
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 6, No. 1, February 2016, pp. 337~343
ISSN: 2088-8708, DOI: 10.11591/ijece.v6i1.9335 337

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

A Comparison of the Query Execution Algorithms in Secure
Database System

Young-Dal Jang, Ji-Hong Kim
Department ofInformation and Telecommunication, SemyungUniversity, Korea

Article Info ABSTRACT

Article history:

Received Jul 28, 2015
Revised Nov 21, 2015
Accepted Dec 2, 2015

 In accordance with the database management, DAS (database as service)
model is one solution for outsourcing. However, we need some data
protection mechanisms in order to maintain the database security Themost
effective algorithm to secure databases from the security threat of third party
attackers is to encrypt the sensitive data within the database. However, once
we encrypt the sensitive data, we have difficulties in queries execution on the
encrypted database. In this paper, we focus on the search process on the
encrypted database. We proposed the selective tuple encryption method
using Bloom Filter which could tell us the existence of the data. Finally, we
compare the search performance between the proposed method and the other
encryption methods we know.

Keyword:

Bloom Filter
Bucket Index
DAS (database as a service)
Database encryption

Copyright © 2016 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Ji-Hong Kim,
Departement of Information and Telecommuincation, Semyung University,
65, Semyeong-ro, Jecheon-si, Chungcheongbuk-do, Korea.
E-mail: jhkim@semyung.ac.kr

1. INTRODUCTION

The new trend of DAS system [1] leads to a new concern, security. Especially, when the sensitive
information is contained in the database, it needs its confidentiality in such a model. In a typical setting of the
problem, the confidential portions of the data should be stored at a remote location in an encrypted form at all
times. For example, data encryption becomes important when the client chooses to hide away certain
contents from server-side entities. Two new challenges emerge: (1) How to encrypt the sensitive data. (2)
How to support queries on the encrypted relational data.

In order to query effectively on the encrypted database, user query should be translated to the
modified form. The modified query should be suitable to search the data in the encrypted database stored in
a DB server. Therefore we use the Bloom Filter and Bucket index for the index on the encrypted database
search. The metadata in aclient module has hash functions for generating Bloom Filter and the bucket index
for the numerical attributes. Therefore the original query is converted to the modified query with the help of
the metadata. The index in server part is used to search the exact data from the encrypted database.

The remainder of this paper is organized as follows. Section 2 describes the general database
encryption methods. Section 3 shows the details of the proposed method and Section 4 shows the comparison
between the proposed method and the other methods. Finally, we conclude with a summary and directions for
future work.

2. RELATED WORK

In general, we can classify the database encryption methods according to the encryption unit.There
arethe element based encryption methods, the column/row based encryption methods, and the table based
encryption methods.

 ISSN: 2088-8708

IJECE Vol. 6, No. 1, February 2016 : 337 – 343

338

Table 1. The comparison between various Encryption Methods
Encryption Unit Encryption Speed Memory Size Search Speed

Keyword Search Numeric Operation

Element Slow Large High Low

Column/Row Medium Medium Medium Medium

Table Fast Small Low Low

The element based encryption method is useful only for the search for the same valued data, but it is
not good for the numeric operations. It always needs to do the element level decryption before doing numeric
operation. For example, there is one plain text table such as , 	 	, , . . , . In this case, we store an
encrypted relation , , 	 , . . , where each attribute corresponds to the encrypted data for each
attribute .

Figure 1. The element based encryption method

Table 2. The original query and the modified query
The original plain-text query The transformed query

SELECT name
FROM std_info

WHERE city = seoul

SELECT name
FROM std_info(E)

WHERE city = seoul(E)

In Figure1, a query generated by a database user is transformed to the modified query which could
search the exact data from the encrypted database. In Table 2, if the std_info table is the student personal
information, std_info(E) is the encrypted database which contains the encrypted elements in the std_info
table. The “seoul(E)” is the encrypted form of the seoul

The column/row based encryption method is the method which encrypts the data by the unit of the
column or row. Typically, the row based encryption method which is also called by tuple based encryption
method, is generally used.

For each relation , 	 	, , . . , ,	 we store on the server an encrypted relation ,
, , 	 , . . , where the etuple stores an encrypted string that corresponds to a tuple in relation R.

Each attribute corresponds to the bucket index for the attribute that will be used for query processing
at the server. In this case we have to map the domain of values of attribute . into partition , , , . .,
		 such that these partitions taken together cover the whole domain; and any two partitions do not overlap.
Formally, we define a function partition as follows; . 	 , , , . ., . We will call k
the number of the bucket. This method is proposed by Hore [2] and known to be a generally good method to
protect the database these days.

IJECE ISSN: 2088-8708

A comparison of the query execution algorithms in secure database system (Ji-Hong Kim)

339

Figure 2. The typical tuple encryption method

Table 3. The original query and the modified query
The original plain-text query The transformed query

SELECT name
FROM std_info

WHERE age = 30

SELECT etuple
FROM std_info(E)

WHERE (age)bi = age (30)bi

In Figure 2, BI means the Bucket Index used for query conversion process and ED means etuple
decryption process. A query originated from a user is transformed to the modified query in order to search
the exact data from the encrypted database. The metadata store the bucket index of the each attribute. So, the
value of the attribute involved in the user query is converted to the bucket index.Then the bucket index value
is inserted into the modified query which could search the exact data from the tuple encrypted database. The
query result returned from the server is the encrypted string etuple. The client module should decrypt etuple
and extract the right result from the decrypted data.

In Table 3, the std_info table contains the plaintext form of the student personal information and
thestd_info(E) is the encrypted database which contains the encrypted string of each tuple. The is the
bucket index value of the age element.

Finally, table based encryption method, is used to make the backup data in order to store data on the
original database periodically. Therefore, this method is not good for query processing on the encrypted
database.

3. THE PROPOSED DATABASE ENCRYPTION MODEL

Even if some sensitive data exists in the database, there is still a lot of insensitive data in the
database. So we proposed the selective tuple encryption method with Bloom Filter. A Bloom Filter [3] is a
simple space-efficient randomized data structure used to represent the existence of the data. The filter is a bit
array over which membership queries are conducted to distinguish between members of the given set or not.
Hash function techniques are used to both save space and allow member lookup. Bloom Filters allow false
positives but the space savings often outweigh this drawback when the probability of an error is controlled.
The Bloom Filter is an array of m bits, initially all set to 0. The Bloom Filter uses k independent hash
functions with range m. The number of the sample space is n elements. After inserting n elements with k

hash functions in the m bits Bloom Filter, the probability of the false positive error [3] is f 1 1

1mkn	 k≈1−e	 −knmk. This false positive rate could be reduced by choosing the large number of m in
proportion to the number of input element n. In Figure 3, The BF means the query conversion process using
Bloom Filter value and ED means the selective etuple decryption process. The metadata store the bucket
index of the each attribute.

 ISSN: 2088-8708

IJECE Vol. 6, No. 1, February 2016 : 337 – 343

340

Figure 3. Selective tuple encryption with Bloom Filter method

We propose two kinds of encryption methods for the sensitive data only. The first type is the
characteristic data involved in each attribute. The keyword for the search process is extracted from the each
characteristic attribute. The city name “seoul” is one example as a keyword. The extracted keyword is hashed
and the resulting value of the hash function is considered a bit number and the corresponding bits are set by
one in the Bloom Filter, BF=Hash(seoul). The second type is the numerical data involved in each attribute.
The numerical data is converted to the bucket index which is stored in the metadata. The grade is one
example as a numerical data. The value of the gradewould be divided by the large number of the buckets
because the bucket index value is not disclosed, and only involved in the Bloom Filter using hash functions.
So, the numerical attribute involved in the user query is converted to the bucket index first, then the bucket
index value is converted to the corresponding bits of the Bloom Filter, according to the result of the hash
functions.

A query originated from a user is transformed to the modified query in order to search the exact data
from the encrypted database. We call this method SEBF (Selective Tuple Encryption with Bloom Filter).
Table4 shows the query conversion process in SEBF. The generation process of the encrypted database in
SEBF is shown in Figure 4.

Table 4. The query used in SEBF method
The original plain-text query The transformed query

SELECT name
FROM std_info

WHERE city = seoul

SELECT s-etuple
FROM std_info(E)

WHERE BF =Hash(seoul)

Figure 4. The structure of the SEBF method

4. DISCUSSION AND CONCLSIONS

In this chapter, we will compare the proposed encryption method with the other encryption
methods.The First encryption method is the Tuple Encryption with Bucket Indexing method. We call this
method as TEBI. This method is proposed by Hore [2, 5, 6] and the same to the typical tuple encryption
method. In Figure5, you can see that it only uses the bucket index regardless of the attribute data type. All of
the tuple elements are encrypted by the e-tuple (encrypted tuple) and each attribute of the tuple is converted
by bucket index. Therefore, we can search the data using the bucket index which is stored in the metadata.
The e-tuple data is extracted from the database according to the bucket index. If we want to search the city
name “seoul”, then we first convert the city name to the according bucket index using the metadata in a client
module. The modified query is sent to the database server, and query results, which are the e-tuples according

IJECE ISSN: 2088-8708

A comparison of the query execution algorithms in secure database system (Ji-Hong Kim)

341

to the bucket index, are returned from the server. The client should decrypt the corresponding e-tuples and
could get the exact data. The fatal drawback of this method is the exposure of the bucket index value of the
attribute. The attacker can guess the distribution of the data from the encrypted database by the value of the
bucket index.

Figure 5. The structure of the TEBI method

Another method is the Tuple Encryption with Bloom Filter method [4, 7]. We call this method

TEBF. In Figure 6, you can see that it uses the Bloom Filter with the e-tuple. In this method, the bucket index
is replaced by the Bloom Filter. After each attribute of the tuple is converted to a bucket index, the bucket
index value is converted to the corresponding bits of the Bloom Filter according to the result of the hash
functions. A query originated from a user is transformed to the modified query in order to search the exact
data from the encrypted database.

Figure 6. The structure of the TEBF method

This method is more secure than the TEBI method previously mentioned, but all the elements are
encrypted regardless of the sensitivity of the data. Even if we want to search the one or two attributes, we
have to decrypt all of the according e-tuples. Now, we compare the search performance between the plain-
text and the three encryption methods (TEBI, TEBF, SEBF). The SEBF is the proposed method in this paper.
In order to compare three database encryption methods, TEBI and TEBF use the bucket index rather than
keyword searceh. Only SEBF uses the keyword for searching the character type data and the bucket index for
searching the numerical type data and the number of the bucket used in SEBF is about five times as many as
TEBI and TEBF methods. It means that we divide the numerical attributes into more partitions in SEBF. In
order to check the search performance of the three encryption methods, we use the following tables.
std_info(std_id, name, ssn1, ssn2,city, bt, height, weight), std_grade(std_id, grade, d_id, average, e-grade,
adviser) In TEBI, std_info and std_grade are composed of the e-tuple and bucket index of each attribute. In
TEBF, std_info and std_grade are composed of the e-tuple and Bloom Filter value which is composed with
the result of the hash functions using bucket index of each attribute. In SEBF, Std_grade table is not
encrypted and some attributes (std_id, name, ssn1 and ssn2) in the Std_infotableare encrypted. Table 5 shows
the two queries used for performance analysis. Table 6 shows the result of the performance test. Table 7
shows the performance comparison of each encryption method.

 ISSN: 2088-8708

IJECE Vol. 6, No. 1, February 2016 : 337 – 343

342

Table 5. Two queies used for performance analysis
Query1 Query2

SELECT count(*)
FROM std_info, std_garde

WHERE (e-grade>750)AND
(city =jecheon)

SELECT count(*)
FROM std_info, std_garde

WHERE (d-id=electronics)AND
(grade >average(grade))

Table 6. The result of the search performance test
 Return No

(Q1)
Search

Time(Q1)
Return No

(Q2)
Search

Time(Q2)
Plaintext 764 0.0450026 2565 0.117067

TEBI 7388 0.2150123 19981 0.4550263

TEBF 7436 0.2480136 21996 0.618254

SEBF 807 0.0650031 10018 0.310177

Table 7. The comparison between three methods
 Encryption

Unit
Index Keyword

Search
Numerical
Operation

Security Comment

TEBI Tuple BI Low Medium Low Disclose the distribution of the data.

TEBF Tuple BI, BF Medium Medium High High speed only if we use large
number of bucket index.

SEBF Selective tuple BI, BF High High Medium Only sensitive data should be
encrypted

We can see that the SEBF method has the best search performance. But it is a very difficult problem

to decide how much data would be encrypted according to the sensitivity. In fact, the search performance is
different depending on the queries types we choose.If we use character type cipher-text as a search condition,
SEBF has better performance than other methods because it uses keyword search. In the case of the
aggregation operation, SEBF has better performance than other methods only if it uses the large numbers of
the bucket index.

ACKNOWLEDGEMENTS
This paper was supported by the Semyung University Research Grant of 2015.

REFERENCES
[1] S. Vimercati, and S. Foresti, "Privacy of Outsourced Data", Auerbach Publications (Taylor and Francis Group),

320: 174-187.
[2] B. Hore, S. Mehrotra, and H. Hacigὓ.mὓ.s, “Managing and Querying Encrypted data”, Handbook of Data Security,

pp 163-190, 2008.
[3] A. Broder and M. Mitzenmacher. Network applications of Bloom Filters: A survey. Internet Mathematics,

1(4):pp.485-509, 2004.
[4] J. Kim, T. Sahama, S. Kim, "A Performance test of Query Operation on Encrypted Database", LNCS 235, pp 801-

810, 2013
[5] B. Hore, S. Mehrotra, G. Tsudik, “A privacy-preserving index for range queries”, Proceedings of the Thirtieth

international conference on Very large databases- Volume30. VLDB ’04, VLDB Endowment pp 720–731, 2004.
[6] H. Hacigὓ.mὓ.s, B. Iyer, C. Li, and S.Mehrotra, "Executing SQL over encrypted data in the database service

provider model", In Proc. of theACM SIGMOD, pp. 45-49, 2002
[7] D. Shin, T. Shahama, J. Kim and J. Kim, “The Scalability and the Strategy for EMR Database Encryption

Techniques”, JICCE, pp. 556-582, 2011.

IJECE ISSN: 2088-8708

A comparison of the query execution algorithms in secure database system (Ji-Hong Kim)

343

BIOGRAPHIES OF AUTHORS

Young-Dal Jang (jang_yd@naver.com) received his B.S and M.S degrees in electronic
engineering from Semyung University, Jecheon, Korea in 1998 and 2008.
He is currently in his Ph.D course in information and telecommunication in Semyung University,
Jecheon, Korea.
His current research intersets include the netowrk securityand database security.

Ji-Hong Kim (jhkim@semyung.ac.kr) received his B.S degree in electronic engineering from
Hanyang University, Seoul, Korea in 1982. and received his M.S and Ph.D degrees in electronic
and communication engineering from Hanyang University, Seoul, Korea in 1984 and 1996.
He has worked in the Department of the information and telecommunication in Semyung
University since 1991.
His current research intersets include the netowrk security and database security and cloud
computing.

