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 Deadlock detection is one of the main issues of software testing in High 
Performance Computing (HPC) and also inexascale computing areas in the 
near future. Developing and testing programs for machines which have 
millions of cores is not an easy task. HPC program consists of thousands (or 
millions) of parallel processes which need to communicate with each other in 
the runtime. Message Passing Interface (MPI) is a standard library which 
provides this communication capability and it is frequently used in the HPC. 
Exascale programs are expected to be developed using MPI standard library. 
For parallel programs, deadlock is one of the expected problems. In this 
paper, we discuss the deadlock detection for exascale MPI-based programs 
where the scalability and efficiency are critical issues. The proposed method 
detects and flags the processes and communication operations which are 
potential to cause deadlocks in a scalable and efficient manner. MPI 
benchmark programs were used to test the proposed method. 
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1. INTRODUCTION 

Exascale Computing is considered as one of the recent research topics in HPC computing area. 
Exascale computing refers to the capability to process 1 exaflop (1018 floating point operations per second).  
The computation capability of the current supercomputers is in the petaflops level, where 1 petaflop is 
equivalent to 1015 floating point operations per second. Manufacturing machines with this ambitious 
computation capability depends on using hundreds of millions of cores to achieve that computational target, 
which are expected to be in operation in 2020 [1]. The scientific and big data processing applications are 
planned to be run in these machines. So, one of the challenges is how to develop reliable applications for this 
parallel-based computation environment. 

MPI is a standard library which is frequently used in the HPC. It is a standard library for HPC, 
which is considered by [2] as the de facto standard for parallel programming in the HPC. According to [3], 
MPI provides a set of functions or commands which are used by the parallel programs to facilitate the 
communication between the processes in the runtime. The simple scenario of using the MPI library by a 
parallel program is achieved by using the MPI_Send operation by one process to send a message to another 
one in the same program, where the destination process receives the message using the MPI_Recvoperation. 
To provide a rich communication environment for the applications, MPI library provides two different types 
of communication: blocking and non-blocking communication. In the blocking communication, the sender 
and receiver must wait for the communication operations to match each other before theycan proceed to 
execute the next instruction.In the non-blocking communication, the sender and receiver can issue the 
operations of the communication –MPI_Isend and MPI_Irecv- and proceed directly to execute the next 
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operation without waiting for the communication operationsto match. The result of the non-blocking 
communication can be checked later by using the MPI_Test operation to check whether the issued non-
blocking operation is already matched to a corresponding operationor not. MPI_Wait operation can also be 
used to enforce the process to wait for a non-blocking communication operation to finish, and once that 
communication operation is matched to an appropriate operation, the process can continue its execution. 

MPI provides also the wildcard receive feature MPI_Source_Any, such that the process can receive 
the message from any source, which leads to the message race. Because of this message race, the execution 
of these MPI-based programs is considered as nondeterministic, which means that the behavior of the 
program during the runtime may differ from one run to another. 

As a result of the non deterministic execution, MPI program testing is not an easy task. As similar to 
the sequential programs, the parallel programs have the same types of programming errors, like buffer 
overflow, division by zero, etc. In addition, the parallel programs have errors related to the concurrent 
communication process among their different processes. 

Communication deadlock is one of these parallel-based errors, where one process is executing a 
communication operation –send or receive-, and this process doesnot find a match for that communication 
operation, and this leads to a communication deadlock. Therefore, MPI application developers need a 
mechanism to detect any potential deadlock in their applications. For exascale programs whichare expected 
to consist of millions of processes communicating with each other, detecting the deadlock requires scalable 
and efficient techniques. This paper presents a scalable and efficient method for communication deadlock 
detection for exascaleMPI-based programs. 
 
 
2. RELATED WORK 

In [4], In-Situ Partial (ISP) is a deadlock detection tool which is implemented by investigating all 
the possible interleaving in the MPI program by running the program multiple times. This tool provides 
complete coverage for all possible execution paths, and hence provides a guaranteed result for the deadlock 
detection.  

According to [5], this tool produces an exponential number of communication interleaving cases 
which makes it difficult to test MPI programs that have a large number of processes. 

In [6], AND-OR Wait-For graph (WFG) is used to detect deadlocks in MPI programs. The ‘AND’ 
operation is used in this graph to represent the communication pair which is required to match each other. On 
the other hand, the ‘OR’ operation is used to represent the communication expected between sender nodes 
and a receiver node which hasthe wildcard receive feature. According to [7], using AND-OR WFG for 
deadlock detection is time consuming and requires high performance. 

A modified version of AND-OR graph is used for the deadlock detection [5]. Marmot Umpire 
Scalable Tool (MUST) provides a scalable and efficient technique for deadlock detection. However, it 
doesnot provide complete support for testing the MPI programs which have wildcard receives [8]. 

Model checking technique is used in [9] to detect MPI deadlocks. It explores all the possible 
matching and interleaving of the tested MPI program and supports the wildcard communication. The 
limitation of this technique is the need to construct the model of the MPI program manually. 

In [10], a deadlock detection technique is suggested which does not require the testing model to be 
constructed manually. But, the limitation of this technique is the need to re-run the entire program many 
times to detect the deadlocks. 

Therefore, deadlock detection in exascale MPI-based program requires an efficient and scalable 
technique which should be able to test millions of processes created by the program. Current deadlock 
detection techniques of MPI-based programs suffer from the exponential growth of the number of possible 
communication interleaving cases which makes the testing process of exascale MPI-based program 
impractical. For the other techniques which do not suffer from this exponential growth, incomplete support 
for the MPI communication features is provided, or the testing model construction is done manually. In both 
cases, deadlock detection for exascale MPI-based program cannot be achieved with these limitations.  

The motivation for this research is to provide a scalable and efficient technique which does not 
suffer from the exponential growth of the number of possible communication interleaving cases. At the same 
time, the technique should have a complete support for the MPI communication features, and the ability to 
run the deadlock detection process without the need to construct a manual testing model. 
 
 
3. METHOD 

This paper presents Exascale MPI-based Program Deadlock Detection (EMPDD) as a scalable and 
efficient method for detecting MPI deadlocks in the O(m*n) magnitude, where m is the number of processes 
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in the program, and n is the number of communication operations in each process. The EMPDD method is a 
static-based, and supports the wildcard receives. In addition, it investigates all the possible matching and 
interleaving for the MPI program communication operations. 

The EMPDD method consists of three algorithms: MatchProcesses, MatchOperations and 
DetectDeadlocks. MatchProcesses algorithm is used to apply the matching rules between the different 
processes of the program. To investigate the possible matching between each send operation and all the 
potential receive operations, the MatchOperations algorithm is used. After the processes and operations 
matching are done, the DetectDeadlocks algorithm is used to flag all the possible deadlocks based on the 
produced potential matches. 

In comparison to the MPI deadlock approaches which provide all interleaving cases investigation 
with order of exponential magnitude, EMPDD method is considered more efficient and scalable. In addition, 
it does not suffer from the problem of the optimized approaches which try to minimize the order of 
magnitude required to detect the deadlock by limiting the number of possible interleaving visited, where such 
limitation does not provide complete coverage to the possible execution paths. 

The limitation of EMPDD method is the lack of providing a graphical notation for the execution 
paths which lead to the deadlock. Instead, it is capable to flag all the processes and communication 
operations which are responsible to produce the deadlock case. However, EMPDD method is useful to 
present an efficient and scalable approach to check the existence of deadlock in the MPI programs that 
consist of millions of processes, which is the case of the exascale MPI-based programs. 

The EMPDD method includes four stages: 1) extracting the MPI program communication log file 2) 
parsing the MPI program communication log file 3) matching the communication operations 4) deadlock 
detection. 
The architecture of EMPDD is shown in Figure 1. 
 

 
Figure 1. EMPDD Architecture 

 
 
Algorithm 1: MatchProcesses 
Definitions: 
1. p:  MPI process 
2. Processes = {p1,p2,p3, ..,  pm} where Processes represents the set of MPI program processes 
3. op: communication operation 
4. p = {op1, op2, op3, ..., opn}, where opi is communication operation 
5. op = {OperationType, SourceProcess, DestinationProcess, IsMatched, Counter, IsDeadlock} where: 

a. OperationType∈ {Send, Isend, Recv, Irecv} 
b. SourceProcess∈ {p1, p2,… , pm} 
c. IsMatched∈ {true, false} 
d. IsDeadlock∈ {true, false} 

6. For each process p, Pointers = {pointer1, pointer2, …, pointerm} where pointeri is the index of the next 
operation of pi to match with respect to p 
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Input: 
Processes = {p1,p2,p3, …, pm} 
Output: 
Processes (after matching) 
Steps: 
1. Initialization: 

a. for each process p in Processes 
i. initialize Pointers of p to zeros 

ii. for each operation op in p 
1. op.IsMatched = false 
2. op.Counter = 0 
3. op. IsDeadlock = false 

2. for each process p in Processes 
a. set currentProcess = p 
b. for each operation op in currentProcess 

i. set currentOperation = op 
ii. set destProcess = Process which currentOperation wants to match 

iii. set currentPointers = Pointers of currentProcess 
iv. set destPointer = pointer of destProcess in currentPointers 
v. if currentOperation is Recv and matched: move to the next operation 

vi. if currentOperation is Recv and not matched: exit the current process and move to 
the next process 

vii. if currentOperation is Irecv: move to the next operation 
viii. if currentOperation is Send: 

1. result = MatchOperations(currentOperation, destPointer) 
2. if result = true: move to the next operation 
3. if result = false: exit the current process and move to the next process 

ix. if currentOperation is Isend:  
1. MatchOperations(currentOperation, destPointer) 
2. move to the next operation 

3. return Processes 

 
Algorithm 2: MatchOperations 
Definitions: 
1. op: communication operation 
2. p = {op1, op2, op3, ..., opn}, where opi is communication operation 
3. op = {OperationType, SourceProcess, DestinationProcess, IsMatched, Counter, IsDeadlock} where: 

a. OperationType∈ {Send, Isend, Recv, Irecv} 
b. SourceProcess∈ {p1, p2,… , pm} 
c. IsMatched∈ {true, false} 
d. IsDeadlock∈ {true, false} 

4. For each process p, Pointers = {pointer1, pointer2, …, pointerm} where pointeri is the index of the next 
operation of pi to match with respect to p 

Inputs: 
sourceOperation 
destPointer 
Output: 
MatchingStatus∈ {true, false} 
Steps: 
1. Set flag = false 
2. while (flag = false) 

a. set currentOperation = destinationProcess[destPointer] 
b. if currentOperation.OperationType = Send and currentOperation.IsMatched = false: 

exit the while loop 
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c. if currentOperation.OperationType = Send and currentOperation.IsMatched = true: 
destPointer++ 

d. if currentOperation.OperationType =  ISend: 
destPointer++ 

e. if currentOperation.OperationType = Recv and currentOperation.IsMatched = true and 
currentOperation.DestProcess != MPI_Source_Any: 

destPointer++ 
f. if currentOperation.OperationType =  Irecv and currentOperation.IsMatched = true and 

currentOperation.DestProcess != MPI_Source_Any: 
destPointer++ 

g. if currentOperation.OperationType = Recv: 
i. if currentOperation.DestProcess = MPI_Source_Any 

1. sourceOperation.IsMatched = true 
2. currentOperation.IsMatched = true 
3. currentOperation.Counter ++ 
4. destPointer++ 

ii. if currentOperation.DestProcess != sourceOperation.DestProcess: 
exit the while loop 

iii. if currentOperation.DestProcess = sourceOperation.DestProcess: 
1. sourceOperation.IsMatched = true 
2. currentOperation.IsMatched = true 
3. currentOperation.Counter ++ 
4. destPointer++ 
5. flag = true 
6. if currentOperation.Counter = 1 

exit the loop 
h. if currentOperation.OperationType = Irecv: 

i. if currentOperation.DestProcess = MPI_Source_Any 
1. sourceOperation.IsMatched = true 
2. currentOperation.IsMatched = true 
3. currentOperation.Counter ++ 
4. destPointer++ 

ii. if currentOperation.DestProcess != sourceOperation.DestProcess: 
destPointer++ 

iii. if currentOperation.DestProcess = sourceOperation.DestProcess: 
1. sourceOperation.IsMatched = true 
2. currentOperation.IsMatched = true 
3. currentOperation.Counter ++ 
4. destPointer++ 
5. flag = true 
6. if currentOperation.Counter = 1 

exit the loop 
3. return flag 

 
Algorithm 3: DetectDeadlocks 
Definitions: 
1. p:  MPI process 
2. Processes = {p1,p2,p3, ..,  pm} where pi represents a process and Processes represents the set of MPI 

program processes 
3. op: communication operation 
4. p = {op1, op2, op3, ..., opn}, where opi is communication operation 
5. op = {OperationType, SourceProcess, DestinationProcess, IsMatched, Counter, IsDeadlock} where: 

a. OperationType∈ {Send, Isend, Recv, Irecv} 
b. SourceProcess∈ {p1, p2,… , pm} 
c. IsMatched∈ {true, false} 
d. IsDeadlock∈ {true, false} 
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Input: 
Processes 
Output: 
Processes (after marking the potential deadlocks operations) 
Steps: 
1. for each process p in Processes 

a. set currentProcess = p 
b. for each operation op in currentProcess 

i. set currentOperation = op 
ii. if currentOperation.IsMatched = false 

currentOperation.IsDeadlock = true 
iii. if (currentOperation.OperationType = Recv or currentOperation.OperationType = 

Irecv) and currentOperation.Counter> 1 
1. Count = number of operations in the currentProcess which have the same 

destination 
2. If currentOperation.Counter> Count 

currentOperation.IsDeadlock = true 
2. return Processes 

 
 
4. RESULTS AND DISCUSSION 

To evaluate EMPDD method, four benchmark MPI programs were used to check its capability to 
detect deadlocks. The four benchmark programs are: Diffusion, DTG, Integrate, and Floyd. 

Diffusion program is an MPI program which solves the 2-dimensional diffusion equations.There are 
40 communication operations in this program.This program does not contain wildcard receive operations, but 
it has barrier operations. The result of applying MatchProcesses and MatchOperations algorithms of the 
EMPDD method leads to matching all the communication operations of the program to the corresponding 
operation. DetectDeadlock algorithm identifies no deadlocks in the program. The communication operations 
of the program are shown in Table 1. 

The second benchmark program is DTG programwhich is an MPI dependence transition group 
program. It has 10 communication operations. There are 3 wildcard receive operations. Applying 
MatchProcesses and MatchOperations algorithms for this program shows that all the communication 
operations are matched. Although all the communication operations of the program are matched, 
DetectDeadlock algorithm shows that there is a potential deadlock related to the first send operation in 
process 1. This send operation matches the receive operation of process 0 that has two wildcard receive 
operations. For these two receive operations, there are two corresponding send operations: one in process 1 
and the other in process 2. In one of the potential interleaving scienarios, the send operation of process 1 
matches the first receive operation of process 0. Hence, the send operation of process 2 matches the second 
receive operation of process 0. In this scienario, there is no deadlock situation, when each communication 
operation matches its corresponding operation, and the program terminates normally. For the second 
potential interleaving scienario, the send operation of process 2 matches the first receive operation of process 
0. The result of this match is the send operation of process 1 needs to match the second receive operation of 
process 0. But the second receive operation of process 0 comes after the send operation which needs to match 
the receive operation of process 3. At this moment, process 3 can not match its receive operation to the send 
operation of process 0 because it is waiting to match its receive operation with process 1. So, it is clear that 
there is a deadlock in this situation. So, DetectDeadlock algorithm reports the send operation of process 1 as 
an operation may lead to deadlock.The communication operations of the program are shown in Table 2. 

Integrate program is an MPI program which calculates the integral value of cosine or sin function 
for a given range. There are 60 communication operations,15 of them are wildcard receive operations. Each 
communication operation in the program matches its cooresponding operation, so this program has no 
deadlock.The communication operations of the program are shown in Table 3. 

The last benchmark program is Floyd program which uses the Floyd-Warshall algorithm to solve the 
problem of all-pairs shortest-path. It has 1400 communication operations, and it contains 700 wildcard 
receive operations. The program has no deadlock, and testing it by EMPDD does not report any deadlock 
situation. Due to the large number of communication operations of this program, it is not feasible to show 
them in a table. 
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The experimental results showed that EMPDD could successfully detected the deadlockin the DTG 
benchmark program. For the other benchmark programs which donot contain deadlocks, EMPDD reports 
them as deadlock free. 
 
 

Table 1. Communication operations of Diffusion MPI program 
P0 P1 P2 P3 

Recv(1,1) 
Send(1,2) 
Recv(3,3) 
Send(3,4) 
Barrier() 
Recv(1,1) 
Send(1,2) 
Recv(3,3) 
Send(3,4) 
Barrier() 

Send(0,1) 
Recv(0,2) 
Send(2,3) 
Recv(2,4) 
Barrier() 
Send(0,1) 
Recv(0,2) 
Send(2,3) 
Recv(2,4) 
Barrier() 

Recv(3,1) 
Send(3,2) 
Recv(1,3) 
Send(1,4) 
Barrier() 
Recv(3,1) 
Send(3,2) 
Recv(1,3) 
Send(1,4) 
Barrier() 

Send(2,1) 
Recv(2,2) 
Send(0,3) 
Recv(0,4) 
Barrier() 
Send(2,1) 
Recv(2,2) 
Send(0,3) 
Recv(0,4) 
Barrier() 

 
  

Table 2. Communication operations of DTG MPI program 
P0 P1 P2 P3 P4 

Recv(*,0) 
Send(3,0) 
Recv(*,0) 

Send(0,0) 
Send(3,0) 

Recv(*,0) 
Send(0,0) 

Recv(1,0) 
Recv(0,0) 

Send(2,0) 

 
 

Table 3. Communication operations of Integrate MPI program 
P0 P1 P2 P3 P4 P5 P6 P7 

Send(1,1) 
Send(2,1) 
Send(3,1) 
Send(4,1) 
Send(5,1) 
Send(6,1) 
Send(7,1) 
Send(8,1) 
Send(9,1) 
Send(10,1) 
Send(11,1) 
Send(12,1) 
Send(13,1) 
Send(14,1) 
Send(15,1) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 
Recv(*,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

 
 

P8 P9 P10 P11 P12 P13 P14 P15 
Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

Recv(0,*) 
Send(0,3) 

 
 
5. CONCLUSION 

Deadlock detection for MPI programs is very important. There are many approaches which can 
detect the deadlocks of the MPI programs. Although some of them provide complete coverage for the 
possible execution paths, they are not efficient and cannot be used for complicated MPI programs. 
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Alternative approaches solve the scalability problem and provide efficient performance to detect the MPI 
deadlock by limiting the number of the investigated execution paths. The cost of such limitation is the lack of 
the guarantee that all the execution paths are visited, and hence there is no guarantee that all the possible 
deadlocks are detected. In this paper, we presented an efficient and scalable method for deadlock detection in 
exascale MPI-based programs. The proposed method (EMPDD) is implemented to detect and flag the 
processes and communication operations which are potential to cause deadlocks. The limitation of this 
method is its lack to specify the execution paths which lead to the deadlock. 
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