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 The modern applications of communications that use wideband signals suffer 

the lacking since the resources of this kind of signals are limited especially 

for fifth generation (5G). The compressive spectrum sensing (COMPSS) 

techniques address such issues to reuse the detected signals in the networks 

and applications of 5G. However, the raw techniques of COMPSS have low 

compression ratio and high computational complexity rather than high level 

of noise variance. In this paper, a hybrid COMPSS scheme has been 

developed for both non-cooperative and cooperative cognitive radio 

networks. The proposed scheme compiles on discrete wavelet transform 

single resolution (DWT-SR) cascaded with discrete cosine transform (DCT). 

The first is constructed according to the pyramid algorithm to achieve 50% 

while the second performed 30% compression ratios. The simulation and 

analytic results reveal the significant detection performance of the proposed 

technique is better than that of the raw COMPSS techniques. 
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1. INTRODUCTION  

In the last two decades, the cognitive radio (CR) concept has attracted a lot of interest ever since it 

was used for efficiently utilizing spectrum, enabling coexistence for different wireless networks, weakening 

harmful interference, and increasing reliable wireless services [1, 2]. In the cognitive radio networks (CRNs), 

the secondary users (SUs) observe the spectrum bands and repeatedly detect the unoccupied ones using one 

of the spectrum sensing (SS) techniques. Thus, the chance of detecting spectrum increases relative to  

the increased width of the bandwidth [3, 4]. To address these issues, the compressive spectrum sensing 

(COMPSS) technique is seen as a practicable key. Its fundamental is sampling the received primary user 

(PU) signal at rates that are below the Nyquist rate with conserving PU signal specifications to recover it 

accuratly [5, 6]. 

One of COMPSS technique issues is reducing the consumed power in the receivers via increasing 

the compression ratio rather than minimizing the high cost of Analog-to-Digital Converters (ADCs) design. 

Many of COMPSS techniques have been developed in literatures. In a recent study by Astaiza, et al., (2016), 

the COMPSS for cooperative users were performed using signal matrix estimation algorithm [7]. It was used 

for a multi-antenna case, but its detection performance was poor for low SNR.  Wang [8] derived other 

algorithm for COMPSS according to positioning technology. It had low complexity since no reconstruction 

was needed but its performance was poor in low SNR. The discrete sine transform (DST) was also exploited 

for COMPSS with cooperative users [9]. Its detection performance was tested using the OR and Majority 
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rules and showed a bad result at SNR<-5 dB. In El-Khamy, et al., [3], the stationary wavelet transform 

(SWT) was studied and its performance was compared with discrete wavelet transform (DWT). However, 

its performance was defective for low SNR. The last but not least, the maximum inner product algorithm was 

derived [10]. This algorithm has a big compression ratio and an acceptable level of complexity, but it has 

a bad detection performance when SNR<-5 dB. 

The abovementioned disadvantages of the proposed COMPSS techniques are addressed in a higher 

compression ratio by proposed hybrid scheme. In addition, to reduce the consumed energy in ADC.  

Thus, the COMPSS technique involves decreasing the sampling rate lower than the Nyquist rate. This paper 

develops a hybrid COMPSS scheme in details by proposing a constant local and global false alarm ratios 

(CLFAR) and (CGFAR) expressions, and their effects on detection performance, compression ratio,  

SNR wall, and computational complexity trade-offs in sensing the OFDM signal [11-14]. The rest of this 

paper is outlined as follows: The algorithm of the considered COMPSS scheme and its formulated problem 

are described in section 2. In section 3, the proposed COMPSS technique scenarios are clarified and 

analyzed. Numerical and graphical results and their analyses are given in section 4. Conclusions of this paper 

are depicted in section 5. 

 

 

2. THE BACKGROUND MODEL OF COMPSS TECHNIQUE 

The COMPSS technique show how to sample the signal less than the Nyquist rate to reduce  

the ADC cost while the raw approaches were sampled at the Nyquist rate. The COMPSS algorithm can often 

be performed via three series steps, as depicted in Figure 1 [15, 16]: spread description, sub-Nyquist 

sampling, and reconstruction. The functions of these steps are: (1) to spread the signal over reconstructable 

bases, (2) to sample the spreading signal at a sub-Nyquist ratio, (3) to reconstruct the sampling signal [17]. 

 

 

 
 

Figure 1. Block diagram of COMPSS steps 

 

 

From the viewpoint of spectrum sensing (SS), the sensing detectors sense the various signals that 

have lower power compared to the wideband signals. However, there are some drawbacks such as using 

a number of RF frontends as the number of bands that should be sensed, computational complexity, and high 

consumption of energy, which results in air pollution. The COMPSS concept is more or less recovers  

the sensed signal that is sampled at the sub-Nyquist rate to meet the ADC demands and deal with issues of 

wideband signals sensing [18]. 

To describe the mathematical model of COMPSS, suppose that New is a spread samples number 

with 𝑁𝑒𝑤 ≪ 𝑁, and N denotes the original length signal. In addition, suppose that ψ is a spread bases 

(matrix) such as DFT or DWT with size of (N×N). Thus, the spread signal can be modelled as follows:  

 

𝑥𝐶𝑂𝑀𝑃 = 𝜓 × 𝑠    (1) 

 

where xCOMP denotes the spread signal and s is the extension of signal where ‖𝑠‖0 = 𝑁𝑒𝑤 ≪ 𝑁. Suppose that 

Φ is a sensing matrix with size of (New×N) to compress the signal with essential information of xCOMP,  

as depicted in Figure 2.  

 

 

 
 

Figure 2. Structure of compression process 
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The compressed signal, yCOMP, represents the signal measurements of signal with New samples and 

can be modelled as: 

 

𝑦𝐶𝑂𝑀𝑃 = Φ × 𝑥𝐶𝑂𝑀𝑃    (2) 

 

To recover the original signal, the next equation will show how it can be achieved. From the small 

number (New), the big number (N) can be predicted due to the spreading assumption. This equation is 

considered an optimised problem to address this problem, as follows:  

 

�̃�𝐶𝑂𝑀𝑃 = arg  min
𝑦𝐶𝑂𝑀𝑃=Φ×𝑥𝐶𝑂𝑀𝑃

‖𝑥𝐶𝑂𝑀𝑃‖1       𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        𝑦𝐶𝑂𝑀𝑃 = Φ × 𝑥𝐶𝑂𝑀𝑃     (3) 

 

where �̃�𝐶𝑂𝑀𝑃 is the reconstructed signal and ‖𝑥𝐶𝑂𝑀𝑃‖𝑚 = √∑ |𝑥𝐶𝑂𝑀𝑃𝑖
|

𝑚
𝑖

𝑚
 is the ℒ𝑚 norm of xCOMP [17]. 

 

 

3. THE PROPOSED HYBRID COMPSS SCHEME 

Basically, the COMPSS is applied to capture useful data (in time or frequency domains), so these 

data are compressed to counter the shortcomings of the bandwidth. Thus, it should be compressed by bases 

with superior resolution that keep the necessary measurements in order to reduce the cost. The proposed 

COMPSS system has been achieved through two cascaded stages: DDWT followed by CDCT for one SU 

(non-cooperative system) and DDWT followed by MCDCT for multi SUs (cooperative system), as shown in 

Figures 3 and 4, respectively. 

 

 

 
 

Figure 3. Hybrid COMPSS for 

one SU block diagram 

 
 

Figure 4. Hybrid COMPSS for 

multi SUs block diagram 

 

 

The first stage essentially depends on WT, since it can analyse the signal to coefficients as their 

frequencies. For instance, the first decomposition level can categorise the signal into two components: 

low frequency that contains the traffic, and high frequency that contains the noise [19]. The Daubechies 

wavelets type is a higher base wavelet order rather than it is orthogonal. It is smoother and has better 

frequency localisation than others [20]. The Daubechies bases were extracted using the pyramid algorithm, 

which was investigated by Hansen, [21] and others. The pyramid algorithm generates the bases according to 

the required order number from the bases d1, d2, d3, and d4. Next, the new bases were created from averaging 

(as d1+d2/2), and the new base is then moved up to a new level towards the top of the pyramid. 

From differencing (as d1-d2/2), the new base is moved down to a new level towards the bottom of 

the pyramid, and so on in order to build the pyramid [21]. 

To build the DDWT matrix, Φ1, as stated in the pyramid algorithm, the number of bases is required 

to be the same as the number of equations in order to obtain their rates. The basis vectors of the proposed 

matrix should be perpendicular, i.e., the result of the inner product between every two vectors equals to zero. 

The main four bases rates were obtained in [22] by I. Daubechies, as follows; d1= (1+√3)/4, d2=(3+√3)/4, 

d3= (3-√3)/4 and d4= (1-√3)/4. To complete the DDWT matrix for 1024×1024 vectors, the other bases can 

be constructed according to the pyramid algorithm. The scaling function and the three wavelet coefficients 

can be formulated as follows: 

 

𝑠1 = (∑ 𝑑𝑎

𝑁

4
𝑎=1 + 2 ∑ 𝑑𝑎

3𝑁

4

𝑎=(
𝑁

4
)+1

+ ∑ 𝑑𝑎
𝑁
𝑎=(3𝑁/4)+1 )/(5𝑁 2⁄ ) (4) 

 

𝑤1 = (2 ∑ 𝑑𝑎

𝑁

4
𝑎=1 − ∑ 𝑑𝑎

3𝑁

4

𝑎=(
𝑁

4
)+1

+ 2 ∑ 𝑑𝑎
𝑁
𝑎=(3𝑁/4)+1 )/(5𝑁 2⁄ )     (5) 

 

𝑤2 = (− ∑ 𝑑𝑎
𝑁/4
𝑎=1 + ∑ 𝑑𝑎

𝑁
𝑎=(3𝑁/4)+1 )/𝑁 (6) 
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𝑤3 = (− ∑ 𝑑𝑎
𝑁/2
𝑎=(𝑁/4)+1 + ∑ 𝑑𝑎

3𝑁/4
𝑎=(𝑁/2)+1 )/𝑁 (7) 

 

In general, the following model can be applied for various signal lengths: 

 

𝑤
2(

𝑁

2
)

= 𝑤
(

𝑁

2
)

= (− ∑ 𝑑𝑎

𝑁

𝑁
𝑎=1 + ∑ 𝑑𝑎

2𝑁/𝑁
𝑎=𝑁/𝑁+1 )/(𝑁 𝑁/2⁄ ) (8) 

 

The new fashion of received PU signal, Y, contains only traffic with half of the length, NCOMP,  

of the original received PU signal using one level, as follows: 

 

𝒀 = 𝚽𝐷𝐷𝑊𝑇𝑿     (9) 

 

𝑁𝐶𝑂𝑀𝑃 =
𝑁

2
          (10) 

 

The previous stage of spectrum compression reduces the consumed power in the front end up to 

50%. In addition, the compressed spectrum contains a big amount of traffic power with a little amount of 

noise power since the resultant spectrum conserves the signal measurements. Consequently, its detection 

performance gets better in low SNR.  

On the other hand, using the CDCT algorithm as the second compression stage omits coefficients 

that have zero threshold rate. This stage can significantly reduce the noise variance and power consumption 

without signal resolution, specifications and measurements deterioration [23]. Moreover, it enhances  

the detection performance in lower SNR. Thus, applying the second compression stage on the compressed 

spectrum, which is a result of the first compression stage (DDWT), to obtain a big compression ratio with 

new length, New, as follows: 

 

𝑍[𝑘] =  (
(−1)𝑘𝑌[0]

√2
+ ∑ 𝑌[𝑘𝑘] cos (

𝜋𝑘(2𝑘𝑘+1)

2𝑁𝐶𝑂𝑀𝑃
)

𝑁𝐶𝑂𝑀𝑃−1
𝑘𝑘=1 )      k = 0, 1, … , K –  1   (11) 

 

As a matrix form, the next model compresses the stream by New: 

 

𝒁 = 𝚽𝐶𝐷𝐶𝑇𝒀    (12) 

 

Thus, the hybrid COMPSS scheme can be described as a structure, as shown in Figure 5. Finally, the test 

statistic for the final compressed spectrum results can be expressed to test the detection performance, 

as shown in the next equation. 

 

𝑃𝑆𝐷𝐶𝑂𝑀𝑃 =
1

𝑁𝑒𝑤
∑ |𝑍[𝑘]|2𝑁𝑒𝑤−1

𝑘=0        (13) 

 

 

 
 

Figure 5. Hybrid COMPSS structure 

 

 

By substituting PSDCOMP and New into the CDCT for non-cooperative case and MCDCT for 

cooperative case algorithms, the cascaded systems can achieve a local decision for the first algorithm and 

a global decision for the second one as described below. However, the CDCT algorithm eliminates  

the coefficients that have a threshold value of zero or approaches to zero. After that, the algorithm obtains  

the PSD which has been compared with the predefined threshold to sense the PU signal and identify whether 

it is present or absent, as shown in Figure 7.  
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As previously mentioned, each signal can be represented by a number of DCT coefficients to evaluate 

the received PU signal is first mathematically transformed to another domain using DCT-II family fusion: 

 

𝑋[𝑘] =  (
(−1)𝑘𝑥[0]

√2
+ ∑ 𝑥[𝑛] cos (

𝜋𝑘(2𝑛+1)

2𝑁
)𝑁−1

𝑛=1 ) √
2

𝑁
      𝑘 = 0, 1, … , 𝐾 − 1    (14) 

 

After that, the new signal Y[k] become shorter due to elimination of the zero threshold, can be modelled 

as follows: 

 

𝑌[𝑘] =  𝑋[𝑘]     𝑘 = 0, 1, … , 𝑁𝑒 − 1     (15) 

 

Next, the test statistic for active samples only is obtained. As shown in Figure 6, the threshold does 

not approach to or equals zero, 

 

𝑃𝑆𝐷𝐶𝐷𝐶𝑇 =
1

𝑁𝑒
∑ |𝑌[𝑘]|2𝑁𝑒−1

𝑘=0         (16) 

 

where PSDCDCT denotes the test statistic and is lower in complexity than the raw periodogram, as investigated 

in the next section. Eliminating zero-valued coefficients also produces spectrum with its necessary data and 

a smaller number of samples. Therefore, the proposed ED technique has low mathematical and low 

computational complexity [24]. 

 

 

 
 

Figure 6. Proposed ED based on CDCT for SS block diagram 

 

 

The comparing process can be modelled for the new stream, as follows: 

 

𝑃𝑆𝐷𝐶𝐷𝐶𝑇[𝑦] < 𝜂         𝐻0  (17) 

 

𝑃𝑆𝐷𝐶𝐷𝐶𝑇[𝑦] ≥ 𝜂         𝐻1  (18) 

 
The main sensing aim is to maximise Pd with minimised Pf in a certain relationship. 

Such a relationship is called receiver operating characteristics (ROC), which describes the detection 

performance. In practice, to obtain the predefined threshold, Pf is to be constant for a certain value, and this 

value should be small to prevent any harmful interference. The fixed values of Pf and Pd approaches are 

called CLFAR and constant local detection rate (CLDR), respectively. The approximated closed-form 

expressions for Pf and Pd under the AWGN channel are described in detail below, since N ≫ 250. Suppose 

that γ denotes the SNR of received PU signal, X[k], and can be modelled as below: 

 

𝛾 =
𝜎𝑠

2

𝜎𝑤
2          (19) 

 

Thus, the probabilities of false alarm and detection can be formulated as follows: 

 

𝑃𝑓 = 𝑄 (

𝜂
𝜎𝑤

2⁄ −1

√(
2

𝑁
)

)    (20) 

 

𝑃𝑑 = 𝑄 (

𝜂
𝜎𝑤

2⁄ −(𝛾+1)

√(
2

𝑁𝑒
)(𝛾+1)

) (21) 

 

To switch the SNR of the original received PU signal, X[k], to the SNR of new-length PU signal, Y[k], 

the following ratio can be derived according to the lengths of both signals, where α represents the length ratio: 

 Comparing & 

Decision
PSD

Predefined Threshold 

Estimation
Filtered 

Received 

Signal CDCT



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 6, December 2020 :  5899 - 5908 

5904 

𝛼 =
𝑁

𝑁𝑒
       (22) 

 

After that, this ratio is multiplied by the SNR of the originally received PU signal to obtain the SNR 

of the new-length PU signal. Thus, (21) will become:  
 

𝑃𝑑 = 𝑄 (

𝜂
𝜎𝑤

2⁄ −𝛼(𝛾+1)

√(
2

𝑁𝑒
)𝛼(𝛾+1)

)  (23) 

 

From the definition of Pf  and Pmd, a probability of error, Pe, can be considered, as follows [18]: 
 

𝑃𝑒 = 𝑃𝑓 + 𝑃𝑚𝑑 = 1 + 𝑃𝑓 − 𝑃𝑑  (24) 

 

Furthermore, η should be estimated according to the Pf rate and then the noise variance is required to 

obtain η [25]. Accordingly, η can be derived from (20), as follows: 
 

𝜂 = 𝜎𝑤
2 (1 + √(

2

𝑁
) 𝑄−1(𝑃𝑓𝑎))    (25) 

 

To analyse the noise variance effect, the predefined threshold can be normalised with variance of 

noise, as shown below: 
 

𝜂
𝜎𝑤

2⁄ = (1 + √(
2

𝑁
) 𝑄−1(𝑃𝑓𝑎))   (26) 

 

To perform it, the previous optimal rates must be used in (20 and 23) to obtain the crucial factors Ne 

and η. In this research, the predefined threshold can be obtained from (42) using CLFAR, as shown below: 
 

𝜂 = 𝜎𝑤
2 (1 + √(

2

𝑁
) 𝑄−1(0.01))   (27) 

 

Substitute the predefined threshold into (23) to figure out the best length for the received PU signal 

using CLDR: 
 

𝑁𝑒 = (
𝛼(𝛾+1)𝑄−1(𝑃𝑑)

√2(
𝜂

𝜎𝑤
2⁄ −𝛼(𝛾+1))

)

2

    (28) 

 

Although the cancelled coefficients do not affect signal detection purposes, obtaining the correlation 

between the original length PU signal and the new-length PU signal can realize the sensing improvement. 

The linear cross-correlation model can be stated as follows:  

 

𝑍𝑋𝑌 =  𝑋[𝑘]⨂𝑌[𝑘]         𝑘 = 0, 1, … , 𝑁 + 𝑁𝑒 − 1     (29) 

 

where ⨂ denotes linear cross-correlation operation. 

As aforementioned, each SU sends its local decision to the fusion center (FC) which decides 

a global decision. However, the MCDCT algorithm eliminates the coefficients that have a threshold value of 

zero or approaches to zero according to the number of SUs. After that, the algorithm obtains the global 

decision via OR-rule, and sends its decision to all SUs, as shown in Figure 7. 

The FC must decide the previous desire values from (20) and (23) each user should make a local 

decision regarding the global one. Therefore, the local decision can be formulated by using a CGFAR and 

a constant global detection rate (CGDR) from (20) and (23) as follows: 

 

𝑃𝑓𝑐𝑠𝑠 = 1 − (1 − 𝑄𝑓)
1

𝑛𝑠𝑢 = 1 − (0.99)
1

𝑛𝑠𝑢    (30)  

 

𝑃𝑑𝑐𝑠𝑠 = 1 − (1 − 𝑄𝑑)
1

𝑛𝑠𝑢 = 1 − (0.1)
1

𝑛𝑠𝑢     (31)  
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Figure 7. Proposed ED based on MCDCT for SS block diagram 

 

 

Substitute Pfcss and Pdcss in (27) and (28), respectively to find the crucial factors Ne and η and then 

design the cooperative case detector as shown below: 

 

𝜂 = 𝜎𝑤
2 (1 + √(

2

𝑁
) 𝑄−1 (1 − (0.99)

1

𝑛𝑠𝑢))  (32) 

 

𝑁𝑒 = (
(𝛼𝛾+1)𝑄−1(1−(0.1)

1
𝑛𝑠𝑢)

√2(
𝜂

𝜎𝑤
2⁄ −(𝛼𝛾+1))

)

2

    (33) 

 

Thus, each user in a centralized cooperative CRN should decide locally from (30), (31) to help the FC to 

decide on desired global ratios. 

 

 

4. RESULTS AND DISCUSSION 

In this section, a system-level simulation was built by using MATLAB to achieve the specifications 

of CRN standard [11]. The simulation environment considered an up-link transmission from PU equipment, 

which is located in some region. This region contained about 100 SU devices and was covered by an AWGN 

channel for various SNR values from zero till -50 dB and other simulation parameters as shown in Table 1. 

 

 

Table 1. The simulation parameters 
Up-link Parameters Value 

Transmission mode 2 K mode 
Number of FFT 2048 samples 

Bandwidth 6, 7, and 8 MHz 

Sampling time 7/48, 7/56, and 7/64 
Cyclic prefix 1/4, 1/8, 1/16, and 1/32 

Number of subcarriers 1705 samples 

Modulation scenarios QPSK and 16-QAM 
Channel type AWGN channel 

SNR -50 – 0 dB 

 

 

4.1.   Detection performance for fixed Qf 
Figure 8 exhibits a surface plot for the the global probability of detection versus the number of SUs 

and SNR, whereas the global probability of false alarm is constant at 0.01 and one SU only. From Figure 8,  

it can be deduced that the performance is excellent for every SNR and SU number that is equal to and greater 

than 20 users. The values of the original stream, first compression stage, and second compression stage 

lengths are listed in Table 2, where ϵh, and ϵl denote the higher and lower removed power ratios, respectively. 

From Table 2, the resultant compression ratios are around 80%, 80.5%, 81.5%, and 81% for the 16-QAM 

(G=4), QPSK (G=4), 16-QAM (G=32), and QPSK (G=32), scenarios respectively. This figure also shows 

that the noise variance is significantly reduced in both stages, especially for high numbers of SUs in 

the CRN. 
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(a) 

 
(b) 

 

Figure 8. Qd of DDWT-CDCT, Qf=0.01, nsu=1-100 users and SNR=-50-0 dB,  

(a) G=¼ for 16-QAM scenario, (b) G=¼ for QPSK scenario 

 

 

Table 2. Qd, ϵh, and ϵl of DDWT-CDCT for Qf=0.01, and different values of cyclic prefix 
16-QAM (G=4) QPSK (G=4) 16-QAM (G=32) QPSK (G=32) 

N=2560 ϵl=-55.23 dB N=5120 ϵl=-63 dB N=2112 ϵl=-53 dB N=4224 ϵl=-60 dB 

NCOMP=1280 New=1117 NCOMP=2560 New=2318 NCOMP=1056 New=907 NCOMP=2112 New=1879 

New/ϵh=516 ϵh=-20 dB New/ϵh=998 ϵh=-20 dB New/ϵh=389 ϵh=-20 dB New/ϵh=804 ϵh=-20 dB 

 

 

4.2.   Detection performance for fixed SNR 

 The surface plot of Figure 9 shows the ROC versus the number of SUs where the SNR is constant 

at -50 dB. The signal is watched by a number of SUs that varies between 1 and 100 users along the ROC. 

From Figure 9, it can be seen that the global detection probability is excellent for 20 users or more for all 

cyclic prefix and scenarios. From one user till 20 users in the 16-QAM scenario, the global probability of 

false alarm changes from zero to 0.07 and zero to 0.03, and the resultant global detection probability is from 

0.9 to 1. In terms of the same range of users in the QPSK scenario, the global false alarm probability varies 

between zero to 0.07 and zero to 0.1, and the resultant global detection probability is from 0.9 to 1.  

 

 

 
(a) 

 
(b) 

 

Figure 9. Qd of DDWT-CDCT, SNR=-50 dB, nsu=1-100 users and Qf=0 – 1,  

(a) G=¼ for 16-QAM scenario, (b) G=¼ for QPSK scenario 

 

 

From the Table 3, it can be seen that the first stage achieved compression ratios that are the same as 

those of fixed global false alarm probability. From these values of lengths, the overall compression ratios are 

80%, 80%, 81%, and 81% for 16-QAM (G=4), QPSK (G=4), 16-QAM (G=32), and QPSK (G=32), scenarios 

respectively. The difference in ratios between the case of fixed global false alarm probability and the fixed 

SNR exhibits the effect of the SNR wall for different scenarios and cyclic prefix ratios. 
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Table 3. Qd, ϵh, and ϵl of DDWT-CDCT for SNR=-50 dB, and different values of cyclic prefix 
16-QAM (G=4) QPSK (G=4) 16-QAM (G=32) QPSK (G=32) 

N=2560 ϵl=-55.23 dB N=5120 ϵl=-63 dB N=2560 ϵl=-55.23 dB N=5120 ϵl=-63 dB 

NCOMP=1280 New=1109 NCOMP=2560 New=2324 NCOMP=1280 New=1109 NCOMP=2560 New=2324 

New/ϵh=517 ϵh=-20 dB New/ϵh=1002 ϵh=-20 dB New/ϵh=517 ϵh=-20 dB New/ϵh=1002 ϵh=-20 dB 

 

 

4.3.   Discussion 

All in all, the proposed Hybrid COMPSS scheme decreased the consumed power by a ratio up to 

80% regarding signal measurements. Thus, the pollution of radii that emits from equipment will significantly 

decrease. Furthermore, the first stage operations are too simple and are equal to 2N operations only, which is 

the average of additions and subtractions. The second stage increased the compression ratio, enhanced 

the reliability and decreased the variance of noise and error. Moreover, both stages used smaller signals and 

then required a short time to sense although there are two stages and not only one. Table 4 summarizes 

the different parameters among the Hybrid COMPSS, the stationary wavelet edge transform [3] and signal 

matrix estimation [10] algorithms. 

 

 

Table 4. Qd, ϵh, and ϵl of DDWT-CDCT for SNR=-50 dB, and different values of cyclic prefix 
Parameters Stationary Wavelet Edge 

Transform [3] Algorithm 

Signal Matrix Estimation 

[10] Algorithm 

Hybrid 

COMPSS 

Comparison 

Detection Performance for 

non-cooperative (Pd, Pfa) 
(0.8, 0.09) N/A (0.9, 0.01) 

Hybrid COMPSS scheme 

is better for one SU 
Detection Performance for 

cooperative (Qd, Qfa) 
N/A (0.67, 0.01) (0.99, 0.01) 

Hybrid COMPSS scheme 

is better for Multi-SUs 

Compression Ratio 50% 70% 81.5% Higher Compression Ratio 
SNR Wall/dB -10 1 -50 SNR Wall lower 5 times 

SU Number One only 10 100 Users 
Used for non-cooperative 

and cooperative users 

 

 

5. CONCLUSION 

In this paper, a hybrid COMPSS schemes for non-cooperative and cooperative SUs are derived. 

These schemes were constructed using two stages; DDWT and CDCT/MCDCT for one scheme. The first 

stage enhanced the detection performance, achieved 50% compression ratio that shortened the sensing 

period, decreased the noise variance, and had low cost by reducing computational complexity. On the other 

hand, the second stage enhanced the detection performance furthermore to achieve up to 30% compression 

ratio (80% overall compression ratio), reduced the SNR wall, and had too low cost since it dealt with half of 

the original signal. These achievements were achieved for both modulation scenarios and for cooperative and 

non-cooperative CRNs. Furthermore, a reconstruction of the signal was not required since both hybrid 

COMPSS schemes kept the necessary measurements of the detected signal. 
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