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1. INTRODUCTION 

During the last decades, the problem of unknown input filtering has received growing attention due 
to its applications in environmental state estimation [1], [2]. The unknown input filtering problem has treated 
in the literature by different approaches. The first approach assumes that the model for dynamical evolution 
of the unknown input is available. When the properties of the unknown input are known, the augmented state 
Kalman filter (ASKF) is a solution. To reduce computation costs of the ASKF, Friedland [2] proposed the 
two stage Kalman filter where the estimation of the state and unknown input are decoupled. The second 
approach treats the case when not have a prior knowledge about the dynamical evolution for the unknown 
input. Kitanidis [1] was the first to solve the problem using the linear unbiased minimum-variance. Darouach 
et al, [3] extend Kitanidis’s filter using a paramaterizing technique to obtain an optimal filter (OEF). Hsieh 
[4] has developed an equivalent to Kitanidis’s filter noted by robust-two stage Kalman filter (RTSKF). Later, 
Hsieh [5] developed an optimal minimum variance filter (OMVF) to solve the performance of degradation 
problem encountered in (OEF). Gillijns & De Moor [6] has treated the problem to estimate the state in the 
presence of unknown input which affects only the systems model. They developed a recursive filter which is 
optimal in the sense of minimum-variance. This filter has been extended by the same authors [7] for joint 
input and state estimation to linear discrete-time systems with direct feedthrough where the state and the 
unknown input estimation are interconnected. This filter is called recursive three step filter (RTSF) and is 
limited to direct feedthrough matrix has full rank. Cheng et al, [8] proposed a recursive optimal filter with 
global optimality in the sense of unbiased minimum-variance over all unbiased estimators, but this filter is 
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limited to estimate the state. Recently, the case of an arbitrary rank has been solved by Hsieh (2009) in the 
designed optimal filter [9], known as ERTSF (Extend RTSF). Other methods are proposed by Gillijns and 
Bart de Moor in [10], [11] and [12] which use least -squares (LS) technique and the information formulas. 

In this paper, we present an unbiased minimum-variance estimation of the state and the unknown 
input. These estimates are obtained by solving the information formulas using the weighted least-squares 
method. The advantage of this method is to provide a direct estimate of the state and unknown input in a 
single block with a simple calculation. 

The paper is organized as follow. Section 2, presents the problem under consideration and some 
preliminaries. In section 3, we set up the design of the filter equation by recursively solving the weighted 
least-squares problem. An illustrative example is presented in section 4. Finally, in section 5 we conclude our 
obtained results. 
 
 
2. PROBLEM AND PRELEMINARIES 

 
2.1 Problem Formulation 
Consider the linear stochastic discrete-time system with unknown input in the following form: 
 

1k k k k k kx A x G d w+ = + +  (1) 

 

k k k k k ky C x H d v= + +  (2) 

 

where n
kx Î Â  is the state vector, m

kd Î Â  is the unknown input vector and p
ky Î Â is the measurement 

vector. The process noise n
kw Î Â  and the measurement noise p

kv Î Â are assumed to be mutually 

uncorrelated zeros-mean white random signals with non singular covariance matrices 0T
k k kQ w wé ù= ³ê úë û  

and

0T
k k kR E v vé ù= >ê úë û   

respectively. The matrices , ,k k kA G C  and kH  are known and have appropriate 

dimension. We assume that ( ),k kA C  is observable, p m  and the initial state is uncorrelated with the white 

noises processes kw and .kv  The initial state 0x  is a Gaussian random variable with  0 0ˆE x x , 

  0 0 0 0 0ˆ ˆ T
E x x x x P     

 where  .E denotes the expectation operator. Also, we assume that 

   1 1k k krank C G rank G  , the direct feedthrough matrix kH  has an arbitrary rank . 

The objective of this paper is to design an optimal recursive filter wich estimates both the system state kx  and 

the unknown input kd  based on the initial estimate 0x̂  and the sequence of measurement 0 1, ,..., ky y y . No 

prior knowledge about the dynamical evolution of kd  is assumes to be available. Now we derive a Recursive 

Least Square (RLS) procedure that propagates a one step ahead predicted state estimate. For simplicity of 
derivations, we use a stochastic approach .We assume that an estimate / 1ˆk kx   is available with covariance 

matrix   / 1 / 1 / 1ˆ ˆ T
k k k k k k k kP E x x x x  

       
and we seek for a weighted least square (WLS) that allows to 

estimate /ˆk kx based on / 1ˆk kx   and the  newly available measurement ky .
 The error estimation / 1k kx -% is given by: 

 

/ 1 / 1ˆ: .k k k k kx x x- -= -%  (3) 

 
Using (1), (2) and (3), we obtain the following equation: 

 

/ 1 / 1

1

ˆ 0 0

0 .

0

k k n k k k

k k k k k

k k n k k

x I x x

y C H d v

A G I x w

 



      
              
              



  (4) 
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So, the corresponding WLS problem is given by 
 

1

2
/ 1

, ,
1

ˆ 0 0

min 0

0k k k

k k k

k k k k
x d x

k k n k

x xI

y C H d

A G I x





    
          
          

kW  

(5) 

 
where kW denotes the weighting matrix. 

From (5) the interpretation of an MVU (Unbiased Minimum-Variance) estimator is obtained by choosing 

 1 1 1
/ 1, ,k k k kdiag P R Q  
kW . The proposed solution of the LS problem (5) is given in the following form: 

 

 / / 1
ˆ ˆk k k k k k kd y C x  M  (6) 

 

/ / 1 / 1 /
ˆˆ ˆ ˆ( )k k k k k k k k k k k kx x K y C x H d      (7) 

 

1/ / /
ˆˆ ˆk k k k k k k kx A x G d    (8) 

 

Where the gain matrices m p
k

M  and n p
kK  still have to be determined later.  

 
 2.2 Preliminaries 
The following lemmas are essential for later developments. 
Lemma A.1 (The matrix inversion lemma   [11]): 

Let n nA   , n mB  , m nC  and m mD   be real matrices. If A , 1D CA B  and D are non-

singular, then 1A BD C  is non-singular, and    1 11 1 1 1 1.A BD C A A B D CA B CA
          

The following formula provides a manner to invert a 2 2  block matrix based on the matrix inversion 

lemma, 
 

 

111 1

1 11

0
.

0

A BD CA B I BD

C D CA ID CA B

 

 

      
    
          

Indeed, the diagonal entries of the first matrix on the right hand side of the equality sign can be computed 
using the matrix inversion lemma.

 
Lemma A.2: 

Let n nA  , n mB  and m mC   be real matrices.  If A , C  are non-singular then, 

   1 11 1 1.T TAB C B AB A BC B BC
        

 
 
3. FILTER DESIGN 

The calculation of the optimal matrices kM  and kK is addressed in the subsection 3.1 which call the 

measurement update, yields an estimate of kx  and unknown input kd . The time update of the state 

estimation is presented in subsection 3.2. 
 

3.1.   Measurement Update 
The measurement update is derived from (5) by extracting the rows that depend only on kx  and kd . 

This yield, 
 

2
/ 1

,

ˆ 0
min

k k

k k k

k kk kx d

x xI

C Hy d
    

    
    

1,kW

 (9) 
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Where  1 1
/ 1,k k kdiag P R 
1,kW

 
denotes the weighting matrix. 

Now we derive an explicit update formula by solving the problem state and unknown input 
estimations. Firstly, note that (9) is equivalent to the least-squares problem 

 

min
2,kk

2
k k k WX
Y - A X

 

(10) 

 
Where 
 

kA
0

k k

I

C H

 
  
 

, / 1ˆk k

k

x

y
 

  
 

kY ,

 

 

k

k

x

d

 
  
 

kX

 

and 1 1
/ 1( , )k k kdiag R P 
2,kW  (11) 

 
Using the Gauss-Markov theorem [13], the solution is written as: 
 

 ˆ
-1T T

k k 2,k k k 2,k kX = A W A A W Y  (12) 

 

Using (11) the covariance matrix  -1T
k 2,k kA W A

 
follows as 

 

  
-1T

k 2,k kA W A

11 1 1
/ 1

1 1

T T
k k k k k k k k

T T
k k k k k k

P C R C C R H

H R C H R H

  

 

 
 
  

 (13) 

 
In the next section we will determinate an unbiased estimate of the state and unknown input by seeking a 
solution to the equation (13). 
Lemma 3.1:  

The expression of the error covariance matrix /
d

k kP  is given by: 

 

  11
/ ,d T

k k k k kP H R H
 

 
(14)  

 
and the error covariance matrix of the state is given in the following form : 
 

 / / 1 /
d T T

k k k k k k k k k k kP P K R H P H K    (15) 

 
where  
 

/ 1
T

k k k k k kR C P C R 
 (16)  

 
1

/ 1
T

k k k k kK P C R
   (17)  

 
Proof: 
Note that, /k kP and /

d
k kP  can be identified as error covariance matrices of /ˆk kx  and /

ˆ
k kd , that is, 

/ / /
T

k k k k k kP E x x     , 

/ / /
d T

k k k k k kP E d d   
  . 
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Where the inverse of /k kP  and /
d

k kP  are given, respectively, by 

 

 1 1 1 1 1 1
/ / 1

1

( )

,

T T
k k k k k k k k k k k k k

T
k k k

P P C R C C R H H R H

H R C

     




  

  

(18) 

 

   
 

1 1 1
/

11 1 1
/ 1 .

d T T
k k k k k k k k

T T
k k k k k k k k

P H R H H R C

P C R C C R H

  

  


 

   
(19)

  

 
Then, by applying lemma A.1 the equation (13) is rewritten as follows: 
 

 
 

11 1 1
/ 1 /

1 1
/

11 1

11 1 1
/ 1

0

0

T T
k k k k K k k k k k

T T d
k k k k k k k

T T
k k k k k k

T T
k k k k k k k K

P C R C C R H P

H R C H R H P

I C R H H R H

H R C P C R C I

  


 

 

  


   
   
      
  

  
    

 (20) 

 
Applying the matrix inversion lemma A.1 to the information formulas (18) and (19), the error covariance 

matrix /
d

k kP  and /k kP  are given in the following forms: 

 

   
111 1 1 1

/ 1
/

1

T T T
k k k k k k k k k k kd

k k
T
k k k

H R H H R C P C R C
P

C R H

   




 
    

  

 (21) 

 

   
   

 

1 11 1 1

111 1 1 1 1
/ 1

11 1

T T T
k k k k k k k k k

T T T T
k k k k k k k k k k k k k k

T T
k k k k k k

H R H H R H H R C

P C R C C R H H R H H R C

C R C H R H

   

    


 

  

 
  

 



 (22) 

 1
/ 1

T T
k k k k k k kH R C P C H 

   (23) 

 

  11T
k k kH R H

    (24) 

 

 / / 1 /
d T T

k k k k k k k k k k kP P K R H P H K    (25) 

 

  1
1 1
/ 1

/
1 1 1 1( )

T
k k k k k

k k
T T
k k k k k k k k k

P C R C
P

C R H H R H H R C

 


   

 
 
  

 
 (26) 

 

 
1

11 1 1 1

T
k k k k k

T T T T
k k k k k k k k k k k k k k

P P C R H

H R H H R C P C R H H R C P



   

 

 
 (27) 

 
1 1

/
T d T

k k k k k k k k k k kP P C R H P H R C P    (28) 
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/ 1 /
T d T T

k k k k k k k k k k kP K R K K H P H K    (29) 

 
where 
 

  11 1
/ 1

T
k k k k k kP P C R C

 
 

 
 (30) 

 
1 1

/ 1
T T

k k k k k k kP C R P C R 
   (31) 

 

/ 1
T

k k k k kC P R K  
 

 (32) 

 
The gain matrix kK  that minimize the error covariance is given by 

 
1

/ 1 .T
k k k k kK P C R

    (33) 

 
Setting the Derivate of   (25) with respect to kK , we get 

 

/
/

T d T Tk k
k k k k k k k

k

P
R K H P H K

K


 


   (34) 

 

Let replace the /
d

k kP by equation (14), we notice that / 0k k

k

P

K





, therefore the gain kK  minimize the trace of 

the matrix covariance /k kP . 

Lemma 3.2:  
An unbiased estimate of the unknown input kd  can be obtained in the following form: 

 

 / / 1
ˆ ˆk k k k k k kd y C x  M  (35) 

 
where  
 

1
/ .d T

k k k k kP H R M  (36)  

 
We consider the minimum-variance unbiased state estimation /ˆk kx  given in the following form: 

 

/ / 1 1 /
ˆˆ ˆ ˆ( )k k k k k k k k k k kx x K y C x H d      (37) 

 
Proof:  
The equation (12) can be written as follows 
 

 

11 1 1
/ / 1

1 1
/

1 1
/ 1 / 1

1

ˆ

ˆ

ˆ
.

0

T T
k k k k k k K k k k

T T
k k k k k k k

T
k k k k k k

T kk k

x P C R C C R H

d H R C H R H

P C R x

yH R

  


 

 
 



   
  
     
   
   
      

(38) 

 
Substituting (20) in (38), we obtain  
 

1
/ / / 1 / 1ˆ ˆk k k k k k k kx P P x

 
 

(39)
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 1 1 1 1 1
/ / ( ) ,T T T T

k k k k k k k k k k k k k k kP C R P C R H H R H H R y       and estimation of unknown input is given in the 

following form: 
 

1 1 1 1 1
/ / / / 1

1 1
/ 1 / 1

ˆ ( )

( ).

d T d T T
k k k k k k k k k k k k k k k k k

T
k k k k k k

d P H R y P H R C P C R C

P x C R y

    


 
 

  

 
 (40)

 

 
Let us apply the lemma A.1 and A.3 to the equation (39) and (40), the estimate of the unknown input is given 
by: 
 

  
1 1

/ / /

1 1 1 1 1
/ 1 / 1 / 1

ˆ

ˆ( ) ( ).

d T d T
k k k k k k k k k k k k

T T
k k k k k k k k k k k

d P H R y P H R C

P C R C P x C R y

 

    
  

 

  
 (41) 

 
where 
 

 
1 1 1 1 1

/ / 1 / 1 / 1

1 1
/ 1

ˆ( )

ˆ .

d T T
k k k k k k k k k k k k k k

T T
k k k k k k k k

P H R C P C R C P x

H R H H R C x

    
  

 




  
 (42) 

 

 
 

11 1 1 1 1
/ / 1

1

/ / 1 .

d T T T
k k k k k k k k k k k k k k

d T T
k k k k k k k k k

P H R R C P C R C C R y

P H R C P C y

    





   
 

 

  (43) 

 

   1 1
/ / 1

ˆ ˆT T
k k k k k k k k k k kd H R H H R y C x 

    (44) 

 
Remark 3.1: to evaluate the performance of the filter in case where Hk has an arbitrary rank we use the 
heuristic extension presented in [9] by replacing equation (14) and (36) by: 
 

 1 1
/ /, †d T d T

k k k k k k k k k kP H R P H R H   M  (45) 

 

where †  the Moor-Penrose is generalized inverse 

  1† T TM M M M



 

The state estimation /ˆk kx  is given in the following form: 

 

 
1

/ / / 1 / 1

1 1 1 1 1
/ /

ˆ ˆ

( )

k k k k k k k k

T T T T
k k k k k k k k k k k k k k k

x P P x

P C R P C R H H R H H R y


 

    

 


 (46) 

 
Using the inversion lemma A.1 and A.3 we can show that: 
 

1 1
/ / 1 / 1 / 1 / 1 / 1

1 1 1 1
/ 1 / 1

ˆ ˆ ˆ

ˆ( ) .

T
k k k k k k k k k k k k k k k

T T T
k k k k k k k k k k k k k

P P x x P C R C x

P C R H H R H H R C x

 
    

   
 

 





    
 (47) 

 

 1 1 1 1 1
/

1 1 1 1
/ 1 / 1

1

( )

( )

.

T T T
k k k k k k k k k k k k

T T T
k k k k k k k k k k k k k

T
k k k

P C R R H H R H H R y

P C R y P C R H H R H

H R y

    

   
 





 



  

  

 (48) 



                ISSN: 2088-8708 

IJECE Vol. 5, No. 2, April 2015 :  259 – 270 

266

1
/ / 1 / 1 / 1

1 1 1 1
/ 1 / 1

1 1 1 1
/ 1 / 1

1

ˆ ˆ ˆ

ˆ( )

( )

.

T
k k k k k k k k k k k

T T T
k k k k k k k k k k k k k

T T T
k k k k k k k k k k k k k

T
k k k

x x P C R C x

P C R H H R H H R C x

P C R y P C R H H R H

H R y


  

   
 

   
 



 



 





  

  

  

 (49) 

 

 1 1
/ / 1 / 1 / 1ˆ ˆT T

k k k k k k k k k k k k k kx I P C R C x P C R y 
       (50) 

 1 1 1 1
/ 1 / 1ˆ( )T T T

k k k k k k k k k k k k k kP C R H H R H H R y C x   
      

 
3.2. Time Update

 
Firstly, we extract from (4) the equation that depends on 1kx  . 

 

1k k k k k kx A x G d w     (51) 
 

Second substituting kx  and kd  for their LS estimates /ˆk kx  and /
ˆ
k kd  obtained during the measurement 

update (41) and (50). Then, we obtain 
 

/ / 1 / /
ˆˆ ( )k k k k k k k k k k k k kA x G d x A x Gd w++ = - + +%%  (52) 

 
The corresponding LS problem is given by 
 

1 /
ˆˆmin k k k k k kx A x G d  

3,kW  
 (53) 

 
Where 3,kW denotes the weighting matrix which we choose 

 

  
1

/ / / /
T

k k k k k k k k k k k k k kE A x G d w A x G d w


          
  3,kW

 
 (54) 

 
From equation (53) 
 

1/ / /
ˆˆ ˆk k k k k k k kx A x G d    (55) 

 
The error estimation 1/k kx   is given by 

 

1/ 1 1/ˆk k k k kx x x     (56) 
 

/ /k k k k k k kA x G d w     (57) 

 
In consequence, the covariance matrix of 1/ˆk kx   is given by: 

 

1/ 1/ 1/
T

k k k k k kP E x x     
 

 (58) 

 

  / /

/ /

Txd
kk k k k

k k kdx d T
k k k k k

AP P
A G Q

P P G

  
   
       

 (59) 

 

It follows from (35) that /k kd  is given by: 
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   / / 1k k k k k k k k k kd I M H d M C x v      (60) 

 / / / /
Txd xd

k k k k k k k kP P E x d    
 .  

 
Using (56) and (60), it follows that  
 

/ /
xd d

k k k k k kP K H P   (61) 

 
 
4. ILLUSTRATIVE EXAMPLE  

To show the proposed results, the numerical example given by Darouach, Zasadzinki and Boutayeb 
(2003) is considered, where the parameters of systems (1) and (2) are given as follows, the parameters of the 
system (1) and (2) are given by: 
 

0 0005 0 0084

0 0517 0 8069k
. .

A
. .

  
  
   

1 0

0 1k,C ,
 

  
   

0 0129 0

1 2504 0k
.

G
.

 
   

0 0036 0 0342

0 0342 0 3249k
. .

, Q
. .

 
  
 

0 01 0

0 0 16k
.

R .
.

 
  
   

 
Without loss of generality, the initial state and its estimate are both assumed to be zero, and the initial

 covariance is

 

given by ( )0 10,200P diag= . The unknown input are given by 

 

[ ] [ ] [ ]

[ ] [ ] [ ]

5 5 20 5 70

4 4 30 4 65

s s s
k

s s s

u k u k u k
d

u k u k u k

é ù- - + -ê ú= ê ú- - + -ê úë û 
 
where [ ]su k  is the unit-step function. In this example, we assume that the simulation time is 100 time step. 

 

1 1 0

0 0kH
 

  
    , 

2 1 0

1 0kH
 

  
 

  

3 1 0

0 1kand H
 

  
   

 

Case 1: 
1

k kH H  
 
 

 
 

Figure 1. Actual and estimated value of the state 
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Figure 2.  Actual and estimated value of the input 
 
 

Case 2: 
2

k kH H  
 

 

 
 

Figure 3. Actual and estimated value of the state 
 
 

 
 

Figure 4. Actual and estimated value of the input 
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Case 3: 3
k kH H  

 
 

 

 
Figure 5. Actual and estimated value of the state 

 

 
 

Figure 6.  Actual and estimated value of the input 
 
 

Table 1. Performance of the proposed filter 
Hk RMSE Trace P 

 1
kx  

2
kx  

1
kd  

2
kd  

x
ktracP  

d
ktracP  

1
kH  0.031

 

0.161 0.024 - 0.430 0.0135

 

2
kH  0.083

 

0.064 0.120 4.000 0.459 0.0136

 

3
kH  0.071

 

0.014 0.018 0.123 1.014 1.1847

 

 
 

In table 1, the root square errors (RMSE) of the state 1 2 T
k k kx x x    and the inputs 1 2 T

k k kd d d    are 

given as well as the traces of their steady-input and state estimation error covariance. For example the RMSE 
of the first component of sate vector is calculated by 

 

   21 ˆ1, 1, 1,
1

N
RMSE x x xk k kN k

 




 
 

In figures 1, 3 and 5 we plot that actual and the estimated value of the two element of the state vector 

1 2 T

k k kx x x    in the three cases. 
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In figures 2, 4 and 6 we plot that actual and the estimated value of the two elements of the first and second 

element of the input vector 1 2 T

k k kd d d    in the three cases. 

According to Table1, Figures 1, 2, 3, 4, 5 and 6 we may conclude the following results:  
If the direct feedthrough matrix has full rank Hk=Hk

3  then the proposed filter (RLSF) guarantees an estimate 
with a small value (RMSE) for the two components of the two vectors of state and unknown input. 
 
 
5. CONCLUSION 

In this paper, the recursive filter design for systems with unknown input via the least-squares 
technique is proposed. The obtained recursive filter is named RLSF. This solution is based on the technique 
least square when the direct feedthrough matrix of the unknown input has an arbitrary rank. An application of 
the proposed filter has been shown by an illustrative example. This filter may be used in resolving Fault 
Detection and Isolation. 
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