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 In this paper, we derived a delay advection reaction-diffusion equation with 

linear advection term from a stage-structured model, then the derived 

equation is used under the homogeneous Dirichlet boundary conditions 

𝑢𝑚(0, 𝑡) = 0, 𝑢𝑚(𝐿, 𝑡) = 0, and the initial condition 𝑢𝑚(𝑥, 0) = 𝑢𝑚
0 (𝑥) 

> 0, 𝑥 ∈ [−𝜏, 0] with 𝑢𝑚
0 (0) > 0 in order to find the minimum value of   

domain 𝐿 that prevents extinction of the species under the effect of advection 

reaction-diffusion equation. Finally, for the measurement the time lengths 

from birth to the development of the species population, time delays  

are integrated.   
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1. INTRODUCTION 

Reaction-diffusion conditions demonstrate are exceptionally critical in numerous individuals’ 

developments in an environment or media and nearby response energy such as birth, passing and other 

response handle, see Britton [1], Lewis [2], Allen [3] and Aiello [4]. Besides, reaction-diffusion frameworks 

can be clarified the impacts of the measure, shape and heterogeneity of the spatial environment on  

the diligence of species and the structure of communities in environment. Reaction (𝑓(𝑢)) and dispersal 

(spread coefficient 𝐷) both contribute to the inquisitively dynamical behavior of the arrangements of  

the condition. We are able to describe the over component by the classical FKPP (Fisher’s condition) 

reaction-diffusion condition [5, 6]: 

 

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢) +  𝐷

𝜕2𝑢

𝜕𝑥2
 (1) 

 

where 𝑓(𝑢) = 𝑢(1 − 𝑢). 
It can consider the diffusion as an irregular step which begins at a point and takes place in an 

arbitrary heading. Fick’s laws can be utilized to solve for the diffusion coefficient 𝐷 and it addresses that 

the diffusive flux goes from areas of high concentration to areas of low concentration. The extraordinary 

arrangement of the (1) could be an engendering front (moreover called traveling wave arrangement), the two 

non-equilibrium homogeneous states are isolated, one of which (𝑢 =  1) is steady and another one (𝑢 =  0) 

is unsteady [7-9]. For illustration, Gurney and Nisbet [8] expanded the collection of stage-structure models 

which can be portrayed in terms of delay-differential conditions by analyzing models where the processes of 

development and improvement within a stage are distinct. This grants the utilize of delay-differential 
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condition models in circumstances where both populace numbers and add up to biomass are powerfully 

critical. Al-Omari and Gourley [10, 11] proposed a delay differential condition show for a single species with 

stage-structure in which the development delay is displayed as a dissemination, to permit for the possibility 

that people may take diverse sums of time to develop. Common birth and passing rate capacities are utilized. 

They found that the elements of the demonstrate depends to a great extent on the qualitative frame of  

the birth work, which depends on the overall number of grown-ups. They also propose an alternative model 

which derived by Aiello, Freedman and Wu, see [12], allowing a non-monotone birth function of the kind 

seen in other frequently studied population models. Then they present results on positivity and boundedness, 

existence and local stability of equilibria, global stability of the extinction state under certain conditions, and 

existence of periodic solutions. Gourley et al., [13] presented demonstrate circuitous transmission, through 

contact with infections, of avian influenza in transitory and nonmigratory fowls, taking under consideration 

age structure. Relocation is modeled through a reaction-advection condition on a closed circle parametrized 

by bend length (the migration flyway) that begins and closes at the area where fowls breed in summer.  

Their modeling keeps the winged creatures together as a run, the position of which is certainly decided and 

known for all future time. Births happen when the run passes the breeding area and are modeled utilizing 

thoughts of rash differential conditions. Sarfaraz [14] classified the parameter spaces for reaction-diffusion 

frameworks of two chemical species on stationary spaces in terms of the sorts and solidness of the uniform 

consistent state and irritated the impact on the flow of the re-action-diffusion framework. 

Chunwei [15] defined a postponed reaction-diffusion demonstrate that depicts competition between 

two species in a stream. He isolates each species into two champers, people in-habiting on the seabed and 

people floating within the stream. Time delays are consolidated to degree the time lengths from birth  

to development of the benthic populaces. It too ponders the elements of the non-spatial show, decide 

the presence and worldwide solidness of the equilibrium, and give conditions beneath which arrangements 

merge to the balance. At that point he appears that the presence of traveling wave arrangements can be set up 

through compact fundamentally operators. At last, he defines two genuine numbers and demonstrate that they 

serve as the lower bounds of the speeds of traveling wave arrangements within the framework. 

Rattanakul [16] built an advection diffusion-reaction model demonstrate for the angle populace 

structured to track the populace densities of both the labeled angle and the tag-free angle, in which the rash 

labeling hone is joined, whereas nonstop labeling is accepted to be done on off springs of tractable labeled 

angle, or on those within the same swarm as the tractable labeled angle. Utilizing the traveling wave 

facilitate, they infer explanatory expression for the arrangements to the show framework. Also, they inferred 

the unequivocal expression for the level of labeled angle which increments in an intermittent rash design. 

Solidness and stage plane investigations are moreover carried out to determine. While Venkataraman [17] 

investigate a model for biological pattern formation during growth development. The pattern formation 

phenomenon is described by a reaction-diffusion system on a time-dependent domain.  

Boonrangsiman et al. [18] considered an application to fisheries and accepted that there's a single 

prey populace and a predator populace that can be isolated by generation capacity into a youthful and 

a develop arrange, with a time delay for the youthful to develop move. They demonstrated that the framework 

has three nonnegative balance focuses, specifically, an unimportant point with all populaces zero, a predator-

free harmony point, and a coexistence balance point with all three populaces non-zero. It is demonstrated that 

the minor harmony point is continuously unsteady, that the predator-free balance point is steady on the off 

chance that and as it were in the event that the existence harmony point does not exist, which the existence 

point can either be steady for all time delays or ended up unsteady in the event that a Hopf bifurcation occurs 

at a basic time delay. While Zhang [19] explored a stage-structured postponed reaction-diffusion show with 

advection that depicts competition between two develop species in water stream. Time delays are 

consolidated to degree the time lengths from birth to development of the populaces. They appear that there 

exists a limited positive number c* that can be characterized as the slowest spreading speed of traveling wave 

arrangements interfacing two mono-culture equilibria or interfacing a monoculture with the coexistence 

harmony. Moreover, Cangiani et al. [20] illustrated a few modern sorts of wave proliferation and design 

arrangement in a classical three species cyclic competition show with spatial dissemination These unused 

designs are characterized by a tall normality in space but are diverse from designs already known to exist in 

reaction–diffusion models and demonstrated a dependable bound for the blunder of the numerical strategy 

which permit us to effectively investigate the dynamical designs in both two and three spatial measurements. 

At last, Murray [21-23] examined the condition for the linear stability of 𝑢 = 0 for the taking after response 

dissemination demonstrate: 

 

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢) +  𝐷

𝜕2𝑢

𝜕𝑥2
, 0 ≤ 𝑥 ≤ 𝐿, (2) 
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With the following boundary and initial conditions:  

 

𝑢(𝑥, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0, 𝑢(𝑥, 0) = 𝑢₀(𝑥),  

 

where 𝑢 denotes the population density of a species, 𝑓(𝑢) is the species dynamics and 𝐷 is the diffusion 

coefficient which measure the dispersal efficiency of the relevant species, 𝐿 is the length of the domain.  

He considered the different boundary conditions which consider the influence of the region exterior to  

the reaction diffusion domain. He showed that if the domain size is not large enough, then (2) cannot 

generate spatial patterns and so he found the condition on 𝐿 such that the species will not become extinct if: 

 

𝐿 > 𝜋√
𝐷

𝑓′(0)
  

 

In this paper, an age-structured model is used to derive a delay advection reaction-diffusion equation with 

linear advection term. In addition, we find the minimum value of 𝐿 that prevents extinction of the species 

under the effect of advection term for the reaction-diffusion equation. 

 

 

2. A DELAY ADVECTION REACTION-DIFFUSION EQUATION WITH LINEAR ADVECTION 

TERM  

In this section, we derive a delay advection reaction-diffusion equation with linear advection term 

from an age-structured model, and then later on, we study and analyze our new model under the effect of  

the advection term.  Define 𝑢𝑚(𝑥, 𝑡) to be the intensity of mature adults, with age of at least τ. Then it can be 

represented as follows: 

 

𝑢𝑚(𝑥, 𝑡) = ∫ 𝑢(𝑥, 𝑡, 𝑎)𝑑𝑎
∞

𝜏

, (3) 

 

where 𝑢(𝑥, 𝑡, 𝑎) is the intensity of individuals of age 𝑎 at point 𝑥, time 𝑡 and 𝜏 is the length of the juvenile 

period. Now, let 𝑢 satisfies the following equation, see Metz [24] and McNair [25]: 

 

𝜕𝑢

𝜕𝑡
+  

𝜕𝑢

𝜕𝑎
= 𝑈 

𝜕𝑢

𝜕𝑥
+  𝑑𝑖

𝜕2𝑢

𝜕𝑥2
− 𝛾𝑢, 0 < 𝑎 < 𝜏, (4) 

 

and that the mature evolve according to: 

 

𝜕𝑢𝑚

𝜕𝑡
= 𝑈

𝜕𝑢𝑚

𝜕𝑥
+ 𝑑𝑚

𝜕2𝑢𝑚

𝜕𝑥2
+  𝑢(𝑥, 𝑡, 𝜏) − 𝛽𝑢𝑚

2 ,        𝑥 ∈ (−∞, ∞), 𝑡 > 0 (5) 

 

with 

 

𝑢(𝑥, 𝑡, 0) = 𝑓(𝑢𝑚(𝑥, 𝑡)) (6) 

 

the term 𝑢(𝑥, 𝑡, 𝜏) in (5) represents adult recruitment, since it is those of age 𝜏 (maturation age) and 𝑓(𝑢𝑚)  

in (6) refers to the rare of the birth, supposed to depend only on the number of matures at the time. 

Let  𝑣(𝑥, 𝑟, 𝑎) = 𝑢(𝑥, 𝑎 + 𝑟, 𝑎), then 

 
𝜕𝑣

𝜕𝑎
 =   [

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡, 𝑎) +  

𝜕𝑢

𝜕𝑎
(𝑥, 𝑡, 𝑎)]

𝑡=𝑎+𝑟
 

=  𝑈 
𝜕𝑢

𝜕𝑥
(𝑥, 𝑎 + 𝑟, 𝑎) + 𝑑𝑖

𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑎 + 𝑟, 𝑎) − 𝛾𝑢(𝑥, 𝑎 + 𝑟, 𝑎), 

 
which implies 

 

𝜕𝑣

𝜕𝑎
= 𝑈 

𝜕𝑣

𝜕𝑥
+ 𝑑𝑖

𝜕2𝑣

𝜕𝑥2
− 𝛾𝑣

𝜕𝑢

𝜕𝑡
+  

𝜕𝑢

𝜕𝑎
= 𝑈 

𝜕𝑢

𝜕𝑥
+  𝑑𝑖

𝜕2𝑢

𝜕𝑥2
− 𝛾𝑢, 0 < 𝑎 < 𝜏, (7) 
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Now, we apply the Fourier transform:  

 

�̂�(𝑠, 𝑟, 𝑎) = ∫ 𝑣(𝑥, 𝑟, 𝑎) 𝑒−𝑖𝑠𝑥𝑑𝑥
∞

−∞

 (8) 

 

To (8) gives: 

 
𝜕�̂�

𝜕𝑎
= (𝑈𝑖𝑠 − 𝑑𝑖𝑠² − 𝛾)�̂� (9) 

 

and 

 

�̂�(𝑠, 𝑟, 0) = �̂�(𝑠, 𝑟, 0) = ℱ{𝑓(𝑢𝑚(𝑥, 𝑟))} (10) 

 

The solution of (9) is: 

 

 �̂�(𝑠, 𝑟, 𝑎) =  ℱ{𝑓(𝑢𝑚(𝑥, 𝑟))}𝑒(𝑈𝑖𝑠−𝑑𝑖𝑠²−𝛾)𝑎. (11) 

 

Now, 

ℱ⁻¹(𝑒(𝑈𝑖𝑠−𝑑𝑖𝑠²−𝛾)𝑎)  =   
1

2𝜋
𝑒(𝑈𝑖𝑠−𝑑𝑖𝑠²−𝛾)𝑎𝑒𝑖𝑠𝑥𝑑𝑠 

=   
𝑒−𝛾𝑎

√4𝜋𝑑𝑖𝑎
𝑒−(𝑥+𝑈𝑎)²/(4𝑑𝑖𝑎). 

 

By using convolution theorem: 

 

𝑣(𝑥, 𝑟, 𝑎) = 𝑒−𝛾𝑎 ∫
1

√4𝜋𝑑𝑖𝑎

∞

−∞

𝑒
−(𝑈𝑎 +𝑥−𝑦)2

4𝑑𝑖𝑎 𝑓(𝑢𝑚(𝑦, 𝑟))𝑑𝑦, 

 

Therefore 

 

   𝑢(𝑥, 𝑡, 𝜏) =  𝑣(𝑥, 𝑡 − 𝜏, 𝜏) 

 

= 𝑒−𝛾𝜏 ∫
1

√4𝜋𝑑𝑖𝜏

∞

−∞

𝑒
−(𝑈𝜏 +𝑥−𝑦)2

4𝑑𝑖𝜏 𝑓(𝑢𝑚(𝑦, 𝑡 − 𝜏))𝑑𝑦. (12) 

 

If 𝑓(𝑢𝑚) = 𝛼𝑢𝑚, then the birth rate is symmetric to the number of the mature adults given by 𝛼𝑢𝑚. Most of 

the populations, such presumption is valid only when population numbers are relatively little or when there is 

abundance of nourishment. Inserting (12) with 𝑓(𝑢𝑚) = 𝛼𝑢𝑚 into (4) yields: 

 

𝜕𝑢𝑚

𝜕𝑡
= 𝑈

𝜕𝑢𝑚

𝜕𝑥
+ 𝑑𝑚

𝜕2𝑢𝑚

𝜕𝑥2
− 𝛽𝑢𝑚

2 +∝ 𝑒−𝛾𝜏 ∫
1

√4𝜋𝑑𝑖𝜏

∞

−∞

𝑒
−(𝑈𝜏 +𝑥−𝑦)2

4𝑑𝑖𝜏 𝑢𝑚(𝑦, 𝑡 − 𝜏)𝑑𝑦 (13) 

 

By applying the following substitution in (13): 

 

𝑈𝜏 +  𝑥 − 𝑦 = 𝑤√4𝑑𝑖𝜏 , 

 

we obtain: 

 

𝛼𝑒−𝛾𝜏 ∫
1

√4𝜋𝑑𝑖𝜏

∞

−∞

𝑒
−(𝑈𝜏 +𝑥−𝑦)2

4𝑑𝑖𝜏 𝑢𝑚(𝑦, 𝑡 − 𝜏)𝑑𝑦

= 𝛼𝑒−𝛾𝜏 ∫
1

√𝜋

∞

−∞

𝑒−𝑤2
𝑢𝑚(𝑈𝜏 +  𝑥 − 𝑤√4𝑑𝑖𝜏, 𝑡 − 𝜏)𝑑𝑤. 

(14) 

 

This form of the integral allows us to make approximation for small values of the parameters. Let us 

approximate (14) for small values of the immature diffusivity 𝑑𝑖: 
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𝑢𝑚(𝑥 + 𝑈𝜏 − 𝑤√4𝑑𝑖𝜏, 𝑡 − 𝜏) 

= 𝑢𝑚(𝑥 + 𝑈𝜏, 𝑡 − 𝜏) − 𝑤√4𝑑𝑖𝜏
𝜕𝑢𝑚

𝜕𝑥
(𝑥 + 𝑈𝜏, 𝑡 − 𝜏) + 2𝑑𝑖𝜏𝑤2

𝜕2𝑢𝑚

𝜕𝑥2
(𝑥 + 𝑈𝜏, 𝑡 − 𝜏) 

 

Therefore, the integral term in (14) can be written as follows: 

 

𝛼𝑒−𝛾𝜏 ∫
1

√𝜋

∞

−∞

𝑒−𝑤2
(𝑢𝑚(𝑥 + 𝑈𝜏 − 𝑤√4𝑑𝑖𝜏, 𝑡 − 𝜏)) 𝑑𝑤 

= 𝛼𝑒−𝛾𝜏𝑢𝑚(𝑈𝜏 +  𝑥, 𝑡 − 𝜏) + 𝛼𝑒−𝛾𝜏𝑑𝑖𝜏
𝜕2𝑢𝑚

𝜕𝑥2
(𝑥 + 𝑈𝜏, 𝑡 − 𝜏)), 

(15) 

 

where we have used the following fact: 

 

∫ 𝑤²𝑒−𝑤2
𝑑𝑤 =

1

2
√𝜋

∞

−∞

. 

 

In the limiting case 𝑑𝑖 → 0 (i.e., immatures not diffusing at all), (13) becomes: 

 

𝜕𝑢𝑚

𝜕𝑡
= 𝑈 

𝜕𝑢𝑚

𝜕𝑥
+  𝑑𝑚

𝜕2𝑢𝑚

𝜕𝑥2
+ 𝑒−𝛾𝜏𝑢𝑚(𝑥 + 𝑈𝜏, 𝑡 − 𝜏) − 𝛽𝑢2

𝑚 (16) 

 

In this case 𝑑𝑖 = 0, the term 𝛼𝑒−𝛾𝜏𝑢𝑚(𝑥 + 𝑈𝜏, 𝑡 − 𝜏) can be understood ecologically as follows: 

Setting 𝑑𝑖 = 0 means the immature are not diffusing. They are, however, still subject to advection. During 

the period of immaturity, which is of duration 𝜏, each immature will have moved a distance equal to 𝑈𝜏. 

It follows that an individual that becomes mature at location x must have been born at location 𝑥 + 𝑈𝜏 (since 

the advection is from right to left). The term:  𝛼𝑒−𝛾𝜏𝑢𝑚(𝑥 + 𝑈𝜏, 𝑡 − 𝜏), which is the rate at time 𝑡, position 

𝑥, at which individuals become mature, is given simply by the birth rate 𝜏 time units ago at location 𝑥 + 𝑈𝜏, 

𝛼𝑢𝑚(𝑥 + 𝑈𝜏, 𝑡 − 𝜏), corrected for juvenile mortality which explains the 𝑒−𝛾𝜏factor. If the species is close to 

extinction and the immature are not diffusing, then (16) becomes: 

 

𝜕𝑢𝑚

𝜕𝑡
= 𝑈 

𝜕𝑢𝑚

𝜕𝑥
+ 𝑑𝑚

𝜕2𝑢𝑚

𝜕𝑥2
+  𝛼𝑒−𝛾𝜏𝑢𝑚(𝑥 + 𝑈𝜏, 𝑡 − 𝜏),   0 < 𝑥 < 𝐿,   𝑡 > 0.  (17) 

 

 

3. EFFECT OF ADVECTION TERM ON THE DERIVED DELAY ADVECTION REACTION-

DIFFUSION EQUATION 

Starting by studying (17) on homogeneous Dirichlet boundary conditions: 𝑢𝑚(0, 𝑡) = 0,    

𝑢𝑚(𝐿, 𝑡) = 0, and the initial condition 𝑢𝑚(𝑥, 0) = 𝑢𝑚
0 (𝑥), 𝑥 ∈ [−𝜏, 0] with 𝑢𝑚

0 (0) > 0. As a starting point, 

we shall also consider the case when the juveniles are not subject to advection, in this case, the term 𝑢𝑚(𝑥 +
𝑈𝜏, 𝑡 − 𝜏) of (16) becomes: 𝛼𝑒−𝛾𝜏𝑢𝑚(𝑥, 𝑡 − 𝜏). However, the adults will still be subject to advection. 

Seeking trial solutions for (16) of the form 𝑢𝑚(𝑥, 𝑡) = 𝑒στ𝜙(𝑥), yields: 

 

𝑑𝑚𝜙′′(𝑥) + 𝑈 𝜙′−𝛾𝜏𝑒−𝜎𝜏 − 𝜎)𝜙(𝑥) = 0 (18) 

 

The characteristic equation for (18) is 

 

𝑑𝑚𝑀² + 𝑈 𝑀 + (𝛼𝑒−𝛾𝜏𝑒−𝜎𝜏 −  𝜎) = 0 (19) 

 

and the roots are given by: 

 

𝑀₁, 𝑀₂ =
1

2𝑑𝑚

(−𝑈 ± (√𝑈2 − 4𝑑𝑚(𝛼𝑒−𝛾𝜏𝑒−𝜎𝜏 −  𝜎) ) 

 

Thus, we have two cases for the roots: 

If 𝑀₁ and 𝑀₂ are real, then the solution for 𝜙 satisfying the boundary condition 𝜙(0) = 0 will be in the form 

 

𝜙(𝑥) = 𝐴(𝑒𝑀₁𝑥 − 𝑒𝑀2𝑥) 
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and in order to satisfy 𝜙(𝐿) = 0, we will have the zero solution. 

If M₁ and M₂ are complex, then the solution for 𝜙(𝑥) satisfying the boundary condition 𝜙(0) = 0 

will be of the form 

 

𝜙(𝑥) = 𝑒
(
−𝑈𝑥
2𝑑𝑚

)
𝐵 𝑠𝑖𝑛(√

4𝑑𝑚(𝛼𝑒−𝛾𝜏𝑒−𝜎𝜏 −  𝜎) − 𝑈²

2𝑑𝑚

𝑥). (20) 

 

In order to be able to satisfy 𝜙(𝐿) = 0, we need: 

 

√(4𝑑𝑚(𝛼𝑒−𝛾𝜏𝑒−𝜎𝜏 −  𝜎) − 𝑈²)

2𝑑𝑚

=
𝑛𝜋

𝐿
, 𝑛 = 1, 2, 3, …. 

 

That is: 

 

4𝑑𝑚(𝛼𝑒−𝛾𝜏𝑒−𝜎𝜏 −  𝜎) − 𝑈2 =
4𝑑𝑚

2 𝑛2𝜋2

𝐿2 ,   𝑛 = 1, 2, 3, …, 

 

which gives the following equation to be solved for 𝜎: 

 

𝜎 = 𝛼𝑒−𝛾𝜏𝑒−𝜎𝜏 −
𝑈²

4𝑑𝑚

−
𝑑𝑚𝑛²𝜋²

𝐿²
 (21) 

 

The solution 𝑢𝑚(𝑥, 𝑡) of the linearized (17) is of the following form 

 

𝑢𝑚(𝑥, 𝑡) = 𝑒𝜎𝑡𝐵𝑛𝑒
−𝑈𝑥
2𝑑𝑚  𝑠𝑖𝑛 (

𝑛 𝜋𝑥

𝐿
) ,          𝑛 = 1, 2, 3, …, 

 

where 𝜎 satisfies (20). 

Now, we are going to find the solution of (17) satisfying the initial data by summing over 𝑛  

to obtain: 

 

𝑢𝑚(𝑥, 𝑡) = ∑ 𝐵𝑛𝑒𝜎𝑛𝑡

∞

𝑛=1

𝑒
−𝑈𝑥
2𝑑𝑚  𝑠𝑖𝑛 (

𝑛 𝜋𝑥

𝐿
), (22) 

 

where 𝜎𝑛 satisfies (21) and using the initial condition and Fourier coefficients, then the value of 𝐵𝑛 is  

given by: 

 

𝐵{𝑛} =
2

𝐿
∫ 𝑢𝑚

0 (𝑥) 𝑒
𝑈𝑥

2𝑑𝑚  𝑠𝑖𝑛 (
𝑛 𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0

, 𝑛 = 1,2,3, … (23) 

 

Substituting this value in (22) yields the final solution of the linearized problem: 

 

𝑢𝑚(𝑥, 𝑡)  =  ∑ (
2

𝐿
∫ 𝑢𝑚

0 (𝑥) 𝑒
𝑈𝑥

2𝑑𝑚  𝑠𝑖𝑛 (
𝑛 𝜋𝑥

𝐿
) 𝑑𝑥 ×

𝐿

0
∞
𝑛=1  𝑒𝜎𝑛𝑡𝑒

−𝑈𝑥

2𝑑𝑚 𝑠𝑖𝑛 (
𝑛 𝜋𝑥

𝐿
) (24) 

 

The population will decay to zero if 𝑅𝑒𝜎𝑛 <  0,  for all 𝑛 = 1,2,3, …, where 𝜎𝑛 is any root of (21).  

In other words, 𝜎𝑛satisfies: 

 

𝜎𝑛 = 𝛼𝑒−𝛾𝜏𝑒−𝜎𝑛𝑡 −
𝑑𝑚𝑛2𝜋2

𝐿2
−

𝑈²

4𝑑𝑚

 

 

In order to detect a possible change of linear stability of the zero solution of (17) we set 𝜎 = 𝑖𝜔, 

which gives: 

 
𝑈2

4𝑑𝑚
+

𝑑𝑚𝑛2𝜋2

𝐿2 + 𝑖𝑤 = 𝛼𝑒−𝛾𝜏𝑒−𝑖𝑤𝑡, 
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and the complex conjugate of above equation is: 

 
𝑈2

4𝑑𝑚
+

𝑑𝑚𝑛2𝜋2

𝐿2 − 𝑖𝑤 = 𝛼𝑒−𝛾𝜏𝑒𝑖𝑤𝑡 , 

 

Thus, we are eliminating 𝑒−𝑖𝜔𝜏  from the last two equations, yields: 

 

𝜔² = 𝛼²𝑒−2𝛾𝜏 − [
𝑈2

4𝑑𝑚

+
𝑑𝑚𝑛2𝜋2

𝐿2
]². 

 

To find the conditions on the parameters which ensure that:  𝜔² < 0, since this means that roots of 

(21) of the form 𝜎 = 𝑖𝜔, with 𝜔 real, cannot exist. Note that:  If 𝜔² < 0 when n=1 then automatically 

 𝜔² < 0 for n=2, 3, 4, …, therefore it is sufficient to set 𝑛 = 1. When 𝑛 = 1, 𝜔² < 0 and if the following  

inequality holds: 

 

𝛼𝑒−𝛾𝜏 <
𝑈2

4𝑑𝑚
+

𝑑𝑚𝜋2

𝐿2    

 

then 𝑢𝑚(𝑥, 𝑡) → 0 as 𝑡 → 0 , thus the population will become extinct. So, the species will become extinct in 

this case if: 

𝑈 (advection speed) is large  

𝑑𝑚 (mature diffusion) is either very small or very large  

𝐿 (length of domain) is small  

𝛼 (birth rate) is too small  

𝛾 (juvenile mortality) is large  

𝜏 (length of juvenile period) is large. 

Also, if the following inequality holds: 

 

𝛼𝑒−𝛾𝜏 >
𝑈2

4𝑑𝑚
+

𝑑𝑚𝜋2

𝐿2  , 

 

then  𝜎𝑛 = 𝛼𝑒−𝛾𝜏𝑒−𝜎𝑛𝑡 −
𝑑𝑚𝑛2𝜋2

𝐿2 −
𝑈²

4𝑑𝑚
 with 𝑛 = 1 has a real positive root 𝜎. This can be shown by drawing 

the graphs of 
𝑈2

4𝑑𝑚
+

𝑑𝑚𝜋2

𝐿2 +  𝜎 and 𝛼𝑒−𝛾𝜏𝑒−𝜎𝑡 against 𝜎, where we can see that the two functions have a real 

positive root σ which means that the zero solution of (17) is unstable. So, we can conclude that  

the population will survive in this case if 

𝑈 (advection speed) is too small.  

𝐿 (domain) is too large.  

𝛼 (birth rate) is too large. 

 

 

4. DISCUSSIONS AND CONCLUSION 

We have derived a delay advection reaction-diffusion equation with linear advection term from an 

age-structured model which is given by: 

 

𝜕𝑢𝑚

𝜕𝑡
= 𝑈 

𝜕𝑢𝑚

𝜕𝑥
+  𝑑𝑚

𝜕2𝑢𝑚

𝜕𝑥2
+  𝑒−𝛾𝜏𝑢𝑚(𝑥 + 𝑈𝜏, 𝑡 − 𝜏) − 𝛽𝑢2

𝑚 (25) 

 

and our derived equation as in (24) is studied when the species is close to extinction and the immature are not 

diffusing on homogeneous Dirichlet boundary conditions 𝑢𝑚(0, 𝑡) = 0, 𝑢𝑚(𝐿, 𝑡) = 0 and the initial condition 

𝑢𝑚(𝑥, 0) = 𝑢𝑚
0 ≥ 0 for 𝑥 ∈ [−𝜏, 0]. Also, we considered the case when juveniles are not subject to 

advection, so the term 𝑢𝑚(𝑥 + 𝑈𝜏, 𝑡 − 𝜏)  in (24) becomes 𝑢𝑚(𝑥, 𝑡 − 𝜏). However, the adults will still be 

subject to advection. The conditions on the parameters for the final solution 𝑢𝑚(𝑥, 𝑡) for the linearized (25) 

that prevents extinction of the species under the defect of advection for the reaction-diffusion are founds, 

where the conclusion can be summarized as follows:  

 The species will become extinct if the advection speed if large, mature diffusion is either very small or 

very large, length of domain is small, juvenile mortality is large and length of juvenile is large. 

 The species will survive if advection speed is small, domain is too large and birth rate is too large.  
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