

[24] A. P. Jacquemin and C. H. Berry, ―Entropy Measure of Diversification and Corporate Growth,‖ The Journal of

Industrial Economics, vol. 27, pp. 359-369, 1979.

[25] J. Lakhrouit and K. Baïna, ―A pattern based methodology for analyzing enterprise architecture landscape,‖

International Journal of Computer Science Issues (IJCSI), vol. 13, pp. 15, 2016.

