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 Social network and microblogging sites such as Twitter are widespread 

amongst all generations nowadays where people connect and share their 

feelings, emotions, pursuits etc. Depression, one of the most common mental 

disorder, is an acute state of sadness where person loses interest in all 

activities. If not treated immediately this can result in dire consequences such 

as death. In this era of virtual world, people are more comfortable in 

expressing their emotions in such sites as they have become a part and parcel 

of everyday lives. The research put forth thus, employs machine learning 

classifiers on the twitter data set to detect if a person’s tweet indicates any 

sign of depression or not. 
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1. INTRODUCTION 

Social networking sites have become a habitual component, with sites like Twitter and Facebook 

being the 7th and 2nd favorite sites having millions of subscribers [1]. Such sites have become an open dais for 

people to reach out and express their feelings, likes, routines etc. Unlike mood fluctuations, depression is 

a common mental disorder which brutally affects a person’s daily routine life. Any person who has 

undergone some adverse experiences like sudden death, unemployment etc. is liable to it. According to 

WHO, more than 300 million people of all age groups suffer from it, with only fewer than 10% receiving 

suitable treatment, owing to reasons such as lack of suitable health care, social humiliation and timely and 

right diagnosis [2]. 

Frances A et al. [3], states that the depression displays the following symptoms in the given order; 

sad mood, eluding all activities, weight and sleep fluctuations, body agitation, energy loss and tiredness, 

feeling of triviality, loss of decision-making capacity and finally suicidal tendencies. Emotion and sentiment 

analysis exercises machine learning algorithms to examine a text with respect to the emotion conveyed. 

Sentence level analysis is applied in this study to inspect if a tweet is emotionally vulnerable or not. Recently, 

the death of a 16-year-old Malaysian teen after calling for a poll in her Instagram [4] (where many people 

voted for “Death”) has gathered huge media. Such incidents support the fact that if with proper monitoring of 

such sites [5] is done timely help and can be provided, hence avoiding such catastrophes. 
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2. LITERATURE SURVEY 

Haque et al. [7] scrutinized 3D facial features and language spoken to gage the intensity of 

depression. They compared their sentence level embedded convolutional neural network (CNN) model [8] 

with the existing works, but the data was collected by human computer interviews which lacked the precision 

of a formal diagnosis. Furthermore, the authors plan to include more parameters such as depression tallies 

from interviews taken for different periods of time. 

Sharifa Alghowinem et al. [9] extracted and inspected the eye movement features for signs of 

depression. Their methodology employed support vector machines (SVM) and Gaussian Mixture Models for 

classification. However, owing to a small amount of data set they did not get a fairly high accuracy. In future 

the authors plan to integrate face, body and voice features to get a more apt detection. 

Quan Hu et al. [10] assembled classification and regression models to inspect behavioral and 

dialectal features from social media for indications of depression. Their results can increase significantly by 

taking varied participants and increasing the observation period for improved analysis. Akkapon 

Wongkoblap et al. [11] utilized deep learning model (5-fold cross validation [12]) to investigate the posts in 

social media. The obtained accuracy of 72 percent can be increased by including further features like 

interactions with friends, comments/replies etc. Mandar Deshpande and Vignesh Rao [13] applied natural 

language processing for analyzing the sentiments of the tweets. Due to inaccuracy of proper language style in 

social network the accuracy of the proposed model reduced. 

Guntuku et al. [14] appraised the studies that predicted the mental health of people based on 

the survey responses, posts and groups interacted in social media. Tsugawa et al. [15] considered user 

activities in social media such as frequencies of words related to melancholy in a tweet, topics tweeted on, 

posting regularity etc.to check for the manifestation of depression. Nonetheless, by employing techniques 

like principle component analysis the feature set used could be improved. The methods such as deep learning 

and ensemble methods are expected to offer better results than SVM. Maryam Mohammed Aldarwish and 

Hafiz Farooq Ahmed [16] used SVM and Naïve Bayes Models on the preprocessed posts obtained from 

social network platforms. The accuracy obtained can be increased by training and constructing better models. 

 

 

3. METHODOLOGY 

Figure 1 highlights the methodology followed in the paper. The aim of the proposed work is to 

predict depression in individuals using their behavior online (on twitter specifically) [17-19].  This is done in 

two main stages. First being the stage where sentiment analysis [20] is applied on a particular individual's 

twitter posts to predict binary classes (i.e. depressed/not depressed). The twitter posts were obtained using 

the twitter API from a developer twitter account. A deep learning module known as long short-term memory 

(LSTM) [21, 22] is employed. The proposed LSTM model used a Kaggle dataset on twitter tweets related to 

depression to learn and validate.  

 

 

 
 

Figure 1. Overall methodology 

 
 

Preprocessing as depicted in Figure 2 include dropping empty tweets, removing punctuations, 

creating a dictionary to map words to integer values and finding maximum length of the tweets [23]. Final 

generated features trimmed to the sequence length are fed into the model. The sequential LSTM model 
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network architecture encompasses an embedding layer, which has input dimension set to total number of 

tweets, output dimension set to 200 and input length set to sequence length as stated earlier. The next part 

includes an LSTM layer with 500 units, dropout 0.2 and recurrent dropout also 0.2. Last part of the model 

network includes a dense layer with one unit and a sigmoid activation to concise the generated output 

between zero and one. This completed the proposed model's architecture and the model is compiled using 

Adam optimizer and loss is dealt by using binary crossentropy with accuracy metric selection to observe 

and evaluate.  

Post compilation, the model is fitted on the earlier generated features and validated on labels 

specified in the dataset. A validation split of 0.3 (70% training data, 30% test data) is introduced and this 

model is trained for 5 epochs. Finally this model is stored in a JSON file for future use. Every new tweet 

obtained from the twitter API goes through the same preprocessing procedure mentioned above before being 

forwarded to the LSTM model. The result of the model is obtained from the model. predict () function and is 

rounded to an integer value (0 or 1 in this case).  

The obtained accuracy is compared to sequential Convolutional Neural Network (CNN) [24, 25].  

The preprocessing steps are exactly the same. The network architecture includes an embedding layer similar 

to the LSTM embedding. The only difference is a weights argument is given an embedding matrix, with 

random values in the range of 200 to total number of tweets multiplied by 0.01. This is followed by a dropout 

of 0.4 which feeds the data to a total of four 1D convolution layers. Each of the convolution layers has kernel 

size set to 3, padding set to valid, activation is relu and strides is set to 1. Only thing that differed is the filter 

(dimensionality of the output space). It is decreased by 50% at each layer. First layer had filter set to 600, 

second had 300, third 150 and fourth had 75.  

After this, flatten is included in the model architecture to flatten the input. This is followed by 

adding a dense layer with 600 units, dropout of 0.5, activation set to relu, a dense layer with one unit, and 

finally, an activation set to sigmoid. CNN model is compiled using exactly same arguments for loss, metric 

and optimizer. The second stage includes trying to improve the outcome of the proposed work using basic 

machine learning classifiers [26, 27] and a few optimized ensembles. Classifiers used are logistic regression, 

linear support vector classifier (SVC), multinomial naive bayes, bernoulli naive bayes along with ensembles 

like random forest classifier and gradient boosting classifier.  

Preprocessing as depicted in Figure 3 includes splitting of data into train and test set. This is 

followed by vectorizing the tweets. The mentioned stage provides the classifiers with three different kind of 

vectorizers namely count vectorizer, TF-IDF and n-grams [28]. For Count Vectorizer, the preprocessing 

includes fitting the count vectorizer on the training and data then transforming the documents in the training 

data to document-term matrix. 
 

 

  
 

Figure 2. LSTM preprocessing 
 

Figure 3. Model vector preprocessing 
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The obtained training data (features) is fed to the current model selected from the list. A feature 

names list is initialized and populated using Count Vectorizer's get_feature_names () function. Results are 

predicted using predict function. TF-IDF Vectorizer is fit on the training data using min_df=5, similar to 

Count Vectorizer, documents are transformed and the training data is fed to the current model selected from 

the list. Along with this, feature names and sorted TF-IDF index is also calculated to find the smallest and 

highest TF-IDF, (least and most important coefficients). For n-grams, similar procedure was followed and is 

fit on the training data using min_df=5 and n-gram_range (1,2). Similar to other vectorizers, smallest and 

highest coefficients are noted and result sentiment of the tweet is predicted. 

Each and every classifier and ensemble mentioned above is fit on each of the three vectorizers and 

results are noted. This stage is largely focused on cross-checking predictions made by the first stage. 

Every new tweet obtained through the twitter API is sent through first and second stage. In the second stage 

every possibility of model and vectorizer is executed and results are noted. The final result included 

the weighted mean of all second stage possibilities. This value is cross-checked with the first stage 

predictions. The weights are assigned according to accuracy of the model on the data.  

 

 

4. RESULT 

The following tables Tables 1-7 show the results obtained in this research. The mentioned 

classifiers's results are compared here. 

 

 

Table 1. LSTM vs CNN 
Classifier Validation Accuracy Test Accuracy 

LSTM 0.7 0.93 

CNN 0.68 0.95 

 

 

Table 2. Logistic regression 
Classifier Accuracy 

Count vectorizer 75.81% 

TF-IDF 76.22% 

n-grams 76.15% 
 

Table 3. Random forest 
Classifier Accuracy 

Count vectorizer 70 % 

TF-IDF 72% 

n-grams 72% 
 

 

 

Table 4. Bernoulli naïve bayes (NB) 
Classifier Accuracy 

TF-IDF 73.95% 

n-grams 75.53% 
 

 

 

Table 5. Multinomial naïve bayes (NB) 
Classifier Accuracy 

TF-IDF 74.223% 

n-grams 76.69% 
 

 

 

Table 6. Linear SVC (random_state=100, tol=1e-10) 
Classifier Accuracy 

Count vectorizer 73.71% 
TF-IDF 75.48% 

n-grams 73.53% 
 

 

 

Table 6. Gradient Boosting Classifier (subsample=0.8, learning_rate=0.05, n_estimators=250,  

random_state=5, max_depth=20, max_leaf_nodes=150) 
Classifier Accuracy 

n-grams 74.42% 
 

 

 

5. CONCLUSION AND FUTURE WORK 

Often traditional survey-based questions fail to uncover the extent of users ‘mental health 

depreciation. Nowadays, social media is a common platform, which people use to reach out. Therefore,  

the above proposed methodology cashes in this popularity of SNS and evaluates the depression levels of  

the users by employing natural language and machine learning techniques. In future, by collecting more data, 

more frequently with the aim of improving the accuracy of the work to give a better diagnosis. Such tools 

which can predict variations in person’s mood can be an important method for both clinical observations and 

self-diagnosing. The method can be time consuming and hence steps must be taken in this regard to  

improve upon. 
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