
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 11, No. 1, February 2021, pp. 575~588

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i1.pp575-588 575

Journal homepage: http://ijece.iaescore.com

Target-based test path prioritization for UML activity diagram

using weight assignment methods

Walaiporn Sornkliang1, Thimaporn Phetkaew2
1Management of Information Technology Program, School of Informatics, Walailak University, Thailand

2School of Informatics, Walailak University, Thailand

Article Info ABSTRACT

Article history:

Received Apr 9, 2020

Revised Jun 11, 2020

Accepted Jun 28, 2020

 The benefit of exploratory testing and ad hoc testing by tester’s experience is

that crucial bugs are found quickly. Regression testing and test case

prioritization are important processes of software testing when software

functions have been changed. We propose a test path prioritization method to

generate a sequence of test paths that would match the testers’ interests and

focuses on the target area of interest or on the changed area. We generate test

paths form the activity diagrams and survey the test path prioritization from

testers. We define node and edge weight to the symbols of activity diagrams

by applying Time management, Pareto, Buffett, Binary, and Bipolar method.

Then we propose a test path score equation to prioritize test paths. We also

propose evaluation methods i.e., the difference and the similarity of test path

prioritization to testers’ interests. Our proposed method had the least average

of the difference and the most average of the similarity compare with

the tester’s prioritization of test paths. The Bipolar method was the most

suitable for assigning weights to match test path rank by the tester.

Our proposed method also has given the affected path by changing area

higher priority than the other test path.

Keywords:

Edge weight assignment

Node weight assignment

Regression testing

Target-based prioritization

Test path prioritization

UML acitivity diagram

This is an open access article under the CC BY-SA license.

Corresponding Author:

Thimaporn Phetkaew,

School of Informatics,

Walailak University,

222 Thaiburi, Thasala District, NakhonSiThammarat, 80160, Thailand.

Email: pthimapo@wu.ac.th, thimaporn.p@gmail.com

1. INTRODUCTION

Test case prioritization by importance is intended to rearrange the test cases to suit the needs of

software testing. Those test cases that are the most important will be tested prior to the less important cases.

Test case prioritization is very useful when faced with limited resources or limited testing time. Test case

prioritization could rank test cases based on important objectives, i.e. facilitate target area or modification-

aware testing. Several studies broadly categorized the test case prioritization into coverage-based,

requirements-based, risk-based, search-based, fault-based, history-based, and others e.g., cost-aware

based [1-3]. Coverage-based test case prioritization is a testing method that examines the code directly.

The primary measures i.e., code, statement, branch, and function coverage were the most widely used

criteria [1, 3-5]. Requirements-based test case prioritization uses the requirements information to classify

serious test cases [1]. It is to check whether the delivered software meets the needs of the customer or not [6].

Risk-based test case prioritization prioritizes the test cases that concern the major risks that affected

the software [1]. Search-based test case prioritization finds the optimal ranking of the test cases by

searching from the global space to fit the objectives, such as greedy, genetic algorithm, ant colony

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 : 575 - 588

576

optimization [1, 2, 7]. Some studies used a concept of hybridizing A* algorithm and ant colony optimization

to generate and optimize the test paths [8]. Fault-based test case prioritization sequences the test case to

detect targeted faults [1, 9]. History-based test case prioritization uses the history data, for example, the count

of executions which revealed a fault to prioritize the test case [1].

Object-Oriented technology is currently widely used in developing software. The concept of

Object-Oriented programming such as data dependence, control dependence, and dependency due to object

relations are used for test case selection and test case prioritization [10]. The unified modeling language

(UML) is a standard model used to design object-oriented programming [4]. Several studies have employed

a UML model to generate and prioritize test paths by converting activity diagram into a tree structure [11],

or a graph structure [5, 12-17] and then generating the test paths. Some studies have converted a sequence

diagram into a graph structure [18, 19] and then generated test paths. Some have converted a state machine

diagram [20, 21] into a graph structure and then generated test paths. Further, UML models with several

diagrams have been converted and integrated into the same control flow graph to create and prioritize test

paths. For example, by using a sequence diagram and interaction overview diagrams [22], using a sequence

diagram and a state chart diagram [23], and using a use-case diagram, a sequence diagram, and an activity

diagram [24]. In test case prioritization, several studies have assigned weights for activity diagrams or

symbols of control flow graph to calculate the scores for test paths, and the scores were then used to prioritize

the test paths. There are two groups of approaches to assign weights to the symbols of activity diagrams or

control flow graphs. In the first group, the weights are assigned to nodes or symbols of the graph.

Each symbol has a different weight. All the symbol weights affect the test path score [15, 16]. The weight

calculation of a control flow graph node derives from the numbers of incoming edges to the node multiplied

by the count of outgoing edges from the node [13]. In the second group, the weights are assigned to the edges

of the graph. Some studies have assigned the weights to the outgoing edges of decision nodes [12].

All the weights are calculated to find the test path score and the scores are used to prioritize the test paths by

its importance.

None of the above studies prioritized by the importance of the target area or of the changed area.

Besides, they did not put an emphasis on the sequence according to the testers for their test paths of interest.

Although special value testing or ad hoc testing [25] can be used to test the target area or changed area,

these types of testing are only done by professionals in software testing. These professionals put a lot of

effort into delivering appropriate test results that suit the customer’s requirements. So, this study proposes

a test path prioritization method to generate a sequence of test paths that would match the testers’ interests

and focuses on the target area of interest or on the changed area.

The rest of this paper is divided as follows. Section 2 explains the research method used in this

study. Experimental results and discussion are presented in section 3. Enhancement of the algorithms are

presented in section 4. Finally, section 5 concludes the paper.

Related work. Test case prioritization is a reordering of the test cases in a test suite for test

executions. Test case prioritization aims to cover any given part of the program by: detecting faults earlier,

finding high priority errors, focusing on testing of the last modified part, and reducing the time and cost of

testing. Several studies have examined methods to prioritize test paths to increase the efficiency and

effectiveness of testing [1, 26].

UML activity diagram is essentially a flowchart that chronologically organizes a set of activities that

take place over time. The diagram symbols consist of initial, activity, transition, decision, merge, fork, join,

swimlane, and final. A UML activity diagram is transformed into a graph structure or a tree structure to

generate and prioritize test paths. In test case prioritization, weights are numeric values assigned to

the symbols of a UML activity diagram or to the symbols of a control flow graph. Test case prioritization is

then done according to the weights to determine which paths should be tested first [16]. The weights are set

according to the symbols in the UML activity diagram. The UML activity diagram will be converted into

a directed graph: G={A, E, in, F}, where A represents the nodes consisting of action nodes, object nodes,

and control nodes i.e., decision, merge, fork, and join nodes, E represents the edges, E={(x, y)|x, y ∈ A}, in is

an initial node, and F is a final node [4]. There are three approaches to assigning weights to the symbols of

activity diagrams or to symbols of control flow graph. All weights are calculated to find out the test path

scores. The scores were used to prioritize the test paths by importance. First, the weights are assigned to

nodes of a graph [5, 13-18, 23, 24]. Second, the weights are assigned to edges of a graph [12].

Third, the weights are assigned to both nodes and edges of a graph [11, 22]. According to some reports,

the symbols in UML activity diagram or in control flow graph were assigned weights as in Table 1,

and the calculation methods of test path scores are shown in Table 2.

Int J Elec & Comp Eng ISSN: 2088-8708

Target-based test path prioritization for UML activity ... (Walaiporn Sornkliang)

577

Table 1. Comparison of weight assignment methods
Name Symbol Assigned weights

Initial node 1) weight=0 [15]

Activity node 1) weight=1 [5, 11, 15, 16]

2) weight=4, if the node was inter-depended activity [16]

3) weight=6, if the node was control node [16]

Normal edge 1) weight=1 [12]

2) weight=2 [22]

Edge passed the

decision node

 1) weight=total weight of all outgoing edges must be 1 [12]

2) based on 80/20 rule [22]

 edge weight=4 for the true edge of the decision node

 edge weight=1 for the false edge of the decision node
Decision node 1) weight=2 [11, 16]

2) weight=4 [5, 15]

Merge node 1) weight=2 [11]

2) weight=3 [5, 15],

Fork-join node 1) fork weight=2, join weight=2 [5, 15]

2) fork weight=3, join weight=3 [11]

3) fork weight=5, join weight=3 [16]

Final node 1) weight=0 [15]

Table 2. Comparison of calculation methods for test path scores
Weight score Calculation methods for test path score

Node 1) sum of all node weights, where the weights of the nodes were assigned according to the type of symbols

(see Table 1) [5, 15, 16]

2) sum of all node weights, where the weight of the first node equals 1 and the weight of the next node will have

1 added until the last node [18, 23, 24]

3) sum of all node weights, where the weights of the nodes were assigned using Stack-based weight approach and

the Basic IF Model [14, 17]

4) the number of nodes+sum of node weights+the number of predicate nodes+the number of logical condition

nodes [13]

Edge 1) sum of all edge weights, where the weights of the edges were assigned according to the type of edges

(see Table 1) [12]

Node and

edge

1) sum of all node weights+sum of all edge weights, where the weights of the nodes were assigned according to

the type of symbols (see Table 1) and the weights of the edges were assigned by the number of incoming

dependencies of predecessor node multiplied by the number of outgoing dependencies of the successor

node [11]

2) sum of all node weights+sum of all edge weights, where the weights of the nodes were assigned by using

backward slices approach and the weights of the edges were assigned according to the type of edges

(see Table 1) [22]

Kaur et al. [13] proposed the prioritization of test paths descended from UML activity diagram by

using complexity of the path as follows. First, the activity diagram was transformed into a control flow graph.

Second, the test paths were generated from the control flow graph using the depth first search. When it found

fork nodes, it would select one representative path by using breadth first search to get unique independent

paths. Third, assigning a weight to each node IF(N) was by the number of incoming edges to the node

FANIN(N) multiplied by the number of outgoing edges from that node FANOUT(N), using (1). Each test path

score Wp was found by summing node weights Wi in the set Tp and n was the number of nodes, using (2).

Fourth, the complexity C of test path was calculated using (3) by gathering the values of the number of nodes

(Np), the score of test path (Wp), the number of predicate nodes (Pp), and the number of logical conditions

(Cp). And finally, the test paths would be prioritized from the highest path complexity to the lowest

path complexity.

)()()(NxFANOUTNFANINNIF
 (1)

p

n

i
ip TPWW

1 (2)

pppp CPWNC
 (3)

Wang et al. [15] proposed test path prioritization derived from UML activity diagram as follows.

First, the activity diagram was transformed into a control flow graph. Second, the test paths were generated

by the depth first search. Third, the weight of each node was assigned based on the type of symbols in UML

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 : 575 - 588

578

activity diagram. If the node was an initial node or an end node, it was assigned 0. If the node was an activity

node, it was assigned 4. If the node was a fork node or a join node, it was assigned 2. If the node was a merge

node, it was assigned 3. Next, each test path score f(x) was the sum of node weights Wi on that test path and n

was the number of nodes in the chromosome C in the population P, using (4). Finally, this research

prioritized the test paths from the highest score. If two test paths had the same score, it would randomly

select the test path priority order between these.

PCWxf
n

i
i

1

)(
 (4)

Mahali and Acharya [16] proposed the prioritization of test paths using UML activity diagram and

evolutionary algorithm as follows. First, the activity diagram was transformed into an activity graph and all

test paths were created. Second, each node was assigned a weight based on the symbols of UML activity

diagram. If the node was a normal activity node, it was assigned 1. If the node was a decision node, it was

assigned 2. If the node was an activity of one thread depends on each other, it was assigned 3. If the all

activity node was within the decision symbol or the fork-join symbol, it was assigned 4. If the node was

a fork node, it was assigned 5. If the node was a control node, it was assigned 6. Third, the test path score

F(x) was the sum of node weights Cri in that test path, using (5). This research prioritized the importance of

test paths from the highest to the lowest path score.

n

i
riCxF

1

)(
 (5)

Jena et al. [22] proposed test path generation and prioritization as follows. First, the interaction

overview diagram was converted into an interaction graph. The sequence diagram was transformed into

message sequence dependency graph. And then, the two graphs were combined into a sequence interaction

graph. Second, all possible test paths were created from the graph by using depth first search.

Third, the weights were set to each node of the graph according to the number of nodes affected by

the current node, determined with backward slicing. The weight of normal edges was 2. The edge from

a decision node was assigned by using 80/20 rule and weight 4 was assigned to the true valued edge (80%)

while weight 1 was assigned to the false valued edge (20%). Fourth, the score of a path was the sum of node

weights plus the sum of edge weights along the test path, using (6). Finally, this study prioritized the test

paths from the highest score to the lowest score.

n

i

n

j
ii edgeweightnodeweightpathScore

1 1

)()()(
 (6)

2. RESEARCH METHOD

This study aimed to prioritize the importance of the test paths according to the target area of interest,

the changed area, and the test paths prioritized by the testers. The steps are as follows.

2.1. Define the criteria to select the UML activity diagram

The UML activity diagrams were selected according to the following criteria: the UML activity

diagrams that were frequently used in research studies on software testing, the UML activity diagrams that

were used in daily lives, the UML activity diagrams that were easy to understand, and the UML activity

diagrams that had various control flows affecting the test path selection. The selection of UML activity

diagrams depended on the control structure. Each UML activity diagram selected for this study had different

control structures. As a result, the selected four UML activity diagrams for the experiment were as follows

i.e., ATM Withdraw activity diagram [27], Shipping Order System activity diagram [13], Buy Beverage from

Vending Machine activity diagram [11], and Mileage Purchase Web Portal activity diagram [28].

The ATM Withdraw activity diagram, applied from Boghdady et al. [27], comprises many types of

control structures such as selection control structures consisting of one-way selection, two-way selection, and

nested selection; and a one-way selection control structure within fork-join structures as shown in Figure 1.

The Shipping Order System activity diagram, applied from Kaur et al. [13], comprises a fork-join structure

with no control structure inside, selection control structure consisting of two-way selection, but there is no

iteration control structure as shown in Figure 2. The Vending Machine activity diagram, applied from Sapna

and Mohanty [11], which comprises two iteration control structures with pre-test loop. This diagram does not

Int J Elec & Comp Eng ISSN: 2088-8708

Target-based test path prioritization for UML activity ... (Walaiporn Sornkliang)

579

have the fork-join structure as shown in Figure 3. The Mileage Purchase activity diagram, applied from

Paiboonkasemsut and Limpiyakorn [28], comprises selection control structures consisting of two-way

selection and nested selection, and there is a fork-join structure. This diagram does not have an iteration

control structure as shown in Figure 4.

Figure 1. ATM withdraw activity diagram

Figure 2. Shipping order system activity diagram

Figure 3. Vending machine activity diagram

Figure 4. Mileage purchase activity diagram

2.2. Transform the UML activity diagram to an activity flow graph

The four activity diagrams were transformed to an activity flow graph. For the concurrence region,

a questionnaire-based survey for test path by testers' interest, 65 professional software testers show that

the path must be traversed from left-to-right. Each thread is listed from the activity of top-level to activity of

low level according to the depth first search method.

The ATM Withdraw activity diagram was transformed into an activity flow graph, which is

a directed graph. Each node represents the symbols of activity diagram and each edge represents the flow in

the activity diagram. The activity flow graph of ATM Withdraw activity diagram is depicted in Figure 5,

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 : 575 - 588

580

where I is the initial node, F is the final node, di is a decision node, fi is a fork node, and ji is a join node.

The Shipping Order System activity diagram, the Vending Machine activity diagram, and the Mileage

Purchase activity diagram were transformed into an activity flow graph, depicted in Figures 6-8 respectively.

Figure 5. ATM withdraw activity flow graph

Figure 6. Shipping order system activity flow graph

Figure 7. Vending machine activity flow graph

Figure 8. Mileage purchase activity flow graph

2.3. Questionnaire-based survey for test path prioritization by testers' interest

The four activity diagrams in section 2.1 were used to generate test paths in each activity diagram.

Then, the test paths were given to 65 professional software testers to prioritize them by importance according

to their interests to create a baseline for comparisons. The data obtained were analyzed for prioritization

frequencies of the test paths. The survey results on the prioritization of the test paths in ATM withdraw,

Shipping order system, Vending machine, and Mileage purchase activity diagram according to the testers’

interests are summarized in Tables 3-6 respectively. In Table 3, the ATM withdraw activity diagram has

generated 14 test paths (P1 to P14). All 65 testers will assign a path (row) to rank the importance of the test

according to their interest by arranging them in order 1-14 (columns). The highest value depicted in

Int J Elec & Comp Eng ISSN: 2088-8708

Target-based test path prioritization for UML activity ... (Walaiporn Sornkliang)

581

bold-faced in each column shows that the testers have the most agreement in that order. For example,

most testers agree that P5 should test in the third rank of the test paths.

Table 3. The results of the survey on prioritization of the test paths in ATM withdraw activity diagram

according to the testers’ interests
Test

path no.
Test path

Rank of

test path

The frequency distribution of ranking

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P1 I-1-2-d1-3-4-d2-5-f1-6-d3-7-j1-11-F 1 32 9 4 1 6 1 1 3 0 3 0 1 1 3

P2 I-1-2-d1-2-d1-3-4-d2-5-f1-6-d3-7-j1-11-F 7 6 4 7 8 5 2 18 8 2 2 2 1 0 0

P3 I-1-2-d1-3-4-d2-5-f1-6-d3-j1-11-F 2 7 19 7 3 2 7 4 4 1 2 6 0 3 0

P4 I-1-2-d1-2-d1-3-4-d2-5-f1-6-d3-j1-11-F 8 0 3 5 8 2 5 9 16 5 4 2 3 2 1

P5 I-1-2-d1-3-4-d2-8-d4-9-d5-5-f1-6-d3-7-j1-11-F 3 4 3 18 9 8 3 5 2 6 3 1 2 1 0

P6 I-1-2-d1-2-d1-3-4-d2-8-d4-9-d5-5-f1-6-d3-7-j1-11-F 9 6 0 5 3 2 7 3 5 16 11 2 3 1 1

P7 I-1-2-d1-3-4-d2-8-d4-9-d5-5-f1-6-d3-j1-11-F 4 0 2 6 18 3 5 9 8 3 2 4 1 3 1

P8 I-1-2-d1-2-d1-3-4-d2-8-d4-9-d5-5-f1-6-d3-j1-11-F 10 1 6 1 1 4 5 4 9 6 16 6 2 0 4

P9 I-1-2-d1-3-4-d2-8-d4-9-d5-10-11-F 5 0 1 2 0 19 7 6 3 9 5 5 6 1 1

P10 I-1-2-d1-2-d1-3-4-d2-8-d4-9-d5-10-11-F 11 1 1 3 3 3 1 2 3 7 8 21 6 6 0

P11 I-1-2-d1-3-4-d2-8-d4-10-11-F 6 0 0 1 7 3 16 1 4 6 5 7 10 4 1

P12 I-1-2-d1-2-d1-3-4-d2-8-d4-10-11-F 12 1 0 6 2 4 0 3 0 1 2 8 26 5 7

P13 I-1-2-d1-10-11-F 13 8 6 2 0 3 1 3 0 0 1 1 1 30 9

P14 I-1-2-d1-2-d1-10-11-F 14 4 6 3 1 3 2 0 0 1 0 3 0 6 36

Table 4. The results of the survey on prioritization of the test paths in shipping order system activity diagram

according to the testers’ interests

Test path

no.
Test path

Rank of

test path

The frequency distribution

of ranking

1 2 3 4 5 6 7

P1 I-1-2-d1-3-d2-15-F 6 8 10 7 3 1 23 13

P2 I-1-2-d1-3-d2-f1-4-5-6-j1-d3-f2-7-8-j2-15-F 1 30 7 12 6 4 3 3

P3 I-1-2-d1-3-d2-f1-4-5-6-j1-d3-14-15-F 3 1 10 27 10 10 5 2

P4 I-1-2-d1-9-d4-10-f3-11-12-j3-13-3-d2-15-F 5 5 3 11 7 28 10 1

P5 I-1-2-d1-9-d4-10-f3-11-12-j3-13-3-d2-f1-4-5-6-j1-d3-f2-7-8-j2-15-F 2 11 24 2 9 12 4 3

P6 I-1-2-d1-9-d4-10-f3-11-12-j3-13-3-d2-f1-4-5-6-j1-d3-14-15-F 4 1 7 11 23 7 7 9

P7 I-1-2-d1-9-d4-14-15-F 7 12 4 2 1 2 11 33

Table 5. The results of the survey on prioritization of the test paths in vending machine activity diagram

according to the testers’ interests

Test path no. Test path
Rank of

test path

The frequency distribution of ranking

1 2 3 4 5 6 7 8 9 10

P1 I-1-d1-8-F 10 10 1 3 1 2 1 2 0 2 43

P2 I-1-d1-2-d2-8-F 9 1 12 1 6 3 4 2 4 29 3

P3 I-1-d1-2-d2-3-4-5-8-F 1 34 5 6 3 4 5 3 2 1 2

P4 I-1-d1-6-1-d1-8-F 8 1 5 5 2 8 4 1 29 9 1

P5 I-1-d1-6-1-d1-2-d2-8-F 7 0 1 2 6 3 10 28 10 4 1

P6 I-1-d1-2-d2-7-2-d2-8-F 5 0 5 10 7 20 7 7 3 6 0

P7 I-1-d1-6-1-d1-2-d2-7-2-d2-8-F 6 0 2 1 9 9 21 10 6 4 3

P8 I-1-d1-6-1-d1-2-d2-3-4-5-8-F 3 2 5 24 7 7 5 7 7 1 0

P9 I-1-d1-2-d2-7-2-d2-3-4-5-8-F 2 9 25 10 3 5 1 1 1 6 4

P10 I-1-d1-6-1-d1-2-d2-7-2-d2-3-4-5-8-F 4 9 6 2 20 4 9 3 2 2 8

Table 6. The results of the survey on prioritization of the test paths in mileage purchase activity diagram

according to the testers’ interests
Test path

no.
Test path

Rank of

test path

The frequency distribution of ranking

1 2 3 4 5 6 7 8 9 10

P1 I-1-2-d1-16-F 10 13 2 1 1 1 1 0 1 1 44

P2 I-1-2-d1-3-d2-10-f1-11-12-13-14-j1-15-d6-4-5-d3-6-d4-7-d5-8-9-F 5 12 4 5 3 28 3 1 0 6 3

P3 I-1-2-d1-3-d2-10-f1-11-12-13-14-j1-15-d6-4-5-d3-6-d4-7-d5-16-F 6 3 8 4 5 6 28 4 2 2 3

P4 I-1-2-d1-3-d2-10-f1-11-12-13-14-j1-15-d6-4-5-d3-6-d4-16-F 7 0 2 9 8 1 8 28 6 3 0

P5 I-1-2-d1-3-d2-10-f1-11-12-13-14-j1-15-d6-4-5-d3-16-F 8 0 3 7 8 4 3 6 32 2 0

P6 I-1-2-d1-3-d2-10-f1-11-12-13-14-j1-15-d6-16-F 9 1 6 2 2 4 5 4 2 35 4

P7 I-1-2-d1-3-d2-4-5-d3-6-d4-7-d5-8-9-F 1 39 4 1 1 5 3 2 3 1 6

P8 I-1-2-d1-3-d2-4-5-d3-6-d4-7-d5-16-F 2 1 28 7 6 3 9 4 3 3 1

P9 I-1-2-d1-3-d2-4-5-d3-6-d4-16-F 3 1 0 28 5 8 4 9 7 3 0

P10 I-1-2-d1-3-d2-4-5-d3-16-F 4 1 7 1 25 3 4 5 10 7 2

2.4. Propose approaches to test path prioritization

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 : 575 - 588

582

2.4. Propose approaches to test path prioritization

The weight assignments in the activity flow graph transformed from the UML activity diagram are

the topic of this section and then the scores of the test paths are calculated. The activity flow graph consists

of nodes and edges as shown in Figures 5, 6, 7, and 8. The nodes and edges have assigned weights as follows.

2.4.1. Define weights of the nodes in the activity flow graph

Initial node and final node presented the flow start and the final step are assigned 0. Merge, fork,

and join node which are the control node that deputed flow of the program are assigned 0. Decision node is

assigned 0, we use several methods to consider the edge weights for the decision node instead. Activity node

contained the program statement is assigned 1.

2.4.2. Define weights of the edges in the activity flow graph

Normal edge is assigned 1. Edge of decision node is based on the work breakdown structure. It can

have more than 2 edges but the total weight of True value and false value is 100%. The True edge is assigned

more weight than the false edge. In this research, the weight of an edge is based on either time management

method, Pareto method, Buffett method, Binary method, or Bipolar method as shown in Table 7. The total

weight of edges of a decision node is 5. The Time management, a 70/30 rule is applied to assign weights to

edges from decision node [29]. For 70% the True edge weight assigned is 3.5, and 30% the false edge weight

assigned is 1.5. The Pareto, an 80/20 rule is applied to assign weights to edges from the decision

node [22, 29]. For 80% the True edge weight assigned is 4 and 20% the false edge weight assigned is 1.

The Buffett, a 90/10 rule is applied to assign weights to edges from a decision node [29]. For 90% the True

edge weight assigned is 4.5, and 10% the false edge weight assigned is 0.5. The Binary, a 100/0 rule is

applied to assign weights to edges from the decision node. For 100% the True edge weight assigned is 5 and

0% the false edge weight assigned is 0. The Bipolar, a 100/-100 rule is applied to assign weights to edges

from the decision node. For 100% the True edge weight assigned is 5 and -100% the false edge weight

assigned is -5.

Table 7. Define weights of the edges from a decision node

Edge

Weight assignment methods

Time management

(70/30 rule)

Pareto

(80/20 rule)
Buffett

(90/10 rule)
Binary

(100/0 rule)
Bipolar

(100/-100 rule)

True 3.5 4.0 4.5 5.0 5.0

False 1.5 1.0 0.5 0.0 -5.0

2.4.3. Calculating scores and prioritizing for test paths

The test paths from each activity diagram were given scores Scorep to prioritize their importance.

We is an edge weight in the test path and E is the number of edges in the test path. Wn is the weight of the test

path (sum of node weights in test path) and N is the number of nodes in the test path. The score of a test path

Scorep is calculated by (7), and the test paths are prioritized according to their scores in descending order.

n

N

n

E

e
e

p

W

W

Score

1

1 (7)

2.5. Comparing computed results on prioritization of test paths with the survey results on the testers’

prioritization of test paths

The objective of the proposed approach is to rank the test paths the same as the testers’ interests.

In this section, the difference and the similarity between test path prioritization by the proposed methods and

the subjective test path prioritization according to the testers’ interests will be evaluated.

2.5.1. The calculation of the difference to subjective prioritization of the test paths

 The difference Diff(T,R) between test path rank by the proposed methods (R) and the subjective test

path prioritization according to the testers’ interests (T) is quantified in this section. The difference between

test path prioritization can be calculated by (8) where P is the number of test paths in activity flow graph.

The value of difference Diff(T,R) is between 0 and 1, the ideal value for Diff(T,R) is 0. Dp is the difference of

a T-R pair of the test path. Tp is the test path rank according to the testers’ interests, and Rp is test path rank

Int J Elec & Comp Eng ISSN: 2088-8708

Target-based test path prioritization for UML activity ... (Walaiporn Sornkliang)

583

by a proposed algorithmic method. If Rp is equal to Tp, this means that the proposed method can match

the test path rank to the testers’ interests, the difference of the test path is 0. If Rp is more than Tp, this means

that rank by the proposed method is too late for testing. The difference of the test path is punished as

the double of the difference of their ranks. If Rp is less than Tp, the difference of the test path calculated as

the difference of their ranks. MaxDiff is the maximum sum of the difference of T-R pair of all paths.

MaxDiffDRTDiff
P

p
p /),(

1

, (8)

where

pppp

pp

pppp

p

TRRT

TR

TRRT

D

,

,0

,2

,

OddNumberisP
P

EvenNumberisP
P

MaxDiff

,
4

1
3

,
2

3

2

2

 .

2.5.2. The calculation of the similarity to subjective prioritization of the test paths

The similarity Sim(T,R) between test path rank by the proposed methods (R) and the subjective test

path prioritization according to the testers’ interests (T) is quantified in this section. The similarity between

test path prioritization can be calculated by (9), where P is the number of test paths in activity flow graph.

The value of similarity Sim(T,R) is between 0 and 1, the ideal value for Sim(T,R) is 1. Sp is the similarity of

a T-R pair of the test path. Tp is the test path rank according to the testers’ interests, and Rp is test path rank

by a proposed algorithmic method. If Rp is less than Tp, this means that rank by the proposed method is not

too late for testing, the similarity of the test path is 1. If Rp is equal to Tp, this means that the proposed method

can match the test path rank to the testers’ interests, the similarity of the test path is doubly rewarded. If Rp is

more than Tp, this means that rank by the proposed method is too late for testing, the similarity of the test

path is 0. MaxSim is the maximum sum of the similarity of T-R pair of all paths.

MaxSimSRTSim
P

p
p /),(

1

, (9)

where

pp

pp

pp

p

RT

RT

RT

S

,0

,2

,1

, PMaxSim 2 .

3. RESULTS AND DISCUSSIONS

The study assessed the proposed weight assignment methods i.e. node weights and edge weights

applying with Time management method, Pareto method, Buffett method, Binary method, and Bipolar

method. In the experiment, the test paths from four UML activity diagrams (as described in section 2.3) were

prioritized and compared with prior researches.

3.1. The results of test path prioritization

The prioritizations of test paths from the activity flow graphs were obtained by assigning weights

using five proposed methods: calculating the scores for the test paths by (7), calculating the difference and

the similarity to subjective prioritization of the test paths according to the testers' interests by (8) and (9),

respectively. If two test paths had the same score, it would assign the same rank value and the next number(s)

will be skipped. The results of test path prioritization for ATM Withdraw activity flow graph are shown in

Table 8, for Shipping Order System activity flow graph are shown in Table 9, for Vending Machine activity

flow graph are shown in Table 10, and for Mileage Purchase activity flow graph are shown in Table 11. In all

four tables, “Early” means the number of test paths that rank by the proposed method is earlier than rank by

the tester. “Late” means the number of test paths that rank by the proposed method is later than rank by

the tester. “Equal” means the proposed method can match the test path rank to the testers’ interests.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 : 575 - 588

584

Table 8. The results of test path prioritization for ATM withdraw activity flow graph
Test path

no.

Test path rank by proposed weight assignment

methods

Test path rank

by tester

Time

management

Pareto Buffett Binary Bipolar

P1 5 4 2 2 1 1

P2 6 6 5 4 3 7

P3 7 7 7 6 5 2

P4 8 8 8 8 7 8

P5 1 1 1 1 2 3

P6 3 2 3 3 4 9

P7 2 3 4 4 6 4

P8 4 5 6 7 8 10

P9 10 9 9 9 9 5

P10 9 10 10 10 10 11

P11 12 11 11 11 11 6

P12 11 11 12 12 13 12

P13 14 14 14 13 12 13

P14 13 13 13 14 14 14

Early 8 8 6 5 7

Equal 1 1 3 5 2

Late 5 5 5 4 5

Difference 0.43 0.37 0.33 0.29 0.31

Similarity 0.36 0.36 0.43 0.54 0.39

Table 9. The results of test path prioritization for shipping order system activity flow graph
Test path

no.

Test path rank by proposed weight assignment

methods

Test path rank

by tester

Time

management

Pareto Buffett Binary Bipolar

P1 2 2 3 4 5 6

P2 1 1 1 1 1 1

P3 3 2 2 2 3 3

P4 6 6 6 6 6 5

P5 4 4 3 3 2 2

P6 5 5 5 5 4 4

P7 7 7 7 7 7 7

Early 1 2 2 2 1

Equal 3 2 2 2 5

Late 3 3 3 3 1

Difference 0.33 0.36 0.28 0.25 0.08

Similarity 0.50 0.43 0.43 0.43 0.79

Table 10. The results of test path prioritization for vending machine activity flow graph
Test path

no.

Test path rank by proposed weight assignment

methods

Test path rank

by tester

Time

management

Pareto Buffett Binary Bipolar

P1 6 9 9 9 9 10

P2 1 1 1 1 4 9

P3 4 2 2 2 1 1

P4 10 10 10 10 10 8

P5 2 3 5 5 6 7

P6 2 3 5 5 6 5

P7 5 7 8 8 8 6

P8 7 5 3 3 2 3

P9 7 5 3 3 2 2

P10 9 8 7 7 5 4

Early 5 4 3 3 4

Equal 0 0 2 2 2

Late 5 6 5 5 4

Difference 0.79 0.55 0.39 0.39 0.27

Similarity 0.25 0.20 0.35 0.35 0.40

Int J Elec & Comp Eng ISSN: 2088-8708

Target-based test path prioritization for UML activity ... (Walaiporn Sornkliang)

585

Table 11. The results of test path prioritization for mileage purchase activity flow graph
Test path

no.

Test path rank by proposed weight assignment

methods

Test path rank by

tester

Time

management

Pareto Buffett Binary Bipolar

P1 10 10 10 10 10 10

P2 5 5 5 4 4 5

P3 6 6 6 6 6 6

P4 7 7 7 7 7 7

P5 8 8 8 8 8 8

P6 9 9 9 9 9 9

P7 2 1 1 1 1 1

P8 1 2 2 2 2 2

P9 3 3 3 3 3 3

P10 4 4 4 5 5 4

Early 1 0 0 1 1

Equal 8 10 10 8 8

Late 1 0 0 1 1

Difference 0.04 0.00 0.00 0.04 0.04

Similarity 0.85 1.00 1.00 0.85 0.85

3.2. Comparison of test path prioritization by the proposed algorithmic method and testers’ interests

On the evaluation of our proposed methods, the average of the difference and similarity values of all

proposed methods were compared with prior published studies i.e., Kaur et al. [13], Wang et al. [15],

Mahali and Acharya [16], and Jena et al. [22] with weight assignment as described in Table 1 and test path

score calculation as described in Table 2.

3.2.1. Comparison of the difference to subjective prioritization of the test paths

On comparing five proposed algorithmic method with prior published studies, the difference values

of all proposed methods were less (better) than those in the prior published studies for ATM Withdraw

activity diagram, Shipping Order System activity diagram, and Mileage Purchase activity diagram as shown

in Table 12. The Bipolar method had the least average of the difference value. Moreover, in comparing every

average difference score of the proposed methods with the results from prior published studies,

they performed better.

Table 12. The difference values in test path prioritization
Activity diagram Difference values Prior published

Time management Pareto Buffett Binary Bipolar [13] [15] [16] [22]

1. ATM Withdraw 0.43 0.37 0.33 0.29 0.31 0.59 0.56 0.54 0.61

2. Shipping Order 0.33 0.36 0.28 0.25 0.08 0.42 0.42 0.42 0.50

3. Vending Machine 0.79 0.55 0.39 0.39 0.27 0.35 0.31 0.25 0.40

4. Mileage Purchase 0.04 0.00 0.00 0.04 0.04 0.80 0.72 0.80 0.80

Average difference 0.40 0.32 0.25 0.24 0.18 0.54 0.50 0.50 0.58

3.2.2. Comparison of the similarity to subjective prioritization of the test paths

The experimental results show the similarity values of all proposed methods were more (better) than

those in the prior published studies for ATM Withdraw activity diagram, shipping order system activity

diagram, and Mileage Purchase activity diagram as shown in Table 13. The Bipolar method had the most

average of the similarity value. Moreover, in comparing every average similarity score of the proposed

methods with the results from prior published studies, they performed better.

Table 13. The similarity values in test path prioritization
Activity diagram Similarity values Prior published

Time management Pareto Buffett Binary Bipolar [13] [15] [16] [22]

1. ATM Withdraw 0.36 0.36 0.43 0.54 0.39 0.39 0.39 0.39 0.32

2. Shipping Order 0.50 0.43 0.43 0.43 0.79 0.29 0.29 0.29 0.29

3. Vending Machine 0.25 0.20 0.35 0.35 0.40 0.50 0.65 0.60 0.50

4. Mileage Purchase 0.85 1.00 1.00 0.85 0.85 0.35 0.35 0.35 0.35

Average similarity 0.49 0.50 0.55 0.54 0.61 0.38 0.42 0.41 0.37

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 : 575 - 588

586

4. TARGET-BASED TEST PATH PRIORITIZATION

The enhancement of our proposed methods was the test path prioritization with the target area or

changed area. To prioritize by the importance of the target area or of the changed area, the test paths for

which the testers focused on the target area were prioritized by adding weight to those paths. As shown in

(10), WT is the target weight. In case that the path composes of the target areas specified by the tester, WT is

the maximum length of all test paths otherwise the WT value is 0. For example, now consider the test paths in

the ATM Withdraw activity flow graph as shown in Figure 5, the testers were interested in the target area of

node 9, so the test paths that passed through node 9 (P5, P6, P7, P8, P9, P10) were prioritized higher than

the other test paths, as shown in Table 14.

WT

W

W

Score

n

N

n

E

e
e

p

1

1 (10)

Table 14. Prioritization of test paths by the importance of target area in ATM withdraw activity flow graph
Test

path no.

Test path rank by proposed weight assignment methods

Time management Pareto Buffett Binary Bipolar

w/o

target

w/

target

w/o

target

w/

target

w/o

target

w/

target

w/o

target

w/

target

w/o

target

w/

target

P1 5 7 4 7 2 7 2 7 1 7

P2 6 8 6 8 5 8 4 8 3 8

P3 7 9 7 9 7 9 6 9 5 9

P4 8 10 8 10 8 10 8 10 7 10

P5 1 1 1 1 1 1 1 1 2 1

P6 3 3 2 2 3 2 3 2 4 2

P7 2 2 3 3 4 3 4 3 6 3

P8 4 4 5 4 6 4 7 4 8 4

P9 10 6 9 5 9 5 9 5 9 5

P10 9 5 10 6 10 6 10 6 10 6

P11 12 12 11 11 11 11 11 11 11 11

P12 11 11 11 11 12 12 12 12 13 13

P13 14 14 14 14 14 14 13 13 12 12

P14 13 13 13 13 13 13 14 14 14 14

Note: w/o stands for “without” and w/ stands for “with”.

5. CONCLUSION

This paper proposed algorithmic test path prioritizations demonstrated with four UML activity

diagrams. The activity diagram is selected according to criteria which are used in daily lives, easy to

understand, had various control flows, and frequently used in prior published studies on software testing.

The selection of activity diagrams depended on the control structure. Each activity diagram selected for this

study had three different control structures which are selection control structures, iteration control structures,

and fork-join structures. The four activity diagrams are converted to an activity flow graph. Then, an activity

flow graph is used to generate test paths. 65 professional software testers prioritize test paths by importance

according to their interests to create a baseline for comparisons. In this research, we define the weights of

the node and edge in the activity flow graph. Initial node, final node, merge node, fork node, and join node

are assigned 0. Activity node is assigned 1. Decision node is assigned 0, we define the edge weights for

the decision node instead. Time management method, Pareto method, Buffett method, Binary method,

and Bipolar method were applied to assign weights to edges of the decision node. Normal edge is assigned 1.

We proposed the test path prioritization method to generate a sequence of test paths that would match

the testers’ interests.

The experimental results show that to rank all possible paths, the difference and the similarity to

the baseline prioritization were compared. It was found that test path prioritization with our node weight

assignment and edge weight assignment applied from Bipolar method gave the least average difference and

the most average similarity from the baseline. The result of enhancement of test path prioritization with

the target area or changed area shows that if the testers were interested in the target area of any activity in

the activity diagram then the test paths that passed through those activities were prioritized higher than

the other test paths. In the future, we will apply optimization techniques i.e., artificial bee colony algorithm

with our proposed node weight assignment and edge weight assignment applied from Bipolar method to rank

test paths based on important objectives, especially target area.

Int J Elec & Comp Eng ISSN: 2088-8708

Target-based test path prioritization for UML activity ... (Walaiporn Sornkliang)

587

REFERENCES
[1] M. Khatibsyarbini, et al., “Test case prioritization approaches in regression testing: A systematic literature review,”

Information and Software Technology, vol. 93, pp. 74-93, 2018.

[2] A. Bajaj and O. P. Sangwan, “A Systematic Literature Review of Test Case Prioritization Using Genetic

Algorithms,” IEEE Access, vol. 7, pp. 126355-126375, 2019.

[3] R. Mukherjee and K. S. Patnaik, “A survey on different approaches for software test case prioritization,” Journal of

King Saud University-Computer and Information Sciences, 2018.

[4] R. K. Swain, et al., “Generation of Test Case Using Activity Diagram,” International Journal of Computer Science

and Informatics, vol. 3, no. 2, pp. 1-10, 2013.

[5] A. K. Jena, et al., “A Novel Approach for Test Case Generation from UML Activity Diagram,” 2014 International

Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), pp. 621-629, 2014.

[6] P. Achimugu, et al., “A systematic literature review of software requirements prioritization research,” Information

and Software Technology, vol. 56, no. 6, pp. 568-585, 2014.

[7] Palak and P. Gulia, “Hybrid swarm and GA based approach for software test case selection,” International Journal

of Electrical and Computer Engineering (IJECE), vol. 9, no. 6, pp. 4898-4903, 2019.

[8] S. Alani, et al., “A hybrid technique for single-source shortest path-based on A* algorithm and ant colony

optimization,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 9, no. 2, pp. 256-263, 2020.

[9] J. Chen, et al., “Test case prioritization for object-oriented software: An adaptive random sequence approach based

on clustering,” Journal of Systems and Software, vol. 135, pp. 107-125, 2018.

[10] U. Farooq, et al., “A review of object-oriented approach for test case prioritization,” Indonesian Journal of

Electrical Engineering and Computer Science (IJEECS), vol. 16, no. 1, pp. 429-434, 2019.

[11] P. G. Sapna and H. Mohanty, “Prioritization of Scenarios Based on UML Activity Diagrams,” 2009 First

International Conference Computational Intelligence, Communication Systems and Networks, pp. 271-276, 2009.

[12] A. Gantait, “Test Case Generation and Prioritization from UML Models,” 2011 Second International Conference

on Emerging Applications of Information Technology, pp. 345-350, 2011.

[13] P. Kaur, R. Sibal, and P. Bansal, “Prioritization of Test Scenarios Derived from UML Activity Diagram Using

Path Complexity,” CUBE’12: Proceedings of the CUBE International Information Technology Conference,

pp. 355-359, 2012.

[14] S. Dalal and R. S. Chhillar, “A Novel Technique for Generation of Test Cases Based on Bee Colony Optimization

and Modified Genetic Algorithm (BCO-mGA),” International Journal of Computer Applications, vol. 68, no. 19,

pp. 0975-8887, 2013.

[15] X. Wang, X. Jiang and H. Shi, “Prioritization of Test Scenarios using Hybrid Genetic Algorithm Based on UML

Activity Diagram,” 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS),

pp. 854-857, 2015.

[16] P. Mahali and A. A. Acharya, “Model Based Test Case Prioritization Using UML Activity Diagram and Evolutioinary

Algorithm,” International Journal of Computer Science and Informatics, vol. 3, no. 2, pp. 42-47, 2013.

[17] F. M. Nejad, R. Akbari and M. M. Dejam, “Using Memetic Algorithms for Test Case Prioritization in Model Based

Software Testing,” 2016 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC),

pp. 142-147, 2016.

[18] V. M. Sumalatha and G. S. V. P. Raju, “Object Oriented Test Case Generation Technique using Genetic

Algorithms,” International Journal of Computer Applications, vol. 61, no. 20, pp. 20-26, 2013.

[19] D. K. Yadav and S. Dutta, “Regression test case selection and prioritization for object oriented software,”

Microsystem Technologies, pp. 1-15, 2019.

[20] N. Panda, et al., “Test scenario prioritization for object-oriented systems using UML diagram,” International

Journal of System Assurance Engineering and Management, vol. 10, no. 3, pp. 316-325, 2019.

[21] I. Hooda and R. S. Chhillar, “Test Case Optimization and Redundancy Reduction Using GA and Neural

Networks,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 6, pp. 5449-5456,

2018.

[22] A. K. Jena, et al., “Test Case Generation and Prioritization Based on UML Behavioral Models,” Journal of

Theoretical and Applied Information Technology, vol. 78, no. 3, pp. 336-352, 2015.

[23] N. Khurana and R. S. Chillar, “Test Case Generation and Optimization using UML Models and Genetic

Algorithm,” Procedia Computer Science, vol. 57, pp. 996-1004, 2015.

[24] N. Khurana, et al., “A Novel Technique for Generation and Optimization of Test Cases Using Use Case, Sequence,

Activity Diagram and Genetic Algorithm,” Journal of Software, vol. 11, no. 3, pp. 242-250, 2016.

[25] P. C. Jorgensen, “Software Testing a Craftsman’s Approach,” 4th ed. Boca Raton, FL, CRC Press, 2014.

[26] M. Sahak, et al., “Evaluation of Software Product Line Test Case Prioritization Techniques,” International Journal

on Advanced Science Engineering Information Technology, vol. 7, no. 4-2, pp. 1601-1608, 2017.

[27] P. N. Boghdady, et al., “An Enhanced Test Case Generation Technique Based on Activity Diagrams,” The 2011

International Conference on Computer Engineering and Systems, pp. 289-294, 2011.

[28] P. Paiboonkasemsut and Y. Limpiyakorn, “Reliability Tests for Process Flow with Fault Tree Analysis,” 2015 2nd

International Conference on Information Science and Security (ICISS), pp. 1-4, 2015.

[29] R. S. Pressman, “Software Engineering: A Practitioner’s Approach,” 7th ed. NY, McGraw-Hill, 2010.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 : 575 - 588

588

BIOGRAPHIES OF AUTHORS

Walaiporn Sornkliang received the B.Ba. degree in Computer Business from Sripatum

University, Bangkok, Thailand in 1994. She also received the M.Sc. degree in Computer Science

from Mahidol University, Bangkok, Thailand in 2002. She is currently pursuing the Ph.D. degree

in Management of Information Technology at School of Informatics, Walailak University,

Nakhon Si Thammarat, Thailand. Her current research interests include software engineering

and software testing.

Thimaporn Phetkaew received her B.Sc. degree in Applied Mathematics and she also received

her M.Sc. degree in Computer Science from Prince of Songkla University, Thailand, in 1997 and

2000, respectively. In 2004, she received her Ph.D. degree in Computer Engineering from

Chulalongkorn University, Thailand. She is currently working as Assistant Professor in School

of Informatics, Walailak University. She is a member of Center of Excellence in Informatics

Innovation at Walailak University. She is also the reviewer of many International Conferences

and International Journal. Her research interests include Software Engineering, Software

Testing, Data Mining, and Machine Learning.

