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ABSTRACT: 

Gas sorption and molecular (ionic) 

storages are important functionalities in 

porous materials. In molecular porous crystal {{[RuIII(H2bim)3](TMA)}2·mH2O}n, the 

hydrophilic nanochannel accommodates the water nanotube (WNT) composed of a 

4461074-polyhedral cage. The experiment on weight change reveals that the cage structure is 

maintained above 50%RH (relative humidity) at 294 K. As the relative humidity is reduced from 

80 to 50%RH, the proton conductivity exponentially decreases from 0.02 to 0.01 (cm)-1 owing 

to the dehydration of inner H2O molecules through WNT, which acts as a nanofluidic channel. 
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Upon pressurizing Xe at 0.4 MPa for 50%RH, the proton conductivity exponentially decreases 

and approaches to 0 (cm)-1. The infrared and 129Xe-NMR experiments make clear that Xe 

together with about 25H2O molecules per cage is stabilized in WNT at low pressures compared 

to Xe-clathrate hydrate. Those results experimentally demonstrate that the Xe hydrate inhibits the 

proton conduction. The formation of Xe hydrate is characterized by fast and slow processes with 

the translational diffusion constant of 1 x 10-10 and 6 x 10-12 m2/s, respectively. The 

reorganization and hardening of the hydrogen-bonding water network are considered to diminish 

the conducting pass of proton, and to reduce the protonic transfer from H3O
+ to adjacent H2O.  
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1. INTRODUCTION 

Confined water in porous and biological materials has interdisciplinary research interest to 

explore applications such as novel fuel-cell electrolytes,1 desalination,2,3 bioprotonic and 

nanofluidic devices.4-12 Many studies on confined water have been performed in a variety of 

nanospaces like carbon nanotubes,13-16 membranes,17 metal-organic frameworks,18-20 and 

molecular porous crystals involving a water nanotube21,22 or water chain.23 Moreover, those 

nanospaces have been actively utilized for the arrangements and storages of molecules or 

ions.24-26 

Lots of hydrophobic gas molecules are stabilized in the form of clathrate hydrate at high 

pressures and low temperatures.27 A methane hydrate reserved under deep sea is representative 

and valuable as new energy resources. In particular, a clathrate hydrate of Xe is made at room 

temperature above 1 MPa.28 Therefore we expect that Xe is suitable for examining an absorption 

process and influence to proton conduction in nanochannel water. 

 

 
 

Figure 1. (a) Perspective view of WNT (red circles and lines) surrounded by the 

insulating framework molecules (navy blue circles). (b) Cage structure of WNT in the 

hydrophilic nanochannel. The lines and circles denote hydrogen bonds and oxygen 

atoms of H2O, respectively. (c) Green-colored single crystal with a needle shape.  
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Xe holds a paramount effect as inhalation anesthesia. Various substances are known to cause 

general anesthesia, whereas the anesthetic mechanism has not been established so far.29,30 More 

than half a century ago, Linus Pauling has proposed that a hydrate microcrystal of Xe increases 

an impedance of nervous systems and leads human unconsciousness.31 A proton is well known to 

play physiological roles, and to carry electric signals in biological systems like 

bacteriorhodopsin.32 If it is experimentally proved that a Xe hydrate makes an influence to 

proton conduction with nanochannel water, we might approach a probable mechanism of 

anesthesia. In this study, we aim to understand the diffusion process of H2O and Xe molecules, 

and to explore the influence of Xe hydrates to the proton conduction in the water nanotube 

(WNT) of molecular porous crystal {{[RuIII(H2bim)3](TMA)}2·mH2O}n.
33 Thanks to the large 

single crystals with millimeter size, several experimental methods were successfully carried out. 

In the melting state above 219 K, WNT is regarded as a liquid-like dynamic water cluster in 

the insulating nanochannel of molecular porous crystal (Figure 1(a)),33,34 which has a structure 

network of three-dimensional (10.3)-b net35 formed by complementary hydrogen bonds between 

[RuIII(H2bim)3]
3+ (tris-biimidazole Ru3+ complex) and TMA3– (trimesate). The oxygen position 

of WNT is determined by the X-ray crystal structure analysis, while the inner H2O is hardly 

identified owing to large thermal fluctuations at room temperature. The WNT consists of 

4461074-polyhedral cages that are aligned along c. Two cages (60H2O) are shown in Figure 1(b). 

The single cage (30H2O) is classified into four hydration shells. The primary and secondary 

hydration shells (red circles) are composed of 24H2O molecules hydrogen bonded to the 

carboxylate (COO- group) of TMA3–, and then WNT is strongly constrained in addition to the 

interfacial interaction from the framework.22 The residual 6H2O molecules in the form of cyclic 

hexagon belong to the tertiary hydration shell (blue circles), and the fourth one possessing a free 
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OH (pink circles). The green-colored single crystal with needle shape has typical lengths of 

0.5-1.5 mm and widths of 0.1-0.5 mm (Figure 1(c)).  

 

2. EXPERIMENTAL METHODS 

2.1. Sample preparation 

The starting material is the molecular porous crystal 

{{[RuIII(H2bim)3](TMA)}2·30H2O·3THF}n. The structure and synthesis were already reported 

by M. Tadokoro et al.33 Here THF denotes a tetrahydrofuran, three of which reside in the single 

cage of WNT. The crystal sealed in a vessel is dried for an hour in the environment of 55%RH. 

The THF is selectively removed from WNT, and we obtain the single crystal 

{{[RuIII(H2bim)3](TMA)}2·30H2O}n. As the crystal is immersed in pure water, the inner water 

molecules are embedded without changing the structure of WNT and nanochannel framework. 

 

2.2 Measurement of sample weight 

A weight change of single crystal is measured at 1 atm with a commercial thermogravimetry 

(TG) apparatus in combination with a humid controlling system (Brucker AXS, 

TG-DTA2000SA/HC9700, Germany). For each target relative humidity at 0-90%RH, the sample 

was kept for 24 h to achieve an equilibrium, and then we measured the sample weight. From the 

weight change, we evaluated the amount of water molecules per cage length in the single 

nanochannel. 

 

2.3 Microwave conductivity measurement 

Microwave conductivity is measured with our homemade system (Figure 2) on the basis of 
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Figure 2. Measuring system of microwave conductivity based on cavity 

perturbation technique. We are available to control relative humidity and Xe 

pressure in the cylindrical cavity. A small single-crystal sample is 

positioned at the maximum ac-electric field. 

cavity perturbation technique,36 the advantage of which is unnecessary to connect any electrical 

leads to a sample. A cylindrical cavity made of oxygen free copper resonates at 16.2 GHz for 

TE011 mode, and the Q value is about 18,000. In Figure 2, magnetic-field components are not 

shown. A single-crystal sample is mounted on the top of thin quartz rod (0.5 mm in diameter), 

where the maximum ac-electric field is applied parallel to the nanochannel. Inside the cavity, 

relative humidity (20-80%RH) is adjustable with a circulation-type humid controlling system 

(KTC-Z02A-S, Kotohira, Japan), and Xe partial pressure is applicable up to 0.4 MPa. 

Employing a microwave generator, frequencies are swept in the vicinity of resonance 

frequency of the cavity. The incident microwave propagating through a coaxial cable enters and 

resonates in the cavity. The power of transmitted wave is detected by a power meter. From a 

Lorentzian-type resonance curve, we obtain a resonance frequency (f) and width (W) for the 

cases with (s) and without a sample (0) in the cavity. From the difference of resonance frequency 
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(f = fs – f0) and width (W= Ws – W0), we are available to calculate a complex dielectric 

constant ( = 1 + i2) with following relations.36,37 
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Here n denotes a depolarization factor depending on sample shape. We assume that the present 

shape is a prolate spheroid. A filling factor is given as  = Vs/V0, where Vs and V0 represent a 

volume of sample and cavity, respectively. A complex conductivity ( = 1 + i2) is obtained by 

a relation of  = 1 + 2i/f. 

  Under the identical conditions of relative humidity and Xe partial pressure at 294 K, the 

measurement of f0 and W0 are followed by one of fs and Ws. When the relative humidity is rapidly 

reduced from initial 80%RH to target 20 or 50%RH, we need to readjust the sweeping frequency 

range, because the resonance frequency shifts from the initial range. For the adjustment, it takes 

about 3 min. at least. Similarly, whenever Xe pressure is applied, the sweeping frequency range 

has to be readjusted in the same way. The measurement on the fast process in (t) mentioned 

later is a delicate task. 

 

2.4 Infrared spectroscopy 

Infrared absorption spectra are measured by a FT-IR spectrometer (FT/IR-6100, JASCO, 

Japan) combined with a pressure cell (SYJ-0126-BOD, S.T. Japan, Japan), in which relative 

humidity and Xe partial pressure are controlled. A Cu plate (0.5 mm thick) with an aperture of 6 

mm in diameter is stuck on a Si substrate (10 mm, and 1 mm thick). Many small samples 
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completely fill the aperture without light leaks. The sample substrate is set in the pressure cell, 

and the infrared absorption is measured for transmission configuration at 294 K. Firstly, the 

relative humidity is kept for 50%RH at atmospheric pressure (0 MPa). After 24 h, we measure 

the absorbance spectrum. Secondary, we close the valves of relative humidity control, and the 

pressure cell is retained for 50%RH. Then Xe pressure is applied at 0.1 MPa. After 24 h, the 

absorbance spectrum is measured. In the similar way, the absorbance spectra are observed up to 

0.4 MPa every 0.1 MPa. In the absorbance spectra, we exclude the contribution of framework 

vibrations that are obtained for the measurement under vacuum. 

 

2.5 129Xe-NMR spectrum 

A 129Xe-NMR experiment is generally useful to examine a structure and property of porous 

materials.38 The NMR spectrum is measured with a commercial spectrometer (CMX300 model 

300 MHz, Chemagnetics, USA). From the chemical shift,39 we are available not only to identify 

Xe molecules embedded in the nanochannel, but also to determine the Xe partial pressure in a 

glass tube ( 4 mm) made of Pyrex glass. The single crystals with the total weight of about 10 

mg are installed at the bottom of glass tube, in which the relative humidity is 50%RH. The tube 

is cooled down to liquid-N2 temperature. In order to obtain the pressure of 0.4 MPa, adequate 

amount of Xe gas is introduced in the tube, and then we seal it. As we gradually increase the tube 

temperature up to 294 K, the sample environment is pressurized. The 129Xe-NMR spectrum is 

measured at the resonance frequency of 83.104 MHz. We use single pulse method irradiating the 

exposure time at 5 s, and accumulate the spectrum at 1024 times with an interval of 0.3 s. 
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Figure 3. (a) Microwave conductivity for 80%RH in WNT composed of H2O (blue 

circles) and D2O (red squares). (b) Weight change of the single crystal with respect 

to relative humidity. 

3. RESULTS AND DISCUSSION 

3.1 Transport of the inner water molecule through WNT. 

  Figure 3(a) depicts the microwave conductivity of WNT constructed with H2O (blue circles) 

and D2O (red circles, D-WNT) for 80%RH. At 270 K, the conductivity in WNT is about 0.021 

(cm)-1 larger than 0.015 (cm)-1 in D-WNT. Those are comparable values in the nanochannel 

water of {MIII{H2bim}3(TMA)·20H2O}n (M = Co, Ru, Rh).21,22 The conductivity ratio of WNT 

to D-WNT is almost 1.4 reflecting an isotope effect due to quasi-one-dimensional proton 

conduction. From the fitting (black lines), those activation energies are approximated as 0.3 eV.  

  Employing the TG apparatus, the amount of H2O in the nanochannel is obtained at 294 K as a 

function of relative humidity in Figure 3(b), where the left vertical axis denotes the rate of 

weight change against 90%RH, and the right one the number of H2O per cage length. The 

structure of WNT is retained for 50%RH. The 10H2O molecules per cage are enclosed in WNT 
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for 90%RH. We suspect that further H2O is involved for 100%RH. It should be noticed that 

Figure 3(a) represents the proton conductivity for WNT with 5 inner water molecules per cage.  

To elucidate how the inner H2O exhibits different conducting properties from WNT, we have 

examined the proton conductivity for 20, 50 and 80%RH at 294 K. In Figure 4(a), relative 

humidity of the sample (1.50 mm in length) in the cavity is immediately changed at t = 0 from 80 

to 20%RH, which is preserved at t > 0. The proton conductivity is reduced to 1 x 10-3 (cm)-1 at 

1 h, after that it approaches to 0 (cm)-1. The conducting pass of proton disappears by the 

exclusion of almost all the hydration shells. When the sample (1.06 mm in length) is kept for 

50%RH at t > 0 (Figure 4(b)), the conductivity at t > 15 h saturates to about 1 x 10-2 (cm)-1, 

indicating that the proton is transferable by way of WNT. 

 
 

Figure 4. (a, b) Time variation of the conductivity after relative humidity was rapidly 

changed at t = 0 from 80 to 20%RH, and to 50%RH. (c, d) Relaxation times in the 

fast and slow processes (f
WNT and s

WNT) vs. L2 for 50%RH. 
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  The proton conductivity in Figures 4(a) and 4(b) is reproduced with following exponential 

curves due to fast and slow processes, 

1(t) = 0(x) + f(x) exp(-t/f
WNT(x)) + s(x) exp(-t/s

WNT(x)).    (3) 

The conductivity in Figure 4(a) is fitted with the green curve that is a sum of blue curve 

(0(20%RH) ~ 0, f(20%RH) = 0.014 (cm)-1 and f
WNT(20%RH) = 0.13 h) and red curve 

(s(20%RH) = 0.0059 (cm)-1 and s
WNT(20%RH) = 0.61 h). Similarly, in Figure 4(b), the fitting 

parameters are determined as 0(50%RH)~ 0.01,f(50%RH) = 0.007, s(50%RH) = 0.0024 

(cm)-1, f
WNT(50%RH) = 0.37 and s

WNT(50%RH) = 7.0 h. Although f
WNT(50%RH) is about 

twice as large as f
WNT(20%RH), s

WNT(50%RH) is one order of magnitude larger than 

s
WNT(20%RH). In the non-equilibrium state at t > 0, the inner H2O, which diffuses quasi 

one-dimensionally in WNT, is exhausted from the sample edge. In the dehydrated process, WNT 

plays a role of nanofluidic channel. 

 A one-dimensional diffusion is described by Fick’s second law, the solution of which 

provides a time variation of concentration of diffusing substance.40 The variation of 1 is 

associated with the concentration change of the inner water molecules. If the conductivity is 

proportional to the concentration of inner H2O, the time variation is given by the following term 

in the solution. 

𝜎𝑖(𝑡) ∝ exp (−
(2𝑛+1)2𝜋2

𝐿2
𝐷𝑖
WNT𝑡) (i = f, s).     (4) 

Here L and Di
WNT are sample length and diffusion constant, respectively. The lowest term (n = 0) 

makes dominant contribution, so that we can neglect the higher order ones (n > 0). Two different 

diffusion constants are introduced to explain the fast (f) and slow (s) processes. From eqs. (3) 

and (4), the relaxation time is related to the diffusion constant as follows. 

 i
WNT(x) = L2 / 2Di

WNT(x)  (i = f, s).       (5) 
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For many samples with different lengths, we have measured and analyzed the time variation of 

conductivity for 80→50%RH as well. In Figures 4(c) and 4(d), f
WNT(50%RH) and 

s
WNT(50%RH) as a function of L2 are well reproduced by the least-square fitted lines (pink lines). 

Those results support that the time-variation of conductivity is dominated by the concentration of 

inner H2O. 

From the fitted lines in Figures 4(c) and 4(d), the translational diffusion constants of fast and 

slow processes are estimated as Df
WNT(50%RH) = 2 x 10-10 and Ds

WNT(50%RH) = 2 x 10-12 m2/s, 

respectively. Viscosity of the inner H2O is expected to depend on the hydration strength inside of 

WNT.41 The fast diffusion may arise from H2O molecules occupying at the central area of 

nanochannel with the weakest interfacial interaction, and the slow one is attributable to H2O 

molecules hydrogen bonding to WNT. 

 

3.2 Storage of Xe in WNT. 

  Xe partial pressures of 0.1 (Figure 5(a)) and 0.4 MPa (Figure 5(b)) are applied to the saturated 

samples for 50%RH with the lengths of 1.06 and 0.97 mm, respectively. In those figures, t = 0 is 

redefined as the time when the pressure is applied. The time variation of proton conductivity, 

which rapidly drops and gradually approaches to zero (0(0.1 MPa) = 0(0.4 MPa) ~ 0), is 

reproducible with eq. (3) as well. In Figure 5(a), the data is fitted by a green curve, which is a 

sum of fast process (blue curve) with f(0.1 MPa) = 0.0027 (cm)-1 and f
Xe(0.1 MPa) = 0.33 h, 

and slow one (red curve) with s(0.1 MPa) = 0.0065 (cm)-1 and s
Xe(0.1 MPa) = 43 h. Similarly, 

the conductivity in Figure 5(b) is decomposed into the fast process (f(0.4 MPa) = 0.0064 

(cm)-1 and f
Xe(0.4 MPa) = 0.17 h), and the slow one (s(0.4 MPa) = 0.0033 (cm)-1 and 

s
Xe(0.4 MPa) = 6.3 h). Although f

Xe(0.1 MPa) is a factor of two large compared to f
Xe(0.4 
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MPa), s
Xe(0.1 MPa) is one-order of magnitude greater than s

Xe(0.4 MPa). Employing the 

several samples with different lengths, we also measured the conductivity at 0.4 MPa. In Figures 

5(c) and 5(d), f
Xe(0.4 MPa) and s

Xe(0.4 MPa) vs. L2 are well fitted with straight lines. Since the 

framework structure is little varied under such tiny pressures, the suppression of proton 

conductivity is rationalized as a consequence of the penetration of Xe in WNT.  

On behalf of verifying that Xe actually resides in the nanochannel, we have measured the 

chemical shift for the sample pressurized by Xe in the glass tube at 294 K.38,42 In Figure 5(e), a 

signal at 1.9 ppm proves that the pressure inside the tube is approximated as 0.4 MPa.42 

 
 

Figure 5. (a, b) Time variation of conductivity under Xe pressures of 0.1 and 0.4 

MPa applied at t = 0. (c, d) Relaxation times in the fast and slow processes (f
Xe and 

s
Xe) vs. L2 at 0.4 MPa. (e) Chemical shift measured at 0.4 MPa. The signal at 204 

ppm ensures that Xe is encaged in WNT. 
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Furthermore, there appears a remarkable signal at 204 ppm, which is caused by Xe inside of 

WNT. Therefore the suppression of proton conductivity is associated with the increase of Xe 

concentration in WNT. 

  The absorption spectra of OH stretching vibration for 50%RH up to 0.4 MPa are shown in 

Figures 6(a)-6(c). The broad OH stretching band is well decomposed into three Lorentzian 

curves, for which the resonance frequency (f) and integrated absorbance (S) are plotted by solid 

symbols with the same colors in Figures 6(d) and 6(e), respectively. The resonance frequency 

little depends on pressure. The low-frequency band (green curves) comes from a response of 

H2O molecules possessing a tetrahedral configuration, whereas the middle- and high-frequency 

bands are assigned as the OH stretching vibration of the fourth-hydration H2O with free OH. The 

integrated absorbance of low-frequency band normalized at 0 MPa (green solid squares in Figure 

 
 

Figure 6. (a-c) Infrared absorbance spectra decomposed into three Lorentzian curves 

for each pressure. (d, e) Resonance frequency (f) and integrated absorbance (S) as a 

function of Xe partial pressure. 
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6(e)) tends to saturate above 0.2 MPa, while no change appears in another bands. The 

enlargement of S means that the water content increases. In addition to Xe, water molecules are 

found to penetrate into WNT. 

  From f for the low-frequency band, the average O-O distance is estimated as 2.8 Å,44,45 which 

is larger than 2.75 Å in the water network of {M{H2bim}3(TMA)·20H2O}n,
22 and hence the 

present WNT holds a soft tendency. We have estimated the amount of H2O in light of the 

integrated absorbance relevant to the number of oscillators. In Figure 6(e), the integrated 

absorbance of low-frequency band at 0.4 MPa is about 1.9 times as large as one at 0 MPa. The 

WNT except for the fourth hydration shell consists of 28H2O molecules per cage length at 0 MPa. 

The content of nanochannel water is estimated to be about 53H2O per cage length at 0.4 MPa. 

Therefore WNT accommodates both Xe and about 25 inner water molecules per cage. Those 

form a Xe hydrate, which is stabilized at low pressures compared to conventional clathrate 

hydrate of Xe. The time variation of conductivity in Figures 5(a) and 5(b) is regarded as a 

formation process of the Xe hydrate.  

According to the fitted results (pink lines) in Figures 5(c) and 5(d), it is reasonable to consider 

that the conductivity is dominated by the concentration change (C(t = ∞) – C(t)) of Xe hydrate as 

similarly described with the translational diffusion constant of eq. (5) as follows. 

𝜎𝑖 ∝ 𝐶∞ − 𝐶(𝑡) ∝ exp (−
𝜋2

𝐿2
𝐷𝑖
Xe𝑡) (i = f, s).    (6) 

The translational diffusion constants of Df
Xe(0.4 MPa) and Ds

Xe(0.4 MPa) are respectively 

evaluated as 1 x 10-10 and 6 x 10-12 m2/s, which are comparable to the self-diffusion constants in 

Xe solution.46 

  The water concentration inside of WNT is estimated to be 0.23 and 0.46 g/cm3 for 80 and 

90%RH, respectively. To reach the density of ice Ih (0.92 g/cm3) or liquid free water (1 g/cm3), 
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WNT needs to encage 20 or 24H2O molecules per cage, respectively. Those values are almost 

identical to 21.5H2O molecules constructing a Xe hydrate in Xe solution,46 which exhibits the 

chemical shift of 196 ppm.47 In Figure 5(e), 204 ppm is slightly close to the signal of Xe in 

dodecahedral cage (512, 20H2O) rather than tetrakaidecahedral one (51262, 24H2O) of clathrate 

hydrate structure I of Xe.48 In the present system, Xe may be encompassed with about 22H2O 

among 25H2O, and the other is expected to situate in a space between the Xe hydrate and WNT. 

In terms of van der Waals interactions between Xe molecules, single Xe could be involved in the 

cage at low pressure, and empty cages may exist.49 

To answer a question why additional water molecules are necessarily encaged in WNT, we 

discuss the stability of Xe. From a Lenard-Jones potential, the repulsive van der Waals 

interaction between Xe and H2O in the cyclic hexagon is evaluated to be 12.3 meV (= 143 K) 

that is lower than room temperature, and hence Xe could go through WNT. In clathrate hydrates, 

a guest molecule is capable to transfer from cage to cage by way of five- or six-membered water 

rings. First principle calculations have shown that the six-membered water ring is remarkably 

distorted by mobile CH4 in comparison with H2 and CO2.
50-52 The diffusive Xe may little distort 

the cyclic hexagon, because Df
Xe(0.4 MPa) and Ds

Xe(0.4 MPa) is about three orders of magnitude 

larger than the self-diffusion constant of CO2 at high pressure (10-13-10-14 m2/s).53 

  In noble gas hydrates, host-guest and guest-guest interactions are strongly dependent on the 

size of guest species.54 A force attracting between H2O and Xe is obtained by differentiating the 

Lenard-Jones potential with respect to the distance. The equilibrium distance is evaluated as 3.8 

Å, which is consistent with O-Xe distance of 3.84 Å obtained by the ab initio calculation in a 

dodecahedral cage.55 An independent Xe molecule is unstable in WNT, because the equilibrium 

distance is about 30% smaller than the radius of present water cage (~ 5 Å). Additional water 
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molecules are required to fill the gap for the stabilization.  

Despite the plenty of inner H2O molecules, the conductivity approaches to 0 (cm)-1 in 

contrast to ~0.02 (cm)-1 for 80%RH in Figure 4. The host-guest (H2O-Xe) interaction is 

expected to harden the whole hydrogen-bonding water network in addition to the interfacial 

interaction from the framework. On the analogy of the water network of 

{M{H2bim}3(TMA)·20H2O}n,
22 Eigen-type hydrates (H3O

+(H2O)3) are considered to contribute 

to the proton conduction. A proton transfer from H3O
+ to adjacent H2O is accompanied by a local 

distortion of O-O distance. Since the hardening of the water network prevents such distortions, 

the transfer rate of proton may be suppressed. 

  The forth hydration shell makes little contribution for the hydrogen bond to the Xe hydrate, 

because there is no change in the middle and high absorption bands in Figures 6(a)-6(c). For the 

stabilization of Xe hydrate, the H2O surrounding Xe needs to be anchored to the primary, 

secondary or tertiary hydration shells of WNT. In order to make the coupling between them, 

some of the original hydrogen bonds in those shells have to be broken (dotted white lines) and 

 
 

Figure 7. Schematic illustration of Xe surrounded by H2O molecules in WNT. White 

dotted lines indicate that the original hydrogen bond in WNT is broken owing to the 

formation of hydrogen bonds between inner H2O and WNT (yellow lines). 
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rearranged (yellow lines) as schematically illustrated in Figure 7. In this situation, WNT itself 

may be greatly altered in structure. The reorganization of hydrogen bonds is considered to block 

the proton-conducting pass parallel to the nanochannel. Both the hardening and reorganization 

may contribute to the suppression of proton conduction. 

   

4. CONCLUSIONS 

  From the isotope effect in the microwave conductivity for 80%RH, WNT confined in the 

insulating nanochannel is found to be a quasi-one-dimensional proton conductor. The change of 

sample weight as a function of relative humidity makes clear that the structure of WNT is 

retained for 50%RH, above which the inner H2O molecules exist. According to the exponential 

time variation of proton conductivity for 80→50%RH under atmospheric pressure, the diffusion 

of the inner H2O is characterized by the fast and slow processes by way of WNT that plays a role 

of nanofluidic channel. Upon pressurizing Xe at 0.1 and 0.4 MPa for 50%RH, the proton 

conductivity exhibits the exponential time variation that is also divided into the fast and slow 

processes. Those translational diffusion times are comparable to self-diffusion times in Xe 

solution. In the 129Xe-NMR experiment at 0.4 MPa, the chemical shift detected at 204 ppm 

proves that Xe is embedded in WNT. Furthermore, the OH stretching band at 0.4 MPa reveals 

that about 25H2O molecules exist in the cage. Those experimental results demonstrate that the 

Xe hydrate in WNT inhibits the proton conduction. The inhibition may be related to the 

hardening and reorganization of the hydrogen-bonding water network.  

Figure 5(a) shows that the Xe hydrate is stabilized in WNT even at 0.1 MPa. If soluble Xe 

enters into a nervous system involving lots of H2O molecules, Xe hydrates could be easily 

formed in the confined geometry. In light of the present results, it is highly probable that Xe 
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hydrates inhibit a neural transmission in Xe-inhalation anesthesia. Finally, we should remind that 

Xe is stabilized in WNT at low pressures compared to the conventional clathrate hydrate. 

Nanochannel water has great potential of gas storage and transportation under mild conditions. 
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