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1. INTRODUCTION AND BACKGROUND

Sepsis is a syndrome of severe systemic reaction caused by infec-
tion. It is a common complication of various traumas, burns, shock,
injuries and large-scale surgical operations. The deterioration in the
condition of sepsis patient develops rapidly. Despite the advance-
ment in diagnosis and treatment technologies and monitoring mea-
sures, the morbidity and mortality of sepsis are still relatively high,
which is a global challenge facing the health systems. According to
severity, sepsis can be divided into three levels, which are sepsis,
severe sepsis and septic shock. In addition to inflammatory symp-
toms, severe sepsis and septic shock patients also have organ dys-
function, hypotension or poor tissue perfusion, which can endanger
the patients life in serious cases. Studies have shown that patients
with critical sepsis also exhibit persistent arterial hypotension after
fluid resuscitation, which may be one of the important factors
affecting the development of the disease [1]. As a result, it is impor-
tant to control blood pressure when the patient is in the case of
hypotension.

Today, artificial intelligence (AI) technologies are being widely
employed in medical research and practice. A number of research
has focused on medical time series data for diagnosis or assis-
tance in early detection. C. Barajas, R. Akella regarded the proba-
bility of mortality as a time-based state and estimated it inside the
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Sepsis is a life-threatening condition that arises when the body’s response to infection causes injury to its own tissues and organs.
Despite the advancement of medical diagnosis and treatment technologies, the morbidity and mortality of sepsis are still relatively
high. In this paper, a two-layer long short-term memory (LSTM) model is proposed to predict the dose of norepinephrine, in
order to control the blood pressure of patients. The proposed modeling approach is evaluated using the MIMIC-III dataset,
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intensive care unit (ICU) according to medical time series data [2].
I. Batal et al. proposed the STF-Mine algorithm to abstract temporal
features from patients’ time series data, and classified the data based
on these features [3]. A. Taoum et al. used the time series data of
four basic vital signs to construct an early warning model of acute
respiratory distress syndrome (ARDS) using machine learning and
statistical knowledge [4,5].

Long short-term memory (LSTM) network is a commonly used
method for time series data analysis because of its advantage in pro-
cessing and predicting sequence data. Z. C. Lipton ef al. used LSTM
network to diagnose the main kinds of diseases from multivari-
ate time series of clinical measurements [6]. B. K. Beaulieu-Jones
et al. proposed a type of LSTM network to predict the survival sta-
tus of patients one year after admission based on the time series
data recorded during patient care in MIMIC-III [7]. H. G. Kim
et al. used LSTM network to predict medical examination results
according to medical examination data from previous years [8].
The result can give the patients a chance to early detect the disease.
The time interval of medical time series data is usually irregular,
which may affect the predict results of LSTM. To solve this problem,
I. M. Baytas et al. proposed a new LSTM unit [9]. Although these
technical approaches are widely used for medical time series anal-
ysis, to the best of our knowledge, there is presently no published
work that uses LSTM networks to adjust the dose of medication and
regulate blood pressure. Distinguished from existing works using
LSTM in the medical field mentioned above, adjusting the patient’s


https://doi.org/10.2991/ijcis.d.200512.001
https://www.atlantis-press.com/journals/ijcis/
https://orcid.org/0000-0002-4521-0875
http://creativecommons.org/licenses/by-nc/4.0/

718 Liu et al. / International Journal of Computational Intelligence Systems 13(1) 717-726

blood pressure requires considering the patient’s multiple vital signs
historical data, and making high-frequency, real-time prediction
especially in short time.

In recent years, there also exist related studies combining AI tech-
nology with the treatment of sepsis. However, studies on the dose
adjustment of vasopressors in sepsis patients are few in numbers.
In Refs. [10-12], the treatment process of sepsis was regarded as
a sequential decision-making problem. They found that most of
the treatment decisions made by human clinicians are suboptimal
for patients, so they developed AI clinicians who can learn optimal
treatment through reinforcement learning. However, the purpose
of these works is to reduce the mortality in patients and the dose for
vasopressors is discretized into five bins, which cannot predict the
precise dose of vasopressors at the next state. Moreover, one prop-
erty of Markov model-based decision-making process is memory-
less, and the dose at the next moment can only be predicted based
on the current state, which is different from LSTM that can utilize
current and historical state data for prediction.

In this paper, we propose an LSTM network approach to predict
the dose of norepinephrine, a kind of vasopressors recommended
by guidelines, based on medical time series data of sepsis patients
collected in the MIMIC-III database. The purpose of our work is to
validate whether may design a learning-based model to simulate
doctor’s behavior for dose regulation effectively in order to help
doctors to control the patient’s blood pressure in time. We attempt
to cluster the patient clinical data according to the changes of histor-
ical dose, vital signs and laboratory test results, and explore whether
it can be helpful to improve the effect of dose regulation. This may
provide the enlightenment for doctors to further lean treatment
through the analysis of the correlation between different dimen-
sions and the difference between the prediction results before and
after clustering. Due to the limit on the number of doctors and
caregivers, compared to the number of patients suffering from the
condition, this research has the real signification on reducing the
burden on doctors and caregivers.

2. METHOD

2.1. Data Preprocessing

2.1.1. Data resource

MIMIC-III is a large, freely-available, single-center database com-
prising information relating to more than 40,000 patients admitted
to critical care units of the Beth Israel Deaconess Medical Center
between 2001 and 2012. The database includes information such as
demographics, vital sign measurements made at the bedside (one
data point per hour), laboratory test results, medications, caregiver
notes, diagnostic codes, imaging reports, hospital length of stay
and survival data, etc. It supports a diverse range of analytic stud-
ies spanning epidemiology, clinical decision-rule improvement and
electronic tool development [13].

We obtained approval to use the database (Certification Number:
27959316) for our research, after completing the National Institutes
of Health (NIH) web-based training course: Protecting Human
Research Participants.

2.1.2. Collection of samples

In our experiment, we focus on the information of those sepsis
patients who meet the following criteria:

i. Sepsis-related organ failure assessment (SOFA) is not less than
two points.

ii. Use only norepinephrine to regulate blood pressure, with-
out using other blood pressure regulating drugs such as
dopamine, adrenaline and vasopressin.

iii. Not younger than 18.
iv.  Nonsurgical ICU-hospitalized patients.

v. In order to observe and analyze time-series data, the dose of
norepinephrine has to be adjusted at least five times contin-
uously according to the changes in vital signs and laboratory
test results.

Here Criteria (i) is the international diagnostic criteria of sep-
sis patients. Norepinephrine is recommended in the international
guidelines as the first choice of vasopressor for the treatment of
hypotension caused by sepsis [14]. Of all patients who met the
sepsis criteria and used vasopressor, 72.47% used norepinephrine
first. Meanwhile, children of different ages have different response
intensity to vasoactive drugs, and the guideline only give advice
for adults to use norepinephrine, so we excluded patients younger
than 18. The reason why we only focused on the nonsurgical
ICU-hospitalized patients is that the development process of sepsis
caused by surgery and trauma is different from general sepsis.

Based on the above criteria, we obtained clinical data of 541 patients
from MIMIC-III Then, their data about the adjustment of the dose
of norepinephrine is collected, including the start time and the end
time of the adjustment, and the dose of norepinephrine at this time
period. We also collect age, gender, Glasgow Coma Scale (mingcs),
key vital signs and patient’s laboratory test results including Biliru-
bin, PaO2, FiO2, Creatinine, WBC, mean arterial pressure (MAP),
Respiratory Rate, Heart Rate, Temperature in C, SPO2 and PEEP
at every intervention point. Because the normal value range of the
dose is 0-0.2 mcg/(kg -min), so we regard the data in which the dose
is above 2 mcg/(kg -min) as the outlier and delete them.

2.1.3. Preprocessing and extraction of time
series data

In the collected samples, there exists noisy data and missing values.
Therefore, we need to consider how to fill in the missing values.
First, we count the missing rate for each variable. Figure 1(a) shows
the result. For each patient, we fill in the missing values of each vari-
able by the average of this patient’s data. Then, we count the missing
rate of each variable again and the result is shown in Figure 1(b).
There still were reasonable amounts of missing values. For these
missing values, we fill them by the average of all the patients’ data.
But as the missing rate of FiO2 is up to 45.4% before the first filling
and 37.9% after the first filling, we delete this variable.

After filling the missing values, the value range of all the variables of
vital signs and laboratory test results are converted into [0, 1] by the
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Figure 1 The missing rate of each variable before and after the first filling.

way of min-max normalization. Then, we construct multidimen-
sional time series data X = Xj,X,, ..., X; with the patient’s data
we collected. Each time step X; is a 14-dimensional vector, includ-
ing the dose at previous time step (if there is no previous time step,
the value is zero), age, gender, mingcs, Bilirubin, PaO2, Creatinine,
WBC, MAP, Respiratory Rate, Heart Rate, Temperature in C, SPO2
and PEEP. The data is processed into time series data of the same
length. Figure 2 shows the process to generate time series that the
length L equals to seven.

2.2. Prediction Model Based on LSTM

In this subsection, we present a prediction model based on the
LSTM network technique to predict the dose of norepinephrine at
the last time step. LSTM network is an improvement of recurrent
neural network (RNN), which is mainly used to process and predict
the sequence data, and can solve the problem of gradient disappear-
ance and gradient explosion caused by back propagation and long-
term dependence, as it performs better than RNN in various areas,
such as speech recognition [15,16] and natural language processing
[17,18]. Figure 3 shows the structure of one cell and its evolution
through time [19].

Egs. (1) to (6) give the update for cell state c; and final output A, at
time step t, where o and tanh stand for the element-wise application
of the sigmoid (logistic) function and tanh function respectively,
and © is the Hadamard (element-wise) product. x, is the input at
time step t, W and U are parameter matrix and b is the bias.

fr=0(Wx, + Uphy_y + by (1)
ii=0Wix,+Uh,_1+b) (2)
0, =0(Wyx;+ U,h,_1 +b,) (3)
¢, = tanh(Wex, + Uzhy_q + by) (4)
G6=f0c1+i,0OF (5)

h; = o, ® tanh(c,) (6)
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}\ Time Feries 3

Time Steps
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Figure 2 The process to generate time series that the length L equals
to seven.
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Figure 3 Structure of a long short-term memory (LSTM) cell and
its evolution through time. The thick arrows indicate the evolution

through time.

Dropout is a mechanism often used in deep neural networks to
make the network more robust and prevent overfitting by stopping
the work of a certain cell with the probability p in the process of
forward propagation of the network. In the deep RNN, which has
more than one recurrent layer, dropout is only used between cells
in different recurrent layers at the same time step.

In this work, we design an LSTM network with two recurrent layers
with the dropout mechanism used between them. Figure 4 shows
the structure of the whole network used in our work. This LSTM
network receives a medical time series data X = X;, X5, ..., X as
input, and the input at the [-th time step X is a 14-dimensional vec-
tor mentioned above, including the dose at the previous time step,
vital signs and laboratory test results. L is the length of the time
series. Then, the prediction of the dose at the last time step y is the
output of the whole network. Because the output of the two-layer



720 Liu et al. / International Journal of Computational Intelligence Systems 13(1) 717-726

LSTM network at the last time step is a multidimensional vector
rather than a numerous value, we add a fully connected layer to
make the final output as a numerous value. Mean absolute error
(MAE) is used as the cost function of the whole dataset with M time
series data:

1

MAE = I\_/I |)’z‘ =il (7)

||M§

where J; and y; are respectively the prediction value and the true
value of the dose at the L-th time step of the i-th time series data.

2.3. Measurement of the Similarity of Time
Series and Clustering Analysis

We use K-means algorithm to cluster time series data in our work.
Measuring the similarity between samples is a very important step
in the process of clustering data. Therefore, we need to measure the
similarity of time series when we cluster the data. Another impor-
tant step of K-means algorithm is to specify the number of clus-
ters K. However, we often do not know how many clusters of raw
data are most suitable. Therefore, we need to use some methods
to help us determine the number of clusters correctly. At present,
some scholars have proposed several advanced K-means algorithms
that can automatically determine the most suitable number of
clusters [20-22]. In our work, we choose the parameter K via
silhouette coefficient. This subsection describes two common
methods to measure the similarity of time series and the concept of
silhouette coefficient.

2.3.1. Euclidean distance

Euclidean distance is a commonly used method to measure the
distance between two points in n-dimensional space when we use
K-means algorithm to cluster data [23-25]. For two points in n-

dimensional space, P = (py,...,p,) and Q = (41,...,4,), the
Euclidean distance D between them is defined as Eq. (8).
D(P,Q) =| X Ip; — ail’ ®)
i=1

fully connected layer
01 02 &

| LSTM unit |—O| LSTM unit |—* """ LSTM unit

X1 Xz XL

Iw

Figure 4 The structure of the network used in this
work. The dotted arrows between two recurrent
layers represent the use of the dropout mechanism.

For m-dimensional time series data of length #, we can regard it
as a point in the n X m dimensional space. In this way, we can use
the Euclidean distance to compare the similarity of time series: the
closer the distance, the higher the similarity; the farther the dis-
tance, the lower the similarity. However, Euclidean distance is only
suitable for comparing time series with equal length. Moreover,
since we regard time series data as a point in the # X m dimensional
space, we ignore the trend of time series over time.

2.3.2. Dynamic time warping

The dynamic time warping (DTW) algorithm is an efficient way
to measure the similarity of time series because through temporary
changes in the time series for discerning similar objects and shapes
for its different phases has allowed for the minimizing of effects
caused by shifts and distortions [26]. There are also a series of work,
which used DTW as the similarity measurements in clustering anal-
ysis [25,27,28]. Compared with the Euclidean distance, DTW algo-
rithm can measure the similarity of two time series with different
length. Figure 5 shows the different ways in data alignment between
Euclidean distance and DTW.

The dynamic programming idea can be used when programming
the DTW algorithm. Suppose there are two time series P =
P1,P2s > Pn and Q = q1,93,...,q,, with the length of n and m
respectively, DTW(P, Q) can be calculated by recursive formula Eq.
(9), wherel < i < nl<j<m d(p,-,qj) represents the square
of the Euclidean distance of the data point p; at the i-th time step
in P and the data point g; at the j-th time step in Q, so d(p;, q;) =

i — 4>

S1,1 = 4dp1,q91)

SO,j = Si,O = 400

Sij = d(pi, qj) + min{Si_y ;, S 1, Sic1,j-1}
DTW(P, Q) =y Sn,m

©)

2.3.3. Silhouette coefficient

Silhouette coefficient is a measure of how similar a data point is
to its cluster compared to other clusters [29]. Assume the data has
been clustered into K clusters by K-means algorithm. For the data
point x, which is in the cluster C;, calculate the average distance a,
between the data point x and all other data points in the clusters C;:

(10)

ax
yEC XEY

(b) DTW

(a) Euclidean distance

Figure 5 Different ways in data alignment between
Euclidean distance and dynamic time warping (DTW).
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where d(x, y) is the distance between data point x and y. Then cal-
culate the average distance between the data point x and all the data
points in any other cluster and choose the minimal one as b,:

1
b, = min — > d(x,y) (11)
i#j 'C]|}’;]

Now we can define the silhouette coefficient of date point x as

i (12)
max(a,, b,.)

The average of all the silhouette coefficient of each data point s
is defined as the silhouette coefficient of the whole dataset. From
the definition above, we know that the value of s is in the range of
[—1, 1]. The larger the s, the more the results of clustering can reflect
the true distribution of data. So, we choose the value of K that makes
the s the biggest.

2.4. Experiment Setting

Before the experiment started, we needed to choose a proper length
of the time series. First, the medical sequence data we collected is
divided into sub-sequences with the same length L, and the value
range of L is 5 to 15. Figure 6 shows the number of sub-sequences
when L changes. Then we predict the dose of norepinephrine J at
the last time step based on the dose, vital signs and laboratory test
results at the past time steps with a simple LSTM network with only
one hidden layer and calculate MAE by comparing to the actual
dose y on each dataset. Five-fold cross validation is implemented
in our experiment. We can get the lowest MAE when L equals to
ten, so the proper length of time series should be ten. Eventually,
314 patients remained whereas the times of the adjustment of other
patients are less than ten.

After choosing the proper length of the time series, we use the
model proposed here to predict the dose of norepinephrine on the
chosen dataset and calculate the MAE by five-fold cross validation.
Then, we construct two regression models to compare with the
model we proposed. Two regression models, linear regression and
XGBoost regression [30], both predict the dose of norepinephrine
based on the dose at previous time step and the value of vital signs
and laboratory test results at the current time step. Linear regression
is a simple regression model. It learns the regression equation and
determine the regression coefficients from the training data. Then,

Number of sub-sequences

5 6 7 8 9 1011 12 13 14 15
Length L of time series

Figure 6 The number of sub-sequences with
different L.

the prediction result is obtained by calculating the regression coefti-
cient and the input. XGBoost, namely Extreme Gradient Boosting,
is an ensemble learning method based on classification and regres-
sion tree (CART) as basic learner. XGBoost performs a second-
order Taylor expansion on the cost function when optimizing the
cost function to improve efficiency. It also effectively controls the
complexity of the model by adding regularization. XGBoost usu-
ally has a better learning effect than traditional machine learning
algorithms.

Then, the K-means algorithm, based on two different time series
similarity measures, i.e., Euclidean distance and DTW), is used to
cluster the data according to the changing trend in patient histor-
ical data. The purpose of clustering is to explore whether cluster-
ing analysis can be helpful to improve accuracy and effects on dose
adjusting. We do not consider two discrete variables, gender and
mingcs, while clustering because it is meaningless to consider the
changing trend of these two variables since the values of a patient
do not change during the monitoring process. So, the data being
clustered is 12-dimensional time series of length ten. The number
of clusters is determined by silhouette coefficient. According to the
number of clusters, the same number of LSTM network models
shown in Figure 4 are constructed. On each cluster, we train the
respective model with the 14-dimensional data and get the MAE on
this cluster using five-fold cross validation. The total MAE on the
whole dataset will be calculated as Eq. (13), where K is the number
of clusters, MAE; is the MAE on cluster i, M; is the number of time
series on cluster i and M is the number of time series of the whole
dataset.

K
1
MAE g = 32 > MAE; X M, (13)
i=1

2.5. Statistical Analysis

There are two types of variables in all the 14 variables we chose, i.e.,
continuous variables and discrete variables. For continuous vari-
able, we draw a data distribution histogram and probability density
function to describe its data distribution. Then, we calculated the
Pearson correlation coefficient, which is a measure of the linear cor-
relation, between pairs of variables. For each discrete variable, we
draw a data distribution histogram. From the histograms, we can
see whether there are outliers.

In addition to using MAE, we also use the first quartile and the third
quartile of all the prediction error data to evaluate the effect of the
model. Quantiles can show the distribution of data and whether
there are large prediction errors. The first quartile is defined as the
middle number between the smallest number and the median of
the dataset and the third quartile is the middle value between the
median and the highest value of the dataset.

3. RESULTS

3.1. Variables Analysis

Among all the variables we chose, gender and mingcs are discrete
variables, and others are continuous variables. For all the continu-
ous variables, we count their data distribution, and then draw their
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data distribution histograms and probability density functions, as
shown in Figure 7. We can see that all the continuous variables
are basically in accordance with the normal distribution except
for PEEP. There are also some outliers in the data. For example,
99.1% of the data in WBC is less than 40K/uL but the max value is
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Then, we calculated the absolute value of Pearson correlation coef-
ficient between pairs of variables that basically fit a normal distri-
bution, as shown in Figure 8. We can see that the absolute values of
all coefficients are closer to 0 compared to 1, indicating that there
are no two variables with strong linear correlation.
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For the discrete variables, gender and mingcs, the data distribution
is also counted, and the data distribution histograms are shown in
Figure 9. Since mingcs is always the same for one patient during the
monitoring process, multiple repeat of mingcs data for one patient
are counted only once. We use the same method to count the data
distribution of gender and age. Figure 9. shows that there are slightly
more male patients than female patients, and more than half of the
patients are always in a state of consciousness.

3.2. Prediction Results and Comparison

Table 1 shows the prediction results of different methods, including
the MAE, 1st quartile and 3rd quartile. Our proposed model gets
the lowest MAE when p equals 0.15. We choose two long sequences
and describe the change of the real dose of norepinephrine and the
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Table1 MAE for different models.

Model MAE 1st Quartile 3rd Quartile
LSTM + dropout (p = 0.15)  0.0260 0.0065 0.0303
Linear regression 0.0487 0.0174 0.0532
XGBoost regression 0.0388 0.0104 0.0398

MAE, mean absolute error; LSTM, long short-term memory.

prediction curves of different methods in Figure 10. The change of
the real dose is drawn in the blue line. The red line, which is the
prediction results of our proposed model, is a close fit to the blue
line.

3.3. Clustering Results and Analysis

After that, we cluster the data and judge whether cluster analysis
can reduce the MAE. Figure 11 shows the variation of the silhouette
coefficient of the clustering result with the number of the clusters K
when using two different methods to measure the similarity of time
series. We can see that for both methods, the clustering result is bet-
ter when K = 2. The visualization result by t-distributed Stochas-
tic Neighbor Embedding (t-SNE) algorithm [31] for two different
clustering results when K = 2 is shown in Figure 12.

Then we use the LSTM network shown in Figure 4 with different
dropout probability p to predict the dose and calculate MAE, ;,; on
the whole dataset with and without clustering. Results are shown
in Table 2. When p = 0.25, best MAE,,,, are 0.0263 and 0.0267
respectively for different versions of k-means. When clustering
is not used, the best MAE,,,; is 0.0260 which is achieved with
p = 0.15. We can see that clustering cannot reduce the prediction
error. Actually, the prediction results with and without clustering
are very close.
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Figure 10 The change of the real dose of norepinephrine
and the prediction curves of different methods.
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4. DISCUSSION

Sepsis has been a major cause of death for many years in critically ill
patients [32], especially to the patients with septic shock. As the ini-
tial target, MAP of 65 mmHg in patients with septic shock requir-
ing vasopressors has been strongly recommended based moderated
quality of evidence, and norepinephrine is one of the most impor-
tant vasopressors [14], usually the first choice for medical treat-
ment. We recognize that doctors and caregivers have to act quickly
given the seriousness of sepsis that is even more impacted if the
case is an emergency or when a doctor has a large case load and
has to account for the dosage change may have for the prognosis of
the patient. The focus of our research is to investigate the model-
ing approach to predict and adjust automatically the dose of nore-
pinephrine for sepsis patients.

The dosage adjustment of norepinephrine may be related to many
factors, such as disease severity, basic demographic information,
fluid intake and outflow volume, heart and kidney function, com-
plications, combined drug use and so on. Due to the limitation of
information contained in the database and the reduction of com-
plexity, we focus on sepsis patients who meet some criteria and
eventually selected 14 dimensions information related to the devel-
opment process of sepsis, including patient’s basic information, vital
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Figure 11 The silhouette coefficient of the clustering results
with different value K when using two different methods to
measure the similarity of time series.
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Figure 12 The visualization result by t-SNE algorithm for two
different clustering results when K = 2.

Table2 MAE;,, with and without clustering.

Model MAE 1st Quartile  3rd Quartile
K-means (Euclidean Distance)  0.0263 0.0072 0.0305

+ LSTM + dropout (p = 0.25)

k-means (DTW) 0.0267 0.0070 0.0320

+ LSTM + dropout (p = 0.25)

LSTM (without clustering) 0.0260 0.0065 0.0303

+ dropout (p = 0.15)

signs and laboratory test results. Since the linear correlation among
these dimensions that fit the normal distribution is quite weak, they
would not be alterative that have individual difference with respect
to dose prediction. We thus select these dimensions so that we can
predict the dose more accurately based on all aspects of the patient’s
information. After filling in the missing values, we process the data
into multidimensional time series data with the same length. The
best length is selected by comparing the prediction results using a
single layer LSTM network.

Considering the temporal data characteristics and the advantages of
LSTM network in processing time series data, the LSTM network is
used to predict the dose of norepinephrine in our work. The LSTM
network structure in Refs. [6,8] has only one layer, and the learning
ability may be weak. However, it is very easy to cause overfitting if
the network is too deep, like the LSTM network with three recurrent
layers in Ref. [7], because we only have 4119 time series data. So,
we deepen the network structure and construct an LSTM network
with two recurrent layers. Meanwhile, for the purpose of preventing
overfitting when training models on smaller dataset after clustering,
dropout mechanism is used between two recurrent layers.

From the prediction results shown in Table 1 and Figure 10, we
can see our proposed method yields better results than two widely
applicable baselines in the medical field, i.e., linear regression
and XGBoost regression. The input of both linear regression and
XGBoost regression is the data consisting of only one time step,
and the input of LSTM network is time series data, which contains
the changes of patients data and the information related to tem-
poral attributes that people cannot perceive intuitively. This might
explain why the prediction result of our proposed model is superior
to baselines. However, all of the prediction curves in Figure 10 have
a certain hysteresis compared to the true value curve (the blue line),
so whether this will affect the clinical effect remains to be verified.

In addition, we explore whether clustering analysis can help to
achieve more accurate prediction by clustering data first and
predicting based on the clustering results. The data is clustered
according to the changes of patients’ historical dose, vital signs and
laboratory test results recorded in patient care including ca.10 time
treatments. Two methods for measuring time series similarity, i.e.,
Euclidean distance and DTW, are used as part of k-means clus-
tering. Then we check which cluster a patient’s time series data is
located. The result is shown in Table 3, where the three columns
represent the number of patients whose time series data are located
in cluster 0, cluster 1 or both clusters, respectively. From the result,
we see that for most patients their time series data are located in
either one of the two clusters, not both.

Since the dose data in the MIMIC-III database is adjusted manu-
ally by doctors, what our model does is to imitate doctors’ behav-
ior. When we continue to imitate the doctor’s behavior based on the

Table 3 The number of patients whose time series data are located in
cluster 0, cluster 1 or both clusters respectively.

Cluster 0 Cluster 1 Both clusters
Euclidean 120 188 6
distance
DTW 94 206 14

MAE, mean absolute error; LSTM, long short-term memory; DTW, dynamic time warping.

DTW, dynamic time warping.
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clustering results, actually the predicted results are not obviously
improved, as shown in Table 2. The reason is that at the stage of
being there is no clinical segmentation of sepsis patients according
to their vital signs and disease development. This also exposes the
shortcomings of clinical segmentation, which makes doctors adopt
the same treatment strategy for different patient groups. So, through
the analysis of the correlation between different dimensions and the
difference between the prediction results before and after cluster-
ing, our work may provide some enlightenment for doctors to fur-
ther lean treatment in the future.

5. CONCLUSION

In this paper, we analyze the medical time series data by AI tech-
niques to predict the dose of norepinephrine. It has shown that the
proposed modeling approach resulted in lower MAE than other
learning methods, achieving better performance in dosage predic-
tion. The proposed approach can be used to build a solution that
may automatically set the dose of norepinephrine for individual
patients, help doctors treat patients in sepsis, reduce the workload
of doctors and caregivers, and improve the prognosis for patients.
Moreover, we further explored the possibility of clustering patients
for prediction helpful to improve the effects on dose adjusting. The
future work is considered not only to imitate the doctor’s behavior,
but also to adjust the dosage for assisting the doctor’s medical treat-
ment according to the patient’s pathophysiology, the development
of the disease and the law of response to the drug.
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