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 This paper proposes   a simple scheme of Proportional-Derivative (PD) plus 

Feedforward controller on SO(3) to control the attitude of a quadrotor. This 

controller only needs the measurement of angular velocity to calculate the 

exponential coordinates of the rotation matrix. With rotation matrix as an 

error variable of the controller, the simulation shows that the controller is 

able to drive the attitude of the quadrotor from hovering condition to desired 

attitude and from an attitude condition goes to the hovering condition, 

despite the system is disturbed. When the system is convergent, the rotation 

error matrix will be a 3x3 identity matrix. 
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1. INTRODUCTION  

A quadrotor is a six DOF Unmanned Aerial Vehicle (UAV) which consists of two pairs of counter-

rotating rotors. Due to some unique abilities of quadrotor such as high maneuverability (hovering and 

VTOL), small size, and easy to control, quadrotor has been widely used. The usage area of a quadrotor can 

be separated into three major parts such as: military operations (security intelligence), public application 

(SAR), and civil application (photography). In order to improve the ability of quadrotor, some researchers 

were carry out on several aspect of control, such as path planning [1], position [2], altitude or hovering [3], 

and attitude [4]. 

Attitude of quadrotor is an orientation of the body fixed frame with respect to the inertial frame. It 

depends on the moment and the thrust of the two pairs of motor. By varying the rotor speed, one can change 

the lift force to create motion. The ability of quadrotor depends on an attitude control of quadrotor. If the 

attitude control is correct, then the additional task can be added to the system, for example, in the navigation 

task such as path planning, the orientation of quadrotor is an important to set the accuracy of sensor to detect 

the obstacle. The set of attitudes of quadrotor (rigid body) is the set of 3x3 orthogonal matrix whose 

determinant is one as known as Special Orthogonal SO(3) [5]. 

To control the attitude of quadrotor, many of control algorithms have been developed [6]. Most of 

them were developed with euler angles representation, which suffer from the problem of singularities for 

large angle rotational maneuvers [7]-[12]. To avoid singularity in euler angles representation, some works 

use a quaternion method to represent the attitude of quadrotor [13]-[15]. Although the quaternions do not 

increase to singularities, they have double cover of the set of attitudes SO(3) (no unique representation called 
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ambiguities) in the sense that each attitude corresponds to two different quaternion vectors. Another work 

using a combination of Euler angles and unit-quaternion to represent the attitude of the aircraft [16]. 

One method that can avoid from singularities and ambiguities is a geometric control method, which 

uses a rotation matrix representation. This representation is global and unique. In geometric control method, 

the rotation matrix can be developed with an exponential matrix of exponential coordinate of an attitude, 

which map a vector    into a matrix SO(3) (Special orthogonal-3) by summing an infinite series of 

exponential skew-symmetric matrix. The exponential coordinate is one of the intrinsic properties of Lie 

group SO(3). 

Several studies to control a quadrotor based on exponential coordinate have been already done.  

In [17], a geometric tracking control system on SO(3) was provided to avoid singularities and ambiguities 

that are inherent to other attitude representation. This proposed tracking control also show its performance to 

stabilize the attitude error without the knowledge of the inertia matrix. In [18], a robust adaptive tracking 

control of the attitude dynamics of a rigid body was proposed. The controller made a tracking for an attitude 

and angular velocity command without knowledge of the inertia matrix of a rigid body. Both of these 

researches merely give the attitude tracking approach without considering the control torque. 

In [19], the attitude controller for a quadrotor based on exponential coordinate had been already 

done. The controller has been designed using TLC (trajectory linearisation control). The controller use an 

exponential coordinates       and angular velocity       as an error variable for controller. While  

in [19] uses a vector     as an error variable, a rotation matrix error      as an error variable is used as an 

input of the controller in [20]. In [20],  a PID algorithm is used and a knowledge of angular velocity error as 

an input to controller is needed. This work is look like focus in response time of the rotor. 

In this paper, a simple  PD plus Feedforward controller on SO(3) with a rotation matrix         

as an error variable for the system is proposed . This controller is simpler than the controller in [20]. This 

controller uses a proportional-derivative algorithm and only requires the measurements of angular velocity 

from dynamic of quadrotor to calculate the attitude. This controller can stabilize the attitude of quadrotor in 

hovering condition and making a motion to a desired attitude. 

 

 

2. RESEARCH METHOD  

In this section, some mathematical tools will be given for rotation parametrization and some basic 

knowledge of Lie Group and Lie Algebra. 

 

2.1.  Mathematics of Rotation in SO(3) 
Rotation matrix is a 3x3 matrix that represents the transformation vector from a fixed-body frame to 

an inertial frame. Rotation matrix         is a Lie group which has an algebraic group structure based on 

matrix multiplication as the group operation. According to the Euler theorem for rotates body, any  

3-dimensional rotation of a rigid body can be represented by a rotation of a given axis by an angle. Suppose 

that      is a unit vector that specifying the rotation axis of a rigid body, and      is a rotation angle in 

radians. The position of a point at the rigid body as a function of time is denoted by q(t). If the body is rotated 

at constant unit velocity about the axis  , the velocity of the point can be written as 

 

 ̇            ̂       (1) 

 

The hat operator   maps a vector in     to a skew-symmetric matrix, defined as 

 

  ̂  [

      

      

      
] (2) 

 

The inverse operation of the hat operator    is denoted  as a vee operator  ,  which recover a vector      

from a skew-symmetric matrix  ̂       . The skew-symmetric matrix  ̂  satisfies  ̂     ̂ . All such 

matrices forms a vector space denoted as so(3): 

  
      {              } (3) 

 

The exponential map transforms a skew-symmetric matrices into an orthogonal matrices. Geometrically, the 

skew-symmetric matrix corresponds to the axis of rotation (via the mapping    ̂, and the exponential map 

generates the rotation corresponding to the rotation about the axis by a specified amount  . So the 

exponential map                  will maps a skew-symmetric matrix  ̂  to an orthogonal matrix 
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(    ̂ ), that is  
 

       ̂      ̂  
  

  
 ̂  

  

  
 ̂      (4) 

 

where I  is a 3x3 identity matrix,   is a rotation angle, and   is a rotation axis. The rotation matrix 

        is  a three-dimensional special orthogonal matrix that satisfies 

 

                      (5) 

 

Equation (4)  is an infinite series formula. To obtain a closed-form expression for      ̂  , by referred to 

Rodrigues' Formula, an efficient method for computing      ̂   is stated as 

 

       ̂     ̂         ̂              (6)  

 

where   [      ]       , with ‖ ‖    is the rotation axis, and   is a rotation angle. The vector 

      is the exponential coordinates   for        , therefore, a rotation matrix can be calculated by an 

exponential matrix of a skew-symmetric matrix of exponential coordinate  , 

 

     . (7)

  

The inverse mapping from  an orthogonal matrix SO(3) to a skew-symmetric matrix so(3)  is done by the 

logarithmic map which is defined as 

 

        
 

     
                (8) 

 

where   is      (
       

 
) and | |   , and       is the sum of the elements on the main diagonal of 

rotation matrix.  If    , the rotation axis    can be chosen arbitrarily. And if    , the rotation axis can be 

calculated by        , that is 

 

          
 

     
           (9)

  

An illustration of a rotation with an axis and angle of rotation can be seen in Figure 1,  

where   [      ]   is a reference configuration, and   [      ]  is a present configuration. 

From Figure 1, a reference configuration p will be rotated by an angle    to a present configuration t with a 

rotation axis r. 

 

 

 
 

Figure 1. Illustration of rotation with axis-angle 
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2.2. Quadrotor Model 

As shown in Figure 2, the inertial frame and  body frame are denoted as E and B. The base of  

frame B can be represented using the axes of frame E, with coordinates                   , where    is a 

3x1 dimensional-vector. In Figure 2, the quadrotor's attitude is described using roll ( ), pitch ( ), and yaw 

( ) angle, written as   [   ] . The angular velocity is described in body frame axes, denoted as 

   [   ] . The inertia matrix of the quadrotor is as follows: 

 

   [

         
         

         

], (10) 

 

 

 
 

Figure 2. Model of quadrotor 

 

 

where the indices x, y, and z denote x-, y-, and z- axis in the body frame, respectively. If quadrotor is assumed 

to be symmetric to its x- and y- axis, the inertia matrix in (10) can be written as 

 

   [

     
     

     

] . (11) 

 

The inputs of quadrotor's system are the squared angular speeds of its four rotors, denoted by  

  [  
   

   
   

 ] . The rotors generate the torque   [      ]  and thrust T. The torques and 

thrust are generated by manipulating the angular speed as 

 

         
    

   
         

    
   (12) 

        
    

    
    

   
       

    
    

    
    , 

 

where d, b, k are respectively the length of the quadrotor's arm, propeller thrust coefficient, and propeller 

torque coefficient. The equation of motion of this quadrotor are given by 

 

  ̇    ̂  (13) 

 

   ̇           , (14) 
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where       , is the inertia matrix in the body fixed frame;      , is the angular velocity in the body 

frame;        , is the rotation  matrix  as  a  transform from the body frame to the inertial frame;     , 

is  the control  torque generated by the actuator of the robot. The dynamics of quadrotor in (14) can be 

rewritten as 

 

  ̇                    , (15) 

 

and the quadrotor's kinematics in (13), referred from [21], this differential equation can be rewritten in terms 

of the angle   as 

 

  ̇  (  
 

 
 ̂  (    ‖ ‖ )

 ̂ 

‖ ‖ 
)   (16)  

 

where         ⁄        ⁄           is a body angular velocity, and         is an exponential 

coordinate of rotation matrix. Therefore, the second order system of quadrotor UAV in SO(3) is defined as  

 

  ̇  (  
 

 
 ̂  (    ‖ ‖ )

 ̂ 

‖ ‖ 
)   

  ̇                       . (17) 

 

2.3. PD Plus Feed-forward Control on SO(3) 

Based on the works of Bullo in [22], for a simple first order system on SO(3), a dynamical system 

with state     evolves following 

  ̇     , (18) 

 

where G  is a Lie Group matrix,         is the configuration of system, and    is the body velocity. 

Assume that the quantity of           can be directly controlled to any desired value (i.e. the system is 

fully actuated). Then the proportional control action is 

 

                   . (19) 

 

Now, consider the stabilization problem for second order systems, that is for the system where have full 

control over forces (accelerations) rather than velocities. A second order system on SO(3) has the form 

 

  ̇      

  ̇            , (20) 

 

where          is the configuration of the system,                is the internal drift, and         

is the control input. To regulate the configuration g to the identity matrix        , the proportional action 

will be coupled with a derivative term, i.e. with a term proportional to the velocity   . Let    and    be 

symmetric, positive definite gains. Then the control law is 

 

                         
   , (21) 

 

exponentially stabilizes the state g at         from any initial condition   (    )    and for all    and 

      such that 

        
‖     ‖

 

   ‖    ‖     
  ,  (22) 

 

where        is the minimum eigenvalue of   . Now, if the system is assumed as a quadrotor. And than, 

from the formulation above, if         is replaced with        ,    with   , and                 

with          , then the control law for quadrotor is 

 

                      
  , (23) 
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Figure 3. Block Diagram 

 

where         is an attitude of quadrotor,    is angular velocity in body frame, J is moment inertia of 

quadrotor and   is the control torque. Usually, PD control uses proportional and derivative error term. For 

example, if the objective is to control a variable   to match the constant set point    with PD control, the 

control law   would be 

 

               
       

  
 

                ̇, (24) 

 

where    and    are proportional and derivative constant, respectively. With this error term, if the        is 

exponential coordinate of a rotation matrix  , the Equation (24) should be written as 

 

                      
  (25) 

 

The block diagram of this controller is shown in Figure 3. From the block diagram of controller, the 

difference between rotation target matrix and current rotation matrix will be calculated in multiplication of 

matrix to get an error rotation matrix. With this multiply operation, the result is still in the form of a rotation 

matrix, which satisfy           and         . The rotation current matrix is calculated with the 

given angular velocity   from dynamic model. From [21], given body angular velocity  , the        which 

consist of exponential coordinate of rotation matrix    can be calculated using (7). 

 

 

3. RESULTS AND ANALYSIS  

Here, the controller was simulated in 3 cases. In the first case, the controller is used to drive the 

attitude from an attitude condition to hovering condition. In the second case, the controller is used to control 

the attitude from hovering condition to a desired attitude. And in the last case, the simulation shows the 

ability of the controller to compensate an attitude disturbance. 

The initial and target of rotation matrix can be an any 3x3 matrix, where the matrix satisfies the 

condition in (5). The controller was simulated in 6 DOF euler angles with model parameter of quadrotor are 

created by Corke in [23], i.e.                           
                

                
    

                                             
 . 

 

3.1. Case 1 

In this case, the simulation will show the performance of controller to drive an attitude  toward a 

hovering condition (   ). In hovering condition,     will be a     identity matrix. In this case, the initial 

attitude of quadrotor       is 

 

       [
                     

                      
                   

] . 

 

The error of attitude        can be calculated by multiplying the transpose matrix of desired attitude     

with the initial attitude       of quadrotor, that is 
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        [
   
   
   

]

 

[
                     

                      
                   

]  [
                     

                      
                   

] 

 

The exponential coordinates of the error of attitude become an input to the controller, to calculate the 

required torque for the system to achieve the desired attitude. The result of the simulation is shown in  

Figure 4. 

 

 

          
 

Figure 4. Simulation result of case 1 

 

 

In Figure 4b, the exponential coordinate of this case becomes [       ]  when the system is 

convergent. This exponential coordinates vector will be transformed into a skew-symmetric matrix by 

operator  , and the attitude of this condition can be calculated by exponential matrix of the skew-symmetric 

matrix of exponential coordinates as shown in (7). 

 

       [
    
    
    

]  [
   
   
   

] . 

 

The condition describes that the quadrotor has no rotation or in hovering condition, the same as the rotation 

target in this case. The rotation angle is 0 rad as shown in Figure 4a. In this condition, while the attitude 

   , the rotation axis   can be chosen arbitrarily. When the system meets convergence, the angular 

velocity for all axis are [       ]  as shown in Figure 4c. The steady state in this system is reached in 3 sec 

with the rise time is about 1 sec. 

 

3.2. Case 2 

In the second case, the simulation will show the performance of controller to control the quadrotor’s 

attitude from hovering condition to a desired attitude. In this case, the initial attitude       is a     identity 

matrix and the desired attitude     is 

 

     [
            
        
            

] 

 

The error of attitude        in this second case can be calculated by multiplying the transpose matrix of 

desired attitude     with the initial attitude       of quadrotor , that is 
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       [
            
        
            

]

 

[
   
   
   

]  [
             
            
         

] . 

 

The result of the second case is shown in Figure 5. When the system is convergent, the value of exponential 

coordinate are [                   ]  as shown in Figure 5b, and the attitude can be calculated by the 

same way as shown in Case 1, that is 

 

       [
            

             
            

]  [
            
         
           

] . 

 

 

 
 

     
 

Figure 5. Simulation result of case 2 

 

 

As shown in Figure 5a and the value of    , the rotation axis can be calculated by (9), that is 

[                      ] . This means that the quadrotor is rotated with this rotation axis, and rotates 

about 1.287 rad (73.4 degree). The value of angular velocity in Figure 5c  indicates that there is no alteration 

of rotation angle when the system is convergent. 
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3.3.  Case 3 

In the third case, the simulation is done to test the controller's ability to compensate the disturbance 

of the system. The controller is simulated with disturbance by [             ]  in attitude current   , with the 

initial and target of attitude is the same as in Case 2. In this case, this controller can preserve the value of 

attitude current in 3.03 sec as shown in Figure 6a.  

When a disturbance is added to the system, the rotation error raises by 0.06 point in x-axis and the 

controller drives the system to make the error of attitude become zero in 3.03 sec as shown in Figure 6b.  

As long as  the system is added by a disturbance, the controller preserves error in zero point. When the 

disturbance is eliminated from the system, rotation error in this system is reduced from zero point to  

point -0.06. In about 3 sec, the controller can drive the the system to the desired attitude, and the rotation 

error becomes zero when the system meets convergence. Based on all of the cases, rotation error matrix is a 

3x3 identity matrix when the system is convergent. The steady state time is about 3 sec and the rise time is 

about 1 sec for all cases. 

 

 

                                        
                                               6a                         6b 

 

Figure 6. Simulation result of case 3 

 

 

4. CONCLUSION  

A new simple scheme of PD plus Feedforward controller on SO(3) to control the attitude of 

quadrotor is proposed in this paper. This controller uses a rotation matrix error as a variable error of the 

system. The controller is able to drive the attitude of quadrotor from hovering condition to desired attitude 

and from an attitude condition goes to the hovering condition, with the convergence time of about 3 sec. The 

value of angular velocity will be zero when the desired equilibrium is achieved and the rotation error matrix 

will be a 3x3 identity matrix. This controller can also drive the system to the desired  attitude despite the 

system is disturbed. For the future work, this controller will be implemented to control the maneuvering of 

quadrotor in the real quadrotor. 
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