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 Complex networks provide means to represent different kinds of networks 

with multiple features. Most biological, sensor and social networks can be 

represented as a graph depending on the pattern of connections among their 

elements. The goal of the graph clustering is to divide a large graph into 

many clusters based on various similarity criteria’s. Political blogs as 

standard social dataset network, in which it can be considered as blog-blog 

connection, where each node has political learning beside other attributes. 

The main objective of work is to introduce a graph clustering method in 

social network analysis. The proposed Structure-Attribute Similarity (SAS-

Cluster) able to detect structures of community, based on nodes similarities. 

The method combines topological structure with multiple characteristics of 

nodes, to earn the ultimate similarity. The proposed method is evaluated 

using well-known evaluation measures, Density, and Entropy. Finally, the 

presented method was compared with the state-of-art comparative method, 

and the results show that the proposed method is superior to the comparative 

method according to the evaluations measures. 
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1. INTRODUCTION 

In recent years, social networks are significantly considered as an important domain of complex 

networks, where networks can be modeled as graphs [1], [2]. The graph structure is a useful approach for 

studying social networks, where objects (such as people and authors) can be modeled as nodes and the 

relationships among objects can be represented as edges connecting these nodes. In social networks analysis, 

the graph clustering [3] is a great tool that is widely used to partition the large network into several densely 

connected community structures based on similarity measures. In result, the partitioned structures facilitate 

the understanding of large network visualization and make it easier to be analyzed.  

The strategy of the graph clustering was used in many domains of social network analysis including, 

biological networks [4], community detection [5]-[9], and websites social networks [10]. Mainly, there are 

several graph clustering techniques, most of these techniques consider only the similarity of the topological 

structures [11], [12], others focus on the attributes of the of contents of the nodes [13], while few of them 

have considered both approaches [8].  

Nowadays, and with increasing the influence of the weblogs on the human lifestyle especially in the 

periods of the US elections. Thus, it is the time to develop appropriate methods that are able to detect the 

community structures within these weblog networks. As a result, make it easier to visualize and analyze such 

networks. In this work, a new graph clustering method is proposed for community detection in social 

networks called Structure-Attribute Similarity Clustering (SAS-Cluster), that take into the account the 
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similarities of the topological structures and the nodes attributes. Two concepts are introduced in this paper 

the Mean Gravity and the Path Degree, which are used to increase the community structure cohesiveness. 

The contributions of this paper are summarized below: 

a. A new graph clustering algorithm is proposed which considers the structural similarity and the nodes 

attributes. 

b. Two concepts (Mean Gravity and Path Degree) are introduced which are used to increase the 

cohesiveness of the structure of the clusters.     

The remaining sections of this paper are arranged as follows. Section 2 introduces a review of some 

most recent related works. Section 3 focuses on the graph clustering technique. Section 4 describes Political 

Blogosphere Network. Section 5 introduces the proposed method. Section 6 reviews the experimental results. 

Finally, section 7 concludes this paper. 

 

 

2. RELATED WORKS 

This section reviews a summary of most recent related works concerning the graph clustering 

methods of social networks. The goal of graph clustering is to group the nodes of the network that have 

denser connections among them. Some methods such as Clique Peculation Methods CPM focus on 

internal/external edge counting [3] while ignoring the interactions and vertex characteristics, in [14] the 

authors propose a clique method on co-purchased network weighted graph, to find micro-cluster, the 

algorithm works in two phases graph polishing to enumerate intersections of neighbors and clique 

enumeration to count maximum cliques. 

Newman-Girvan is considered as well-known divisive algorithm [15] for community detection 

which based on two main steps; first detects some edges based on betweenness measure then splits the 

network into communities based on the detected edges finally it requires betweenness recalculation after each 

splitting, the quality of the communities is measured using the maximal modularity. However, the method is 

not suitable for large networks and it suffers from the resolution limit.  

In ABCD [6], the authors introduced new algorithm based on bi-directional connections and nodes 

features to detect community attractiveness of OSN, the algorithm was validated in SNAP platform and 

compared with CNM [5], according to the researcher ABCD is outperformed CNM and it can discover 

smaller communities in contrast with CNM, however, the method was not shown the comparative results of 

the modularity values to prove its effectiveness. 

The k-prototype algorithm ISCD+ [16] an iterative model for fast graph clustering, the authors 

introduce a new idea for detecting communities, the algorithm imposes two factors namely local importance 

and importance concentration to select nodes with different weights to represent communities. 

The KNN-based algorithms in [12] the authors propose a directed weighted graph clustering 

algorithm for community detection, the algorithm considers network topology only and it is significantly 

focused on the path traversed frequency and neighborhood nodes, nevertheless, the method suffers from 

computational complexity since it is based on k-nearest neighbors’ computations. 

In [10] the authors introduced a new approach for community detection in social network websites. 

besides structure similarity a frequent pattern mining of nodes contents was contributed, the algorithm is 

implemented in four steps, preprocessing, frequent pattern computing to obtain harmonious groups, 

extending harmonious groups into small communities, finally small communities expansion, however, the 

method suffers from some disadvantages such as, time complexity which is caused by the input parameters, a 

trial, and error concept was used to determine the appropriate parameters. 

Roy et al. in [17] proposed a graph-based spectral clustering model, the method uses novel affinity 

matrix for spatial clustering with Mahalanobis distance, however, the method has some limitations, the 

distance metric can only measure from a single point, this reduces results quality. 

Jinarat et al. in [18] have introduced a graph clustering algorithm for web search results, the core 

idea of the method is to combine web search results with external knowledge data from Wikipedia to attain 

better clustering quality. the method uses graph-based construction for text clustering to connect related 

documents, nevertheless, the similarity threshold parameter for subgraph detection must be in a certain range, 

when the threshold parameter increases, the clustering quality decreases. 

 

 

3. GRAPH CLUSTERING TECHNIQUE 

An indirect weighted graph { , , , },G V E W  where | |V is a set of vertices. | |E set of edges. | |W

set of edges weights. Each edge | |ie E maps two vertices ( , )i jv v to be connected with specific weight ijw , 

where , | |i jv v V  and | |ijw W . Each vertex in a graph is associated with a set of attributes, in such that the 
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term 
1 2 3{ , , , , }nattr attr attr attr  where 

1

( )
n

i i j

j

v v attr


  The purpose of graph clustering is to partition a 

graph into k-disjoint subgraphs, depending on some topological structures and attributes similarity measures, 

the communities should have the following aspects;  

a. Similar vertices should be participated in a similar group, while the dissimilar ones should go to different 

groups. 

b. The vertices that belong to the community should be densely connected to each other and sparsely 

connected to the other vertices within different communities. 
The goal of the proposed algorithm is to introduce a weighted measure. Thus can effectively reflects 

the characteristics of network topology and vertices features to strengthen the similarity cohesiveness. The 

strategy of clustering and the similarity measure will be discussed in the next section. 

 

3.1.  Contrast comparative method 

W-Cluster [9] is an emerged algorithm of SA-Cluster, which considers both structures and attributes 

aspects by applying a unified distance measure and neighborhood random walk strategy. The method uses the 

probability of edge belongs to the community to Measure link strength and Jaccard coefficient similarity to 

estimate content similarity. Eventually, W-cluster can automatically learn the degree of both topological 

similarities and attribute similarity through utilizing the probability transition matrix to build unified distance 

measure. The method partition large graph into numbers of clusters. 

 

3.2.  Evaluation measures 

To evaluate the clusters quality results of the SAS-Cluster, two evaluation measures are used for this 

purpose; Density [1] and Entropy [19]. Both measures have the following definitions. Density measure is 

used to estimate the structural closeness to each cluster. Density is denoted in Equation (1).  

 

1

1

( , )
({ } )

| |

k
k m n

c c

c

v v
Density v

E




  (1) 

 

where c is a number of clusters {1,2,3, , }k , 
cv represents the number of vertices belongs to the certain 

cluster. ,m nv v are two vertices, , | |m nv v V and ( , )m n cv v v . ( , )m nv v  represents an edge | |E . 

Entropy measure is used to determine the relevance of attributes among vertices in each cluster. 

Entropy can be defined in Equation (2) and Equation (3). 
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     (3) 

 

where i  is the number of clusters in the range {1,2,3, , }k , ac  is the attribute value at index number in 

range the [1,2,3, , ]m . n  is the attribute values. ,  m nc  is a number of attribute values. cinP  is the 

percentage of cluster vertices that have thn  attribute value on ac  

 

 

4. POLITICAL BLOGOSPHERE NETWORK 

The political web-blogs have played an important role in US Presidential Elections since the year of 

2000 and after, and it is gained more influence at the 2004 US Presidential Elections. First, the blog can be 

understood as an informational website placed on World Wide Web WWW which is devoted to publishing a 

diary-style text or posts, sometimes contains links to other websites. 

According to Adamic et al. in [20] the year 2004 demonstrated a rapid increase in the popularity of 

blogs, accordingly, the significant fraction of internet traffic was directed to these blogs. However, there is 
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9% of internet users acknowledged that they read political blogs during US Political Campion. Therefore, the 

weblogs may be followed by a small number of readers but its influence extends beyond that. 

To discover the behavior of Blogosphere network, Adamic et al. in [20], have analyzed the 

landscape of most influential political blogs in two months before the US Presidential Elections. The analysis 

was based on the topics of the discussion and linking structure among blogs. The top 40 influential blogs 

were considered and added to the original list.  

According to Adamic et al. a set of URLs was gathered from seven online weblog directories 

including, eTalkingHead, BlogCatalog, CampaignLine, and Blogarama. Each URL represents the political 

weblog. A one-day snapshot is taken for URLs, for each downloaded page, the citation was considered, and 

any newly discovered page was added to the list. 

Next step, for all the discovered blogs, the citations are counted up, if the discovered page was cited 

for 17 times or more, then, its orientation is labeled manually depending on blogrolls and posts and added to 

the original list. The final set consists of 1494 blogs, divided into 759 liberals and 735 conservative blogs. 

The pattern in which the blogs are linked together was done, by counting the number of posts in such that 

each blog cites to another blog is counted as an edge between the two blogs. However, the link was not 

duplicated if the blog was cited by another blog more than once within the same post. 

 

 

 
 

Figure 1. The community structures of the political blogs extracted from [20]. The colors reflect political 

orientations, the red for conservatives, the blue for liberals, the color purple from conservatives to liberals 

and the color orange from liberals to conservatives 

 

 

Finally, the authors concluded network description, in such that, each political learning is more 

likely to talk about certain topics, one can notice an interesting pattern which is conservative bloggers tend to 

link to other conservative blogs and it is more densely linked (Table 1). 

 

 

Table 1. Frequently used Items and their Descriptions 
Symbols Description 

m n
v v  Vertices with a direct connection 

m nv v  Vertices with an indirect connection 

  m nv v  Disconnected vertices 

( )md v  Number of ties connected to vertex m 

( )mc v  Closeness centrality to vertex j 

S  Topological structure similarity 

A  attribute similarity 
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5. THE PROPOSED METHOD 

5.1.  Block diagram 

In Figure 2 we can see the SAS-Cluster block diagram. 

 

 

 
 

Figure 2. SAS-Cluster block diagram 

 

 

5.2.  SAS-cluster  

Graphically, social networks can be modeled as complex networks, where both network topology 

and vertex properties can be contained. The relationship among vertices is represented as edges. The 

proposed SAS-Cluster algorithm achieves the following properties:  

a. The vertices within the same cluster are close to each other concerning the structural similarity and 

dissimilar to other vertices outside the cluster.  

b. vertices in the same cluster are close to each other in terms of attribute similarity and far from each other 

among the different clusters. 

The core idea is to define the Gravity factor, to identify the power of the relationship concerning 

each pair of directly connected vertices in the topology of the structure. 

Definition 1 (Gravity Factor). In the indirect weighted graph, the relation between two directly 

connected vertices exposes the strength of the relationship. Let 
mv and 

nv  are two directly connected vertices. 

( )md v is the degree of the vertex
mv . ( )ic v is considered the closeness measure of 

iv , which refers to the 

inverse sum of all shortest paths among 
iv and all other vertices in the graph. 

mnw  is the weight associated 

with the edge ( , )m ne v v . The Gravity Factor is defined in Equation (4). 

 

( )

1

( )
( , ) ln 1 * ,

( )

m

m
m n mn m nd v

j

d v
g v v w v v

c j



  

 
 
 
 
 
 
 



 (4) 

 

Definition 2 (Mean Gravity). Let 
mv and    are two directly connected vertices. Mean gravity can 

be defined in Equation (5). 

 

( , ) ( , )
( , ) ,

2

m n n m
m n m n

g v v g v v
m v v v v


   (5) 

 

where  (     )   (     ), thus one can determine which vertex is more important.  

Definition 3 (Path Degree). Let 
mv and    are two indirectly connected vertices. For a given path 

( , , , , , )1 2v v v v vm m m m i n   , path degree can be defined in Equation (6). 
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( , ) ( , ),
n

m

v

m n m n m n

v

p v v g v v v v 
 

(6) 

 

where path is taken into account as the weighted shortest path between a pair of indirectly connected vertices.  

Structural/Attribute Similarity (SAS), in the proposed method, the Jaccard similarity coefficient is 

adopted to compute the similarity measure, as defined in Equation (7). 

 

| |
( , )

X Y
sim X Y

X Y
   (7) 

 

where ,X Y  are vertices, , | |X Y V , Jaccard similarity in the equation (7) is a well-known similarity 

measure, therefore it has been used to find out the relevance among vertices. There are two main similarity 

calculations are taken into account. Directly connection Equation (8). To calculate the similarity between a 

pair of directly connected vertices. 

 

1 1

( , ) ,
m n
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 (8) 

 

where , | | .m nv v V miw is the weight of the edge between the vertex
mv and all

Si vertices that are directly 

connected to
mv . 

njw  is the weight of the edge between the vertex
nv and all Sj vertices that are directly 

connected to 
nv and

mnw is the associated weight of the edge ( , )m ne v v . Indirectly connection Equation (9). 

The similarity is calculated based on the shortest path between
mv and 

nv . 

 

1( , ) ( , ),
n

m

v
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l v
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    (9) 

 

where , | |v v Vm n represent the similarity between two indirectly connected vertices. 

After obtaining the Mean Gravity Equation (5) and Path Degree Equation (6), the structural 

similarity is defined in Equation (10). 

 

( , ) ( , ),
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 (10) 

 

Next, the vertices attributes are considered. Each vertex is characterized by multiple attributes. 

Obtaining attribute similarity increases the cohesiveness among vertices. Attributes values can be either 1 or 

0 reflect the appearance or disappearance of that attribute at a certain vertex. The mathematical formulations 

of the attribute similarity are defined in Equation (11) and Equation (12). 

 

1,   ,      
( , )
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where , | |m nv v V . m is the number of attributes associated with 
mv . 

aw represents the attribute value 

usually either 0 or 1. By combining Equation (10) and Equation (12) the final mathematical description of the 

structure attribute similarity is defined in Equation (13). 

 

( , ) ( , ) ( , )m n m n s m n ASAS v v sim v v sim v v      (13) 

 

where ( , )m nSAS v v is the structure attribute similarity between a pair of vertices
m

v and
n

v . 

 

5.3.  Algorithm description 

After obtaining final similarity value among vertices, by applying Equation (13). now one can get 

the distance value among vertices which is defined in Equation (14), but first, the similarity value has to be 

normalized to be in the range of [0, 1]. 

 

1 ( )
( , )

,           
m n

m n

norm SAS
SAS D v v

v v


 







 (14) 

 

( , )
m n

SAS D v v is the Distance value between the two vertices 
mv  and 

nv . ( ) 0
m

d v   and ( ) 0
n

d v  . 

In prior, the number of centroids k are selected randomly, at each iteration these centroids are 

updated, the rest of vertices are assigned to the nearest centroid based on minimum distance.   

 
Algorithm 1. SAS-Cluster 

Input: undirected, weighted* and multi-attribute Graph G , clusters number k , the weight factor , max iteration number MAX  

Output: 1 2 , , kk clusters C C C  

1. 
Initialization: vertices

1{ } 0n

i iv   , distance [ ][ ] 0i jD v v  , vertices attributes , 1[ ] 0m

i wattrj jv   , 1   , 

[] 0ClusterSentroid  .  

2. Graph creation:  

 2.1. Add vertex: 

   If NewNode not in vertices{ }iv   

    Vertices{ }iv  NewNode  

   End if  

 2.2. Add Edge 

   If ,i jv v in vertices{ }iv  

    Create ( , )i jv v link & ( , )j iv v link 

   End if 

3.   Similarity computation: 

  For each vertex iv &
jv in | |V where i j   

   ( , ) ( , ) ( , )i j i j s i j ASAS v v sim v v sim v v      

   
( , ) 1 ( ( , ))

i j i j
SAS D v v Norm SAS v v    

  End for 

4. SAS-Cluster:  

  Select k randomly from vertices | |V as initial centroids for
1 2, , kC C C  

  [] ( )kClusterSentroid k c  

  While not end OR there is no change in the MIN distance 
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   For each   | |jv in V  

    [ ] min { ( , )}ijCluster j D i j for all centroids 1i k  

   End for 

   For each cluster ,i i k  

    If the SUM of distances is minimum 

     Update [ ]ClusterSentroid i  

    End if 

   End for 

  End While 

Return 
1 2 , , kk clusters C C C  

 

Initially and regarding  

Figure 2, SAS-Cluster algorithm requires two predetermined parameters α and number of clusters k. 

at step one algorithm reads the raw data to create the network and determines the number of attributes 

associated with each vertex. Step two multiple paths among nodes are considered, many calculations must be 

insured, Mean Gravity Equation (5) and Path Degree Equation (6), are required to establish SAS similarity 

calculations as in Equation (13), Distance values among each couple of vertices in Equation (14) are 

computed based on SAS similarity results. All data must be stored in the database. Step four and regarding 

the number of k and distance values, the communities are extracted from the original graph. Finally, and 

concerning the Equations (1), (2) and (3), the results are evaluated using Density and Entropy. 

 

 

6. EXPERIMENTAL RESULTS 

In this section, extensive experiments are performed to evaluate the performance of the SAS-Cluster 

method. All experiments are conducted on PC with Windows 10 Pro 64 bit, an i7-6700 HG CPU (260 GHz, 

and 16 GB RAM. The programming environment is Python 3.6.2 (MSC v.1900 32 bit (Intel)).  

 

6.1.  Dataset 

Political Blogs Dataset, as real network dataset, which is used to for the evaluation and analyzing 

the proposed method. The dataset is based on blog-blog connection [20]. It consists of 1,490 nodes and each 

node contains an attributes description to characterize its political learning, which is either conservative or 

democrat.  

 

6.2.  Results 

 The proposed SAS-Cluster algorithm is extensively evaluated with the state-of-art method  

W-cluster [9] through well-known evaluating measures, Density, and Entropy. The density as given in 

Equation (1), reflects the extent of how tight structure is connected among vertices in each cluster, the higher 

density value reflects the community structure cohesiveness. The entropy that is described in Equation (2) 

and Equation (3), which is used to rate the attribute relationship among vertices, low entropy reflects better 

relevance among vertices in each cluster. Figure 3 and Figure 4 show the performance of SAS-Cluster 

concerning Density and Entropy, where the number of clusters 3,5,7,9k  . is set in the range [0, 1] and 

1   . The algorithm is run for at least three iterations.  

Figure 3, reviews the density values. When setting to 0 the density value is the lowest, this 

because of the similarity of the structural topology is not taken into account. At 3k  the density values 

declines when   is set to 0.6 or 0.7. At 5,7,9k   and 0.5  the density values drops down. 

Figure 4, reviews the entropy values, the best-given values when α equal to 0, since the algorithm is 

run based on the attribute similarity only. In contrast, when α equal to 1 the given-values is the worst this 

because the attribute similarity is not taken into the account. At 3,5,7,9k  the best given-results when is 

set to 0.5 or 0.8. While the quality of the results tends to decrease when 0.8  . As illustrated in Figure 3 

and Figure 4, the best performance for SAS-Cluster when is either 0.5 or 0.8. 
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Figure 3. Impact factor α on the political blog. 

 Clarifies Density results for SAS-Cluster 

 
 

Figure 4. Impact factor α on the political blog.  

Clarifies Entropy results for SAS-Cluster 

 

 

To show the effectiveness of the proposed method, SAS-Cluster is compared with the state-of-art 

method, W-cluster. Both methods are tested for a fixed number of clusters 3,5,7,9k  and is set to 0.5. 

Figure 5 and Figure 6 illustrate the comparison results of the density and the entropy respectively for 

each of SAS-Cluster and W-cluster. All results have shown that SAS-Cluster outperformed W-Cluster 

concerning the density and the entropy measures. 

 

 

 
 

Figure 5. Density comparison values on political blogs 

 
 

Figure 6. Entropy comparison values on political blogs 

 

 

7. CONCLUSION 

Nowadays, social networks have become more influential in individual’s opinion, decisions, and 

their lifestyle. Therefore, and with the accelerated increase in social networks data, it is important to adopt a 

more reliable graph clustering methods for community detection. In this paper, a graph clustering method for 

community detection is proposed. The method introduces two concepts, Gravity degree and Path degree, to 

increase the structural similarities within the detected communities. In addition, the adopted method 

combines structural similarities with the multiple attributes of nodes to attain more cohesiveness similarity. 

The experimental results have shown that SAS-Cluster is better than W-cluster according to Density and 

Entropy evaluation measures. 
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