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Abstract 

The human and environmental impacts of urban heat islands (UHI) have become an increasingly 

relevant issue to city planners. This topic has spurred research into the relationships between 

land cover, ambient temperature, and the role of greenspace in emitting cooler air to its 

surrounding area, now known as the ‘park cool island’ effect (PCI). While ample research has 

been given to this phenomenon in dense urban areas, much less has been dedicated to semi-urban 

communities who may wish to inform their development practices as they expand their 

footprints. This research used satellite-derived Landsat Level-2 Provisional Surface Temperature 

data, MassGIS 2016 Land Cover / Land Use data, and MassGIS Standardized Assessors’ Parcels 

data to analyze parcels in Essex County, Massachusetts, for PCI intensity and the influence of 

land cover and parcel characteristics on PCI. LST data from July, 2016, were used to evaluate 

the mean temperature difference between parcels and their surrounding area to derive PCI. 

Replicating methods demonstrated by Cao et al. [Landscape and Urban Planning, 96(4):224-231 

(2010)], linear regression analyses were undertaken to determine the relationships between PCI, 

parcel land cover and geometry. The 500 meter buffer distance used by Cao et al. to calculate 

PCI was also analyzed. Twenty iterations of the linear regression model were run based on a 

changing buffer value to calculate PCI. Two sensitivity analyses were performed based on these 

model iterations: 1) change in model performance, as expressed by its R2 value, across the range 

of PCI buffer distances and 2) the change in the coefficient strengths of the independent 

variables across the range of PCI buffer distances. The linear regression model underperformed 

as compared to Cao et al.’s study, however, it affirmed the 500 meter buffer distance as a 

parameter for calculating PCI, with that model iteration returning the highest R2 value (0.587). 

Buffer distances greater than 500 meters performed relatively well, however, smaller buffer 
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values were associated with weak model performance. Among land cover coefficients, there 

were scale-sensitivities observed, with some variables changing in strength and polarity across 

the model iterations. It was determined that PCI could effectively evaluate cooling intensity in 

the study area, however, using it as a dependent variable within a linear regression model had 

only moderate performance. This was due to heterogeneity among the makeup of land cover 

within parcel buffer areas which inhibited the regression model’s ability to build consistent 

relationships between land cover and PCI.  
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Introduction 

The impacts of climate change are becoming more and more apparent in urban communities. An 

excess amount of impervious surface creates an environment where much of the sun’s energy is 

retained, leading to higher ambient temperatures. This temperature increase can be anywhere 

from 2-5°C in comparison to rural surroundings, and is now commonly referred to as the urban 

heat island (UHI) effect (Taha 1997).  

Heat islands have a human impact, as they increase the prevalence of heat-related illness, and 

can have environmental impacts if divergent microclimates develop (Shishegar 2014). In 

addition, higher temperatures accelerate smog formation, and can increase peak electricity 

demand by 5-10% as residents need to further offset raised temperatures with air conditioning 

(Mihalakakou et al. 2004; Akbari et al., 1992). In the long term, these reactions perpetuate the 

atmospheric changes that are at the source of climate change. While the human and 

environmental costs of elevated urban temperatures are evident, it can be a challenge to develop 

strategies aimed at mitigating the heat island effect. 

Vegetation plays an important role in mitigating urban heat. Planting street trees can be a helpful 

way of preventing sunlight from reaching impervious surfaces in the first place by creating shade 

over buildings and streets. In addition, evaporation of moisture from soil and leaves cools 

ambient temperatures, a process known as evapotranspiration (EPA 2019). However, the success 

rate of saplings growing into maturity is often low because of the challenges of an urban 

environment (Roman and Scatena 2011). When they do reach maturity, their canopy will still be 

below tall buildings which limits their effectiveness in many urban areas. Despite these 

challenges, planting initiatives have been shown to decrease city temperatures significantly and 

are a cost-effective approach (The Nature Conservancy 2016). 



2 
 

Green and cool roofs are often able to provide the coverage that street trees cannot. Green roofs 

deliver similar shading and evaporative benefits to street trees, but are more easily planted on the 

roofs and walls of existing structures. In places where green roofs are not a viable option, cool 

roofs, which are made using synthetic reflective materials, can be installed to provide similar 

results.  Use of these roofing alternatives have shown to be worthwhile investments for both 

urban planners and building managers (Sharma et al. 2016). 

Considering the cooling effect that vegetation provides, it becomes apparent that urban parks can 

offer a place of refuge from high temperatures. Depending on the land cover and environmental 

conditions, urban parks have been measured to be up to 7°C cooler than their urban 

surroundings, earning the term “park cool islands” (PCI) (Jauregui, 1990). Additionally, if the 

vegetation is of high enough density, this cooling effect extends beyond the boundaries of the 

park and lowers the ambient air temperature of the surrounding neighborhood. While the 

magnitude is wind-dependent, there are observed cases of parks providing a cooling effect up to 

840 meters away (Doick, Peace and Hutchings 2014). This ability brings added value to urban 

forest areas, as their removal would further elevate surrounding ambient temperatures. This has 

paved the way for many research projects, as scientists seek to understand the phenomenon so 

that these cooling effects can be fully utilized. 

A number of studies have analyzed the cooling effects of urban parks around the world using 

similar methods to measure the influence of land cover on temperature. Far fewer studies, 

however, have applied such methods to semi-urban or suburban study areas that may not 

immediately face urban heat island challenges, but could if there is a future increase in 

impervious surface. Understanding heat islands in this conservationist context would help to 

make proactive rather than reactive decisions in the face of climate change. 
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This analysis applies methods used to analyze PCI intensity in dense, urban settings to a study 

area composed of semi-rural communities to answer the questions: (1) Do analysis methods 

commonly used to study PCI within urban areas produce similar outcomes in semi-urban areas? 

(2) How sensitive are PCI results to the buffer parameter around parks? 
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Literature Review 

The Impacts of Urban Heat Islands: 

The role that urban heat islands play in influencing local air temperature has been observed for 

decades (Akbari and Kolokotsa 2016). This has largely been attributed to dense amounts of 

impervious surface which are used in construction of urban infrastructure, and a lack of 

vegetation to offset this change in land cover (Taha 1997). Impervious surface refers to 

materials, such as concrete, brick and asphalt, which resist the absorption of water and create 

excess runoff (Leopold 1968). Besides their hydrological impacts, these materials also share the 

characteristic of absorbing a large proportion of the sunlight they receive (Morabito, Crisci, and 

Georgiadis 2017), which in turn significantly increases the ambient air temperature in the area 

(Arnfield 2003; Ahmed 2018).  

As a result, cities have been observed to be a much as 12°C (22°F) hotter than their surrounding 

rural area due to their large volume of impervious surface (EPA 2019), which has been shown to 

have negative impacts on human health (Heaviside, Macintyre, and Vardoulakis 2017; 

Smargiassi et al. 2009) and species diversity (Čeplová, Kalusová, and Lososová 2017; McGlynn 

et al. 2019), heightens the intensity of air pollution (Sarrat et al. 2005), and increases peak 

electricity demand (Santamouris and Kolokotsa 2015).  

The health risks associated with urban heat islands have been well documented across a number 

of different geographic contexts (Medina-Ramón et al. 2006; Smargiassi et al 2009; Heaviside, 

Macintyre, and Vardoulakis 2017), and have become a global concern in light of the threats of 

climate change (Gosling, McGregor, and Páldy 2007). The presence of urban heat islands 

increases the severity of naturally occurring heat waves, bringing with them greater occurrence 

of illness such as heat stroke, and an overall increase in mortality (Semenza et al. 1996). It has 
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been observed that city residents in areas of low vegetation have up to a 6% higher risk of 

morbidity or mortality as compared to residents in cooler areas (Schinasia et al. 2018). An 

increasing frequency of heat waves due to climate change is projected to have a significant 

impact on heat-related mortality over the next century (McGeehin and Mirabelli 2001), with the 

northeast United States facing up to a three-fold increase in mortality as compared to current 

levels (Petkova et al. 2013). 

The negative health impacts of urban heat islands have been shown to disproportionately impact 

vulnerable and marginalized populations (Reid et al. 2009; Sampson et al. 2013). Elderly and 

chronically ill populations face a higher risk of heat-related mortality (Gronlund et al. 2014), in 

some cases up to 12% greater risk than the general population (Zanobetti et al. 2013).  Residents 

living in neighborhoods with greater racial diversity, less education, and extreme poverty have 

been shown to have significantly higher heat-related mortality (Voelkel et al. 2018). These 

neighborhoods tend to have lower park accessibility and overall less vegetation coverage to aid 

in cooling the impervious surface (Rigolon, Browning, and Jennings 2018), and in general, have 

less resources available to develop strategies around urban heat island mitigation (Zukin et al. 

2009). Because of these aspects, the topics of urban heat island formation and mitigation have 

emerged as points of focus in the discussion of environmental justice (Chakraborty 2017). 
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Observing Land Surface Temperatures:  

UHI effects can be measured in a variety of ways. Traditionally, they have been observed in the 

field using thermometers at fixed stations, or mounted in mobile vehicles that capture 

temperature readings as they traverse a study area (Bowler et al. 2010; Song and Li, 2010). 

While it is preferable to capture the air temperature directly, this approach can be labor intensive 

and is unlikely to provide comparative measurements across many locations at a single time. 

Many heat island researchers have instead moved towards the use of land surface temperature 

(LST) data collected from the thermal-infrared band of satellite sensors because of the low cost 

and temporal advantages (Zhou et al. 2018).  

While thermal-infrared satellite data can be an effective stand-in for ambient air temperature, it 

requires a conversion process from the digital number (DN) value captured by the sensor before 

being used in analysis (Pelta, Chudnovsky, and Schwarts 2016). The data also require correction 

according to atmospheric conditions, especially when performing interpretation between captures 

by different sensors (Chander, Markham, and Barsi, 2007). The following formulas are those laid 

out by NASA’s Landsat program for use in converting thermal data for use in LST analysis (U.S. 

Geological Survey 2014).  

Conversion to Top of Atmosphere (TOA) Radiance: 

Lλ = MLQcal + AL     (1) 

where Lλ is TOA spectral radiance, ML is the band-specific multiplicative rescaling factor, AL is 

the band-specific additive rescaling factor, and Qcal is the quantized and calibrated DN pixel 

value. The brightness temperature value in Celsius can then be derived using the inverse 

Planck’s function. 
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Conversion to At-Satellite Brightness Temperature (Celsius): 

T = 
K2

ln(
K1
Lλ

 +1)
 – 272.3     (2) 

where T is temperature in Celsius, K1 is calibration constant 1, K2 is calibration constant 2, ln is 

the natural logarithm, and Lλ is the TOA spectral radiance. The resulting data from these 

algorithms can then be used to represent the land surface temperature in imagery and spatial 

analysis. 

There is some concern about whether using satellite land surface temperature data as a stand-in 

for air temperature is sufficiently accurate. A study by Lin et al. in 2014 aimed to assess the 

suitability of land surface temperature data for use in analyzing urban heat islands. In the study, 

Lin collected ambient air temperature at 24 on-site observatories and compared these samples 

with satellite data at those same locations to test their interchangeability (Lin et al. 2014). A 

statistical analysis revealed they were related to each other with a correlation coefficient of 0.81. 

This helped to reinforce the efficacy of using LST data as a proxy for air temperature to observe 

urban heat islands.  

Some of the unexplained variation in Lin’s study may have to do with the nature of the way LST 

data are collected. Each pixel value represents an average of thermal-infrared reflectance within 

a pixel’s area of observation, while also being influenced by the thermal reflectance of 

surrounding pixels (Li 2017). Despite these errors in thermal-infrared LST data, they still 

provide sufficient accuracy for use in remote sensing applications, so long as they are not pushed 

beyond their spatial resolution limits.  
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Some analytical contexts, such as within public health, may require a greater degree of accuracy 

than can be derived from thermal infrared satellite imagery. For instance, there may be particular 

air temperature thresholds that are statistically significant when trying to prevent heat stroke 

illness (White-Newsome et al. 2013). In such an application, the 0.81 correlation coefficient 

cited by Lin et al. (2014) may not be accurate enough. These levels of accuracy or precision are 

not requirements of analyzing urban heat island effects at a parcel scale, however, which has 

allowed remotely sensed data to see widespread use in geospatial research (Zhang et al. 2017; Li 

et al. 2017; Lipping 2003). While site specific observations must be carefully quality-checked, 

land surface temperature can provide accuracy across geographic regions which makes it suitable 

for studying relative land cover relationships. 
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Park Cooling Effect Research:  

The ‘park cooling effect’ has been studied by many researchers over the years to better 

understand the relationships between park characteristics and their cooling intensity. These 

studies have utilized a variety of different data to analyze parks, ranging from bicycle-mounted 

air temperature sensors, to weather stations, airplane mounted infrared sensors, and satellite 

imagery. Regardless of the data used, their observations have helped to frame park cooling effect 

discussions in regards to land cover, climate, moisture, and temporal changes. Researchers 

continue to ask: what influence does greenspace have on cooling urban environments, and what 

factors are most critical to this phenomenon?  

Jauregui’s 1990 study exemplified the park cool island effect at Chapultepec Park in Mexico 

City (Jauregui 1990). The author recorded air temperature, humidity, pollution, and rainfall data 

at weather stations both inside and outside the park, and analyzed their hourly and seasonal 

changes. By collecting these data, the study sought to observe the park cooling effect, but also 

how much of the effect could be attributed to vegetation and what influence the external 

environment may be having.  

 The author found that minimum park temperatures tended to be 3 – 4°C cooler than the 

surrounding area, and its cooling influence extended approximately the distance of the park’s 

width. This relationship between park width and cooling extent has been frequently cited by 

other researchers and served as a default value in their analyses (Spronken-Smith and Oke 1998; 

Hien and Yu 2004; Cao et al. 2010).  

It was also found that the vegetated park had more rapid heating and cooling rates each day as 

compared to the neighboring impervious surface. While the built-up urban areas were slower to 
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warm up in the morning sun, they were also much slower to come down from peak temperatures 

in the afternoon. Jauregui found that peak temperatures were actually slightly higher in the 

vegetated park, but once that peak was passed, ended up cooling the adjacent area as 

temperatures dropped. The author also noted the influence of tall tree cover on reducing low-

level wind speeds and creating turbulence. This in turn created an environment conducive to 

small-scale convective precipitation, which the study found to be more common within the park 

area. 

Spronken-Smith and Oke’s 1998 analysis of two parks located in Sacramento and Vancouver, 

BC, placed increased attention on various land cover types, and the influence that each had on 

cooling (Spronken-Smith and Oke 1998). Land cover was classified into the following 

categories: grass, grass with tree border, savannah, golf course, garden, multiuse (developed 

open space), and forest.  

The study performed traverses on automobiles and bicycles, collecting continuous air 

temperature data beginning from the center of a park to its perimeter, adjacent urban 

neighborhoods, and outer rural area. A helicopter equipped with an infrared scanner was used to 

capture land surface temperature data across these same areas, at a spatial resolution of 3 meters. 

The authors defined park cooling intensity as the maximum urban temperature minus the 

minimum park temperature captured during the first half of a traverse, represented as the 

formula: 

PCI = Tu – Tp   (1) 

where Tp is the minimum air temperature collected on a traverse inside of a park, and Tu is the 

maximum air temperature collected as that traverse passed through the neighboring urban area. 
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The urban heat island effect was then calculated using the second half of a traverse, comparing 

urban to rural temperatures: 

UHI = Tu – Tr   (2) 

where Tr is the minimum air temperature collected at the end of a traverse in the undeveloped, 

rural area, and Tu is the maximum urban temperature. These values were generated for each 

traverse, so that they could be used to compare the land cover attributes of each park. 

Similar to Jauregui’s study, the authors observed cooling extents of parks approximate to their 

widths and that the effect varied by the time of the day. In addition, they were able to 

demonstrate the cooling impacts of the different land cover types. It was found that tree canopies 

provide maximum cooling effect in the afternoon (4°C), gardens and savannahs at dusk (3.2°C), 

and open grass at sunrise (2.9°C).  

The authors put forward the theory that the moisture content of a land cover type has a 

significant impact on the timing of its cooling effect. Whereas irrigated greenspace has a 

relatively stronger cooling effect in the afternoon, dry grass parks cool down much more quickly 

after sunset due to their low moisture content. They point out that the influence of moisture is 

critical to understanding land cover, but also that the park cooling effect will function differently 

based on the macroscale climate of the study region.  

As continued studies replicated these and satellite LST data became more available (allowing for 

easier comparison of many parks at a single capture time), researchers focused less on 

observation studies of singular parks, and more on comparisons among large numbers of parks 

within a geographic setting. Cao’s paper “Quantifying the cool island intensity of urban parks 
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using ASTER and IKONOS data” compared the characteristics of 92 parks in Nagoya, Japan and 

their influence on park cooling intensity (Cao et al. 2010).  

Cao et al. (2010) used Spronken-Smith and Oke’s (1998) definition of park cooling intensity as 

the temperature difference between the inside and outside of a park, but used a 500 meter buffer 

zone (with water and other parks removed), and substituted air temperature with land surface 

temperature. The authors do not provide particular reasoning for this 500 meter parameter, but 

they express that their intention is to include thermal information from surrounding roads, 

residential and business buildings, and parking spaces. This would indicate that the aim of this 

method is to analyze the area beyond the cooling extent of a park, so that the thermal levels from 

impervious surface areas can be fully contrasted with the vegetated land covers of parks. One 

could presume that if this buffer zone were much narrower, such as at a distance of 100 meters or 

less, there could be a high degree of cooling influence from a park’s vegetation on the thermal 

readings.  

The study also incorporated a ‘landscape shape index’ that quantified the compactness of a park 

using its perimeter length and area. The formula used was: 

LSI = (
𝑃𝑡___________________

2 √𝜋 × A
) 

where Pt is the length of the perimeter of a parcel, and A is the area of a parcel. The index 

expresses the relationship between the size of a polygon and the length of its border, such that 

identically shaped polygons receive the same value regardless of their area. This enables Cao’s 

analysis to use park size and shape as distinct variables within their statistical model, allowing 

their influence on park cooling to be assessed separately. 
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Areal coverage of various land covers were calculated using satellite imagery. The authors used 

a 4-meter spatial resolution IKONOS image with four bands in the visible and near-infrared 

bands (for spectral analysis of different vegetation types) to manually classify the land covers. 

The resulting land cover classes were: trees, grass, shrubs, soil, water, low albedo surfaces, high 

albedo surfaces, buildings, and shadow cover. Low albedo surfaces refer to those that absorb 

more electromagnetic radiation than they reflect, such as concrete and other impervious surfaces. 

These land cover values were expressed as percentages of coverage within a park. This is 

necessary for the park size variable to be included in the model. 

With these data as independent variables, the authors performed a linear regression analysis with 

park cooling intensity as the dependent variable. It was found that cooling intensity is greater in 

larger parks, and only those larger than 2 ha (4.942 acres) consistently provided cooling benefits. 

The coefficients of determination (R2) for the regression model were 0.888, 0.888, and 0.798 for 

spring, summer, and fall, with the most important variables including area of trees (2.315), 

shrubs (1.165), grass (-1.972), and shape index (-1.406). The authors felt strongly enough about 

these few variables, that they created a new “park vegetation and shape index” (PVSI) defined 

as: 

PVSI = log10 (
𝑨𝑡𝑟𝑒𝑒+𝑨𝑠ℎ𝑟𝑢𝑏___________________

𝐿𝑆𝐼
) 

where Atree and Ashrub are the areas trees and shrubs cover within a park, and LSI is the landscape 

shape index of a park. Using leave-one-out cross validation they found this index predicted park 

cooling effect with a root mean square errors of 0.98, 0.94, and 0.71 for spring, summer, and fall, 

and concluded that these few variables were predictive of park cooling intensity in their study 

region. 
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Performing analysis at this scale, and with such large a number of parks, produced results that 

the authors felt would help urban planners to better understand what conditions are necessary for 

park cool islands to form. This includes what the temporal advantages and disadvantages are of 

different land covers for locations sharing the similar climates to the study area (i.e., Nagoya, 

Japan).  

Others have used remote sensing techniques to analyze the configuration of green space within a 

city and its influence on city temperatures. Zhang’s 2017 study explored this dynamic in Beijing, 

China, using satellite imagery from Chinese satellite Gaofen-2. The study looked at the influence 

of green patch configuration on their cooling effect, by investigating relationships between green 

surface temperature (GST), normalized difference vegetation index (NDVI), and the normalized 

compactness index (NCI). The authors then used linear regression with GST as the dependent 

variable, revealing a negative relationship to NCI with an R2 value of 0.3156, which would 

indicate that if green patches in the city were more compact their temperatures would be cooler. 

They also found a negative relationship to NDVI with an R2 value of 0.4328, indicating that 

higher NDVI values (as a result of more vegetation) would also reduce temperatures.  

At the same time, the authors found that the cooling strength (CS) and NCI were negatively 

correlated with an R2 value of 0.4689 and coefficient of -2.4661, which would indicate that when 

green patches are more compact, their cooling extent decreases. The authors also expressed that 

the compactness relationship to vegetation cooling effect changed depending on the area of the 

green patches, noting that patches ranging in size from 2 to 16 hectares (4.94 to 39.53 acres) 

were more sensitive to compactness than those that fell outside of this range. This study reveals a 

complicated relationship between vegetation and impervious surface within an urban 
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environment, but is important to consider when trying to leverage park cooling effect research 

towards practical use in urban or conservation planning.  
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Methodology 
 

As mentioned previously, the study of heat islands has predominantly been focused in locations 

with dense, urban development. These kinds of analyses have been helpful to reinforce the 

importance of greenspace on urban environments, measure the thermal influence of impervious 

surface, and inform development practices. While these aspects are especially critical to large 

urban centers, they are also of concern to smaller cities that are expanding their footprint, with 

opportunities to either preserve or develop existing greenspace. Current and predicted threats 

from climate change have become more of a concern to communities, and government grants 

have incentivized regional planners to take more proactive measures. This makes the 

management of heat island effects more relevant than ever to developing cities.  

For this study, I looked to replicate the methods commonly used in current urban heat island 

analysis literature, and apply them to Essex County, Massachusetts. This approach helps to 

establish baseline relationships between regional land cover types and land surface temperature, 

and identify parcels which are particularly critical to cooling urban heat island areas. In addition, 

the buffer distance parameter surrounding study parcels was tested for a wide range of values to 

observe model sensitivity. The buffer distance for the park cooling effect evaluation of a parcel is 

often 500 meters, however, there is not always a robust explanation for this distance besides 

precedent in other literature. Seeing as the study area of this research differs from those in most 

other heat island literature, this parameter seemed important to explore in order to understand 

what role it plays within the model. 
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Study Area: 

Essex County is the third most populous county in Massachusetts with a population of 789,034, 

and overall area of 1,339.58 km2 (Census.gov 2019).  It ranks fourth for population density in 

Massachusetts with 618.5 people per km2. The county includes the cities of Salem, Lynn, 

Haverhill, Lawrence, Gloucester, and Newburyport. Weather records indicate an annual average 

of 1219 mm of rain and 1244 mm of snow per year (Northeast Regional Climate Center 2020). 

The area experiences a range of seasonal temperatures, with an average daily high of 27º C 

(80.6° F)  in the summer and average highs of 2º C (35.6° F) in the winter.  

The commonwealth of Massachusetts as a whole has seen a consistent increase in mean annual 

temperature, and is projected to experience a significant increase in days over 38º C (100° F) on 

the daytime heat index (Peery 2019), which takes into account humidity. According to Mass 

Audubon, the state experienced just 6 days a year with highs over 32.2° C (90° F) in the year 

1960, but in 2020 that value has increased to 10 days a year (Mass Audubon 2020). They predict 

by 2050 this value will nearly double to 19 days a year on average. Such an increase in extreme 

heat days may bring higher prevalence of heat-related public health issues, such as heat stroke.   

Essex County has a broad mix of land use, including dense residential and commercial, to 

agriculture and rural uses. According to the 2016 Land Cover dataset developed by MassGIS 

(MassGIS 2020) and the National Oceanic and Atmospheric Administration’s (NOAA) Office of 

Coastal Management (OCM), the county is roughly 55.5% forested land cover (deciduous, 

evergreen, palustrine forested wetland, and estuarine forested wetland), 13.55% impervious 

surface, 9.87% developed open space (i.e. lawns, golf courses, soccer fields), with the remaining 

21% a mix of palustrine and estuarine wetlands, cultivated, grasslands, and water. 
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Table 1: Essex County Land Cover 

Land Cover km2 Percent 

Deciduous Forest 491.82 36.71% 

Impervious 181.58 13.55% 

Developed Open Space 132.28 9.87% 

Palustrine Forested Wetland 126.23 9.42% 

Evergreen Forest 125.67 9.38% 

Estuarine Emergent Wetland 69.52 5.19% 

Water 50.24 3.75% 

Palustrine Emergent Wetland 35.08 2.62% 

Pasture/Hay 29.39 2.19% 

Grassland 22.26 1.66% 

Palustrine Scrub/Shrub Wetland 17.85 1.33% 

Scrub/Shrub 15.69 1.17% 

Cultivated 14.46 1.08% 

Unconsolidated Shore 13.09 0.98% 

Bare Land 11.02 0.82% 

Palustrine Aquatic Bed 3.30 0.25% 

Estuarine Scrub/Shrub Wetland 0.05 0.00% 

Estuarine Forested Wetland 0.04 0.00% 

Total 1,339.58 100.00% 

 

 

Data: 

The Landsat satellite system’s multispectral scanners provide a large volume of data as they 

capture each point on earth roughly every 16 days. A wide range of light wavelengths are 

captured, from the visible spectrum (0.43 - 0.53 µm) up through the thermal infrared bands (10.6 

– 12.51 µm) (NASA 2020). The spatial resolution varies depending on the wavelength of the 

band, from 15 meter resolution in the panchromatic band to 30 meters for bands within the 

visible spectrum, and 100 meters for thermal infrared. In addition to making these data freely and 

publicly available, the Landsat program has begun pre-processing data products for distribution 
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for use by researchers, referred to as the U.S. Landsat Analysis Ready Data (ARD) product 

bundle.  

Among these include the Level-2 Provisional Surface Temperature product, which delivers land 

surface temperature in Kelvin at 30 meter resolution. Normally one would have to convert the 

digital number (DN) value of a Landsat image to spectral radiance (L), then to temperature (in 

Kelvin), and finally to Celsius.  The Provisional Surface Temperate product preprocesses the 

first two steps, with only the temperature conversion needing to be performed. 

A Landsat image captured on July 13th, 2016 at 10:26 a.m., was selected for use in this study.  

Landsat’s satellite system utilizes a sun-synchronous, near-polar orbit, meaning every point on 

earth is captured at roughly this same time locally. While it may be preferable to capture land 

surface temperature data for this study at peak air temperature time in the afternoon, the thermal 

patterns should remain consistent among land cover types in the morning, and thus their 

relationships should remain stable as well. It should be noted, however, that one may observe 

different land cover relationships to land surface temperature at night, where forests retain heat 

longer than grassy fields due to differences in moisture content (Jauregui 1990). This particular 

image was selected for its timing in the summer months featuring full vegetation cover, it’s 

relatively warm peak temperature of 31º C (88° F), and minimal cloud cover. The thermal 

infrared image from the ARD product series was selected, and converted to Celsius. 

Detailed land use data were available from MassGIS in their 2016 Land Cover / Land Use 

product. This was a cooperative effort between MassGIS and the National Oceanic and 

Atmospheric Administration’s (NOAA) Office of Coastal Management (OCM). The product 

provides high resolution land cover data for the entire state, following the standards set by the 

National Land Cover Database. Land cover types were derived using a mix of supervised 
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classification of a 1-meter spatial resolution raster image, MassDOT Roads spatial data, manual 

editing using 2013 orthoimagery, and feedback from local experts. Through a quality control 

process of validating 446 on-the-ground points, OCM staff determined the data accuracy to be 

94.2% (Office for Coastal Management 2020).  

The land use data documented 19 different land cover types, some distinct, and some 

representing a mix of multiple types. These are: Impervious, Developed Open Space, Cultivated 

Land, Pasture/Hay, Grassland, Deciduous Forest, Evergreen Forest, Scrub/Shrub, Palustrine 

Forested Wetland, Palustrine Scrub/Shrub Wetland, Palustrine Emergent Wetland, Estuarine 

Forested Wetland, Estuarine Scrub/Shrub Wetland, Estuarine Emergent Wetland, 

Unconsolidated Shore, Bare Land, Open Water, Palustrine Aquatic Bed, and Estuarine Aquatic 

Bed. 

Parcel boundary data were made available from MassGIS’ Level 3 standardized assessors’ parcel 

program. This new standard was put into practice in October 2013, and has allowed for more 

accurate parcel boundaries and attributes, as well as simplified merging of data between towns. 

Statewide ‘LOC_ID’s are generated for each parcel using their centroid coordinates, which 

provides unique ID’s. This helps to avoid querying parcels using their ‘MAP_PAR_ID’ or 

‘PROP_ID’ which are derived from map, block, and lot codes and can be redundant if referenced 

across multiple towns. Data from the thirty four cities and towns of Essex County were 

downloaded from MassGIS, and merged into one layer. The land use attribute table was also 

joined to the parcels using the land use code for reference. These parcels were then pared down 

to a smaller number for inclusion into the analysis, creating a selection of ‘parks’ similar to those 

studied by Cao (Cao et.al 2010).  
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While this project aimed to replicate Cao’s methods as closely as possible, implementing these 

methods in a semi-urban study area required some adaptation. Cao’s study did not require a park 

selection process since the study area of Nagoya, Japan, is entirely developed, and the parks of 

interest to be studied are self-evident through their land cover and public designation. Most green 

areas that exist are likely due to intentional planning decisions and ongoing management by city 

administration. While similar parks exist within Essex County, there are many more privately 

owned green parcels adjacent to urban heat island areas that are at risk of being developed into 

impervious surface. Seeing as the context of this study is inherently conservation-minded, this 

approach was used to guide the parcel selection process.  

In addition to the conservation backdrop behind this study, a second purpose behind this 

selection process was to limit the scope of the analysis only to those parcels which were adjacent 

to heat island areas. This was necessary in order to appropriately utilize the PCI formula within 

this study area. The dependent variable of Cao’s model (Cao et al. 2010), PCI, is calculated by 

the difference between the internal and surrounding land surface temperatures of a parcel. In 

dense, urban areas where this variable has been developed, the land cover is generally 

homogenous, being composed of buildings and other impervious surface. Urban parks and 

greenspace exist as the exceptions. In such a context the PCI value is calculated under a uniform 

scenario – the study park includes a mix of vegetation and other land covers, and the area around 

it is almost exclusively impervious surface. 

This uniformity means that vegetation within a park will generally be shown as having some 

cooling effect, and at worst will result in a value near zero. The independent variables are tied to 

park characteristics that are able to establish relationships to a PCI value that is derived from a 

predictable ratio. The challenge of using these methods in a study area where impervious surface 
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isn’t dominant is that PCI doesn’t just become a function of the composition of land cover within 

a parcel, but of the land cover surrounding it as well. For example, if a parcel in a dense, urban 

area was comprised entirely of greenspace, it would likely receive a positive PCI value. If this 

same parcel was instead situated in a rural area abutting other greenspace, it may receive a PCI 

value near zero, as there would be minimal temperature difference between it and its adjacent 

parcels. This aspect is shown in Figure 1, where two largely forested parcels receive 

considerably different PCI scores based on the different levels of impervious surface in their 

buffer area. The parcel selection process was created with interest in utilizing the PCI variable 

within its proper context. 

Figure 1: Rural forest parcel and urban forest parcel 

   

First, parcels were limited to towns in the county that have the densest impervious surface in the 

county.  These towns included Andover, Haverhill, Lawrence, Lynn, Methuen, North Andover, 

Peabody, Salem, and Saugus. Several of these towns have expressed heat related threats due to 

climate change in their Municipal Vulnerability Preparedness reports. Second, a field was 

created to calculate the acreage of each parcel. As referenced in Cao’s study, the minimum urban 
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park size to be observed to experience a cooling effect was 2 ha (4.942 acres). This value was 

used as a minimum threshold. 

Next, a 500-meter buffer was generated around each parcel and the mean land surface 

temperature was calculated within that buffer. Parcels were selected if their buffers were one 

standard deviation or warmer than the mean. This standard deviation approach to define heat 

island areas has been used in several studies (Effat, Taha, and Mansour 2014; Y. Ma, Y. Kuang, 

and N. Huang. 2010). This resulted in a final sample set of 393 parcels that are located in 

communities facing heat island threats, are of large enough size that they have the potential to 

provide a cooling effect, and are adjacent to heat island areas. These selection methods help to 

appropriately utilize the PCI formula in this study area, and highlight parcels that could provide 

conservation value in relation to urban cooling. 

PCI Analysis: 

In order to analyze the park cool intensity of parcels the following methods were performed: (1) 

Evaluate study parcels for PCI intensity. (2) Calculate the sum of different land cover types, as 

well as the LSI and acreage for each parcel. (3) Perform multivariate regression using land cover, 

LSI, and parcel size variables to observe what influence land cover within a parcel has on 

cooling its surrounding area. (4) Re-run the analysis using a number of different buffer distances 

to observe how the model responds to this changing parameter. 

These methods were scripted using the Arcpy package within Python 2.7 in order to ensure that 

they were replicable, as well as to increase the ease of performing the buffer distance sensitivity 

analysis. For this study, buffer distances from 50 to 1000 meters were analyzed in increments of 

50 meters, for a total of 20 iterations. 
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Parcels were first buffered according to the specified distance, outside of polygon only. This 

created ‘donut-hole’ polygons surrounding each study parcel that enabled the calculation of PCI 

intensity. Parcel ‘LOC_ID’s provided the unique ID key for joining data back to the original 

parcel dataset. 

PCI intensity was calculated using the formula utilized in Cao’s study. That is: 

PCI = TU – TP 

where TP is the mean land surface temperature within a parcel, and TU is the mean land surface 

temperature of the buffer area surrounding a parcel. Land surface temperature data in the buffer 

area that falls within water land cover types, or that falls in another study parcel is excluded from 

the analysis, and does not contribute to the mean land surface temperature reading of TU. This 

was performed with interest in adhering to Cao’s methods as closely as possible.  

The land surface temperature data were first converted from Kelvin to Celsius using the formula: 

T(°C) = T(K) - 273.15 

where T(°C) is the temperature in Celsius, and T(K) is the temperature in Kelvin. Once temperature 

values were processed, the data were converted from a raster to vector format using the ArcGIS 

Raster to Point (Conversion) tool.  

With each point representing an individual pixel from the LST image, and the value of each 

representing a pixel’s temperature, a spatial join was performed to select all points falling within 

a parcel. The values of each point were averaged in order to generate the mean LST in Celsius 

for each parcel. This same process was replicated for the parcel buffers. After removing points 
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that fell within water land cover areas or neighboring parcels, the mean LST values of each 

buffer polygon were joined back to their respective parcels, and PCI was calculated for each. 

This process could have instead been performed using a zonal statistics tool to derive mean LST 

directly from the raster data, however it was found that in cases of overlapping polygons, the tool 

failed to return accurate results for all features. Spatially joining points was found to be 

consistently accurate, though LST pixels were only assessed if their centroid fell within a parcel, 

as that’s where the points are generated. One could instead convert the raster to a polygon grid in 

order evaluate subsets of individual pixels, however, calculating the LST mean across a parcel 

did not require this level of precision. A vector-based approach also allowed for easy querying of 

feature attributes, though it was relatively more computationally heavy. 

Once PCI was calculated for each parcel, the coverage of various land cover types was calculated 

and summed for each.  This was performed by splitting the 2016 Land Cover dataset by cover 

type, intersecting each with the parcel layer, calculating the sum in acres, and joining the value 

back to the parcel layer. These values were then used to generate the percentage of coverage of 

each land cover type within a parcel. 

After performing exploratory regression models using different collections of land cover types 

contained in the 2016 Land Cover dataset as variables, it was found that there was significant 

multicollinearity among them. This was, at times, due to too large a number of land cover 

variables being included in the model. It was also due to many of the land cover types sharing 

similarities, or being expressions of a number of other variables.  

Palustrine and estuarine wetland types had these challenges, which could not be resolved by 

combining them, or selectively excluding them. Seeing as these land cover types were also not 
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the most relevant to this study of urban greenspace, they were excluded from the model. Other 

land cover types, such as cultivated land and pasture/hay occurred at such limited frequency that 

they were also removed. In the end, the model was limited to the seven land cover types of: 

deciduous forest, developed open space, evergreen forest, grassland, impervious, scrub/shrub, 

and water. 

Figure 2: Examples of LSI 

 

The total acreage and landscape shape index value (LSI) was then calculated for each parcel. The 

LSI formula used was: 

LSI = (
𝑃𝑡___________________

2 √𝜋 × A
) 

where Pt is the length of the perimeter of a parcel, and A is the area of a parcel. The resulting 

outcome of this formula is that a perfect circle returns a value of 1.00, a square returns 

approximately 1.13, with shapes of increasing complexity returning larger values. A long, 

snakelike polygon, for instance, might return a value of 5.00. This formula helps to generalize 
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shape complexity into a useable value within a regression analysis, where higher values correlate 

to increased complexity. Within the context of parcels and urban forest, this variable helps to 

capture the influence of vegetation ‘compactness’ on cooling the surrounding area. 

With these attributes calculated per parcel, they were then entered in as variables into a 

multivariate regression model. PCI was set as the dependent variable, with the seven land cover 

percentage values, parcel acreage, and LSI as independent variables. Twenty different regression 

models were analyzed to reflect the changing calculation of PCI according to the different parcel 

buffer distances, with the independent variables remaining constant across all model iterations.  

Figure 3: Histogram of parcel acreage 

 

Figure 4: Histogram of parcel LSI values 
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Results  

 
After running regression models of the study parcels for all buffer distances, the relationships 

between land cover, LSI, park size, and park cool intensity can be observed, as well as the 

influence of the buffer distance parameter. First, the 500 meter buffer results will be reviewed as 

a default value in comparison to results from Cao’s study (Cao et al. 2010): 

500 Meter Buffer: 

Table 2: Model Results 

Independent Variables Std. coefficient Sig. 

Deciduous Forest 2.593194 0.000192* 

Developed Open Space -1.788128 0.008900* 

Evergreen Forest -1.301609 0.525553 

Grassland -0.049073 0.978853 

Impervious Surface -7.211488 0.000000* 

Scrub/Shrub 0.526811 0.787307 

Water 3.882023 0.050770 

Parcel Acres -0.010017 0.124640 

LSI -0.228931 0.285846    

Model summary 
  

Multiple R2 / Adjusted R2  0. 5876 / 0.5780 
 

Std. error of estimation (C) 2.482684 
 

   

   

 

 

The regression results in Table 2 show that three of the nine independent variables were 

determined to be statistically significant in the model. Deciduous forest, developed open space, 

and impervious surface resulted in p-values smaller than 0.05, and among the strongest 

coefficient values of the model at 2.593, -1.788, and -7.211 respectively. 

Those variables considered statistically insignificant included evergreen forest, grassland, 

scrub/shrub, water, parcel acres, and LSI. Of these independent variables, evergreen forest, 
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grassland, parcel acres, and LSI showed negative relationships with PCI (-1.301, -0.049, -0.010, 

-0.229) and scrub/shrub and water showed positive relationships (0.526, 3.882). The model as a 

whole returned an R2 value of 0.587 with a standard error of estimation of 2.482. 

This would seem to show that generally, natural land covers are associated with positive cooling 

effects, and impervious surface within a parcel is predictive of a negative cooling effect. 

Interestingly, evergreen forest results show a negative relationship with cooling as compared to 

deciduous forest. Likewise, developed open space shows a significant negative relationship to 

PCI despite being composed of vegetation. These aspects may be worth exploring to determine 

whether they have to do with different biological processes or correlate to different landscaping 

practices. 

In this model, water is shown as having a cooling effect, which has not always been the case in 

previous studies. Parcel acreage doesn’t produce a strong predictive relationship within this 

model, and could be due to not setting a minimum vegetation threshold for parcels entered into 

the model. The LSI variable does seem to show that increased shape complexity has some 

negative effect on cooling, though this relationship is generally weak. As shown in Figure 3 and 

Figure 4, the distribution of acres and LSI among parcels are both strongly right-skewed, and the 

range of values is narrow for these variables, so they are likely to have smaller coefficients. 

Figure 5 shows the mapped residuals of each of the study parcels using a Jenk’s (natural breaks) 

classification. Parcels symbolized in blue represent those that had a stronger cooling effect 

(higher PCI) than predicted by the model, and parcels in red representing those that had a weaker 

cooling effect (lower PCI) than predicted. A local Moran’s I analysis was performed with the 

residuals as the input to test for spatial autocorrelation, which was found to be significant with a 

p-value of 0 and a z-score of 16.909. This indicates that results of the regression are clustered, 
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and that the chance that the data are randomly distributed is less than 1%. This may be due to an 

absent geographic variable.  

Figure 5: Mapped residuals of regression model (500 meter buffer iteration) 
 

 
 

 

 

Figure 6: Plots of model independent variables 
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Comparing Parcel Buffer Values: 

After performing regression analyses for each of the parcel buffer distances, and while leaving 

the independent variables unchanged, the results can be presented side-by-side in order to 

observe the sensitivity of the model to this parameter. To be specific, this parameter is the PCI 

calculation of each parcel at a given buffer distance. A total of twenty buffer distance values 

were assessed, from 50 meters to 1000 meters in increments of 50 meters. 

Looking first at the model performance as viewed through its multiple R2 value, it can be seen 

that model reaches its peak at 500 meters (0.5876), leading next to a slight descent towards the 

1000 meter mark (seen in Figure 7). While model performance seems to greatly increase from 

the 50 meter iteration to the 400 meter model, it does not decrease so rapidly once moving past 

the 500 meter peak.  

Figure 7: R2 value across each model 
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Figure 8: Variable coefficients across each model 

 

Throughout each iteration of the model most variables remained relatively stable, however a few 

stand out as being highly influenced by buffer distance. Impervious surface shows a moderately 

negative relationship with PCI at 50 meters (-3.160), but quickly decreases towards being the 

strongest negative variable at around 550 meters (-7.364). This may suggest that the influence of 

percent imperviousness in predicting PCI increases with buffer distance up to the 550 meter 

mark where it plateaus towards 1000 meters, and small buffer distances may underestimate the 

predictive influence of impervious surface within the PCI formula. 
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buffer distance of 1000 meters. Similar to impervious surface, this would suggest that a model 

utilizing a small buffer distance may not be capturing accurate predictive relationships of some 

of these land cover types. Impervious surface was the only variable to return statistically 

significant p-values across the entire range of buffer distances. Developed open space and 

evergreen forest returned significant p-values from 150 meters to 1000 meters. 
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Discussion  
 

This study aimed to apply methods previously used to analyze the cooling properties of 

greenspace in urban areas to parcels within the study area of Essex County. While the threat of 

urban heat islands is not currently as severe as in other geographies, it is a growing concern to 

planning organizations in the region. Implementation of existing scientific methods to study the 

urban heat island effect and the impacts of vegetative cooling could help to inform city planning, 

and equip conservation agents to take preventative actions towards the heat island effect. 

Alongside this implementation of methods, this study sought to test the robustness of Cao’s 

model (Cao et al. 2010), and perform a sensitivity analysis on the buffer distance used in the 

calculation of PCI to see how it might respond differently in this geographic context. 

This process involved the selection of parcels experiencing heat island threats, producing buffers 

around them from a range of 50 to 1000 meters (at increments of 50 meters), and calculating PCI 

values for them using land surface temperature data. High resolution land cover data were 

intersected with the parcels to produce percentage values of coverage for each land cover type, 

and these were entered as independent variables into a linear regression model. Additionally, the 

acreage and landscape shape index (LSI) of each parcel were included in the model to determine 

what impacts size and compactness may have on cooling. These independent variables remained 

constant across each of the twenty different models that were run. The dependent variable, PCI, 

changed according to the buffer distance used in its calculation. 

It was found that Cao’s use of a 500 meter buffer distance in the PCI formula resulted in the 

strongest performance across all iterations of the model with a multiple R2 of 0.587 (Cao et al. 

2010). Impervious surface, deciduous forest, and developed open space emerged as statistically 
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significant through most iterations, with deciduous forest having a positive relationship with PCI, 

and impervious surface and developed open space having a negative relationship with PCI.  

These results indicate that PCI is able to provide some prediction of the cooling effect of parcels. 

They seem to be in line with previous studies contrasting impervious surface and forested land 

cover, but also highlight differences in vegetation as developed open space (includes lawns, 

soccer fields, and golf courses) was shown to be correlated with heating rather than cooling. 

Grass and open field land covers seem to return different cooling effects (both positive and 

negative) based on the environmental factors in previous studies, so it is interesting to observe 

these differences in this model. This could be due to the selection of study parcels included, or 

the timing of the thermal imagery capture in the morning rather than peak afternoon 

temperatures. 

It was interesting to observe the change of model performance across buffer values, and that 

model performance peaked at the 500 meter value. From this sensitivity analysis it seems that 

using this distance to evaluate PCI helps to maximize model performance in terms of R2 values, 

and validates Cao’s use of this distance as a parameter (Cao et al. 2010). Both the R2 values and 

the independent variable coefficients seem to reach greater stability around the 500 meter 

distance which would further support Cao’s use of this distance.  

This outcome may help to eliminate uncertainty for other researchers regarding this parameter 

who are utilizing the PCI formula. At the same time, this study’s 500 meter model 

underperformed in comparison to Cao’s. Cao’s model R2 values ranged from 0.79 to 0.88 

depending on the season in which the LST data were derived from, whereas the model peaked at 

0.587 in this study.  
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The difference in outcomes between this study and Cao’s could be the result of variance in 

climate, input data quality, land cover differences, or existing density of impervious surface. 

While each of these vary across studies, it is seems that differences in impervious surface density 

could be the largest contributing factor. While the input parcels of this study were limited to 

those of greatest heat island threat, the overall density of impervious surface in Essex County is 

much lower than that in other study areas. This aspect makes it more of a challenge for the PCI 

variable to build consistent relationships with other variables.  

Figure 9: Essex County, MA and Nagoya, Japan at 1:40,000 

 

Figure 9 shows an orthographic image of Essex County next to Nagoya, Japan, which was 

studied by Cao (Cao et al. 2010). It is apparent that the green parks in Nagoya are distinct from 

their impervious surroundings, which means the mean LST values of their buffers are derived 

almost exclusively from impervious surface. Essex County cities have relatively more 
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vegetation, which is an asset from an urban cooling perspective, however it means that this land 

cover can contribute confusion or noise into a model that utilizes PCI as a dependent variable. 

This aspect could be worth further researching in order to determine if the PCI model is only 

suitable for dense cities, and to what extent the land cover of buffer areas must remain 

homogenously impervious surface. If use of PCI within a semi-urban setting is in fact a 

limitation, it may be worth investigation modifications to the PCI formula to be more applicable 

to developing regions, or including additional variables into the model in order to be more 

predictive. As was revealed in the Moran’s I spatial autocorrelation test the results were 

significantly clustered, so exploring the use of additional geographic variables could be 

worthwhile to increase model performance in this region. 

This study also highlighted the sensitivity of the land cover coefficients to buffer distance 

(Figure 8). While many remained fairly constant throughout the range of distances or stabilized 

upon reaching a plateau, evergreen forest had a positive coefficient value at 50 meters but 

became negative as the buffer distance increased. The grassland coefficient remained negative in 

all iterations of the model, however it displayed a wave-like fluctuation. This would indicate that 

some land cover coefficients experience a scale-sensitivity, and that their importance to the 

model changes according to the buffer distance used to calculate PCI. It’s possible that this could 

be due to characteristics of this study area, or it could be that the importance of the variables 

change relative to each other depending on this distance. If these patterns are present in the 

results of other PCI analyses but are unobserved, it could be possible to make overly-simplistic 

conclusions about the land cover relationships. Testing the PCI model within other geographic 

contexts to observe changes in land cover coefficients across buffer distances could help to 

understand if the scale-sensitivity is unique to Essex County or is inherent to PCI.  

Marcos
Highlight
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Further steps could be taken to more fully explore the use of the PCI model within Essex County. 

This study only used one thermal infrared image as a source for LST. The land cover 

relationships revealed in the regression models then may be only relevant to the time of day and 

season of that image capture. While the urban heat island issue is only a threat to human health 

within the summer months in Essex County, analyzing cooling properties at different times of 

the day might produce different outcomes. Fully understanding these land cover relationships are 

especially necessary to effective urban planning surrounding the heat island issue. 

While water land cover did not result as statistically significant in the model, it was very close to 

passing that threshold in terms of its p-value (0.05077). It also had a strong, positive coefficient 

throughout each of the model iterations. This would seem to indicate that it does play a role in 

cooling nearby landscapes in the study region, which has not always been the case in previous 

studies. This could be an area of further research to see whether this has to do with the type of 

water bodies present in Essex County, or perhaps the time of day or year that the thermal 

information was captured. 

Beyond the PCI model, it could also be worth analyzing the compactness of greenspace as 

demonstrated by Zhang (Zhang 2017). Such an approach would not be as effective at 

highlighting individual parcels, but may provide a different look at the relationship between 

impervious surface and greenspace. Zhang’s analysis may provide insight into the geographic 

distribution of these land covers, which would help to understand the impacts of development 

practices in regards to heat islands at a town scale, and avoid some of the challenges inherent to 

PCI. This approach could be of greater benefit to municipal planners who are interested in 

developing cities in a way to prevent the formation of urban heat islands, or are interested in 

cooling a city in a general sense with less concern about site-specific cooling benefits. 
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For use in Essex County, and similar communities looking to evaluate heat island threats and 

mitigation parcels, the PCI formula does seem to be an effective means of identifying parcels of 

high cooling intensity. It provides a straight-forward methodology to compare parcels within a 

study region without the need for first identifying heat island areas. The temperature difference 

between a parcel and its buffer area is an easily communicable value, and demonstrates the 

actual cooling intensity of a parcel. One must be aware of the spatial limitations of the land 

surface temperature data being used to calculate PCI, as small urban parks may not be captured 

in enough detail in images from Landsat or ASTER sensors. That being said, when used at the 

proper scale, PCI is an accurate tool for representing the park cool island value of a parcel. 

The use of a regression model to predict PCI using land cover variables in Essex County is likely 

less effective than other approaches. As stated previously, the variance in the levels of 

impervious surface in a parcel buffer makes it a challenge for a model to establish relationships 

between PCI and land cover, ultimately decreasing model performance. While this variance in 

PCI score is a reflection of something true (a parcel must be situated near urban heat island areas 

in order to provide ‘urban cooling’), it doesn’t serve as a viable dependent variable in this region. 

Understanding the cooling benefits of different land cover types is still of importance for urban 

planning, and would be worthwhile to study using different methods. Such an example may be a 

grid-based analysis of land cover and LST, and observing these relationships in correlation 

matrices or a linear regression model. 

Regardless of the next steps taken, these results demonstrate the impact that impervious surface 

has on air temperature and the environment. These observations can help to spur discussion at 

the local level in regards to development practices as well as conservation planning. 

Additionally, it points to deciduous forest as the most significant land cover type to preserve for 
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cooling benefits in this region, which is a natural resource that can be a challenge to restore 

(Drummond and Loveland 2010). It is also important to note that while dense urban development 

poses urban heat island threats, sprawling suburban development can bring other environmental 

and human hazards (Radeloff, Hammer, and Stewart 2005). Land cover studies, such as this one, 

can function as a tool for planners to make informed decisions surrounding the urban heat island 

issue at both regional and site-specific scales. 
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Appendix 

 

 

Python Scripts: 

The below scrips were written in Python 2.7 utilizing Esri’s Arcpy package. There are two scrips 

used in this analysis. The first, ‘LCLU_Process_Parcels.py’ calculates the coverage of different 

land covers within a parcel dataset, and this function is called within 

‘RunHeatIslandAnalysis.py’ which evaluates land surface temperature, LSI, PCI, and other 

variables according to user-submitted buffer distances, then runs linear regression models for 

each definition of PCI. 

 

LCLU_Process_Parcels.py 

def LCLU_Process_Parcels(parcels, LCLU, homeEnv): 

    # setup 

    import arcpy, os 

    from arcpy import env 

    home_gdb = os.path.dirname(homeEnv) 

    os.chdir(home_gdb) 

    arcpy.env.workspace = home_gdb 

    env.overwriteOutput = True 

 

    # Create Geodatabase 

    geodatabase = "LandCoverProcessingParcels.gdb" 

    try: 

        arcpy.CreateFileGDB_management(home_gdb, geodatabase) 

        arcpy.AddMessage("Geodatabase Created") 
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    except Exception: 

        pass 

 

    # set directory to newly create geodatabase 

    home_gdb2 = home_gdb 

    home_gdb = home_gdb + "\%s" % (geodatabase) 

    os.chdir(home_gdb) 

    arcpy.env.workspace = home_gdb 

 

    tempparcels = "tempparcels" 

    LCLU_fl = "LCLU_fl" 

 

    arcpy.CopyFeatures_management(parcels, "LCLU_Parcels") 

    arcpy.MakeFeatureLayer_management("LCLU_Parcels", tempparcel

s) 

    arcpy.MakeFeatureLayer_management(LCLU, LCLU_fl) 

    print "Feature Layers Created" 

 

     

    # full list of land cover types, if needed:   landcover_list

 = ['Bare Land', 'Cultivated', 'Deciduous Forest', 'Developed Op

en Space', 'Estuarine Emergent Wetland', 'Estuarine Forested Wet

land', 'Estuarine Scrub/Shrub Wetland', 'Evergreen Forest', 'Gra

ssland', 'Impervious', 'Palustrine Aquatic Bed', 'Palustrine Eme

rgent Wetland', 'Palustrine Forested Wetland', 'Palustrine Scrub

/Shrub Wetland', 'Pasture/Hay', 'Scrub/Shrub', 'Unconsolidated S

hore', 'Water'] 

    landcover_list = ['Deciduous Forest', 'Developed Open Space'

, 'Evergreen Forest', 'Grassland', 'Impervious', 'Scrub/Shrub', 

'Water'] 

     

    arcpy.AddField_management(tempparcels, "Parcel_Acres", "DOUB

LE") 

    calcacres = "!shape.area@acres!" 
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    arcpy.CalculateField_management(tempparcels, "Parcel_Acres",

 calcacres, "PYTHON_9.3") 

 

    fieldlist = [] 

    idField = "LOC_ID" 

    for x in landcover_list: 

        query1 = "\"COVERNAME\" IN ('%s')" % (x) 

        print query1 

        arcpy.SelectLayerByAttribute_management(LCLU_fl, "NEW_SE

LECTION", query1) 

        templayer1 = "templayer1" 

        templayer2 = "templayer2" 

        templayer3 = "templayer3" 

        print x + " Selected" 

        arcpy.MakeFeatureLayer_management(LCLU_fl, templayer1) 

        if x == 'Water': 

            arcpy.CopyFeatures_management(templayer1, "Water") 

        arcpy.Intersect_analysis([templayer1,tempparcels], templ

ayer2) 

        print x + " Intersected" 

        arcpy.Dissolve_management(templayer2, templayer3, [idFie

ld]) 

        print x + " Dissolved" 

        fieldname1 = str(x).replace(" ", "_").replace("/", "_") 

+ "_ac" 

        arcpy.AddField_management(templayer3, fieldname1, "DOUBL

E") 

        calcacres = "!shape.area@acres!" 

        arcpy.CalculateField_management(templayer3, fieldname1, 

calcacres, "PYTHON_9.3") 

        print x + " Acres Calculated" 

        arcpy.JoinField_management(tempparcels, idField, templay

er3, idField, [fieldname1]) 



50 
 

        print x + " Acres Field Joined" 

        null_formula = "def updateValue(value):\\n  if value == 

None:\\n   return '0'\\n  else: return value" 

        updatenull = "updateValue( !%s! )" % (fieldname1) 

        arcpy.CalculateField_management(tempparcels, fieldname1,

 updatenull, "PYTHON_9.3", null_formula) 

        fieldname2 = str(x).replace(" ", "_").replace("/", "_") 

+ "_pc" 

        exp1 = "(!%s! / !Parcel_Acres!)" % (fieldname1) 

        arcpy.AddField_management(tempparcels, fieldname2, "DOUB

LE") 

        arcpy.CalculateField_management(tempparcels, fieldname2,

 exp1, "PYTHON_9.3") 

        fieldlist.append(fieldname2) 

        print x + " Percentage Calculated" 

    print fieldlist 

    arcpy.JoinField_management(parcels, idField, tempparcels, id

Field, fieldlist) 

    os.chdir(homeEnv) 

    arcpy.env.workspace = homeEnv 

    return home_gdb 
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RunHeatIslandAnalysis.py 

# setup 

import arcpy, os 

from arcpy import env 

from LCLU_Process_Parcels import LCLU_Process_Parcels 

home_gdb = r'C:\Users\David\Documents\SSU\MastersThesis\2_Thesis

Research\Data\Analysis\1.FinalAnalysis' 

os.chdir(home_gdb) 

arcpy.env.workspace = home_gdb 

env.overwriteOutput = True 

 

# INPUT DATA 

InputParcels = r'C:\Users\David\Documents\SSU\MastersThesis\2_Th

esisResearch\Data\Parcels\AnalysisParcels.gdb\Parcels_Group10'  

   # parcels 

InputLSTRaster = r'C:\Users\David\Documents\SSU\MastersThesis\2_

ThesisResearch\Data\Landsat_Thermal\2016_7_13\LST_20160713.tif' 

  # LST data 

InputLCLU = r'C:\Users\David\Documents\SSU\MastersThesis\2_Thesi

sResearch\Data\lclu_gdb\MA_LCLU2016.gdb\LANDCOVER_LANDUSE_POLY' 

  # LCLU data 

study_area = r'C:\Users\David\Documents\SSU\MastersThesis\2_Thes

isResearch\Data\townssurvey_gdb\townssurvey.gdb\EssexCo'        

  # study area boundary (Essex County) 

buffer_value = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500,

 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000]             

  # buffer values for evaluating PCI                            

                  # buffer value 

new_geodatabase = "UrbanCoolingAnalysis_v6_" + str(buffer_value[

-

1]).replace(" ", "") + "m"                                      

 # new geodatabase name 

 

print new_geodatabase 
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# Create Geodatabase 

geodatabase = new_geodatabase +".gdb" 

try: 

    arcpy.CreateFileGDB_management(home_gdb, geodatabase) 

except Exception: 

    pass 

print "Geodatabase Created at: " + home_gdb + "\%s" % (geodataba

se) 

 

# set directory to newly create geodatabase 

home_gdb = home_gdb + "\%s" % (geodatabase) 

os.chdir(home_gdb) 

arcpy.env.workspace = home_gdb 

 

# make copy of parcels 

parcels_copy = "Analysis_Parcels" 

arcpy.CopyFeatures_management(InputParcels, parcels_copy) 

print "Parcels copied to Geodatabase" 

 

# make feature layer of parcels 

Parcels = "Parcels" 

arcpy.MakeFeatureLayer_management(parcels_copy, Parcels) 

print "Feature layer made of Parcels" 

 

# pull largest buffer value and create string 

buffer_value = sorted(buffer_value) 

inputbuffervalue = str(buffer_value[-1]) + " meters" 

 

# Buffer study_area by buffer_value 
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study_area_buffered = "Study_Area_Buffered" + inputbuffervalue.r

eplace(" ", "") 

arcpy.Buffer_analysis(study_area, study_area_buffered, inputbuff

ervalue) 

 

# get bounding extent of study_area_buffered 

def getFCextent(fc): 

    desc = arcpy.Describe(fc) 

    xmin = desc.extent.XMin 

    xmax = desc.extent.XMax 

    ymin = desc.extent.YMin 

    ymax = desc.extent.YMax 

    return "%s %s %s %s" % (xmin, ymin, xmax, ymax) 

print "Calculated bounding area of study area buffered " + str(i

nputbuffervalue) 

 

# clip LST raster to study_area_buffered 

InputLSTRaster_clipped = "LST_Raster_Clipped" 

arcpy.Clip_management(InputLSTRaster, getFCextent(study_area_buf

fered), InputLSTRaster_clipped, study_area_buffered, "", "Clippi

ngGeometry") 

print "LST raster clipped to study_area_buffered" 

 

# Calculate Coverage of Land Covers inside each Parcel using imp

orted function 

print "Process Land Covers" 

LCLU_GDB = LCLU_Process_Parcels(Parcels, InputLCLU, home_gdb) 

# reset directory to home Geodatabase 

os.chdir(home_gdb) 

arcpy.env.workspace = home_gdb 

print home_gdb 

# assign water feater layer from LCLU layer 
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LCLU_Water = os.path.join(LCLU_GDB, "Water") 

# calculate parcel acreage 

arcpy.AddField_management(Parcels, "Parcel_Acres", "DOUBLE") 

calcacres = "!shape.area@acres!" 

arcpy.CalculateField_management(Parcels, "Parcel_Acres", calcacr

es, "PYTHON_9.3") 

 

# convert LST raster to points 

print "Converting LST Raster to Points..." 

LST_Raster_Points = "LST_Raster_Points" 

arcpy.RasterToPoint_conversion(InputLSTRaster_clipped, LST_Raste

r_Points) 

print "Convert LST Raster to Points" 

 

# make feature layer of LST points 

LST_Raster_Points_FL = "LST_Raster_Points_FL" 

arcpy.MakeFeatureLayer_management(LST_Raster_Points,LST_Raster_P

oints_FL) 

print "Feature Layer made of LST Points" 

 

# calculate mean LST within parcels (using spatial join of point

s) and join to parcel feature layer 

    # create function to take care of field mapping: 

def CalculateLST(targetFeatures, joinFeatures, outfc, name_value

):  

    # Create a new fieldmappings and add the two input feature c

lasses. 

    fieldmappings = arcpy.FieldMappings() 

    fieldmappings.addTable(targetFeatures) 

    fieldmappings.addTable(joinFeatures) 

    # get index of "grid_code" field 
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    grid_codeFieldIndex = fieldmappings.findFieldMapIndex("grid_

code") 

    fieldmap = fieldmappings.getFieldMap(grid_codeFieldIndex) 

    # Get the output field's properties as a field object 

    field = fieldmap.outputField 

    # Rename the field and pass the updated field object back in

to the field map 

    field.name = name_value 

    field.aliasName = name_value 

    fieldmap.outputField = field 

    # Set the merge rule to mean and then replace the old fieldm

ap in the mappings object 

    # with the updated one 

    fieldmap.mergeRule = "mean" 

    fieldmappings.replaceFieldMap(grid_codeFieldIndex, fieldmap) 

    #Run the Spatial Join tool, using the defaults for the join 

operation and join type 

    arcpy.SpatialJoin_analysis(targetFeatures, joinFeatures, out

fc, "#", "#", fieldmappings) 

 

Parcels_LST_SJ = "Parcels_LST_SJ" 

CalculateLST("Analysis_Parcels", LST_Raster_Points, Parcels_LST_

SJ, "LST_Mean") 

print "Calculated Mean LST within each Parcel using spatial join

" 

 

# Join LST value back to Parcels based on LOC_ID 

arcpy.JoinField_management(Parcels, "LOC_ID", Parcels_LST_SJ, "L

OC_ID", ["LST_Mean"]) 

print "LST value joined back to Parcels" 

 

    # calculate mean LST within parcel buffers (using spatial jo

in of points) and join to parcel feature layer 
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        # Buffer LST will be calculated only in non-

water areas, and those not inside other Parcels (per Cao analysi

s) 

        # iterate through each parcel for individualized analysi

s, using dictionary to store values and write with an updateCurs

or 

    # create feature layer of buffers 

for buffer in buffer_value: 

     

    # take input parcels and buffer by largest buffer_value (out

side of parcel only) 

    inputbuffervalue = str(buffer) + " meters" 

    Parcels_Buffered = "Parcels_Buffered" + (str(inputbuffervalu

e).replace(" ", "")) 

    arcpy.Buffer_analysis(Parcels, Parcels_Buffered, inputbuffer

value, "OUTSIDE_ONLY") 

    print "Parcels buffered for value: " + str(inputbuffervalue) 

 

    Parcels_Buffered_fl = "Parcels_Buffered_fl" 

    arcpy.MakeFeatureLayer_management(Parcels_Buffered, Parcels_

Buffered_fl) 

     

    arcpy.CopyFeatures_management(Parcels_Buffered_fl, "ClipLST_

Temp1")                          # make copy of parcel buffer 

    arcpy.Clip_analysis(LST_Raster_Points_FL, "ClipLST_Temp1", "

ClipLST_Temp2")                  # clip LST points to parcel buf

fers 

    arcpy.Erase_analysis("ClipLST_Temp2", Parcels, "ClipLST_Temp

3")                              # within buffers, erase LST poi

nts that fall within other parcels 

    arcpy.Erase_analysis("ClipLST_Temp3", LCLU_Water, "ClipLST_T

emp4" )                          # within buffers, erase LST poi

nts that fall within water               

    LST_Mean_Buffer_FieldName = "LST_Mean_Buffer_" + str(inputbu

ffervalue).replace(" ", "")      # buffer field name 
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    CalculateLST("ClipLST_Temp1", "ClipLST_Temp4", "ClipLST_Temp

5", LST_Mean_Buffer_FieldName)   # use previously created functi

on to calculate Mean LST using a spatial join 

    print "Calculated Mean LST within each Buffer using spatial 

join" 

 

    # Join LST value back to Parcels based on LOC_ID 

    arcpy.JoinField_management(Parcels, "LOC_ID", "ClipLST_Temp5

", "LOC_ID", [LST_Mean_Buffer_FieldName]) 

    print "LST Buffer value joined back to Parcels" 

 

    # calculate PCI 

    PCI_FieldName = "PCI_" + (str(inputbuffervalue).replace(" ",

 "")) 

    arcpy.AddField_management(Parcels, PCI_FieldName, "DOUBLE") 

    PCI_Formula =  "!%s! - !LST_Mean!" % (LST_Mean_Buffer_FieldN

ame) 

    arcpy.CalculateField_management(Parcels, PCI_FieldName, PCI_

Formula, "PYTHON_9.3") 

 

    # delete temp layers: 

    arcpy.Delete_management("ClipLST_Temp1") 

    arcpy.Delete_management("ClipLST_Temp2") 

    arcpy.Delete_management("ClipLST_Temp3") 

    arcpy.Delete_management("ClipLST_Temp4") 

    arcpy.Delete_management("ClipLST_Temp5") 

 

    print "Calclulated LST for buffers: " + str(LST_Mean_Buffer_

FieldName) 

 

# loop ended 

 

# calculate LSI 
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arcpy.AddField_management(Parcels, "LSI", "DOUBLE") 

LSI_Formula =  "!Shape_Length! / (2 * math.sqrt(3.14159 * !Shape

_Area!) )" 

arcpy.CalculateField_management(Parcels, "LSI", LSI_Formula, "PY

THON_9.3") 

 

# with all data in place, now run regression analysis 

# create integer field 

arcpy.AddField_management(Parcels, "Int_Field", "SHORT") 

arcpy.CalculateField_management(Parcels, "Int_Field", "!OBJECTID

!", "PYTHON_9.3") 

 

Parcels = os.path.join(home_gdb, "Analysis_Parcels") 

print Parcels    

PDF_home = os.path.join(os.path.dirname(home_gdb), ("PDF_Outputs

_" + str(buffer_value[-1]).replace(" ", "") + "m"  )  ) 

os.mkdir(PDF_home) 

print PDF_home 

 

for value in buffer_value: 

    outputfc = os.path.join(home_gdb, ("OLS_" + str(value) + "m"

)) 

    print outputfc 

    dep_var = "PCI_" + str(value) + "meters" 

    pdf_var = os.path.join(PDF_home , "OLS_" + str(value) + "m.p

df") 

    print pdf_var 

    ind_var = "Deciduous_Forest_pc;Developed_Open_Space_pc;Everg

reen_Forest_pc;Grassland_pc;Impervious_pc;Scrub_Shrub_pc;Water_p

c;Parcel_Acres;LSI" 

    arcpy.OrdinaryLeastSquares_stats(Parcels, "Int_Field", outpu

tfc, dep_var, ind_var, "", "", pdf_var) 
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