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ABSTRACT

Restoring damaged historical manuscripts and making them available to the large public

has been of great interest for humanities researchers long before computers provided as-

sistance for this task. Current technologies and models make this process easier, more

accurate, and capable of discovering parts that were previously unknown. We use Recur-

rent Neural Networks for uncovering hidden Markov models in sequences of characters

from historic manuscripts. Such manuscripts are typically written in some archaic lan-

guage, which makes the underlying machine learning problem inherently difficult, as not

much training data is available, in general. We use bidirectional, hierarchical models for

sequences of one or more characters, trained on the existent manuscript data. We tested our

model and present experimental results using an Old English manuscript.
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CHAPTER 1

INTRODUCTION

Manuscripts and documentation existed in one form and language or the other for

hundreds of years. Over the years, documents of wars, cultures, and fictional stories have

been preserved and passed onto the next generation.

With time, language evolved branching out into many different ones, English being

one of them. The English language has also evolved, with the primary difference lying

in the alphabet set and representation of words. Many historic events were recorded in

old English and preserved. However, over time the pages tore or decayed, the ink faded,

leaving incomplete and incomprehensible words and even sentences.

This research aims to recover such a damaged manuscript using Recurrent Neural

Networks and postulates that you can mine HMM sequences using the RNN model. I

trained an RNN model that will predict the next characters, after inputs. Then I use the

probabilities from the prediction in the RNN to mine the Markov model sequence. Both

RNN and HMM falls under the general umbrella of pattern recognition. Although RNN

and HMM work best with sequence, their optimal performance comes with recognizing the

pattern of the sequence and using that knowledge to predict the next in the sequence.

1.1 PATTERN RECOGNITION

Pattern mining helps us extract graphs and sequences to develop model [5], such as the

RNN. Pattern mining used in data mining and machine learning problems [5, 34]. Machine

learning models like the RNN uses the features extracted through pattern mining to get

more accurate and interpretable results [5]. Pattern mining algorithms include the apriori

algorithm, prefixSpan, FP-tree, SPADE, etc. that can extract patterns from large sets of dat

[34].

Pattern Mining is commonly used in text mining tasks to extract sequential patterns,
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frequent itemsets, n-grams, etc [34]. Interesting sub-sequences from sequences are discov-

ered by using techniques of sequential pattern mining [11]. Moreover, these interesting

sub-sequences can be measured using an array of criteria as it occurs.

1.2 HIDDEN MARKOV MODELS

Hidden Markovian models are historically popular for sequence analysis. They have

enjoyed widespread applications ranging from genome sequencing to speech recognition,

much like RNN’s in the present day. However, the training and performance capabilities

of these two sequence analysis methods are disparate. Although RNN’s are notoriously

difficult to train, and requires a significantly large data, they are highly accurate when it

comes to sequence prediction. On the flip side, HMM’s are trained easily but do not always

perform reliably.

In theory, a Hidden Markov Model(HMM) is a process that iterates over a finite num-

ber of states, while simultaneously generating a probability value about the most likely

next character in the sequence. The name is hidden because the state transition sequences

are hidden from the observer. To parameterize HMM, the matrix of transition probabilities

is used between each state, and the output probability distribution is observed for signal

frame [30].

1.3 RECURRENT NEURAL NETWORKS

Recurrent Neural Networks are a type of artificial neural network that can handle

variable-length sequence input [9]. Their high-dimensional hidden state with nonlinear

dynamics enables them to remember and process past information [26, 12]. The results are

10 generated as a probability distribution over the next element of the sequence, including

cases with an input sequence of variable length [9]. These features make them lucrative for

natural language tasks. Examples include generating texts [26] and sequence [12].
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In recent years RNN has seen increased popularity in character and sequence gen-

eration due to its reliable performance and high accuracy. To predict the next character

provided a sequence, we develop a character-level language model. Such a model operates

to learn a probability distribution over the sequence. Based on this learning, it generates a

probability distribution for the next character, and the character associated with the highest

value is the most probable outcome.

Recurrent neural networks generate probability distribution to get the next character

in a generated string. This probability distribution is the next input in the network [26].

Because of this phenomenon, RNN’s are considered directed non-Markov models and re-

sembles the sequence memorizatio [31]. However, both recurrent neural networks and

markovian models, specifically hidden Markov models are sequence analysis techniques

that share a common property. They can both take the context of the input into account and

represent the context of the previous sequence [2].

In this research, we postulate that there exist hidden Markov models within the proba-

bilistic prediction of Recurrent neural network models for predicting the next character. We

use old English text from the Beowulf text, which is written in historic and old English. We

train a recurrent neural network model with a Dense, SimpleRNN, and Embedding layer

from Keras TensorFlow library to predict the next character in the sequence, given a set of

characters as input.

Historic texts have missing characters either at the end or beginning of the sentence

because they were scanned from old and decaying books with torn pages. The goal of

this RNN is to learn based on the text provided, and predict the missing characters. The

character with the highest prediction probability is the character that will belong in the

missing spaces. Then, we also find the probability values of the next character using HMM.

We compare the output of the two models, and we find that there exists a pattern of HMM

within the RNN outputs.
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The rest of this paper is as follows: chapter 2 enumerates on Hidden Markov Models.

Chapter 3 talks about Recurrent Neural networks. I discuss the models and their use in

chapter 4. Chapter 5 elaborates the results and finding of this study, and finally, the last

makes the concluding remarks and future studies.
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CHAPTER 2

HIDDEN MARKOV MODELS

Hidden Markov Models (HMM) are probabilistic models used in linear sequencing to

generate a sequence [10]. The key concept of HMM is that it is a finite model that describes

probability distribution over an infinite sequence [10]. HMM constitutes an input, a hidden

and an output state such that, when we visit one state a residue is emitted according to

the state’s emission probability distribution. Based on this, we choose the next state. This

state path is known as the Markov chain, implying that the next state that we move on to

depends on the current state we are in. However, in HMM as we only have the observed

sequence the underlying state path is hidden, thus bringing about the hidden component.

These hidden states are the residue labels we will focus on inferring. In an HMM both the

model parameters θ and the overall sequence “scores” P(S,π | HMM, θ) are all probabilities

[10].

In essence, HMM invokes an unobserved or hidden state s = s1, . . . , st, . . . , sT vari-

ables from the probability distribution over sequence of observations, where y = y1, . . . , yt, . . . , yT

Basically, HMM is the sequence of the hidden states that has Markov characteristics,

that is for a given st, sτ is independent of sρ such that τ < t < ρ and yt is indepen-

dent of other variables given st. Such models have two parameters: the transition matrix

whose itth element is P (St+1 = j|st = i) and the emission matrix whose iqth element is

P (Yt = q|st = i). Baum-Welch algorithm, a special case of EM, estimates the parameters

of HMM [1].

2.1 ARCHITECTURE OF HMM

If a given Xn and Yn is discrete-time stochastic process and n > 1, the pair (Xn, Yn)

is considered HMM given Xn is a markov process and is not hidden and P (Yn ∈ A|X1 =

x1, . . . , Xn = xn. Note that Xn states are the hidden states and the emission states (also
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known as output probability) is P (Yn ∈ A|Xn = xn). The following image shows the

architecture of an HMM:

Figure 2.1: General architecture of instantiated HMM [23]

There is a hidden state xt at given time t. The conditional probabilities for the hidden

state depend on the value of the hidden variable xt−1. However, it is worthy to note that

the value at t − 2 time does not influence the probability. This particular phenomenon is

known as the Markov property. The observed variable yt value depends on the hidden state

xt value. alue. HMM, ’s have two parameters: the transition and the emission probabilities.

The function of the transition probability is to control how the hidden state t is chosen given

t− 1.

We assume that the hidden state consists of N values and has N possible states where

a hidden variable at a given time t can be in. There also exists transitional probability from

this state to all other N states of the hidden variable at time t + 1. We can determine only

one transitional probability, given we know the others. Thus there is a total N(N − 1)

transition parameters. Also, for each state, there is an emission/output probability that

overlooks the distribution of the observed variable for a specific time given the state of the

hidden variable. The emission probability’s state’s size depends on the type of the observed

variable.

Over the years HMM’s gained popularity with machine learning methods [10]. HMM’s
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14 are convenient because they can simply assumptions, thus making them successful [4].

HMM’s are widely used in sequence data modeling tasks like speech recognition, bioin-

formatics protein, and DNA sequencing [10]. They are also used in text classification,

segmentation, clustering, speech, and pattern recognition as well as parts of speech tagging

[33].

Because of HMM’s superior performance, they are widely used in processing se-

quence data like text data. [32] developed an HMM that can search for the best hypothesis

provided in the text. Such a task needed the model to recognize the phonemes in a contin-

uous stream. Drawing from concepts of speech recognition, in this scenario, they analyzed

the transcript using HMM where the hidden states are the topic and the observations are

words or sentences. An example of using HMM for text classification is demonstrated

in[33]. The HMM model is built on the assumption of different sources that convey dif-

ferent aspects of information and yet can provide more general information on the topic.

HMM has also been used to extract coded island information from natural language and

source code. In such a process, the hidden states of HMM are used to model specific coded

information [6].
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CHAPTER 3

THE ARCHITECTURE OF A RECURRENT NEURAL NETWORK

Recurrent Neural Network(RNN) [25] is a type of artificial neural network which

performs very well with sequence labeling task. RNN has an input layer x, a hidden layer

h, and an output layer y. Input into an RNN is a sequence of vectors, and output is typically

a sequence as well. In the simplest form of the RNN architecture, at a given time step t, the

value of each layer is calculated using the following equations for hidden and output layers

respectively:

ht = f(Uxt +Wht−1) (3.1)

yt = g(V ht) (3.2)

where U, W, and V are the connection weight matrices in RNN, and f(z) and g(z) are

sigmoid and softmax activation functions [22]. The rest of this chapter enumerates the

calculations, sigmoid, and softmax functions in detail.

Although the basic architecture of RNN is like artificial neural networks, the differ-

ence is that it can send back feedback signals through the hidden layers to form a directed

cycle [7]. RNN can use its internal memory to process the input of the timing sequence.

Because the nodes directly connect with each other into a loop, it can access the internal

state and show the dynamic timing behavior of the model. This property gives RNN an

edge when handling input timing sequence thus making it an optimal choice for handle

handwriting recognition and speech recognition.

RNN models a dynamical discrete-time system with input xt, output yt and hidden

state ht, where the subscript t represents time [21]. In essence, how an RNN function is

that it receives an input at each time step, updates the hidden state, and makes a prediction

[26]. A vanilla RNN has an input, hidden and a output layer. The hidden and output layers

are mathematically represented below:

ht = fh(xt, ht−1) (3.3)
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yt = fo(ht) (3.4)

where fh and fo are state transitions. We construct RNN by defining the transition and

output functions as follows:

ht = fh(xt, ht−1) = φh(W
Tht−1 + UTxt) (3.5)

yt = fo(ht, x− t) = φo(V
Tht) (3.6)

where x represents the input, ht the hidden layers and yt the output layers. U, W and V are

the input, transition and output matrix and φh and φo are element wise non-linear functions

[21].

Common choices for non-linear functions are logistic sigmoid function or hyperbolic

tangent function φh as used in equation 3.1. We add the non-linear hyperbolic tangent

function coordinate wise followed by a bias value in each layer. The following equation

enumerates the application of the hyperbolic tangent function and a bias value:

ht = tanh(Whx +Whhht−1 + bh) (3.7)

where Whx is the input to hidden value, Whh is the hidden-to-hidden value, t is the time

occurrence and bh is the bias value [26].

Between the hidden and the output layer, we use a softmax layer to generate the pre-

diction probabilities, which is the output from an RNN [14]. The following equation rep-

resents the value of one node between the hidden and the output layer as shown in [26]:

Yt = Wyhht + bo (3.8)

where Wyh is the hidden to output weight matrix, and bo is the bias. Then we apply the

softmax function into the sum of the matrices as shown below [14]:

yt = softmax(
T∑
t=1

(Wt)ht) (3.9)

The following is the formal definition of a softmax() followed by a type of softmax()

called Relu().
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Definition 1. [Softmax function] The softmax function softmax : Rn → (0, 1)n is

defined as:

softmax(x1, ..., xn) = (s1, ..., sn)

where

si =
exi∑n
i=1 e

xi

Definition 2. [Relu function] The Relu function Relu : R→ [0,∞) is defined as:

Relu(x) =

 0, if x ≤ 0

x, if x > 0

The relu function can be naturally extended in the Euclidian space as follows:

Relu : Rn → [0,∞)n, Relu(x1, ..., xn) = (Relu(x1), ..., Relu(xn))

The purpose of the softmax() function is to normalize any vector in Rn to a vector of

probabilities of which sum is 1. The Relu() function is the current, more practical replace-

ment of nonlinear transformation functions sigmoid and hyperbolic tangent. Relu() is

chacterized by its simplicity (easy to compute), linear behavior, and output sparsity and

produces excellent practical results.

Most RNN learns by backpropagation and backpropagatation through time. Through

back-propagation, the gradient of RNN can be calculated [25, 29]. Backpropagation occurs

after the forward propagation is completed and there is an predicted output. The network

calculates the difference between the actual and predicted output known as the loss func-

tion. Then the network moves backward through the hidden layers. As it goes backwards,

it calculates the gradient of the loss function and then adjusts the weights associated with

each node. This adjustment contributes to improvement predicted output. As backpropa-

gation involves calculating the gradient, it is also known as a type of gradient descent.

RNN use another mechanism to finish training. It is called backpropagation through

time. Note that RNN’s share weights across all layer, and the nodes are connected with
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itself. So, during backpropagation, the gradient for each node is calculated across all the

time steps, and the weights are adjusted. This phenomenon is known as backpropagation

through time. The key difference between backpropagation and backpropagation through

time is that the latter sums the gradient of each node for all time steps. Note that this hap-

pens for each node in each layer. However, this brings the issue of vanishing or exploding

gradient that various studies propose different ways of handling. A popular choice is using

LSTM [15, 13]. Often times studies used stochastic gradient descent to deal with the issue

of extremely large gradients [14].

Finally, RNN’s has one more component: the cost function. In essence, the cost func-

tion is the difference between the actual output and the predicted output. For performance

accuracy, it is essential to minimize this loss function. So, for a given sequence,

D = (xn1 , y
n
1 , ....., x

n
Tn , y

n
Tn)

N
n=1 (3.10)

The output parameters are estimated by the RNN by minimizing the following cost

function:

J(θ) = 1/N
N∑
n=1

Tn∑
t=1

d(ynt , fo(ht(n) (3.11)

where hnt = fh(x
n
t , h

n
t−1) and hn0 = 0 and d(a, b) is a measure like cross-entropy.

RNN has been used for various sequence learning tasks because of its efficacy with

sequence analysis and prediction. Because of these properties RNN [25] has recently be-

come a popular choice for modeling variable-length sequences. They have been applied

in many domains, but have been particularly popular with language tasks. As they have

high dimensional hidden state and non-linear evolution, it gives them abundant expressive

power. This also gives the hidden state opportunity to integrate information with multiple

time steps. These collective processes are used to make the predictions accurate[26]. Thus

RNN has garnered its popularity. Some notable examples of language modeling includes

the works of [12, 21, 19, 26].
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To accomplish complex language modeling tasks, simple RNN’s are extended to deep

RNN’s (DRNN). This means that they have multiple recurrent hidden layers stacked on

top of one another because much more effective at representing some functions [3]. An

example of deep RNN is Long-Short Term Memory (LSTM). DRNN combats the RNN’s

weakness by introducing the concept of a multi-layer perceptron such that the hierarchical

processing of inputs occurs through multiple layers. Deep RNN has temporal feedback

loops in each layer. With each network update, the new information moves up the hierar-

chy and temporal context is added[14]. Deep RNN is integral in sequence and particular

language modeling because through the iteration over the hidden layers, and the ability to

grasp context over a time state, they can often accurately predict text sequences provided

input.

A deep RNN or DRNN has L number of layers with each having N neurons. For ex-

ample, with a time-series sequence of s(t) as the input of N dimension and a target output

sequence of yL(t). The DRNN backpropagates through time to update the weights of the

hidden networks for the number of epochs provided by the user. In such a DRNN architec-

ture, it is typical to see the fading memory of the input in the bottom layer. Furthermore,

in the next layer, we can expect to see the fading memory of the hidden state. So, for each

additional layer, the fading memory of the input reaches further in the past.

Because of RNN’s performance capability with sequence labeling, it is popularly used

in character-level language modeling. In such tasks, it is typical of the model to predict

the next character, given a sequence. To put it formally, for a given training sequence

x1.......xT , such a model will use it’s output sequence of o1, ......, oT to calculate the prob-

ability of the predicted sequence P (xt+1, jxt = softman(ot)), where softmax is defined

by P (softmax(ot = j)) = exp(o(j)).

The objective of a language model is to maximize the log probability of the training

sequence to predict the most like next character in the sequence. In this study, we cap-
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italize on such features of RNN. Instead of the maximum log probability, we output all

the possible prediction probability from the RNN, with the ultimate goal of using these

prediction probabilities to mine hidden Markov models. For this study, we have built two

deep RNN with 128 and 256 hidden layers of the Embedding layer, SimpleRNN layer with

relu activation, and dense layer with softmax activation using the Keras library. The first

DRNN model trains on the old English Beowulf corpus, and for a given character predicts

the probability of the next characters. The second DRNN model trains on the same corpus

but for a given input sequence of length n, it predicts the probabilities of the n− 1 charac-

ters following the n sequence input, where n is a variable provided by the user. Both the

models output a table of the probabilities of the predictions in ascending order.
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CHAPTER 4

FINDING HIDDEN MARKOV SEQUENCES USING RECURRENT NEURAL

NETWORKS

In this chapter, we describe the structural architectures of a Hidden Markov Model

(HMM) and a Recurrent Neural Network we use to predict sequences of characters. For

this purpose, we use a short fragment of text from the Electronic Beowulf [18] manuscript,

which is written in Old English. To our knowledge, no prior studies were performed on

character frequencies and automatic prediction of character sequences was performed on

Old English texts (as opposed to English, in general, and/or possibly other current lan-

guages). However, the applicability of our study and methods can be extended to sequences

of symbols based on any alphabet.

Our choice of using text from an Old English manuscript has two motivations. Firstly,

the study of such manuscripts is of great interest for humanities and widely popular in

classrooms [16, 17]. Secondly, a typical search tool may reveal little information about

such texts, as they use some special characters that make them "non-standard" both in terms

of the appearance/encoding of such characters and the frequencies these characters occur

in the text. Also, our fist motivation gives us a practical interest in tacking the problem of

character sequence prediction in Old English manuscripts. Such historical documents are

typically in poor shape (as illustrated, for instance, in Figure 4.1 right) and hardly accessible

for the general public (they stored away from the large public, in special collections of

libraries and museums). Practical tools for the analysis of such documents are scarce but

of great interest.

The rest of this chapter is organized as follows. We start be formalizing the problem

we study in Section 4.1. We introduce the specific architectures of the Recurrent Neural

Network (RNN) and Hidden Markov Model (HMM) we are using in Sections 4.2 and 4.3,

respectively.
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Figure 4.1: A folio of the original Beowulf manuscript [18]

4.1 PRELIMINARIES AND THE PROBLEM STATEMENT

The work of transcription and restoration of manuscripts text (like the one in Fig-

ure 4.1 right) is performed manually by highly trained scholars. The result of the tran-

scription (Figure 4.1 left) is often affected by missing characters (represented by dots in

parentheses in Figure 4.1 left), some of which are later recovered by experts after tedious

analysis. Our work aims to assign some quantitative measures to restore the missing parts

of the text. More specifically, we create a model capable of learning from the text that

can be clearly recovered and subsequently making predictions for the missing parts. The

model predicts the missing parts with certain probabilities, providing content restoration

alternatives with probabilities for each option.

We start by introducing the list of character symbols in our study. We denote byA the

set of all characters that appear in the manuscript we analyze (the alphabet):

A = {7, a, æ, b, c, d, e, ð, f, g, h, i, l, m, n, o, p, r, s, t, þ, u, w} (4.1)

We note that the symbol "7" is a specific Old English symbol denoting the conjunction
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Figure 4.2: The text restoration model

“ond" (in Old English), that is, “and" (in modern English). For a character c ∈ Awe denote

by indexc the index of the character c in the alphabet A (an integer from 1 to |A|), and by

index([ci1 , ..., cik ]) the sequence of all indices of characters in the sequence [ci1 , ..., cik ]. If

i is the index of character ci ∈ A, we write A[i] = ci (the alphabet’s character at index i is

ci).

We extend this alphabet with two characters, the space character and the “missing

characters placeholder, ’5’. We denote the extended alphabet by A = , 5 ∪ A.

We next introduce some notations that will help us formalize the problem we tackle

in this study. The original, complete manuscript text we plan to analyze is denoted as T =

[ci]1≤n and represents a sequence of symbols in the alphabet (4.1) plus the space symbol:

ci ∈ A ∪ { }. For convenience, we do not include any punctuation in our text1. We let

n = len(T ) denote the length of sequence T . Similarly, the actual (recovered) manuscript

text is denoted asR and represents a sequence of symbols from the alphabet (4.1) plus the

space symbol and a placeholder ‘5’ for missing characters: R = [ci]1≤m, ci ∈ A. We

let m = len(R) denote the length of the sequence R. Note that the missing characters

placeholder ’5’ is, in general, a replacement for more than one character missing in the

recovered manuscript text R. That is, in general, len(T ) > len(R). Informally, our task

is building a model capable of learning from the recovered manuscript sequence R and

make predictions of actual character(s) in A each occurrence of ’5’ might stand for. We let

[x1, x2, ..., xk] ⊆ T denote a subsequence in T (and similarly for a subsequence inR).

1The original manuscript only includes periods, but not commas or other punctuation marks
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Formally, the problem of recovering the original manuscript text can be formulated as

follows.

Definition 3. [The text restoration problem] The text restoration problem consists of find-

ing the best replacements for the placeholders ’5’ in T using the information in the recov-

ered textR.

We note that the ”best replacements" as stated in the definition is not equivalent to the

"correct replacements" as the solution to the problem will always include some degree of

uncertainty. In our work, we aim to solve the problem automatically, by building models

capable of finding possible solutions to the problem. For this purpose, we define a model

for solving the problem as follows.

Definition 4. [Text restoration model] Let SJ be the set of all subsequences of some length

J ofR− {5}. A text restoration model MK,L is a mapping SK
MK,L−−−→ SL such that

MK,L ([x1, x2, ..., xK ]) = [y1, y2, ..., yL]

where [x1, x2, ..., xK , y1, y2, ..., yL] ⊆ T .

In other words, a model is a mapping that takes a sequence [x1, x2, ..., xK ] and predicts

the following sequence [y1, y2, ..., yL] in the original manuscript text. Figure 4.2 illustrates

the transformation performed by the model. Notice that a model explicitly excludes the

placeholder ’5’ both from the input set of values and the output set of values. This makes

the problem we present here different from the typical sequence-to-sequence prediction

problem (as in [27], for instance). Moreover, forcing a model deal only with the alphabet

characters makes building the model more difficult, as the recovered manuscript text R

(which is typically used to create an accurate model) is fragmented into subsequences of

various lengths after the placeholder character ’5’ is being removed.

A quick observation related to the model in Definition 4 is that the model is not unique:

to any given input sequence one or more correct output sequences can follow. This raises
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the question of confidence in a model (which is related to the “best replacement" statement

in Definition 3). For this purpose, we define the confidence of the model output as follows.

Definition 5. [Confidence of model output] The confidence of a model SK
MK,L−−−→ SL output

is the conditional probability

P (y1, y2, ..., yL|x1, x2, ..., xK) , where [y1, y2, ..., yL] =MK,L ([x1, x2, ..., xK ])

In practice, a more useful way to build models for text recovery is by computing a

few possible outcomes together with their confidence values. Consequently, we define next

the Multiple Outputs Text Restoration Model (MOTRM) as a practical enhancement of the

model in Definition 4.

Definition 6. [MOTRM] Let SJ be the set of all subsequences of some length J ofR−{5}.

A multiple outputs text restoration modelM (n)
K,L is a mapping SK

MK,L−−−→ (SL×(0, 1))n such

that

M
(n)
K,L ([x1, x2, ..., xK ]) =

{
([y

(i)
1 , y

(i)
2 , ..., y

(i)
L ], P (i)) | [x1, x2, ..., xK , y(i)1 , y

(i)
2 , ..., y

(i)
L ] ⊆ T ,

P (i) = P
(
y
(i)
1 , y

(i)
2 , ..., y

(i)
L |x1, x2, ..., xK

)
, i = 1, ..., n

}
(That is, a set of possible sequences in T together with their confidence values.)

The next sections will describe two practical implementation of the MOTRM using

Recurrent Neural Networks (RNNs) and Hidden Markup Models (HMMs).

4.2 THE RECURRENT NEURAL NETWORK MODEL FOR CHARACTER SEQUENCE

PREDICTION

Recurrent Neural Network (RNN) models rely on early work on Neural Networks [24]

and have recently specialized, among a broad set of applications, in sequence to sequence

learning applications [27]. In a nutshell, sequence to sequence learning consists of building
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Figure 4.3: The RNN sequence-to-sequence learning model

a model capable of converting a sequence from a domain (input sequence domain) into

another sequence from another domain (output sequence domain). The input and output

sequences can have different lengths and the input and output domains can be the same or

different. A classical example of a sequence to sequence learning problems is the problem

of translating from one language (the input domain, such as the English vocabulary) into

another language (the output domain, such as the French vocabulary).

The sequence to sequence learning problem typically comes in two versions: (i) equal

size input and output and (ii) different sizes for input and output sequences. The former

version of the problem is less general and typically applies encoding-decoding sequences

of the same length in the same domain. Typically, the models in this category are easier to

implement and more accurate. The later version is more general (but more complex) and

it is being used in a variety of applications: translations, text-to-speech, and speech-to-text

conversions, image recognition, etc. Our manuscript text restoration problem, as define in

the previous section, falls in the second category of sequence to sequence learning prob-

lems: while the seek conversions between sequences of characters over the same alphabet,

the input, and output sequences have different lengths.
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Figure 4.4: RNN model M (26)
K,1

A typical RNN model for sequence-to-sequence learning and classification is illus-

trated in Figure 4.3. This model is built in two phases. In the first phase, the model param-

eters are optimized using a known sequence of characters so that the model best predicts

output characters in the given sequence as described in Definition 4. This is called the

learning or training phase for the model. The outputs of the training phase are simply ig-

nored, the whole purpose of the process is to determine optimal parameters for predicting

correct sequences. Then the model (represented by its parameters) is subsequently used

to produce new output sequences when new input sequences are presented. This is called

the prediction mode of the model. An RNN model capable of producing various input and

output lengths of sequence-to-sequence predictions is presented in [27].

Both the encoder and decoder in Figure 4.3 perform the same function, which is

represented schematically in Figure 4.4. The encoder/decoder function is performed as

a nonlinear transformation between the input and output spaces. As before, we let SJ



28

denote the set of subsequences of length J in R. The encoder/decoder function, denoted

RNN() and depicted in Figure 4.4, is the formal realization of a RNN model M (26)
J,1 , and it

is recursively defined below.

Definition 7. [RNN function] The RNN() function is defined as:

RNN : SJ → A× (0, 1)

RNN(ci1 , ..., ciJ ;H,W,Z,B1, B2) = {(ci, pi)}

where:

ci = A[i], i = 1, ..., |A|

[xi1 , ..., xiJ ] = index([ci1 , ..., ciJ ])

(p1, ..., p|A| = softmax(WxiJ + ZhiJ−1
+B2)

hiJ−1
= Relu(WxiJ−1

+ ZhiJ−2
+B1)

......

hi1 = Relu(Wxi1 +B1)

(4.2)

That is, theRNN() function in (4.2) and depicted in Figure 4.4 creates a pair character-

probability (ci, pi) for each character in A. Overall, there are |A| = 26 pairs produced by

the function on each input. The probability pi of character ci = A[i] is computed using

the softmax() function on a nonlinear, recursive transformation of the numerical input

[xi1 , ..., xiJ ], which is the list of indices for the sequence of characters [ci1 , ..., ciJ ] ∈ SJ .

Finally, the matrices W,Z,H,B1, B2 are the parameters of the RNN() function, which

are optimally determined to maximize the confidence of RNN(). Clearly, the RNN()

function in (4.2) describe a MOTRM model M (26)
J,1 as per Definition 6.

We next establish how the parameters W,Z,H,B1, B2 of RNN() are determined in

practice. We first introduce the cross entropy L(·, ·) as a measure for RNN model confi-

dence.
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Algorithm 1 RNN Learning Phase (training a M (26)
K,1 model)

1: procedure RNN LEARNING(R,A, K,EPOCHS,BATCHSIZE) . computes the

optimal RNN parameters

2: Input: R,A, K,EPOCHS

3: Output: W,Z,H,B1, B2, loss

4: W,Z,H,B1, B2 ← random values

5: for k = 1, ..., EPOCHS do

6: loss← 0

7: batchcount← 0

8: for i = 1, ..., len(R)−K − 1 do

9: {yi ← argmax (RNN([R[i], ...,R[i+K − 1]];W,Z,H,B1, B2))

10: loss = loss+ L([R[i], ...,R[i+K − 1]])

11: batchcount← batchcount+ 1

12: if batchcount mod BATCHSIZE = 0 then . optimize the loss

function

13: W,Z,H,B1, B2 ← argmin

(
BATCHSIZE∑

k=1

L([R[i+ k], ...,R[i+ k +K − 1]])

)
14: batchcount← 0

15: end if

16: end for

17: end for

18: return W,Z,H,B1, B2, loss. Returns the optimal parameters and estimated error

19: end procedure
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Definition 8. [Cross-Entropy Loss] Given RNN(ci1 , ..., ciJ ;H,W,Z,B1, B2) the cross-

entropy loss over a set of sequences SJ on input [ci1 , ..., ciJ ] is:

L([ci1 , ..., ciJ ]) = − log piJ+1

where (ciJ+1
, piJ+1

) ∈ RNN(ci1 , ..., ciJ ;H,W,Z,B1, B2).

That is, the cross-entropy loss is the computed in terms of the probability of the char-

acter following the input sequence (which is the expected character), as computed by the

RNN() function.

I implement the learning phase of the sequence-to-sequence model described in Fig-

ure 4.3 in Algorithm 1. The algorithm computes the optimal values of the model parameters

W,Z,H, b, which are subsequently conveyed to the model decoder for performing charac-

ter prediction with high confidence. The algorithm takes as input the alphabet and the re-

covered manuscript text, together with some fine-tuning algorithm parameters: the number

of epochs (EPOCHS) and the batch size (BATCHSIZE). It starts with random values

of the model parameters W,Z,H, b (line 4), then iterates EPOCHS times, scanning the

whole recovered text at each iteration (lines 5-17). At each iteration, each subsequence

of K characters is being analyzed (lines 8-16) by computing the predicted values through

the RNN() function with parameters W,Z,H, b, and the corresponding cross-entropy loss

value (line 10). After each BATCHSIZE group of iterations, the optimal values of pa-

rameters W,Z,H, b are being computed by minimizing the total cross-entropy loss for the

group (line 13).

Both the RNN model M (26)
K,1 in Definition 7 and the Algorithm 1 implementations in

Python are given in Appendix A.5. An example of the results of a simple M (26)
1,1 model is

presented below.

Example 4.1. On the R text in Appendix A.2 and alphabet (4.1) our RNN model imple-



31

mentation M (26)
1,1 for one character input produces the following results:

RNN([a]) = {(_, 0.3286), (5, 0.0063), (7, 0.0000), (a, 0.0000), (b, 0.0066), (c, 0.0402),

(d, 0.0158), (e, 0.0000), (f, 0.0062), (g, 0.0066), (h, 0.0233), (i, 0.0000), (l, 0.0708),

(m, 0.0312), (n, 0.2532), (o, 0.0000), (r, 0.0814), (s, 0.0303), (t, 0.0140), (u, 0.0062),

(w, 0.0142), (x, 0.0000), (y, 0.0000), (æ, 0.0000), (ð, 0.0413), (þ, 0.0237)}

RNN([x]) = {(_, 0.0000), (5, 0.0000), (7, 0.0000), (a, 0.0000), (b, 0.0000), (c, 0.0000),

(d, 0.0000), (e, 0.0000), (f, 0.0000), (g, 0.0000), (h, 0.0000), (i, 0.0000), (l, 0.0000),

(m, 0.0000), (n, 0.0000), (o, 1.0000), (r, 0.0000), (s, 0.0000), (t, 0.0000), (u, 0.0000),

(w, 0.0000), (x, 0.0000), (y, 0.0000), (æ, 0.0000), (ð, 0.0000), (þ, 0.0000)}

The model predicts various outputs from input a (with output ‘space’ with the highest con-

fidence of 32.86%), whereas on input x the model predicts output o with confidence 100%.

4.3 THE STRUCTURAL ARCHITECTURE THE HIDDEN MARKOV MODEL

I establish next a Hidden Markov Model (HMM) that is specifically designed for per-

forming manuscript text recovery. We will also show that there is an intrinsic connection

between the HMM model we introduce here and the corresponding RNN model we defined

in Section 4.2.

A typical HMM (described in Chapter 2) is depicted in Figure 4.5. For a HMM im-

plementing the model M (26)
K,1 , the set of states X consists of all character in the alphabet

(4.1), and the set of observations Y is the set SK of all subsequences of length K in R.

In this model, based on an observed sequence of characters [c1, ..., cK ] ∈ SK , we aim to

determine the subsequent character cK+1, which is the state of the model in our approach.
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Figure 4.5: The HMM model over the sequence T

Figure 4.6: The HMM-based M (26)
K,1

This HMM inference problem is called filtering and the goal is to determine the conditional

probability P (cK+1|c1, ..., cK) (the probability of a character when all previous K charac-

ters are observed). We adopt the HMM filtering architecture to build the M (26)
K,1 model for

restoring missing manuscript text. Figure 4.6 illustrate this model. The model parameters

are all conditional probabilities for one character when all previous K characters are ob-

served, takes as input a sequence of characters [x1, ..., xK ] ∈ SK of R, and produces as

output all pairs character-confidence for each character in the alphabet. The model defines

a mapping, denoted as HMM(), which is formally defined as follows.

Definition 9. [HMM function] TheHMM() function over all SJ sequences inR is defined
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Figure 4.7: HMM model M (26)
1,1

as:
HMM : SJ → A× (0, 1)

HMM(ci1 , ..., ciJ ) = {(ci, P (ci|ci1 , ..., ciJ ))|ci ∈ A}

where :

P (ci|ci1 , ..., ciJ ) =
|{[ci1 , ..., ciJ , ci] ∈ SK+1}|
|{[ci1 , ..., ciJ ] ∈ SK}|

(4.3)

That is, the model parameters consists of apriori probabilities P (ci|ci1 , ..., ciJ ) =

|{[ci1 , ..., ciJ , ci] ∈ SK+1}|
|{[ci1 , ..., ciJ ] ∈ SK}|

, which are computed as the ratio of occurrences of sequence

[ci1 , ..., ciJ , ci] over the number of occurrences of sequences [ci1 , ..., ciJ ], for all sequences

[ci1 , ..., ciJ ] ∈ SK . Moreover, the confidence of predicting some character ci ∈ A on input

the [ci1 , ..., ciJ ] is the respective conditional probability parameter P (ci|ci1 , ..., ciJ ).

Figure 4.7 shows an HMM-based model forK = 1. The parameters of the model con-

sists of conditional probabilities for each sequence of two characters in R. For simplicity

we denote P (aa) = P (a|a), P (ab) = P (b|a), P (bw) = P (w|b), etc. That is, the probabil-

ity of character a when a is observed, of b when a is observed, of w when b is observed, etc.
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These probabilities are computed as given in (4.3) and they are given in Appendix A.3 for

the input text in Appendix A.2. An example of the results of a simple HMM-based M (26)
1,1

model as in Figure 4.7 is presented below.

Example 4.2. On the R text in Appendix A.2 and alphabet (4.1) our HNN model imple-

mentation M (26)
1,1 for one character input produces the following results:

HMM([a]) = {(_, 0.3145), (5, 0.0081), (7, 0.0000), (a, 0.0000), (b, 0.0081), (c, 0.0403),

(d, 0.0161), (e, 0.0000), (f, 0.0081), (g, 0.0081), (h, 0.0242), (i, 0.0000), (l, 0.0726),

(m, 0.0323), (n, 0.2500), (o, 0.0000), (r, 0.0806), (s, 0.0323), (t, 0.0161), (u, 0.0081),

(w, 0.0161), (x, 0.0000), (y, 0.0000), (æ, 0.0000), (ð, 0.0403), (þ, 0.0242)}

HMM([x]) = {(_, 0.0000), (5, 0.0000), (7, 0.0000), (a, 0.0000), (b, 0.0000), (c, 0.0000),

(d, 0.0000), (e, 0.0000), (f, 0.0000), (g, 0.0000), (h, 0.0000), (i, 0.0000), (l, 0.0000),

(m, 0.0000), (n, 0.0000), (o, 1.0000), (r, 0.0000), (s, 0.0000), (t, 0.0000), (u, 0.0000),

(w, 0.0000), (x, 0.0000), (y, 0.0000), (æ, 0.0000), (ð, 0.0000), (þ, 0.0000)}

The model predicts various outputs from input a (with output ‘space’ with the highest con-

fidence of 31.45%), whereas on input x the model predicts output o with confidence 100%.

These results are very similar to the results in Example 4.1 for the corresponding RNN

model. Notice that in an HMM model some confidence values are zero (as they are com-

puted based on several occurrences for different sequences), whereas in an RNN model

these confidences are never zero as they are computed via the softmax function in Defini-

tion ?? (but they might be very small and consequently approximated as zero as in Exam-

ple 4.1).
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Figure 4.8: Transitions for the sequence ’tofæst ’⊆ T

Figure 4.8 shows an HMM-based model for K = 2. That is, two characters are ob-

served (they form the set of observations Y ) and the prediction for the next character is

computed, for each character in the alphabet (with their respective confidences), which

form the set of HMM states. The model parameters consists of all conditional probabilities

for sequences of length 3 in ’tofæst ’, as follows: P (tof) = P (f |to), P (toæ) = P (æ|to),

etc. As before, these probabilities also represent the confidences of predicting each respec-

tive alphabet character. The complexity of the HMM model (both in terms of architecture

and computations) grows with K. Some numeric results from our experiments for K = 2

are presented in Chapter 5.

The RNN and HMM models as formulated in Definitions 7 and 9, the results presented

in Examples 4.1 and 4.2, and the experimental results we present in Chapter 5 allow us

formulate the following conclusion that establishes an intrinsic relationship between the

RNN and HMM models.

A Recurrent Neural Network model for text recovery as formulated in Defini-
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tion 7 converges to a Hidden Markov Model for text recovery as formulated in

Definition 9.



37

CHAPTER 5

THE EXPERIMENTAL RESULTS

The models were implemented and experiments were run in Python. The Recurrent

Neural Network (RNN) models were implemented using the TensorFlow [28] machine

learning platform and the Keras [8] API. We used three folios (pages) of manuscript text

for our experiments: the original manuscript text is listed in Appendix A, Section A.1, and

the pre-processed text (after removing punctuation and meta-information) is listed in Sec-

tion A.2. The complete code of Python experiments are listed in Appendix A, Section A.5.

I implemented both the RNN and HMM based versions of the general MOTRM model

in Definition 6 for one output (J = 1) and the alphabet in (4.1), M (26)
K,1 . I subsequently ran

experiments for K = 1, 2, 3, that is for the models M (26)
1,1 , M (26)

2,1 , and M (26)
3,1 . For all the

experiments, I used two personal computers (PC) equipped with an Intel Core i7-4770

CPU @3.40GH and Intel Core i5 with 8GB RAM. The experiments took different time

based on the input sequence and the output expectation with respect to the computational

capabilities.

In this study, I implemented three model: model one takes one character input and

predicts the next character. Model two take two character input and one character output,

and model three takes three character input and one character output. All three models are

trained and tested on a small portion from the beowulf manuscript. Model 1, which is a one

to one model, trained and finished running on both the computers in under five minutes.

Model two took one hour to train and finish running on Intel core i5 with 8GB RAM. On the

Intern core i7 computer, model ran faster, although it was not an significant improvement.

Finally model three, with an input sequence length of 3 took significantly longer time to

train and test in both the computer. In the Intern i5 computer, with the same dataset as the

other two models, this experiment ran over night. Similar timing was observed for Intel

core i7, although it was faster.
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It is worth mentioning that computational prowess is of utmost importance. These

models are expensive to train, and is known to generate results with higher confidence for

larger dataset. This brings the conundrum of training time and memory complexity. When

I tried to train model two with the entire beowulf manuscript, the Intel core i5 computer ran

out of memory. Considering the computational resources I decide to run experiments with

limited data size, and smaller models. The implementation details and experimental results

are reported in the subsequent sections.

5.1 THE RNN-BASED IMPLEMENTATION OF M
(26)
K,1

The model has been implemented in Python using the Keras libraries [8] and a “se-

quential" architecture.

def build_model(vocabulary, prediction_num,

hidden_layers=256, n_fac=42):

vocab_size = len(vocabulary)

model = Sequential([

SimpleRNN(units=hidden_layers,

input_shape=(1,prediction_num),

activation="relu"),

Dense(vocab_size, activation=’softmax’)

])

model.compile(loss=’sparse_categorical_crossentropy’,

optimizer=’adam’)

model.summary()
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return model

The model’s parameters summary is listed below. The same architectural model has been

used for all experiments (K = 1, 2, 3).

Model: "sequential_5"

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

embedding (Embedding) (None, 1, 8) 208

_________________________________________________________________

simple_rnn_5 (SimpleRNN) (None, 128) 17536

_________________________________________________________________

dense_5 (Dense) (None, 26) 3354

=================================================================

Total params: 21,098

Trainable params: 21,098

Non-trainable params: 0

For each experiment, the model has been trained for 1000 epochs with a batch size of

12. We have used a simple re-sampling technique (replicating the input data five times) to

boost the model’s accuracy and training time.

5.2 THE HMM-BASED IMPLEMENTATION OF M
(26)
K,1

The HMM model implementation of M (26)
K,1 entirely relies on the definition for the

conditional probability in Definition 9:

P (ci|ci1 , ..., ciJ ) =
|{[ci1 , ..., ciJ , ci] ∈ SK+1}|
|{[ci1 , ..., ciJ ] ∈ SK}|

The relevant code from listing in Appendix A.5 is given below:
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def generate_counts(inp, vocab, data, c2i_map, i2c_map):

my_preds = {}

for c in vocab:

my_preds[c] = 0

arr = np.array([c2i_map[i] for i in inp])

la = len(arr)

#lazy search

for i in range(len(data)-la):

#check if arr found at this position

found = True

for j in range(la):

if (arr[j] != data[i+j]):

found = False

break

if (found):

c = i2c_map[data[i+la]]

my_preds[c] += 1

return my_preds

def generate_probs(inp, vocab, data, c2i_map, i2c_map):

counts = generate_counts(inp, vocab, data,

char_to_index, index_to_char)

s = sum(counts.values())
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probs = counts.copy()

if (s > 0):

for k,v in probs.items():

probs[k] = v/s

return probs

The implementation essentially creates a table with a row entry for each sequence of K

characters starting at every position in the input textR. For each such entry, a count is kept

for each alphabet character and for each occurrence of that character immediately following

theK-length string being considered. These occurrences are then normalized per each row,

to produce the desired conditional probability.

In summary, our HMM for the M (26)
K,1 model on an input R with len(R) = N has

|A| = 26 states and up to N − K − 1 possible observed values, one for each K-length

substring of R plus one character for what follows to the K-length substring (this is an

upper bound, as not all these substrings are distinct). Consequently there are (N − K −

1)∗ (26−1) transition parameters (the only parameters of the HMM we are actually using)

for our model1. For our input text R given in Appendix A.2, we have that N = len(R) =

2115. Hence for K = 1, 2, 3 we have that the HMM model has a constant number of

parameters 52,825; 52,800; 52,775, respectively.

5.3 CHARACTER PREDICTION USING THE M
(26)
1,1 MODELS

We ran the experiments repeatedly for different parameter values (epochs, batch sizes,

re-sampling and no re-sampling). As expected, a large number of epochs and re-sampling

considerably improved the results of our experiments. It was not our goal to study and re-

1The computation takes into account that one transition probability can be determined once the other are

known, since their sum is one.
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Figure 5.1: Characters frequencies

port the relationship computation power to accuracy. Our aim was to illustrate the intrinsic

relation between the RNN and HMM models. We consider results for K = 1 we obtained

using 1000 epochs, batch size 12 are exceptional in terms of justifying our claims.

We first computed all alphabet A characters frequencies to determine how each char-

acter is used in the input text of our experiments. The results are illustrated in Figure 5.1.

We see, for instance, that space is the most frequent (no surprise), followed by ‘e’, ’n’, ’a’,

etc. We see that ’x’ is less frequent, in fact, with zero occurrences. We then organized our

experimental results as follows:

• Tabular versions of the RNN() and HMM() functions in Definitions 7 and 9.

• Next character predictions comparisons for the RNN() and HMM() functions.

• The descending order of probabilities/confidences of each alphabet character input.

The tabular versions of the RNN() and HMM() functions are completely given in Ap-
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Figure 5.2: Probabilities of characters following the character ’ ’

pendix A.4 and A.3, respectively. The input character is given in the table heading, then

the output probabilities/confidences are in the respective character column, for the corre-

sponding character in the first column. For instance (as given also in Examples 4.1 and

4.1):

RNN([a]) = {(_, 0.3286), (5, 0.0063), (7, 0.0000), (a, 0.0000), (b, 0.0066), (c, 0.0402),

(d, 0.0158), (e, 0.0000), (f, 0.0062), (g, 0.0066), (h, 0.0233), (i, 0.0000), (l, 0.0708),

(m, 0.0312), (n, 0.2532), (o, 0.0000), (r, 0.0814), (s, 0.0303), (t, 0.0140), (u, 0.0062),

(w, 0.0142), (x, 0.0000), (y, 0.0000), (æ, 0.0000), (ð, 0.0413), (þ, 0.0237)}

HMM([a]) = {(_, 0.3145), (5, 0.0081), (7, 0.0000), (a, 0.0000), (b, 0.0081), (c, 0.0403),

(d, 0.0161), (e, 0.0000), (f, 0.0081), (g, 0.0081), (h, 0.0242), (i, 0.0000), (l, 0.0726),

(m, 0.0323), (n, 0.2500), (o, 0.0000), (r, 0.0806), (s, 0.0323), (t, 0.0161), (u, 0.0081),
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Figure 5.3: Probabilities of characters following ’x’

(w, 0.0161), (x, 0.0000), (y, 0.0000), (æ, 0.0000), (ð, 0.0403), (þ, 0.0242)}

Comparisons of various characters probabilities/confidences can be seen in Figures

5.2, 5.3, and 5.5 for space character (highest frequency), ‘x’ (least frequency), ’g’ (inter-

mediate frequency, respectively. Also, 5.6 shows the probabilities of characters following

the special character ‘5’ (placeholder for ‘missing’), as potentially useful for predicting

the missing part. In these figures, the probabilities are indicated on the ‘y’ axis and the

next characters on the ’x’ axis. The fact that the graphs for RNN() and HMM() are al-

most perfectly overlapping suggest the two models behave similarly. However, as pointed

out earlier, these experimental results depend greatly on the parameters of the model. For

comparison, Figure 5.4 shows the transitions to the next character from the least frequent

character ’x’, for training with 25 epochs and no re-sampling the data (instead of training

with 1000 epochs as for the results in 5.3). The differences between the two curves are

significant.
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Figure 5.4: Probabilities of characters following ’x’: lesser trained model

Finally, the descending order of probabilities/confidences of each alphabet charac-

ter input is fully given in Tables 5.1 and 5.2. For instance, the first row of Table 5.1

shows that RNN(′ ′) predicts the following characters in the descending confidence or-

der: ’hswmgþfndbt75cloreaæðiy ux’. On the other hand, on the same input ‘space‘, the

HMM(′ ′) model predicts: ’hswmgþfndbt75cloreaæðiyu x’. We can see a perfect match

on all but the last two before las places. We consider these results as excellent since, in prac-

tice, only the first few options are being considered. A quick investigation of Tables 5.1

and 5.2 shows no difference on the first position for the two models. However, some in-

put do produce different outcomes starting at the second position (inputs ’b’, ’c’, etc.).

The following example shows both functions RNN() and HMM() at work: prediction of

missing characters inR.

Example 5.1. Lines 3-4 in the models’ input text (Appendix A.2) read:

fæhðe 7fyrene wæs tofæst onþam þ5
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Figure 5.5: Probabilities of characters following the ’g’

wæs eað fynde þe him elles hwær geru5

To predict the missing characters at the end of each line we use RNN(’þ’), HMM(’þ’),

RNN(′u′), and HMM(′u′) and we retain the first five character predictions following the

respective inputs, to get, respectively:

RNN(’þ’)→ ’eæoag’,

HMM(’þ’)→ ’eæoam’,

RNN(′u′)→ ’mnþrð’, and

HMM(′u′)→ ’mnrþ ’

Now if we compare with the respective lines in T from [18]:

fæhðe 7fyrene wæs tofæst onþam þ(a)

wæs eað fynde þe him elles hwær geru(m)
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Figure 5.6: Probabilities of characters following ’5’: unknown character

We conclude that the first prediction matched the expert’s opinion (’a’) only on the 4th po-

sition for both models, whereas the second prediction was correct (’m’) on the first position

for both models.

The example above emphasizes once again that these models are meant to assist an

expert, rather than replacing the work of the expert.

5.4 CHARACTER PREDICTION USING THE M
(26)
2,1 MODELS

For K = 2 the observable values consist of all (distinct) substrings of 2 characters

in the input text. We collected the frequencies for all such substrings and the top 20 most

frequent substrings are shown in Figure 5.7.

However, the slightly increased complexity of the M (26)
2,1 model makes training such

models more difficult. This is illustrated by the differences between transition probabilities

of the RNN and HMM models on the input string ’ne’ with relatively high frequency
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Model / Character Next character(s)

’[RNN] ’ ’hswmgþfndbt75cloreaæðiy ux’
’[HMM] ’ ’hswmgþfndbt75cloreaæðiyu x’

’[RNN] 5’ ’ euiyhgrdtnlðæbsfmþacwo7x5’
’[HMM] 5’ ’ euyghioðæxwtsrmn5lfdcba7þ’

’[RNN] 7’ ’fwetlgsn dmcrhðþibau5æyox7’
’[HMM] 7’ ’fwegtlsn rðæyxumo5ihdcba7þ’

’[RNN] a’ ’ nrlðcmsþhdwtgb5fueyiæx7ao’
’[HMM] a’ ’ nrlðcsmþhwtdbugf5oeixyæ7a’

’[RNN] b’ ’eioaæbru dchyntwsfðmþlx57g’
’[HMM] b’ ’eoiabæur ðyxwtsmn5lhgfdc7þ’

’[RNN] c’ ’e yunowrð5tiæamþgsflhdcb7x’
’[HMM] c’ ’eyu noðwr5æxtsmlihgfdcba7þ’

’[RNN] d’ ’e aræoudniywlðtþmhgf57bxsc’
’[HMM] d’ ’e aræouydwilnðstxm5hgfcb7þ’

’[RNN] e’ ’ anoslrtmdwgcfhþbðeu5iæ7xy’
’[HMM] e’ ’ anoslrtmdwgfchþðbe57uixyæ’

’[RNN] f’ ’eærtyoa du5ilwðmhngsþfcb7x’
’[HMM] f’ ’eæryto adu5ðxwsmnlihgfcb7þ’

’[RNN] g’ ’ea ronyiudslæmðtxhgb75fcwþ’
’[HMM] g’ ’ea ronyuidsðæxwtm5lhgfcb7þ’

’[RNN] h’ ’etiwðy ærua5odnlmghsþfcb7x’
’[HMM] h’ ’etiwðy æura5oxsmnlhgfdcb7þ’

’[RNN] i’ ’ðnhmgdcslaefþ5btx wru7oiyæ’
’[HMM] i’ ’ðnhmgscdlaeþf5btxioruwyæ7 ’

’[RNN] l’ ’ eadiolcmurnwyfætxgbð7sþh5’
’[HMM] l’ ’ eadiolumcwfnrygðæxs7thb5þ’

Table 5.1: Part I: Transitions to next character for RNN and HMM
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Model / Character Next character(s)

’[RNN] m’ ’ oaeiæuy5g7rmhwnfðxþltcdsb’
’[HMM] m’ ’ oaeiæuy5ðxwtsrmnlhgfdcb7þ’

’[RNN] n’ ’ ediagocnðumþftæyrsxlhb5w7’
’[HMM] n’ ’ ediagocnðuæytrmfþ5slhwxb7’

’[RNN] o’ ’nrdlf tmðgþhbcs5euiyoæaw7x’
’[HMM] o’ ’nrdlf tmðgþ5bschoai7uwxyæe’

’[RNN] r’ ’e aiuæhndðofgymrcwþlts5x7b’
’[HMM] r’ ’e aiuæhnofdðgswytmrlcþ5xb7’

’[RNN] s’ ’ etwicsæanoylufgmþhb7rðd5x’
’[HMM] s’ ’ tewcisæaynoulðxmr5hgfdb7þ’

’[RNN] t’ ’ eoruaigtwfæbxmþh7dcnslð5y’
’[HMM] t’ ’ eoruaifgwtðæyxsmn5lhdcb7þ’

’[RNN] u’ ’mnþrð gsfl5hdwte7boiæacyux’
’[HMM] u’ ’mnrþ ðsfgl5æyxwutb7caihedo’

’[RNN] w’ ’iæaeoyrlu tdnsþfcðwmhg5x7b’
’[HMM] w’ ’iæeaoyr ulðxwtsmn5hgfdcb7þ’

’[RNN] x’ ’o 5ðæyxwutsrnmlihgfedcba7þ’
’[HMM] x’ ’o 5ðæyxwutsrnmlihgfedcba7þ’

’[RNN] y’ ’rnldðmthsoæiy7aexfþgw5cbu ’
’[HMM] y’ ’rnlðdmthsoæyxwu 5igfecba7þ’

’[RNN] æ’ ’stgrdmþhclfnðb7x5w ouyæiae’
’[HMM] æ’ ’stgrdmþchlfðneuæyxwb7ao5i ’

’[RNN] ð’ ’ aeoluþnfwræi7ytsðdbmxcgh5’
’[HMM] ð’ ’ aeuolfnþgtðæyxw7shrbc5dim’

’[RNN] þ’ ’eæoagmuð75 yrindfltsþchxbw’
’[HMM] þ’ ’eæoamug5ðyr i7lnhfstdwxcbþ’

Table 5.2: Part II: Transitions to next character for RNN and HMM
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Figure 5.7: Most frequent substrings for the M (26)
2,1 models

(Figure 5.8). For the relatively less frequent input string ’ru’, the differences between the

two models grow bigger (Figure 5.9). The following example will show that both models

can still produce good practical results when predicting the next character.

Example 5.2. We consider again line 4 in the models’ input text (Appendix A.2):

wæs eað fynde þe him elles hwær geru5

Notice that we omit line 3 this time, as in line 3 two preceding characters for the

placeholder ‘5’ include a space, so we omit that case from a practical perspective. To

predict the missing characters at the end the line we use RNN(′ru′), and HMM(′ru′)

and, as before, we retain the first five character predictions following the respective inputs,

to get, respectively:

RNN(′ru′)→ ’m eay’, and

HMM(′ru′)→ ’mn 57’
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Figure 5.8: Next character probability for input ’ne’ in M (26)
2,1 model

Now if we compare with the respective line in T from [18]:

wæs eað fynde þe him elles hwær geru(m)

We conclude that the prediction was correct (’m’) on the first position for both models.

5.5 CHARACTER PREDICTION USING THE M
(26)
3,1 MODELS

The observable values now consist of all (distinct) substrings of 3 characters in the

input text. We collected the frequencies for all such substrings and the top 10 most fre-

quent substrings are shown in the following figure. It is noticeable that, as expected, the

frequencies of substrings went down considerably with the length of the input substring.

As we noticed in the previous section, the increased complexity of the M (26)
3,1 model

makes training these models more computationally expensive if good predictions are ex-

pected. This is illustrated by the differences between transition probabilities of the RNN
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Figure 5.9: Next character probability for input ’ru’ in M (26)
2,1 model

and HMM models on the input string ’iht’ with relatively high frequency (Figure 5.11).

For our case scenario used in previous examples (this time a substring of length K = 3)

’eru’ (for which we found frequency one), the differences between the two models grow

bigger (Figure ??). However, as the next example will illustrate an interesting outcome for

this case scenario: the HMM model has not previous knowledge to make a prediction for

the following character (other than the missing text placeholder ’5’), whereas the RNN

model does make a correct prediction.

Example 5.3. As in the previous example, we consider again line 4 in the models’ input

text (Appendix A.2):

wæs eað fynde þe him elles hwær geru5

This time, to predict the missing characters at the end the line we use the previous three

characters as input RNN(′eru′), and HMM(′eru′) and, as before, we retain the first five
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Figure 5.10: Most frequent substrings for the M (26)
3,1 models

character predictions following the respective inputs, to get, respectively:

RNN(′eru′)→ ’mr 5t’, and

HMM(′eru′)→ ’5’

Now if we compare again with the respective line in T from [18]:

wæs eað fynde þe him elles hwær geru(m)

An interesting thing happens. We conclude that the RNN prediction was correct

(’m’) on the first position, but the HMM model predicts ‘5’ with 100% confidence. This is

a direct consequence of the fact that HMM ’s prediction strictly relies on previously seen

similar instances of the input. As there is a single ‘eru’ subsequence in the whole input,

the next character of this subsequence is indicated as the probable outcome with 100%

confidence. The RNN model, on the other hand, is more flexible for this situations. Not
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Figure 5.11: Next character probability for input’iht’ in the M (26)
3,1 model

only the RNN model relies on the previously seen ‘eru’ sequences, but also on the shorter

‘ru’ and ‘u’ (shorter length) sequences. This clearly shows the flexibility of the RNN

models over the HMM counterparts.
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Figure 5.12: Next character probability for input ’eru’ in the M (26)
3,1 model
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this work we present a Recurrent Neural Network (RNN) model for finding missing

character sequences in an Old English manuscript. Our model relies on the intrinsic rela-

tionship between Recurrent Neural Networks models and Hidden Markov Models (HMM),

which we explain and formalize. While RNNs are very powerful models used nowadays

for various tasks in deep learning (sequence classification, speech to text and text to speech

conversions, etc.), they are difficult to explain and analyze from a theoretical standpoint.

Moreover, due to the complexity of the RNN models, they may be unsuitable for some

practical applications (such as online applications). The HMMs, on the other hand, are

typically faster and easier to use than the RNNs counterparts. Their simplicity and theoret-

ically sound foundation recommend them as well for various prediction tasks (one famous

application is the Google’s PageRank algorithm [20] used for search results ranking) and

make HMMs suitable for character sequence prediction using significantly less computa-

tional power than their RNNs counterparts.

We formally define in Chapter 4 two models for text recovery: the Recurrent Neural

Network (RNN) model and the Hidden Markov Mode (HMM). We also establish a re-

markable relationship between the two models, namely that the RNN model converges to a

HMM model. While the conclusion is very important, it lacks some practical aspects such

as establishing bounds for such convergence. We leave this aspects, together with a formal

justification for the conclusion for future work.

The analysis we carry in this study is performed at the character level. That is, given a

sequence of characters of lengthK our model predicts the preceding or following sequence

of characters of length L. Our specific goal is rather practical. We aim to assist restoration

experts in their manuscript transcription work by providing quantitative prediction on miss-

ing parts of the manuscript and various options for manuscript restoration. As we shown
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in Sections 5.1 and 5.2, the HMM model is considerable bigger (twice the number of pa-

rameters). However, as the complexity of the problem increases (longer input strings), the

RNN model needs to adjust and increase its size in order to perform better. It would con-

sequently need more network layers and more parameters, eventually catching up with the

HMM model (which size will remain about the same). As illustrated by our experimental

results, as the complexity of the problem increases, the RNN model requires either more

training or more parameters in order to maintain its accuracy. It would be interesting to

study in what theoretical conditions the two models will break even.

The character level approach we develop in this study can be extended or completed

with an analogous word level approach: given a sequence of k words, the sequence of pre-

ceding/following L words is to be predicted. Our proof of concept character level approach

was a practical choice dictated rather by practical reasons. We implemented and performed

experiments on a small fragment of the manuscript text using relatively small models and a

regular computer. A word level approach would require processing more data, using larger

models and significantly more computational power. We leave this study for future work.

While our focus was on studying a single Old English manuscript (the Electronic

Beowulf [18], for rather practical reasons), the results of this work can be directly extended,

in most cases, to analyze and restore other manuscripts. Moreover, a complete analysis

of resources and the computation power needed to analyze the entire manuscript can be

carried out in detail. Such an analysis would provide a complete insight of how RNN and

HMM models fare in a practical setting. This task was beyond the aims of our work and

we consequently leave it for future work.
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Appendix A

APPENDIX A

A.1 ORIGINAL MANUSCRIPT TEXT FOR ANALYSIS

...)yrst acym(...) ane niht ef(...

morð beala mare 7nomearn fore

fæhðe 7fyrene wæs tofæst onþam þ(a)

wæs eað fynde þe him elles hwær geru(m)

5 licor ræste bed æfter burum ðahi(m)

gebeacnod wæs gesægd soðlice sweo(...

lan tacne heal ðegnes hete heold h(...

ne syðþan fyr 7fæstor seþæm feonde

æt wand. Swa rixode 7wið rihte wan

10 ana wið eallum oð þæt idel stod husa selest

wæs seo hwil micel .xii. wintra tid torn ge

þolode wine scyldenda weana gehwelcne

sidra sorga forðam wearð ylda bearnum

undyrne cuð gyddum geomore þætte gren

15 del wan hwile wið hroþgar hete niðas

wæg fyrene 7fæhðe fela missera singa

le sæce sibbe newolde wið manna hwone

mægenes deniga feorh bealo feorran

fea þingian neþær nænig witena wenan

20 þorfte beorhtre bote tobanum folmum .

f. 133v, (ll. 159-181)

...h)tende wæs deorc deaþ sc(...
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...)uguþe 7geogoþe seomade 7syrede

...)in nihte heold mistige moras men ne

...)un non hwyder helrunan hwyrftum

5 scriþað swa fela fyrena feond mancyn

...)es atol angengea oft gefremede.

(h)eardra hynða heorot eardode sinc

...)ge sel sweartum nihtum nohe þone

gif stol gretan moste maþðum formeto

10 de ne his myne wisse þætwæs wræc micel

wine scyl dinga modes brecða monig oft

gesæt rice to rune ræd eahtedon hwæt

swið ferhðum selest wære wið fær gryrum

toge frem manne. Hwilum hie gehe

15 ton æt hrærg trafum wig weorþunga

wordum bædon þæt him gast bona geoce

gefremede. wið þeod þreaum swylc wæs

þeaw hyra. hæþenra hyht helle gemun

don inmod sefan metod hie ne cuþon

20 dæda demend newiston hie drihten god.

f. 134r, (ll. 182-203a)

...) huru heofena helm herian (...

cuþon wuldres waldend wabið þæm ðe

sceal þurh sliðne nið sawle bescufa(...

infyres fæþm frofre newenan wihte ge

5 wendan wel bið þæm þemot æfter deað

dæge drihten secean. 7tofæder fæþmum
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freoðo wilnian.

.III.

Swaða mæl ceare maga healfdenes singa

10 la seað ne mihte snotor hæleð wean on

wendan wæs þætgewin to swyð laþ7longsum þe

onðaleode becom nydwracu niþgrim niht

bealwa mæst þætfram ham ge frægn higela

ces þegn god mid geatum grendles dæda

15 sewæs moncynnes mægenes strengest on

þæm dæge þysses lifes æþele 7eacen het

him yðlidan godne gegyrwan cwæð heguð

cyning ofer swan rade secean wol de mær

ne þeoden þahim wæs man na þearf ðone

20 siðfæt him snotere ceorlas lyt hwon logon.
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A.2 MODEL TRAINING TEXT

5yrst acym5 ane niht ef5

morg beala mare 7nomearn fore

fæhge 7fyrene wæs tofæst onsam s5

wæs eag fynde se him elles hwær geru5

licor ræste bed æfter burum gahi5

gebeacnod wæs gesægd soglice sweo5

lan tacne heal gegnes hete heold h5

ne sygsan fyr 7fæstor sesæm feonde

æt wand. Swa rixode 7wig rihte wan

ana wig eallum og sæt idel stod husa selest

wæs seo hwil micel wintra tid torn ge

solode wine scyldenda weana gehwelcne

sidra sorga forgam wearg ylda bearnum

undyrne cug gyddum geomore sætte gren

del wan hwile wig hrosgar hete nigas

wæg fyrene 7fæhge fela missera singa

le sæce sibbe newolde wig manna hwone

mægenes deniga feorh bealo feorran

fea singian nesær nænig witena wenan

sorfte beorhtre bote tobanum folmum

5tende wæs deorc deas sc5

5uguse 7geogose seomade 7syrede

5in nihte heold mistige moras men ne

5un non hwyder helrunan hwyrftum

scrisag swa fela fyrena feond mancyn
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5es atol angengea oft gefremede.

5eardra hynga heorot eardode sinc

5ge sel sweartum nihtum nohe sone

gif stol gretan moste masgum formeto

de ne his myne wisse sætwæs wræc micel

wine scyl dinga modes brecga monig oft

gesæt rice to rune ræd eahtedon hwæt

swig ferhgum selest wære wig fær gryrum

toge frem manne. Hwilum hie gehe

ton æt hrærg trafum wig weorsunga

wordum bædon sæt him gast bona geoce

gefremede. wig seod sreaum swylc wæs

seaw hyra. hæsenra hyht helle gemun

don inmod sefan metod hie ne cuson

dæda demend newiston hie drihten god.

5 huru heofena helm herian 5

cuson wuldres waldend wabig sæm ge

sceal surh sligne nig sawle bescufa5

infyres fæsm frofre newenan wihte ge

wendan wel big sæm semot æfter deag

dæge drihten secean. 7tofæder fæsmum

freogo wilnian.

Swaga mæl ceare maga healfdenes singa

la seag ne mihte snotor hæleg wean on

wendan wæs sætgewin to swyg las7longsum se

ongaleode becom nydwracu nisgrim niht
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bealwa mæst sætfram ham ge frægn higela

ces segn god mid geatum grendles dæda

sewæs moncynnes mægenes strengest on

sæm dæge sysses lifes æsele 7eacen het

him yglidan godne gegyrwan cwæg hegug

cyning ofer swan rade secean wol de mær

ne seoden sahim wæs man na searf gone

sigfæt him snotere ceorlas lyt hwon logon.
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A.3 APRIORI (HMM) CHARACTERS TRANSITION MATRIX

5 7 a b c d e f

0.0027 0.5789 0.0000 0.3145 0.0000 0.1081 0.2400 0.3425 0.0392

5 0.0246 0.0000 0.0000 0.0081 0.0000 0.0270 0.0000 0.0000 0.0196

7 0.0246 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

a 0.0137 0.0000 0.0000 0.0000 0.0526 0.0000 0.0933 0.1220 0.0392

b 0.0383 0.0000 0.0000 0.0081 0.0526 0.0000 0.0000 0.0039 0.0000

c 0.0219 0.0000 0.0000 0.0403 0.0000 0.0000 0.0000 0.0157 0.0000

d 0.0437 0.0000 0.0000 0.0161 0.0000 0.0000 0.0133 0.0197 0.0196

e 0.0164 0.1053 0.1000 0.0000 0.5263 0.3514 0.3867 0.0000 0.2157

f 0.0656 0.0000 0.3000 0.0081 0.0000 0.0000 0.0000 0.0157 0.0000

g 0.0710 0.0526 0.1000 0.0081 0.0000 0.0000 0.0000 0.0157 0.0000

h 0.1175 0.0526 0.0000 0.0242 0.0000 0.0000 0.0000 0.0079 0.0000

i 0.0082 0.0526 0.0000 0.0000 0.1053 0.0000 0.0133 0.0000 0.0000

l 0.0219 0.0000 0.1000 0.0726 0.0000 0.0000 0.0133 0.0669 0.0000

m 0.0738 0.0000 0.0000 0.0323 0.0000 0.0000 0.0000 0.0236 0.0000

n 0.0601 0.0000 0.1000 0.2500 0.0000 0.0811 0.0133 0.1063 0.0000

o 0.0219 0.0000 0.0000 0.0000 0.1053 0.0541 0.0533 0.0866 0.0784

r 0.0191 0.0000 0.0000 0.0806 0.0526 0.0270 0.0667 0.0394 0.1569

s 0.1148 0.0000 0.1000 0.0323 0.0000 0.0000 0.0000 0.0787 0.0000

t 0.0273 0.0000 0.1000 0.0161 0.0000 0.0000 0.0000 0.0236 0.1176

u 0.0027 0.1053 0.0000 0.0081 0.0526 0.1351 0.0267 0.0000 0.0196

w 0.1093 0.0000 0.1000 0.0161 0.0000 0.0270 0.0133 0.0197 0.0000

x 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

y 0.0055 0.0526 0.0000 0.0000 0.0000 0.1622 0.0133 0.0000 0.1176

æ 0.0137 0.0000 0.0000 0.0000 0.0526 0.0000 0.0533 0.0000 0.1765
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ð 0.0109 0.0000 0.0000 0.0403 0.0000 0.0270 0.0000 0.0039 0.0000

þ 0.0710 0.0000 0.0000 0.0242 0.0000 0.0000 0.0000 0.0079 0.0000

g h i l m n o r s

0.0923 0.0303 0.0000 0.2222 0.4805 0.3265 0.0600 0.1400 0.2979

5 0.0000 0.0152 0.0125 0.0000 0.0130 0.0000 0.0100 0.0000 0.0000

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

a 0.1385 0.0152 0.0375 0.1270 0.1039 0.0748 0.0000 0.1200 0.0213

b 0.0000 0.0000 0.0125 0.0000 0.0000 0.0000 0.0100 0.0000 0.0000

c 0.0000 0.0000 0.0625 0.0317 0.0000 0.0204 0.0100 0.0100 0.0638

d 0.0154 0.0000 0.0625 0.1111 0.0000 0.0816 0.1400 0.0300 0.0000

e 0.4462 0.2424 0.0375 0.1746 0.0909 0.2109 0.0000 0.2400 0.1489

f 0.0000 0.0000 0.0250 0.0159 0.0000 0.0068 0.0700 0.0300 0.0000

g 0.0000 0.0000 0.0750 0.0000 0.0000 0.0680 0.0300 0.0200 0.0000

h 0.0000 0.0000 0.1125 0.0000 0.0000 0.0000 0.0100 0.0400 0.0000

i 0.0308 0.1667 0.0000 0.0794 0.0779 0.0816 0.0000 0.0800 0.0638

l 0.0000 0.0000 0.0500 0.0476 0.0000 0.0000 0.0800 0.0100 0.0106

m 0.0000 0.0000 0.0750 0.0317 0.0000 0.0068 0.0400 0.0100 0.0000

n 0.0462 0.0000 0.1625 0.0159 0.0000 0.0204 0.2300 0.0400 0.0213

o 0.0769 0.0000 0.0000 0.0635 0.1169 0.0408 0.0000 0.0300 0.0213

r 0.0769 0.0303 0.0000 0.0159 0.0000 0.0068 0.2000 0.0100 0.0000

s 0.0154 0.0000 0.0625 0.0000 0.0000 0.0000 0.0100 0.0100 0.0319

t 0.0000 0.1970 0.0125 0.0000 0.0000 0.0068 0.0500 0.0100 0.1596

u 0.0308 0.0303 0.0000 0.0317 0.0390 0.0136 0.0000 0.0600 0.0106

w 0.0000 0.1515 0.0000 0.0159 0.0000 0.0000 0.0000 0.0100 0.0957

x 0.0000 0.0000 0.0125 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

y 0.0308 0.0455 0.0000 0.0159 0.0130 0.0068 0.0000 0.0100 0.0213
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æ 0.0000 0.0303 0.0000 0.0000 0.0649 0.0068 0.0000 0.0500 0.0319

ð 0.0000 0.0455 0.1625 0.0000 0.0000 0.0136 0.0300 0.0300 0.0000

þ 0.0000 0.0000 0.0250 0.0000 0.0000 0.0068 0.0200 0.0100 0.0000

t u w x y æ ð þ

0.3108 0.0500 0.0139 0.0000 0.0000 0.0000 0.5238 0.0222

5 0.0000 0.0250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0222

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0222

a 0.0270 0.0000 0.1528 0.0000 0.0000 0.0000 0.1667 0.0889

b 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c 0.0000 0.0000 0.0000 0.0000 0.0000 0.0328 0.0000 0.0000

d 0.0000 0.0000 0.0000 0.0000 0.0938 0.0820 0.0000 0.0000

e 0.2568 0.0000 0.1667 0.0000 0.0000 0.0000 0.0952 0.2667

f 0.0135 0.0250 0.0000 0.0000 0.0000 0.0328 0.0238 0.0000

g 0.0135 0.0250 0.0000 0.0000 0.0000 0.1148 0.0000 0.0444

h 0.0000 0.0000 0.0000 0.0000 0.0312 0.0328 0.0000 0.0000

i 0.0270 0.0000 0.2778 0.0000 0.0000 0.0000 0.0000 0.0222

l 0.0000 0.0250 0.0139 0.0000 0.1250 0.0328 0.0476 0.0000

m 0.0000 0.4750 0.0000 0.0000 0.0312 0.0656 0.0000 0.0444

n 0.0000 0.1500 0.0000 0.0000 0.1875 0.0164 0.0238 0.0000

o 0.2162 0.0000 0.0694 1.0000 0.0000 0.0000 0.0476 0.1111

r 0.0541 0.0750 0.0278 0.0000 0.3750 0.0984 0.0000 0.0222

s 0.0000 0.0250 0.0000 0.0000 0.0312 0.2295 0.0000 0.0000

t 0.0135 0.0000 0.0000 0.0000 0.0312 0.1803 0.0000 0.0000

u 0.0541 0.0000 0.0139 0.0000 0.0000 0.0000 0.0476 0.0444

w 0.0135 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

x 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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y 0.0000 0.0000 0.0556 0.0000 0.0000 0.0000 0.0000 0.0222

æ 0.0000 0.0000 0.2083 0.0000 0.0000 0.0000 0.0000 0.2444

ð 0.0000 0.0500 0.0000 0.0000 0.0938 0.0164 0.0000 0.0222

þ 0.0000 0.0750 0.0000 0.0000 0.0000 0.0656 0.0238 0.0000
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A.4 RNN CHARACTERS TRANSITION MATRIX

5 7 a b c d e f

0.0024 0.5545 0.0000 0.3286 0.0000 0.1490 0.2499 0.3136 0.0263

5 0.0229 0.0000 0.0000 0.0063 0.0000 0.0438 0.0000 0.0000 0.0127

7 0.0244 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

a 0.0129 0.0000 0.0000 0.0000 0.0751 0.0003 0.1018 0.1201 0.0348

b 0.0384 0.0000 0.0000 0.0066 0.0665 0.0000 0.0000 0.0059 0.0000

c 0.0212 0.0000 0.0000 0.0402 0.0000 0.0000 0.0000 0.0195 0.0000

d 0.0473 0.0000 0.0000 0.0158 0.0000 0.0000 0.0147 0.0260 0.0132

e 0.0141 0.1152 0.0957 0.0000 0.4386 0.2662 0.3600 0.0000 0.2162

f 0.0636 0.0000 0.3632 0.0062 0.0000 0.0001 0.0000 0.0184 0.0000

g 0.0746 0.0561 0.0817 0.0066 0.0000 0.0001 0.0000 0.0205 0.0000

h 0.1246 0.0572 0.0000 0.0233 0.0000 0.0001 0.0000 0.0117 0.0000

i 0.0073 0.0605 0.0000 0.0000 0.1200 0.0004 0.0136 0.0000 0.0000

l 0.0207 0.0000 0.0841 0.0708 0.0000 0.0001 0.0134 0.0623 0.0000

m 0.0751 0.0000 0.0000 0.0312 0.0000 0.0002 0.0000 0.0281 0.0000

n 0.0597 0.0000 0.0681 0.2532 0.0000 0.0921 0.0139 0.1016 0.0000

o 0.0203 0.0000 0.0000 0.0000 0.1070 0.0653 0.0545 0.0820 0.0754

r 0.0185 0.0000 0.0000 0.0814 0.0643 0.0495 0.0687 0.0440 0.1689

s 0.1146 0.0000 0.0816 0.0303 0.0000 0.0001 0.0000 0.0769 0.0000

t 0.0255 0.0000 0.0913 0.0140 0.0000 0.0005 0.0000 0.0283 0.1233

u 0.0018 0.0990 0.0000 0.0062 0.0563 0.1061 0.0256 0.0000 0.0130

w 0.1096 0.0000 0.1342 0.0142 0.0000 0.0505 0.0135 0.0244 0.0000

x 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

y 0.0044 0.0575 0.0000 0.0000 0.0000 0.1297 0.0135 0.0000 0.1201

æ 0.0122 0.0000 0.0000 0.0000 0.0721 0.0004 0.0567 0.0000 0.1961
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ð 0.0108 0.0000 0.0000 0.0413 0.0000 0.0450 0.0000 0.0059 0.0000

þ 0.0730 0.0000 0.0000 0.0237 0.0000 0.0002 0.0000 0.0109 0.0000

g h i l m n o r s

0.0856 0.0334 0.0000 0.2390 0.5045 0.3490 0.0620 0.1442 0.2566

5 0.0000 0.0146 0.0124 0.0000 0.0090 0.0000 0.0092 0.0000 0.0000

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

a 0.1518 0.0162 0.0355 0.1502 0.1098 0.0774 0.0000 0.1315 0.0365

b 0.0000 0.0000 0.0123 0.0000 0.0000 0.0000 0.0100 0.0000 0.0000

c 0.0000 0.0000 0.0623 0.0265 0.0000 0.0187 0.0098 0.0085 0.0589

d 0.0126 0.0000 0.0692 0.1365 0.0000 0.0899 0.1536 0.0321 0.0000

e 0.4746 0.2399 0.0341 0.1772 0.0817 0.2027 0.0000 0.2413 0.1435

f 0.0000 0.0000 0.0234 0.0086 0.0000 0.0049 0.0666 0.0282 0.0001

g 0.0000 0.0000 0.0741 0.0000 0.0000 0.0690 0.0310 0.0193 0.0001

h 0.0000 0.0000 0.1119 0.0000 0.0000 0.0000 0.0103 0.0399 0.0000

i 0.0255 0.1727 0.0000 0.0799 0.0767 0.0816 0.0000 0.0826 0.0710

l 0.0000 0.0000 0.0503 0.0419 0.0000 0.0000 0.0755 0.0082 0.0191

m 0.0000 0.0000 0.0756 0.0244 0.0000 0.0051 0.0408 0.0089 0.0000

n 0.0425 0.0000 0.1641 0.0087 0.0000 0.0176 0.2164 0.0398 0.0357

o 0.0712 0.0000 0.0000 0.0587 0.1163 0.0378 0.0000 0.0290 0.0329

r 0.0754 0.0313 0.0000 0.0087 0.0000 0.0045 0.2013 0.0086 0.0000

s 0.0104 0.0000 0.0580 0.0000 0.0000 0.0000 0.0098 0.0082 0.0445

t 0.0000 0.1894 0.0110 0.0000 0.0000 0.0047 0.0510 0.0082 0.1192

u 0.0245 0.0285 0.0000 0.0223 0.0309 0.0103 0.0000 0.0554 0.0178

w 0.0000 0.1479 0.0000 0.0087 0.0000 0.0000 0.0000 0.0084 0.0867

x 0.0000 0.0000 0.0102 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

y 0.0260 0.0455 0.0000 0.0087 0.0093 0.0046 0.0000 0.0089 0.0328
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æ 0.0000 0.0317 0.0000 0.0000 0.0618 0.0047 0.0000 0.0499 0.0443

ð 0.0000 0.0491 0.1725 0.0000 0.0000 0.0124 0.0318 0.0305 0.0000

þ 0.0000 0.0000 0.0231 0.0000 0.0000 0.0051 0.0208 0.0084 0.0000

t u w x y æ ð þ

0.3268 0.0471 0.0073 0.0000 0.0000 0.0000 0.5086 0.0185

5 0.0000 0.0236 0.0000 0.0000 0.0000 0.0000 0.0000 0.0191

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0198

a 0.0231 0.0000 0.1592 0.0000 0.0000 0.0000 0.1725 0.0905

b 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c 0.0000 0.0000 0.0000 0.0000 0.0000 0.0394 0.0000 0.0000

d 0.0000 0.0000 0.0000 0.0000 0.0918 0.0916 0.0000 0.0000

e 0.2604 0.0000 0.1532 0.0000 0.0000 0.0000 0.1018 0.2731

f 0.0089 0.0268 0.0000 0.0000 0.0000 0.0374 0.0230 0.0000

g 0.0096 0.0296 0.0000 0.0000 0.0000 0.1111 0.0000 0.0457

h 0.0000 0.0000 0.0000 0.0000 0.0107 0.0416 0.0000 0.0000

i 0.0228 0.0000 0.3123 0.0000 0.0000 0.0000 0.0000 0.0164

l 0.0000 0.0249 0.0093 0.0000 0.1241 0.0389 0.0479 0.0000

m 0.0000 0.4574 0.0000 0.0000 0.0110 0.0700 0.0000 0.0448

n 0.0000 0.1544 0.0000 0.0000 0.1842 0.0239 0.0242 0.0000

o 0.2340 0.0000 0.0600 1.0000 0.0000 0.0000 0.0493 0.1121

r 0.0490 0.0739 0.0259 0.0000 0.5032 0.1001 0.0000 0.0165

s 0.0000 0.0289 0.0000 0.0000 0.0096 0.1928 0.0000 0.0000

t 0.0095 0.0000 0.0000 0.0000 0.0108 0.1606 0.0000 0.0000

u 0.0468 0.0000 0.0075 0.0000 0.0000 0.0000 0.0469 0.0362

w 0.0091 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

x 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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y 0.0000 0.0000 0.0515 0.0000 0.0000 0.0000 0.0000 0.0170

æ 0.0000 0.0000 0.2137 0.0000 0.0000 0.0000 0.0000 0.2687

ð 0.0000 0.0495 0.0000 0.0000 0.0546 0.0231 0.0000 0.0216

þ 0.0000 0.0840 0.0000 0.0000 0.0000 0.0696 0.0258 0.0000
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A.5 THE PYTHON CODE

A.5.1 LISTING 1: INPUT LENGTH 1, OUTPUT LENGTH 1

#!/usr/bin/env python

# coding: utf-8

# In[23]:

import numpy as np

import string

import random

import pandas as pd

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Activation

from tensorflow.keras.layers import Input, Embedding

from tensorflow.keras.layers import SimpleRNN

from tensorflow.keras.callbacks import ModelCheckpoint

from keras.utils import np_utils

from tensorflow.python.keras import backend as k

import matplotlib.pyplot as plt
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# In[24]:

’’’

prepare_vocab method:

1. reads and cleans the old english data: removes punctuations, converts to lower case, extracts all the unique

characters and makes a set of vocabulary.

2. One-hot-vector encode: converts the characters to number for inputting into the RNN

3. Converts the numbers back into characters to output the predicted character associated with the probability value

’’’

def prepare_vocab(filename, prediction_num=1):

#Part one: read and clean data

with open(filename, ’r’, encoding=’ANSI’) as file:

data = file.read()

data = data.lower()

data = data.translate(str.maketrans(’’, ’’, string.punctuation))

data = data.replace(’\n’, ’ ’)

#Part 2: Make vocabulary list

chars = sorted(list(set(data)))

print(’Vocabulary: ’, chars)

print (’Vocabulary Size: ’, len(chars))

#Part 3: One hot vector encode: convert characters to numbers

char_to_index = {v:i for i,v in enumerate(chars)}

index_to_char = {i:v for i,v in enumerate(chars)}
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total_index = [char_to_index[char] for char in data]

# total_index

’’.join(index_to_char[i] for i in total_index)

#Part 4: Convert numbers to characters, identify inputs and outputs

pred_num = prediction_num

’’’

create an array of the first n characters, where 0 to (n-1) characters are input and the nth character is the output.

xin = 0 to (n-1) characters

yin = nth character

’’’

xin = [[total_index[j+i] for j in range(0, len(total_index)-1-pred_num, pred_num)] for i in range(pred_num)]

yin = [total_index[i+pred_num] for i in range(0, len(total_index)-1-pred_num, pred_num)]

return chars, xin, yin, char_to_index

# In[25]:

def compute_atransitions(filename, vocab):

file = open(filename, ’r’, encoding=’ANSI’)

data = file.read()

data = data.lower()
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data = data.translate(str.maketrans(’’, ’’, string.punctuation))

data = data.replace(’\n’, ’ ’)

my_preds = {}

probs = [0] * len(vocab)

for c in vocab:

my_preds[c] = {nxt_chr: prob for (nxt_chr, prob) in zip(vocab, probs)}

for i in range(1,len(data)):

pc = data[i-1]

cc = data[i]

my_preds[pc][cc] += 1

counts_df = pd.DataFrame(my_preds)

return counts_df

# In[26]:

’’’

build_model function:

1.To build the model I use the Embedding, SimpleRNN and Dense layers from the keras library

2. The input/first layer is the Embedding layer, where the input length is equal to the length of the characters

that will be predicted

3. The hidden/second layer is SimpleRNN layer with relu as the activation function. There are 128 hidden layer

4. The output/final layer is dense layer and it outputs prediction of the length of the vocab size. The activation function

is softmax.



80

5. The optimizer for this model is adam

’’’

def build_model(vocabulary, prediction_num, hidden_layers=128, n_fac=8):

vocab_size = len(vocabulary)

#Creating the model

model = Sequential([

Embedding(vocab_size, n_fac, input_length=prediction_num), #Input

SimpleRNN(hidden_layers, activation=’relu’), #Hidden layers

Dense(vocab_size, activation=’softmax’) #output layers

])

model.compile(loss=’sparse_categorical_crossentropy’, optimizer=’adam’)

model.summary()

return model

’’’

Function train_model:

1. Uses the model from the build model function and trains it on the expected input: xin and yin from

prepare vocab function

2. Fits the model on the given input and out

3. For arrays X and Y, we are removing the last 2 characters to keep the length of each array equal

’’’

def train_model(x, y, model, pred_num, batch_size, epochs):

X = [np.stack(x[i][:-2]) for i in range(pred_num)]
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Y = np.stack(y[:-2])

model.fit(np.stack(X, 1), Y, batch_size=batch_size, epochs=epochs)

return model

# In[27]:

’’’

predict_next_car function:

1.First convert the input, inp to indices

2. Then expand the dimension to match the model’s output format

3. Predict the nth character using the input

4. As we are using softmax activation in the last layer of the model, we get the probability of every characters in

our vocabulary. So the character with the maximum probability will be the nth predicted character by the model

’’’

def predict_next_char(inp, model_, c2i_map):

index = [c2i_map[i] for i in inp]

arr = np.expand_dims(np.array(index), axis=0)

prediction = model_.predict(arr)

return prediction

’’’
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generate probes function

1. Extracts the probabilities associated with each predicted characters

2. Maps the probabilities to the corresponding characters

3. Saves them in a dictionary

’’’

def generate_probs(vocab, model_, c2i_map):

my_preds = {}

for c in vocab:

preds = predict_next_char(c, model_, c2i_map)

my_preds[c] = {nxt_chr: prob for (nxt_chr, prob) in zip(vocab, preds[0])}

return my_preds

# In[28]:

np.random.seed(3791)

EPOCHS = 85

BATCH_SIZE = 8

PRED_NUM = 1 #number of characters you want to predict

vocab, x, y, char_to_index = prepare_vocab(r’C:\Users\Sushmita\Desktop\Thesis\old_eng_v2.txt’, PRED_NUM) #call the function prepare_vocab

model = build_model(vocab, PRED_NUM) #call build_model function with parameters vocab and pred_num

model = train_model(x, y, model, PRED_NUM, BATCH_SIZE, EPOCHS) #call the function train_model with the inputput, output, the model and pred_num



83

model.save_weights(’simpleRNN_3pred.h5’) #save the weights

# In[22]:

#Call the function generate probability passing the model, vocab and one-hot-encode

next_char_probs = generate_probs(vocab, model, char_to_index)

prob_df = pd.DataFrame(next_char_probs) #Save the output in a df

display(prob_df) #Display the dataframe

# In[8]:

prob_df[vocab[0:9]].to_csv(’transition1.csv’,sep=’\t’,

index=True, float_format=’%.4f’, encoding=’ANSI’) #saving the probabilities and the characters from 0th to 9th index

prob_df[vocab[9:18]].to_csv(’transition2.csv’,sep=’\t’,

index=True, float_format=’%.4f’, encoding=’ANSI’) #saving the probabilities and the characters from 9th to 18th index

prob_df[vocab[18:]].to_csv(’transition3.csv’,sep=’\t’,

index=True, float_format=’%.4f’, encoding=’ANSI’) #saving the probabilities and the characters from 18th to remaining

# In[9]:
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#collect the counts and apriori probabilities

counts_df = compute_atransitions(r’C:\Users\Sushmita\Desktop\Thesis\old_eng_v2.txt’, vocab)

aprob_df = counts_df.copy()

char_counts = {}

for j in range(counts_df.shape[1]):

s = sum(aprob_df.iloc[:,j])

char_counts[vocab[j]] = s

for i in range(counts_df.shape[0]):

if (s > 0):

aprob_df.iloc[i,j] = aprob_df.iloc[i,j] / s

# In[10]:

aprob_df[vocab[0:9]].to_csv(’atransition1.csv’,sep=’\t’,

index=True, float_format=’%.4f’, encoding=’ANSI’)

aprob_df[vocab[9:18]].to_csv(’atransition2.csv’,sep=’\t’,

index=True, float_format=’%.4f’, encoding=’ANSI’)

aprob_df[vocab[18:]].to_csv(’atransition3.csv’,sep=’\t’,

index=True, float_format=’%.4f’, encoding=’ANSI’)

# In[11]:
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#%%------------ next char table (decreasing order of probabilities)

next_sequenceRNN = {} #create dictionary of the sequence generated by RNN

next_sequenceHMM = {} #create dictionary of the sequence generated by RNN

next_sequence = {}

err_cnt = 0

for c in vocab:

a1 = prob_df.sort_values(by=c,ascending=False)[c].index.values #sort the probability by ascending order

a2 = aprob_df.sort_values(by=c,ascending=False)[c].index.values

err_cnt += sum(a1 != a2)

next_sequenceRNN[c] = ’’.join(a1)

next_sequenceHMM[c] = ’’.join(a2)

next_sequence[’[RNN] ’+c] = ’’.join(a1)

next_sequence[’[HMM] ’+c] = ’’.join(a2)

# In[12]:

err_cnt

# In[13]:

#%%------------- some tests ---------------------------
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top = np.array(prob_df[’a’]).argsort()[-5:][::-1]

np.array(vocab)[top]

#%%========================== RESULTS ====================================

#characters frequencies

plt.style.use("ggplot")

plt.figure()

plt.bar(vocab, char_counts.values(), align=’center’, alpha=0.5)

plt.title("Characters frequencies")

plt.xlabel("character")

plt.ylabel("counts")

#%%--------------- some plots of output/transition probabilities-------------------

char = ’5’

plt.style.use("ggplot")

plt.figure()

plt.plot(prob_df[char], label="RNN transitions")

plt.plot(aprob_df[char], label="Apriori transitions")

plt.title("RNN vs. Apriori transitions for character [’" + char + "’]")

plt.xlabel("follows [’" + char + "’]")

plt.ylabel("probability")

plt.legend(loc="upper right")

A.5.2 LISTING 2: INPUT LENGTH K (K ≥ 2), OUTPUT LENGTH 1

#!/usr/bin/env python

# coding: utf-8
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#%%----------------------- libraries -------------------------------

import numpy as np

import string

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import SimpleRNN

import matplotlib.pyplot as plt

# In[37]:

def prepare_vocab(filename, prediction_num=1, backwards = False):

with open(filename, ’r’, encoding=’ANSI’) as file:

data = file.read()

data = data.lower()

data = data.translate(str.maketrans(’’, ’’, string.punctuation))

data = data.replace(’\n’, ’ ’)

if (backwards):

data = ’’.join(reversed(data))
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chars = sorted(list(set(data)))

print(’Vocabulary: ’, chars)

print (’Vocabulary Size: ’, len(chars))

# chars.insert(0, ’\0’)

char_to_index = {v:i for i,v in enumerate(chars)}

index_to_char = {i:v for i,v in enumerate(chars)}

total_index = [char_to_index[char] for char in data]

# total_index

’’.join(index_to_char[i] for i in total_index)

# char_to_index

pred_num = prediction_num

data1 = np.array(total_index)

#xin = [[total_index[j+i] for j in range(0, len(total_index)-1-pred_num, 1)] for i in range(pred_num)]

#yin = [total_index[i+pred_num] for i in range(0, len(total_index)-1-pred_num, 1)]

data1 = np.append(data1,np.repeat(data1[-1,],pred_num))

xin, yin = convertToMatrix(data1, pred_num)

xin = np.reshape(xin, (xin.shape[0], 1, xin.shape[1]))

return chars, xin, yin, char_to_index, index_to_char, data1

def convertToMatrix(data, prediction_num):
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X, Y =[], []

for i in range(len(data)-prediction_num):

d=i+prediction_num

X.append(data[i:d,])

Y.append(data[d,])

return np.array(X), np.array(Y)

# In[38]:

def build_model(vocabulary, prediction_num, hidden_layers=256, n_fac=42):

vocab_size = len(vocabulary)

model = Sequential([

SimpleRNN(units=hidden_layers, input_shape=(1,prediction_num), activation="relu"),

Dense(vocab_size, activation=’softmax’)

])

model.compile(loss=’sparse_categorical_crossentropy’, optimizer=’adam’)

model.summary()

return model

# In[39]:
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def predict_next_char(inp, model_, c2i_map, i2c_map, pred_num):

inp = inp + ’ ’

index = np.array([c2i_map[i] for i in inp])

arr, y = convertToMatrix(index, pred_num)

arr = np.reshape(arr, (arr.shape[0], 1, arr.shape[1]))

pred = model_.predict(arr)

idx = np.argmax(pred)

return i2c_map[idx]

def predict_next(inp, model_, c2i_map, i2c_map, pred_num):

inp = inp + ’ ’

index = np.array([c2i_map[i] for i in inp])

arr, y = convertToMatrix(index, pred_num)

arr = np.reshape(arr, (arr.shape[0], 1, arr.shape[1]))

pred = model_.predict(arr)[0]

s = np.array(pred).argsort()[::-1]

seq = {}

for i in s:

c = i2c_map[i]

seq[c] = pred[i]

return seq
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def generate_counts(inp, vocab, data, c2i_map, i2c_map):

my_preds = {}

for c in vocab:

my_preds[c] = 0

arr = np.array([c2i_map[i] for i in inp])

la = len(arr)

#lazy search

for i in range(len(data)-la):

#check if arr found at this position

found = True

for j in range(la):

if (arr[j] != data[i+j]):

found = False

break

if (found):

c = i2c_map[data[i+la]]

my_preds[c] += 1

return my_preds

def generate_probs(inp, vocab, data, c2i_map, i2c_map):

counts = generate_counts(inp, vocab, data, char_to_index, index_to_char)

s = sum(counts.values())
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probs = counts.copy()

if (s > 0):

for k,v in probs.items():

probs[k] = v/s

return probs

def HMM_next(inp, vocab, data, c2i_map, i2c_map):

pred = generate_probs(inp, vocab, data, char_to_index, index_to_char)

return sorted(pred.items(), key=lambda kv: kv[1], reverse=True)

# In[40]:

np.random.seed(2020)

EPOCHS = 150

BATCH_SIZE = 8

PRED_NUM = 3

PRED_SEQ_LEN = 1

BOOSTFACTOR = 5

vocab, x, y, char_to_index, index_to_char, data = prepare_vocab(r’data\old_eng_v2.txt’, PRED_NUM)

if (BOOSTFACTOR > 1):

x = np.concatenate([x for i in range(BOOSTFACTOR)], 0)

y = np.concatenate([y for i in range(BOOSTFACTOR)], 0)
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model = build_model(vocab, PRED_NUM)

model.fit(x,y, epochs=EPOCHS, batch_size=BATCH_SIZE, verbose=2)

#model.save_weights(r’data\simpleRNN_3pred.h5’)

inp = ’nge’

predict_next_char(inp, model, char_to_index, index_to_char, PRED_NUM)

predict_next(inp, model, char_to_index, index_to_char, PRED_NUM)

HMM_next(inp, vocab, data, char_to_index, index_to_char)


