

Annual Report: Year 1

Pooled-fund Project No. TPF-5(395)

Genda Chen, Ph.D., P.E., F.ASCE, F.SEI, F.ISHMII Missouri University of Science and Technology (S&T) August 4, 2020

Outline

- Project Overview
- Bridge Inspection Robot Deployment Systems (BIRDS)
- Bridge Selection for Inspections
- Process to Finalize the Bridge Selection
- Concluding Remarks

- The goals of this pooled-fund initiative are
 - > To engage closely with several state Departments of Transportation (DOTs) in the early stage of technology development at the INSPIRE University Transportation Center, and
 - > To leverage the center resources to develop case studies, protocols, and guidelines that can be adopted by state DOTs for bridge inspection without adversely impacting traffic flow.
- This initiative involves
 - > Technology integration, field demonstration and documentation of a robotic system of structural crawlers, UAVs, BIRDS, NDE devices, sensors, and data analytics

Objectives

- Develop inspection/operation protocols for various types of bridges with the robotic system integrated into current practice.
- Compare and correlate bridge deck inspections from the top and bottom sides of decks to understand the reliability of traffic disruption-free bridge inspection from the underside of decks.
- Develop the design guidelines of measurement devices on a robotic platform for the detection of surface and internal damage/deterioration in structural elements, and for the change in lateral support of foundations.
- > Test and demonstrate data fusion and analytics of measurements taken from various imaging and sensing systems for consistency and reliability.
- Develop the best practices on bridge inspection using the robotic system.

Five-year Performance Period

> August 1, 2019, to July 31, 2024

Project Schedule by Year

Tack	Year						
IdSK	1	2	3	4	5		
1. Bridge selection for manual and automated inspections	К	1					
2. Operation of multimodal unmanned systems							
3. Correlation of top and bottom deck inspections							
4. NDE and sensing integration into visual inspection							
5. Case studies with a representative bridge inventory							
6. Protocol and guideline modification				Μ			
7. Limited release of protocols, guidelines, and criteria							
8. Final reporting and curation of main findings					DF		

Notes: Kickoff meeting at the beginning of this contract

- Mid-term report due at the end of 3 years
- Draft report/deliverables due 60 days prior to the contract termination date
- **F** Final report/deliverables due by the contract termination date

- Task 1. Bridge Selection for Manual and Automated Inspections
 - > Develop a selection protocol of bridges that are appropriate for both manual visual inspection and automated NDE. Thus, the performance of robot-based NDE can be compared with the current practice of visual inspection. The main parameters considered in this selection include span length, bridge type, accessibility, and importance. For example, river-crossing bridges may be inspected in great depth with advanced technologies, while simple highway bridges with easy access may not require any robotic platform during inspection.

- Task 2. Operation of Multimodal Unmanned Systems
 - Develop a field test facility (e.g., recreational vehicle for a three-person crew) of the robotic system, including the BIRD system equipped with two infrared cameras (e.g., dual-sensor FLIR DuoTM Pro) and one impact sounding/echo device for RC elements, and a structural crawler for other bridge elements. The inspection crew will consist of a research engineer in bridge inspection and maintenance, a research assistant professor in system integration and robotics, and a rotating graduate student intern.

 Example Technology 1 – Bridge Engaged Multimodal Unmanned Vehicle

• Flying -> attaching -> traversing -> detaching

 Example Technology 2 – Bridge Engaged Climbing Robot

 Example Technology 2 – Bridge Engaged Climbing Robot

- Example Technology 3 Smart Rock Positioning for Scour Depth Measurement
 - A smart rock rolls to the bottom of a scour hole when formed with unknown location and depth as deposits around the hole are washed away.
 - A smart rock is one or more gravity-controlled magnet(s) encased in a fiber-reinforced concrete sphere to minimize the influence of steel rebar in bridge piers on magnetic field measurements.
 - Spherical encasement facilitates the rolling of a smart rock to the bottom of a scour hole.

• Example Technology 3 - Field Validation

Smart Rock Deployment and Measurement at Pier 7 of the Roubidoux Creek Bridge (I-44W)

Example Technology 4 – Assistive Intelligence for Extraction of Objects

 Example Technology 4 – Case Study with 212 Images

> 1,872 labeled objects in 10 classes

		Transfer learning	Iterative S ³ T					
Index c	of iteration, <i>l</i>	0	1	2	3			
IoU = 0.5	Precision (%)	80.3	81.7	90.7	91.8			
	Recall (%)	74.4	90.3	90.1	93.6			
	f1-Score (%)	77.2	85.8	90.4	92.7			

10 classes of objects

1) Barrier	6) Pier wall
2) Slab	7) Rivet
3) Bearing	8) Truss
4) Pier	9) Bracket
5) Pier cap	10) Joint

- Example Technology 5 Hyperspectral Imaging for QC and Condition Assessment
 - > Headwall Co-Aligned Dual-Sensor Hyperspectral Camera (400 – 2500 nm)
 - > VNIR (400 1000 nm) and SWIR (900 2500 nm)

- Example Technology 5 Potential Applications
 - > Quality control of time-sensitive concrete construction in highway pavements and bridges
 - > Quality control of steel surface preparation for painting
 - Painting and steel condition assessment
 - Reinforced concrete condition assessment (scaling, roughening, rebar corrosion indication, etc.)

Bridge Selection for Inspections

- Purpose of Bridge Selection
- Participating States
- Bridge Database
- Selection Factors Considered
- State Grouping by Material Type
- Access to Bridge Sites
- Recommended Bridge Details
- Distribution of Bridges by State

Purpose of Bridge Selection

- A sample of representative bridges to test robotic technologies in various applications is small enough to permit data collection efforts within budget constraints.
 - > Up to nine (9) similar highway bridges/year in three (3) age groups or one long-span bridge/year from each participating state will be tested starting in the 2nd year.
 - > The Long Term Bridge Performance (LTBP) Program data will be leveraged to develop deterioration curves.

Modify the LTBP Bridge Selection Methodology

- 1. Determine the most common bridge types that predominate now and are likely to do so in the future, which also meets the objectives of this initiative:
 - ✓ Steel-girder bridges or
 - ✓ Prestressed concrete-girder bridges

Purpose of Bridge Selection

- 2. Identify representative clusters of each primary bridge type within various regions of the United States, considering the following factors:
 - Climate/environmental conditions and regional/State maintenance practices. The climatic zones defined by the Department of Energy (DOE) are used.
 - Concentrated geographic areas to allow for costeffective data collection efforts
- 3. Determine the level of detail appropriate for data collection efforts for each bridge within geographic clusters.
 - An attempt will be made to carry out the most detailed NDE, structural characterization through field instrumentation, material sampling, and visual inspection for each bridge identified.

Purpose of Bridge Selection

- 4. Perform legacy data mining from plans, inspection reports, maintenance records of all the candidate bridges to determine which bridges represent a geographic cluster with the following specific criteria:
 - ✓ State owned
 - Not over a railroad
 - ✓ Max span length between 10 and 50 m
 - Maximum of four lanes on bridge
 - ✓ Average daily traffic (ADT) less than 50,000
 - ✓ Built after 1970

Participating States in This Study

Seven states:

California (CA), Georgia (GA), Missouri (MO), New York (NY), Texas (TX), Virginia (VA), and Wisconsin (WI).

Bridge Database by State

- Database Category:
 - > National Bridge Inventory (NBI)
 - > Long Term Bridge Performance (LTBP) Program

Chataa	Number of Bridges						
States	NBI	LTBP					
СА	25,771	23					
GA	14,940	79					
MO	24,494	994					
NY	17,540	621					
ТХ	54,432	5					
VA	13,933	908					
WI	14,249	524					

Selection Factors Considered

- Ownership and maintenance responsibility
 > Item 22 = 1 and Item 21 = 1 in NBI
- Service type of the structure
 - Item 42A = 1 or 5 for highway and highwaypedestrian services
- Removal of culverts
 - > Item 62 ≠ N
- Number of the bridge span
 - > 2 or more
 - Exception made If more candidate bridges are needed in a particular state
- Year of built between 2000 and 2015
- Material type of the structure
 - > Item $43\dot{A} = 3$ or 4 for steel girders
 - Item 43A = 5 or 6 for prestressed concrete girders

State Grouping by Material Type

• Two Groups: Steel and Prestressed Concrete.

Steel-Girder Bridges	Prestressed Concrete (PC) Girder Bridges					
New York	California					
Virginia	Georgia					
Wisconsin	Texas					
Missouri						

- 27 candidate bridges are recommended for each state with an exception of Missouri (54 bridges).
- With state DOT inputs, 9 out of 27 bridges will be selected for visual inspection and automated inspections
- 9 selected bridges are in 3 age groups (5-10, 10-15, and 15-20 years).

Access to Bridge Sites

• Bridge candidates should be easily accessed through highway routes.

FHWA United States National Highway System Routes

Recommended Bridge Details

Sample Bridge Candidates in California

4	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q
1	STATE_COIS	TRUCTURE	RECORD_T	ROUTE_PR	SERVICE_L	ROUTE_NU	DIRECTION	HIGHWAY	COUNTY_(PLACE_CC	FEATURES	CRITICAL	_I FACILITY_	LOCATION	MIN_VERT	KILOPOINT	BASE_HW'
2	6 '	09 0071 '	1	3	1	284	0	2	63	C	ITTLE LA	NaN	"STATE RC	"02-PLU-2	99.99	7.01	0
3	6 '	26 0049 '	1	3	1	88	0	10	5	C	"SILVER L	ANaN	"STATE RC	"10-AMA-	99.99	65.82	1
4	6 '	05 0054 '	1	3	1	3	0	2	105	C	"RUSH CR	INaN	"STATE RC	"02-TRI-0C	99.99	38.73	1
5	6 '	09 0072 '	1	3	1	284	0	2	63	C	ITTLE LA	NaN	"STATE RC	"02-PLU-2	99.99	7.31	0
6	6 '	12 0193 '	1	3	1	162	0	3	7	54386	FEATHER	R NaN	"STATE RC	"03-BUT-1	99.99	15.57	1
7	6 '	11 0029 '	1	3	1	32	0	3	21	C	"STONY C	INaN	"STATE RC	"03-GLE-0	99.99	5.23	1
8	6 '	08 0164 '	1	3	1	99	0	2	103	C	"DEER CR	ENaN	"STATE RC	"02-TEH-0	99.99	5.99	1
9	6 '	08 0160 '	1	3	1	99	0	2	103	C	"MILL CRE	NaN	"STATE RC	"02-TEH-0	99.99	13.33	1
10	6 '	08 0157 '	1	4	0	0	0	2	103	0	"INTERST	A NaN	"ADOBE R	"02-TEH-0	99.99	0	1
11	6 '	17 0075R '	1	1	1	80	0	3	57	C	CASTLE	NaN	"INTERSTA	"03-NEV-C	99.99	5.07	1
12	6 '	17 0075L'	1	1	1	80	0	3	57	C	CASTLE	P NaN	"INTERST	"03-NEV-C	99.99	5.07	1
13	6 '	05 0087 '	1	3	1	3	0	2	105	C	"EAST FO	FNaN	"'SR 3"	"02-TRI-00	99.99	53.69	1
14	б'	12 0200 '	1	3	1	70	0	3	7	C	STATE R	C NaN	"STATE RC	"03-BUT-0	6.12	20.53	1
15	6 '	12 0199 '	1	3	7	149	0	3	7	C	"SR 149 &	NaN	"'S149-E70	"'03-BUT-1	99.99	0.01	0
16	6'	12 0201 '	1	4	8	0	0	3	7	C	STATE R	C NaN	"PRIVATE	"'03-BUT-1	99.99	0	0
17	6 '	12 0197G '	1	3	7	149	0	3	7	C	"SR 99 AN	NaN	"'NB 149 T	"03-BUT-1	99.99	4.8	0
18	6'	12 0198 '	1	3	1	99	0	3	7	C	STATE R	C NaN	"STATE RC	"03-BUT-0	99.99	21.73	1
19	6'	08 0163 '	1	3	1	99	0	2	103	C	"TOOMES	NaN	"STATE RC	"02-TEH-0	99.99	8.38	1
20	6 '	19 0201 '	1	4	6	0	0	3	61	C	STATE R	C NaN	"NORTH F	"03-PLA-0	99.99	0	0
21	6'	19 0198R '	1	3	1	65	0	3	61	C	"BIG YAN	k NaN	"STATE RC	"03-PLA-0	99.99	22.25	1
22	6 '	18 0001R '	1	3	1	70	0	3	101	C	BEAR RI	/ NaN	"STATE RC	"03-SUT-0	99.99	8.09	1
23	6 '	16 0051 '	1	4	1	0	0	3	115	C	STATE R	C NaN	"FEATHER	"03-YUB-0	99.99	0	0
24	6 '	18 0051 '	1	3	1	113	0	3	101	C	STATE R	C NaN	"STATE RC	"03-SUT-1	99.99	16.35	1
25	6 '	10 0156 '	1	3	1	1	0	1	45	C	GREENW	/ NaN	"STATE RC	"01-MEN-I	99.99	33.63	1
26	6 '	10 0301 '	1	3	1	222	0	1	45	C	"RUSSIAN	I NaN	"STATE RC	"01-MEN-:	99.99	0.98	0
27	6 '	12 0126R '	1	3	1	99	0	3	7	C	BUTTE C	R NaN	"STATE RC	"03-BUT-0	99.99	28.72	1
28	6 '	08 0165 '	1	1	1	5	0	2	103	C	"THOMES	NaN	"INTERST	"02-TEH-0	99.99	12.16	1

PC-Girder Bridges (California)

- Candidates: NBI 371 (oldest), 226, and 258 (newest), including 4, 3, and 0 suggested by LTBP Program
- Recommendation: NBI 5, 6, 9; LTBP 4, 3, 0

PC-Girder Bridges (Georgia)

- Candidates: NBI 212 (oldest), 234, and 114 (newest), including 0, 6, and 0 suggested by LTBP Program
- Recommendation: NBI 9, 3, 9; LTBP 0, 6, 0

PC-Girder Bridges (Missouri)

- Candidates: NBI 314 (oldest), 402, 553 (newest), including 155, 69, and 18 suggested by LTBP Program
- Recommendation: NBI 0, 0, 0; LTBP 9, 9, 9

Steel-Girder Bridges (Missouri)

- Candidates: NBI 179 (oldest), 64, and 27 (newest), including 84, 29, and 5 suggested by LTBP Program
- Recommendation: NBI 0, 0, 7; LTBP 9, 9, 2

Steel-Girder Bridges (New York)

- Candidates: NBI 65 (oldest), 64, and 47 (newest), including 0, 2, 14 suggested by LTBP Program
- Recommendation: NBI 9, 8, 5; LTBP 0, 1, 4

PC-Girder Bridges (Texas)

- Candidates: NBI 334 (oldest), 791, and 607 (newest) including 0, 1, and 0 suggested by LTBP Program
- Recommendation: NBI 9, 8, 9; LTBP 0, 1, 0

Steel-Girder Bridges (Virginia)

- Candidates: NBI 116 (oldest), 63, and 41 (newest), including 114, 38, and 28 suggested by LTBP Program
- Recommendation: NBI 0, 4, 0; LTBP 9, 5, 9

Steel-Girder Bridges (Wisconsin)

- Candidates: NBI 18 (oldest), 33, and 22 (newest), including 2, 1, 1 suggested by LTBP Program
- Recommendation: NBI 7, 8, 8; LTBP 2, 1, 1

Action Items

- Dr. Chen will send 27 bridges selected to each state DOT (MoDOT will receive 54 bridges) soon after this meeting.
- Two approaches will be used to finalize bridges to be tested
 - Each DOT can finalize 3 bridges in each age group and send bridge drawings to Dr. Chen
 - Each DOT can send 27 bridge drawings to Dr. Chen for a final selection of 9 bridges in three age groups
- Each DOT will help conduct visual inspection for comparison with robot-assisted inspection with NDE and remote sensing. Dr. Chen's team will coordinate with a DOT representative in each participating state for field works.

Concluding Remarks

- An autonomous inspection platform can help inspect and maintain bridges in a faster, saver, cheaper and more consistent manner.
- Advanced technologies required to realize the autonomous inspection platform are being developed in the INSPIRE University Transportation Center.
- This pooled-fund initiative can help develop case studies, protocols, and guidelines that can be adopted by state DOTs for bridge inspection and maintenance.

Acknowledgement

- This study was funded by seven state Departments of Transportation (New York, Virginia, Wisconsin, Georgia, Missouri, Texas, and California) through a task order contract with Missouri Department of Transportation Project No. TR202004, FHWA pooled fund TPF-5(395), S064101S.
- The advanced technologies presented were originally developed with financial support from the U.S. Department of Transportation, Office of the Assistant Secretary for Research and Technology (USDOT/OST-R) under Grant No.
 69A3551747126 through INSPIRE University Transportation Center (<u>http://inspire-utc.mst.edu</u>) at Missouri University of Science and Technology.
- The views, opinions, findings and conclusions reflected in this publication are solely those of the authors and do not represent the official policy or position of the USDOT/OST-R, or any State or other entity.

