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Purpose: Proliferative vitreoretinopathy (PVR) occurs in 5%–10% of rhegmatogenous
retinal detachment cases and is the principle cause for failure of retinal reattach-
ment surgery. Although there are a number of surgical adjunctive agents available for
preventing the development of PVR, all have limited efficacy. Discovering predictive
molecular biomarkers to determine the probability of PVR development after retinal
reattachment surgery will allow better patient stratification for more targeted drug
evaluations.

Methods: Narrative literature review.

Results: We provide a summary of the inflammatory and fibrogenic factors found in
ocular fluid samples during the development of retinal detachment andPVR anddiscuss
their possible use as molecular PVR predictive biomarkers.

Conclusions: Studies monitoring the levels of the above factors have found that few if
anyhavepredictivebiomarker value, suggesting thatwidening thephenotypeof poten-
tial factors and a combinatorial approach are required to determine predictive biomark-
ers for PVR.

Translational Relevance: The identification of relevant biomarkers relies on an under-
standing of disease signaling pathways derived from basic science research. We discuss
the extent to which those molecules identified as biomarkers and predictors of
PVR relate to disease pathogenesis and could function as useful disease predictors.
(http://www.umin.ac.jp/ctr/ number, UMIN000005604)

Pathogenesis of Proliferative
Vitreoretinopathy

Proliferative vitreoretinopathy (PVR) describes the
accentuated retinal scarring that is the main cause
of retinal reattachment surgical failure in 5%–10%
of rhegmatogenous retinal detachment (RRD) cases.1
Clinically, PVR is characterized by the growth and
contraction of predominantly retinal pigment epithe-
lium (RPE)-derived cellular fibrotic membranes with
myofibroblastic transformation within the hyaloid and

on both the inner and outer retinal surfaces. The
traction exerted by these epiretinal membranes causes
progressive retinal detachment, which either reopens
treated retinal breaks, creates new retinal breaks, or
distorts the macula. The clinical manifestations of
PVR are associated with a sequence of underlying
inflammatory and fibrotic changes. The post-RRD
extracellular matrix (ECM), including proteoglycans,
collagen and fibronectin, and fibrosis that culminates
in the appearance of PVR epiretinal membranes may
be distinct from that associated with proliferative
diabetic retinopathy (PDR) and penetrating ocular
trauma.2 For example, fibronectin levels are higher in
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Figure. The key phases of PVR pathogenesis.

PVR compared with PDR membranes,3 with greater
retinal and immune cell proliferation.4 Eyes with either
pre-existing or established PVR are at a higher risk
of increased retinal inflammation and fibrosis after
repeated vitreoretinal surgery.5,6

PVR development is characterized by a sequence
of distinct cellular and trophic responses that are
described in the sections set out below (Fig). Retinal
ischemia develops immediately after retinal detach-
ment, followed by progressive photoreceptor apoptosis
and contraction of fibrotic epiretinal membranes.7
PVR retinal fibrosis is initiated by fibroblasts derived
from RPE cells that undergo epithelial-mesenchymal
transition (EMT) and begin collagen and ECM
deposition,8 orchestrated by a dysregulated panel
of proinflammatory, chemotactic cytokines and
mitogenic growth factors,7 which induce an exagger-
ated inflammatory reaction at sites of retinal tears and
detachment.9 The early identification of inflamma-
tory/fibrotic factors (IFF) that predict the subsequent
development of PVR and direct treatments aimed at
impeding/inhibiting PVR development after retinal
reattachment surgery would constitute a significant
clinical advance.

Pathological Phases of Post-Retinal
Detachment PVR Development

Ischemic Phase

In the human retina, the inner two-thirds and outer
one-third of the retina are supplied by retinal vessels

and diffusion through the RPE from choroid plexus
vessels, respectively.10 After retinal detachment, the
inner retina remains perfused, but the outer retina
immediately becomes ischemic with consequent break-
down of the blood-retinal barrier in the inner retina,
probably caused by diffusion of hypoxic products from
the outer retina.11–13 Approximately 20% of photore-
ceptors die by necrosis, caspase-dependent apopto-
sis and necroptosis after 3 days of retinal detach-
ment and >50% die by 28 days,14,15 and the structural
changes associated with macula-off retinal detachment
exacerbate the ensuing reduced vision.16,17 Recep-
tor interacting protein kinase (RIPK1 and RIPK3)
mediate the principal photoreceptor cell death signal-
ing pathways when caspases are inhibited by the
pan-caspase inhibitor Z-VAD caspases after retinal
detachment.18 PVR pathogenesis involves ischemic
processes driving the up-regulation of angiogenic
and inflammatory growth factors and cytokines.19
Inflammation triggers ischemia-induced angiogenesis,
fibrogenesis and glial (astrocytes and microglia) prolif-
eration.20 The severity of retinal detachment correlates
with the extent of blood-retinal barrier breakdown and
the presence of IFF.21–23

Inflammatory Phase

Serum factors released into the vitreous, such
as thrombin, stimulate the inflammatory phase of
PVR development.24 The development of PVR
subretinal and epiretinal membranes is associated
with vitreal accumulation of inflammatory cells,25
including a significant elevation CD163/CD206-
expressing M2 macrophages.26–28 Microglia, which
regulate macrophage infiltration, proliferate and
infiltrate through the retina and into the subreti-
nal space within days of detachment.29,30 peritoneal
macrophages injected into the vitreous of the rabbit
trans-differentiate into fibroblast-like cells and initiate
intraretinal fibrosis similar to that seen in PVR.31
Macrophages clear retinal debris, alter vitreal structure
through matrix protein-proteolysis and secrete fibrob-
last growth factor (FGF) and transforming growth
factor–beta (TGFβ) which stimulate the accumulation
and proliferation of fibroblast-like-cells within the
incipient PVR epiretinal membranes.32,33 T-helper
cells have both profibrotic and antifibrotic poten-
tial, demonstrated by the release of antifibrogenic
cytokines such as interleukin-10 and profibrogenic
cytokines such as FGF2, platelet-derived growth
factor (PDGF), TGFβ and vascular endothelial
growth factor (VEGF),34–36 as well as antifibrotic
interferon-gamma, which inhibits collagen synthesis
in vitro.37 Vitreous cytokine changes in early PVR
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suggest the importance of T helper responses in
early PVR, with T helper (TH) cells identified in
vitreous and PVR membranes, with both TH1- and
TH2-associated cytokines implicated, although in
immunocompromised mice lacking antigen-specific T-
and B-cell responses, intravitreal dispase still induces
PVR.38,39

Retinal Apoptotic Phase

Apoptosis balances cell proliferation with cell loss
and is mediated through either intrinsic or extrin-
sic signaling pathways initiated by intracellular death
receptor-binding.40 Apoptosis shares a number of PVR
pathogenetic signaling pathways. For example, TGFβ

upregulates the survival of RPE cells, induces prolif-
eration and down-regulates the death-inducing signal-
ing molecule FasL, blocking T cell–mediated apopto-
sis.41,42 Proapoptotic Fas and tumor necrosis factor
(TNF)–related apoptosis-inducing ligands are both
upregulated in the vitreous after retinal detachment
and in established PVR and single nucleotide polymor-
phisms in TNFα strongly associate with PVR risk.
43–45 TNF-related apoptosis-inducing ligand mRNA
levels were significantly correlated with anti-apoptotic
TGF-β2 titers, no correlation was found between
TGF-β2 and Fas mRNA levels, although TUNEL
measures of apoptosis did correlate with TGFβ levels.43
Fas ligand receptor binding activates the extrinsic
pathway of apoptosis in proliferating, but not in
non-proliferating RPE cells.43,46 The FasL/Fas system
therefore has a probable role in removing excess RPE
cells after retinal detachment and, may predispose to
PVRwhen defective.43 Fas ligation also increases inter-
cellular adhesion molecule-1 (ICAM-1) and vascu-
lar cell adhesion molecule-1 (VCAM-1) expression in
nonocular endothelial cells in vitro.47 Soluble ICAM-
1, soluble VCAM-1, and FasL and Fas are raised in
the subretinal fluid (SRF) of RRD eyes with estab-
lished PVR and in those that develop PVR later.48,49
Levels of soluble forms of ICAM-1 and VCAM-1 are
upregulated at 7 days but not 28 days after experimen-
tal retinal detachment in rats, consistent with their early
role in recruiting immune cells.50 Thus vitreous levels
of ICAM-1 and VCAM-1 are both associated with
inflammation and may be upregulated by apoptotic
signaling in photoreceptors and RPE cells,51 but their
inconsistent appearance in PVR makes both factors
unlikely predictive PVR molecular biomarkers.

Cell Migratory and the Proliferative Phases

After retinal detachment, PVR is initiated by
TGFβ-activated RPE cells, which undergo EMT and

form multilayered dedifferentiated cell groups that
migrate into the vitreous through breaks in the
detached retina, with some evidence that Müller
glia also undergo glial-mesenchymal transition under
the influence of TGFβ.52,53 Fibroblasts in PVR
membranes may therefore be derived from EMT-
transformed RPE cells, glial-mesenchymal transition–
transformed Müller glia and circulating fibrocytes.54
Epiretinal membranes have an acellular collagenous
core and layers of transformed and untransformed
RPE cells, proliferatingMüller glia, and IL-2 receptor+
T lymphocytes and macrophages, as well as astro-
cytes and microglia.55,56 IFF stimulate ECM forma-
tion, while plasma fibronectin induces the deposi-
tion of a fibroblast-derived collagen matrix and
the production of locally synthesized fibronectin,
thrombospondin and other proteoglycans,57 and the
ensuing mature ECM regulates RPE and inflamma-
tory cell migration.58 RPE cells respond to retinal
detachment by proliferating and switching to an
ECM and profibrotic secretory phenotype.52,59 Müller
glia also proliferate and secrete ECM and profi-
brotic and inflammatory mediators.60,61 Annexin AII
is a Ca2+-dependent phospholipid-binding protein
that regulates RPE-phagocytosis of photoreceptor
outer segments and is expressed in photorecep-
tor apoptosis,62 but it also interacts with tissue
plasminogen activator to promote ECM degradation
and is necessary for vitreal RPE cell migration in
PVR.63,64 Paracrine insulin-like growth factor–1 and
epidermal growth factor stimulate tissue plasminogen
activator expression, which regulates ECM turnover
by converting plasminogen to plasmin,65 activat-
ing procollagenase and initiating ECM degrada-
tion.66 ECM degradation may release FGF-2 and
TGFβ sequestered in the ECM, opposing further
degradation and stimulating proliferation and ECM
secretion.67

Scar Contraction Phase

After retinal detachment, transformed cells in
PVR membranes differentiate into myofibroblasts.52,53
Alpha-smooth muscle actin intermediate filament
synthesis is stimulated by IL-1 and contraction in
myofibroblasts is mediated by Annexin A2, exacer-
bating retinal detachment and releasing streams of
RPE cells into the vitreous.68 Such contractile activ-
ity measured by tissue culture assay reduces with
both age and at longer times after initial diagnosis of
retinal detachment, suggesting that activity is transient
after retinal detachment but nonetheless correlates with
subsequent PVR development.69
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Table 1. Predictive Cytokines and Growth Factors in Subretinal Fluid

Table 2. Predictive Cytokines and Growth Factors in Vitreous Samples

Candidate Biomarkers for Predicting
PVR After Retinal Detachment

Candidate predictive biomarkers are summarized
in Tables 1 and 2.

PVR Inflammatory Phase Cytokines

Interleukin-6
Interleukin-6 (IL-6) is a multifunctional, pleiotropic

cytokine that immune regulates, acute-phase inflam-
matory responses, hematopoiesis and inflammation.70
IL-6 is produced by RPE, endothelial cells, fibroblasts,
neutrophils, monocytes and macrophages in response
to IL-1, IL-17 and TNF-α during systemic inflam-
mation.70,71 IL-6 is both proinflammatory and anti-
inflammatory in the eye and elsewhere,72–74 stimulat-
ing a paracrine and autocrine immune response by
activating leukocytes and inducing the production of
acute-phase proteins by hepatocytes.70 IL-6 promotes
T-cell proliferation, B-cell differentiation and survival,
plasma-cell production of immunoglobulin G, A, and
M and modulates metabolic, regenerative and intracel-
lular signaling pathways.70,75 IL-6 binds to an IL-6R,
which also has a soluble form (sIL-6R). IL-6 bound
to soluble IL-6R stimulates RPE cells proliferation

in vitro and IL-6 is necessary for subretinal scarring
in a laser-induced choroidal neovascularization mouse
model.76,77 IL-6 correlates with PVR severity and the
production of matrix metalloproteinase (MMP) and
tissue inhibitor of metalloproteinase (TIMP) expres-
sion, particularly MMP2 and TIMP1, indicating a role
in fibrosis.78–83 IL-6 can also stimulate corneal epithe-
lial cells and stromal fibroblasts (and macrophages) to
produce profibrotic VEGF.78

Like most inflammatory cytokines, IL-6 is present
in subretinal fluid in high titers during retinal detach-
ment and RRD repair,84,85 and their presence is corre-
lated with the subsequent, development of postoper-
ative PVR,9 as well as being elevated in the vitreous
of patients with early PVR,38,86 and correlating with
PVR severity when found in sub silicone-oil fluid,87
but, because subretinal and vitreous IL-6 levels signif-
icantly overlap between patients with uncomplicated
retinal detachment and severe or future PVR, they have
limited biomarker potential.

Interleukin-1
Interleukin-1α (IL-1α) and IL-1β are the two major

isoforms of IL-1, the former is biologically active,
whereas the latter is activated by the inflamma-
some.88 Once activated, both isoforms exert similar
effects as potent proinflammatory cytokines that act as
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endogenous pyrogens.88 They have diverse potenti-
ating effects on cell proliferation and differentiation
and regulate the function of immunocompetent cells,
initiating and potentiating immune and inflamma-
tory responses.88 In animal models, IL-1 induces a
proliferative response, generating PVR membranes
in mouse eyes with pre-existing retinal holes.89 An
early response to retinal detachment is the infil-
tration into the subretinal space of IL-1β–secreting
macrophages which may contribute to photoreceptor
death through the (nucleotide-binding oligomerization
domain) NOD-like receptor family and pyrin-domain-
containing-3 protein inflammasome,90 as well as stimu-
lating RPE cells to upregulate inflammatory cytokines,
including IL-6.91

IL-1α and IL-1β are present in subretinal and
vitreal fluid in cases of RRD and established PVR
and are variably reported to be raised in PVR,38,80,86
whereas other studies suggest that elevated IL-1α,
but not IL-1β levels are associated with subsequent
PVR risk.9,92 Generic inflammatory cytokines are
likely to be present in all eyes with retinal detach-
ment irrespective of whether they subsequently develop
PVR, and in the report suggesting IL-1α associated
with subsequent PVR risk, there was extensive overlap
between levels in patients who did and did not subse-
quently develop PVR,9 suggesting limited utility as a
biomarker. However, when combined with other clini-
cal and genetic markers, a single nucleotide polymor-
phism in IL-1 receptor antagonist was associated with
PVR risk, supporting the role of IL-1 in PVR patho-
genesis.45

TGFβ
The TGFβ superfamily are important modula-

tors of cell growth, matrix synthesis and apoptosis.67
TGFβ opposes the actions of many pro-inflammatory
cytokines and TGFβ1 and TGFβ2 isoforms are found
in the eye, with levels of TGFβ2 being predominant
in the posterior segment of human eyes.93,94 Both in
vitro and in vivo, TGFβ isoforms regulate the synthesis
and degradation of ECM, causing increased collagen
accumulation and fibrosis.95 TGFβ is secreted as part
of a latent complex, cleaved into its active form byRPE
cell–derived thrombospondin-1.96 Activated TGFβ

transforms RPE cells into type 1 collagen producing
fibroblast-like cells andmyofibroblast-like cells; actions
that are dependent on a lack of normal cell-cell or
cell-matrix interactions in vitro.97,98 There are separate
receptors (R) for TGFβ1 and TGFβ2, although many
of these cross-react and TGFβ2R co-localizes with
TGFβ1 and fibronectin expression in myofibroblastic
RPE cells,99,100 although the relative roles of TGFβ1
and TGFβ2 in the fibrotic process of PVR have yet

to be determined. TGFβ2 is secreted by activated T
lymphocytes and M2 macrophages, whose polariza-
tion it also induces.28,95 TGFβ2 regulates TGFβR and
downstream signaling molecule expression, as well as
the transcription of genes that encode for proinflam-
matory growth factors and IL-1R and IL-6R.101,102
TGFβ2 can also induce the proliferation of fibrob-
lasts at low concentrations by modulating autocrine
PDGF secretion.103 TGFβ2 maintains the immuno-
suppressive status of aqueous humor in mouse eyes
afflicted with endotoxin-induced uveitis.73 RPE cells
secrete CTLA-2α, differentiating T cells into TGFβ-
producing Treg cells.104 In patients withRRD caused by
PVR, variably elevated levels of TGF-β2 are recorded
in aqueous and vitreous samples and excised PVR
fibrous membranes,43,86,93,105,106 and single nucleotide
polymorphisms in TGFβ1&2 associate with PVR risk.45

Because TGFβ isoforms regulate the synthesis and
degradation of ECM proteins both in vitro and in
vivo, causing increased collagen accumulation and
fibrosis, they are obvious candidates as PVR predica-
tive biomarkers.95 However, in conflicting data, some
articles record no difference in vitreous and aqueous
levels of TGFβ isoforms in retinal detachment patients
who do or do not go on to develop PVR, whereas
others record elevated levels in vitreous of PVR
patients.107–109 Nonetheless, levels of decorin (a potent
TGFβ antagonist and potential PVR treatment)110
are higher in eyes with retinal detachment that did
develop PVR supporting involvement of the decorin-
TGFβ axis is the pathogenesis of PVR.107 Decorin
also has pro-inflammatory and pro-apoptotic effects,
stimulating TNFα release and downregulating (anti-
inflammatory) interleukin-10, although variability in
decorin levels limits its utility as a biomarker to distin-
guish patients who will or will not go on to develop
PVR.107,111

Chemokines

Chemokines are small proteins that regulate the
migration of leukocytes into sites of inflamma-
tion.112 Chemokines are divided into two groups
depending on their chemotactic activity and the
arrangement of cysteine residues. CC chemokines,
named because of adjacent cysteine residues, attract
monocytes, T lymphocytes, eosinophils and basophils.
CXC chemokines, so-named because N-terminal
cysteine residues are separated by another amino
acid (represented by X), recruit neutrophils and
activated T lymphocytes.112 Chemokine R are integral
membrane proteins that specifically bind and respond
to chemokines. For example, CCR2 is found on
the surface of monocytes and binds monocyte
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chemo-attractant protein-1 (CCL-2), a chemokine
that specifically mediates monocyte chemotaxis in
experimental retinal detachment.112,113 CCL2 levels
are elevated in the vitreous of patients with PDR
and in idiopathic epiretinal membranes.114 Most
chemokines tested for are elevated in the subretinal
fluid of patients with primary RRD compared to
vitreous from patients with macular hole.86,115–117 One
study finds higher CCL2 levels in established PVR than
in primary RRD, suggesting a late role in the disease
process.118 Zandi et al.86 record elevated levels of a
multiplicity of chemokines (CCL8, 15, 19, 22, 23, 26,
27 and CXCL6, 9, 10, 12) in cases of PVR compared
to primary RRDwithout PVR but find that only levels
of CCL19 are associated with the grade of PVR.86
Ricker et al.115–117,119 find that CCL17, 19, 22, and
CXCL9 to predict the development of postoperative
PVR and CCL19 also correlated with postoperative
visual acuity, and Hoerster et al.108 find that aqueous
CCL2 predicts the development of PVR.

CCL2 is produced locally by Müller glia and in
cultured IL-1/TNF-α-stimulated CCL2+ RPE cells,
contributing to photoreceptor apoptosis after retinal
detachment.120,121 Many cell types (including human
microglia and astrocytes) express CXCL8 in response
to inflammatory stimuli.122 Müller glia resident in
PVRmembranes also express CXCL8, which chemoat-
tracts neutrophils and probably promotes gliosis.122,123
CXCL9 and CXCL10 are specific for T lympho-
cytes.124,125 CXCR3 and CXCL9R and CXCL10R
are preferentially expressed on T lymphocytes mediat-
ing intraocular inflammation.126 Cultured RPE cells
produce CXCL9 and CXCL10 in response to TNF-
α, IL-1β, and IFN-γ , which is inhibited by IFN-
β.127 Although absent from the vitreous in PVR, IFN-
β may protect against retinal inflammation.127 The
CC chemokines CCL17, CCL18 and CCL22 mediate
cell trafficking and activation of T lymphocytes.128–130
CCL19 is crucial for the development of adaptive
immunity, mediating migration of naïve, Treg and
natural killer T cells and B cells, as well as macrophages
within lymphoid tissue and stimulating macrophages
and fibroblasts to secrete IL-8 and VEGF, respec-
tively.131,132

During the development of PVR, locally generated
chemo-attractive factors that direct both the migra-
tion and proliferation of RPE cells, fibrous astrocytes,
fibroblasts and chemoattract macrophages, lympho-
cytes, and neutrophils are possible predictive PVR
chemokine biomarkers.91,120,133–135 However, levels of
most of the above chemokines are raised in RRD
irrespective of subsequent progression to PVR, and
levels overlap significantly between patients who do
and do not develop PVR. The approach of Ricker

et al.,116 who combine clinical predictors with levels
of multiple cytokines including the presence of pre-
existing PVR, CCL22 and IL-3 to improve predictive
value, may hold promise.

Mitogenic Growth Factors

PDGF and VEGF
PDGF and VEGF are closely related members of

a superfamily of signaling molecules, with a cysteine-
knot structure formed by 8 cysteine residues.136 Intrav-
itreal injected (iviti) PDGF into traumatized rabbit eyes
causes severe PVR, as do iviti PDGF and platelets
into traumatized pig eyes.137–139 PDGF displays a wide
spectrum of chemo-attractive and mitogenic activi-
ties for mesenchymal cells and glia.136 Proangiogenic
VEGF is present in the developing PVR fibrotic
membranes, as well as epiretinal and diabetic prolif-
erative membranes. VEGF is synthesized and secreted
by both retinal glia and RPE cells and levels may
be raised in serum samples of patients with PVR,
suggesting systemic levels confer disease susceptibil-
ity.140–142 Levels average 2X higher in the subreti-
nal fluid from eyes that go on to develop PVR
compared to those that do not, although signifi-
cant overlap between the vitreous VEGF levels in
the two populations limits its utility as a biomarker
in isolation.9 RPE cells and retinal glia in epiretinal
membranes express VEGF, PDGF and PDGFR and
VEGFR,143–145 suggesting an important role in epireti-
nal membrane growth, although iviti bevacizumab
(monoclonal antibody against VEGF) does not seem
to prevent andmay worsen further membrane develop-
ment in eyes with advanced PVR.146,147 PDGFα, FGF-
2, TGFβ, insulin-like growth factor–1 and epidermal
growth factor are present in vitreous and SRF in PVR
may promote RPE proliferation and fibrosis.9,148

FGF-2
In vitro, FGF-2 stimulates EMT production by

RPE cells and is RPE-cell– but not Müller glia–
protective (although it does stimulate migration of the
latter cells).144,149,150 In conflicting reports, vitreal and
subretinal fluidFGF-2 levels are raised in both PDR,151
established PVR,109,152,153 and elevated in vitreous but
not aqueous or subretinal fluid of RRD patients who
subsequently develop PVR on follow-up.9,108,109 Thus
further evidence is required before FGF-2 is accepted
as a predictive biomarker for PVR developing after
retinal reattachment surgery.

Adipokines
Adipokines are a group of trophic mediators, origi-

nally identified in adipose tissue but now known
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to be important in most inflammatory and immune
responses and in wound healing in many tissues includ-
ing the eye.154,155 For example, in analyses of subreti-
nal fluid sampled at the time of retinal reattachment
surgery for primary RRD, high leptin, adiponectin and
cathepsin S levels and low TIMP-1 levels are associated
with the development of postoperative PVR.156

Leptin
Vitreal leptin levels are elevated in females and

diabetics.157 Mice defective in leptin and leptin-R have
dysregulated immune and inflammatory responses and
impaired wound healing.158 High levels of serum
leptin are associated with disease activity in Vogt-
Koyanagi-Harada disease,159 highlighting a possible
ocular inflammatory role. In a rabbit model, successful
treatment of PVR was associated with reduced vitre-
ous leptin levels.160 SRF leptin levels correlate signifi-
cantly with body mass index,156 but there is no consis-
tent association with PVR.156,161 Obese patients are at
increased risk for development of RRD,162 although
this may be a mechanical effect and may or may not
translate into a higher rate of PVR since the relation-
ship between obesity and PVR remains unresolved.

Cathepsin S
The cysteine protease cathepsin S has a key role in

antigen presentation163 and is produced by RPE cells,
where it is crucial for photoreceptor cell maintenance
by regulating rhodopsin lysosomal digestion.164,165
Cathepsin S is also upregulated in detached neuroretina
as early as 24 hours after detachment and levels of
cathepsin S are raised in the SRF of patients with
retinal detachments that go on to develop PVR and
correlate with the extent and duration of retinal detach-
ment and this remains significant after correction for
body mass index50,156; however, significant overlap
between cathepsin S levels in patients who did and
did not go on to develop PVR limits its utility as a
biomarker in isolation.

TIMP andMMP
TIMP1 is a glycoprotein that inhibitsMMP, a group

of peptidases that degrade ECM and remodel colla-
gen.166 In addition, TIMP-1 promotes the prolifer-
ation of a wide range of cell types and may also
have anti-apoptotic properties.167,168 TIMP-1 regulates
photoreceptor migration and expression is linked to
retinal fibrosis,169 and angiogenesis.170–172 RPE cells
produce TIMP-1 both in vitro and in excised epireti-
nal and subretinal membranes.173,174 Protease/protease
inhibitor imbalance within the detached retina and
adjacent vitreous may therefore contribute to PVR
membrane formation.

A number of MMP isoforms are normally present
in the vitreous.175 MMP-2 is constitutively expressed
in normal vitreous and probably regulates collagen
turnover and the degradation of gelatin (denatured
collagen) and a number of cytokines, including
TGFβ.176,177 Multiple hormones, cytokines and
growth factors regulateMMP expression and, in vitreal
pathology such as diabetic retinopathy and retinal vein
occlusion, increased expression is associated with
VEGF expression.176,178 MMP-12 is important for
macrophage migration in murine retina and vitreous
but has not been detected in human vitreous.179 Low
levels of MMP3 are protective against experimental
uveitis,180 whereas MMP9 levels correlate with the
severity of wet (age-related macular degeneration)
AMD.181

The most abundant protease inhibitor in human
plasma in α1-antitrypsin, which is consistently elevated
in the vitreous of patients with PVR.182,183 Vitreous
MMP-1, -2, -3, -8, -9 and TIMP-1 levels correlate with
PVR grade.177 Vitreous MMP, TIMP-1 and α-1 anti-
trypsin are therefore all consistently elevated in patients
with PVR and single nucleotide polymorphisms in
MMP-2 associate with PVR risk.45 In patients with
retinal detachment, increased vitreous MMP-2 and
-9 activity associates with subsequent postoperative
PVR, with a negative predictive value (for low activ-
ity) of 100% forMMP-2 and 97% forMMP-9 (positive
predictive values for high activity 16% and 19%, respec-
tively).175

Periostin
Periostin is a fibroblast-derived matricellular

mitogenic protein that stimulates EMT in cancer cells,
accelerates cutaneous wound healing by activating
fibroblasts184,185 and causes inflammatory chemo-
taxis of TH2 cells and M2 macrophages by inducing
cytokine production.186,187 In patients with PVR,
vitreal periostin levels are elevated along with high
periostin expression in PVR membranes,27 and the
protein is produced in vitro by RPE cells that undergo
TGFβ2-induced EMT.106 These findings provide little
support that periostin is likely to be useful as a predic-
tive PVR molecular biomarker.

MicroRNA
Significant interest in the role of microRNA

(miRNA), including exosomal miRNA,188 in systemic
and ophthalmic disease, including diabetic retinopa-
thy and age-related macular degeneration, has been
reflected in an exponential increase in the number
of publications in recent years.189 A single study has
evaluated miRNA as predictive biomarkers of PVR
and found that miR-21, a profibrotic miRNA, was
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upregulated in the vitreous of eyes with PVR and
was also upregulated in vitro by Human adult
retinal pigment epithelial cells (ARPE-19) after TGFβ-
induced EMT, regulating migration and prolifera-
tion.190 The miR-21 transcription is induced by a
number of proinflammatory and profibrotic stimuli
including IL-6 and TGFβ and opposed by decorin,
being post-transcriptionally activated through the
actions of TGFβ.111,191 The miR-21 production is
associated with resolution of acute inflammation and
the switch to a profibrotic phenotype,191 making miR-
21 a candidate biomarker requiring confirmation.

Validation of Molecular PVR
Biomarkers

Predictive molecular biomarkers are agents present
in tissues which forecast the risk of development of
a specific pathology in which the biomarker may or
may not persist.192 The assessment of biomarker valid-
ity is critically dependent on reliability of the serial
sampling technique and positive and negative predic-
tive values. Serial consistency in harvesting SRF and
vitreal fluid is difficult to achieve and can gener-
ate highly variable mean putative biomarker values
and thus requires careful supervision and attention
to detail. Serum samples would provide more reliable
readings, but relevant biomarker titers are likely to
be significantly lower than those from retina, where
factors are locally produced; consequently few serum-
based studies have been reported.193 In addition, surgi-
cal techniques for the management of RRD can vary
widely, with surgeon-dependent PVR-rates, meaning
that the process of PVR may also vary between
surgeons, suggesting that either surgical approach
should be considered in detail in future biomarker
studies or that sampling should include a range of
surgeons or surgical techniques.

In cases of retinal detachment which go on to
the develop PVR, IFF molecules consistently present
before PVR onset have potential positive predictive
value (PPV) and those present in retinal detachment
cases that do not develop PVR have negative predic-
tive value (NPV). One conundrum of screening poten-
tial biomarkers is that IFF feature in the retinal detach-
ment condition irrespective of whether PVR ensues,
probably explaining why so few IFF have PPV status.
Thus factors other than IFF may constitute more
plausible biomarker candidates. Factors with PPV that
persist into the predicted disease state may also be
used as putative prognostic biomarkers with a potential
for targeting and monitoring anti-PVR treatments.194

PPV/NPV rarely reach 100% and values are commonly
much lower posing a problem in setting a threshold
for assessing the status of biomarker rigor. Meaning-
ful statistical estimates of PPV and NPV are depen-
dent on the prevalence of PVR after RRD and as
many studies use matched rather than consecutive
cases, PPV and NPV cannot be meaningfully calcu-
lated. Therefore few studies claiming biomarker poten-
tial for particular IFF have evaluated their PPV/NPV.
The most promising approach so far is in the combi-
nation of multiple clinical and laboratory biomark-
ers to improve the sensitivity and specificity of PVR
prediction.13,45,116

Conclusion

PVR remains the most common reason for failure
of retinal detachment after re-attachment surgery.
Biomarker profiling has the potential for better predic-
tion of PVR risk after surgery to inform surgical
technique and identify patients in whom novel prophy-
lactic adjunctive anti-PVR therapies might be of use.
The evidence presented here shows that numerous IFF
are a feature of retinal detachment and also contribute
to the development of PVR but, because individual
IFF have limited PPV, the search for PVR predictive
biomarkers should combine selected biomarkers and
broaden screening methods to encompass molecules
other than IFF.
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