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Abstract—The ability to sense the environment is the corner-
stone of the Internet of Things (IoT), which is a rapidly expanding
paradigm that is altering the way we interact with machines.
IoT enables a range of new services to enhance the lives of end-
users. One of these services concerns activity recognition within
Ambient Assisted Living which can be used to help people live
independently at home for longer. Many of these applications can,
however, be prone to failure and vulnerable to attack. Extensive
research is therefore required to build towards a secure and
sustainable IoT. This work examines activity recognition in a
smart home environment using three different classifiers on a
well-known activity recognition dataset. Fail-dirty and device
shut-down data is introduced in the dataset to examine the
impact that this erroneous data has on the application. This
study found that it was possible to rank the importance of sensors
with regards to their influence on classification by observing how
these failures impacted the classifiers when compared to the f-
measure produced from the classification of the clean data. This
work also found that while representing data in a binary format
obtains higher accuracy, it makes the classifier considerably more
vulnerable to dirty data. Lastly, this study found that decision
tree classifiers have an inherent vulnerability when it comes to
handling dirty data, resulting in a 24% reduction in performance
versus the clean data, due to the structuring and placement of
leaf nodes in the tree.

Index Terms—IoT, activity recognition, smart homes, reliabil-
ity, classification, machine learning, fail-dirty

I. INTRODUCTION

The Internet of Things (IoT) is a rapidly evolving paradigm

which is significantly changing how we interact with comput-

ers in the physical world. IoT has a broad range of applications

such as home security [1], healthcare [2] and monitoring traffic

in smart cities [3].

Ambient Assisted Living (AAL) is an application within the

IoT that aims to support independent living through the use

of activity monitoring and recognition. As such, the ability to

correctly, quickly and reliably classify activities within this

domain is essential to the success of the application [4].

In the field of AAL, IoT deployments would typically be

smart-homes equipped with a large number of sensors which

may become difficult for engineers and carers to manage,

especially given the fact that sensors do not often have user-

friendly alerts or interfaces that can alert users when a problem

This research is supported by the BTIIC (British Telecom Ireland Innovation
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occurs. Moreover, when we consider the limited battery power

associated with remote sensing it becomes essential to check

sensors on a regular basis to ensure they are working as

expected. This task would be time consuming with a large

number of sensors involved. Being able to rank sensors, based

on an understanding of their reliability and relative importance

to the classification task would allow carers to prioritise which

sensors needed to be checked and how often, resulting in

potentially huge time savings and a fuller situational awareness

of the system. This becomes even more essential when we

consider that remote sensors have a tendency to fail-dirty [5],

which is where a sensor appears to be operating normally, but

is actually communicating anomalous data.

Machine learning models are capable of classifying human

activity based upon a given input [6]. This input is generally

taken from sensor readings which may be placed in a smart-

home environment or worn on the body. As such, the success

or failure of the activity recognition model is highly dependent

upon the sensors functioning correctly.

Reliability within IoT applications is a key area for research

[7] due to the notion that IoT networks typically involve highly

constrained devices [8], [9] communicating with eachother

over lossy links [10]. The constrained nature of these devices

make the IoT network considerably more vulnerable to device

failure and security threats, and the growing frequency of these

issues often leads to reduced trust by end-users [5]. With

the issues regarding trust, security and reliability in mind, it

therefore becomes essential that we build an awareness of the

quality of our IoT systems. Quality and reliability are urgent

requirements for IoT systems [11], [12] if we are to be able

to fully integrate this technology into our everyday lives.

This research aims to examine the impact of two different

and pervasive types of failure in IoT environments; fail-dirty

and device shut-down failures. These two failures are simu-

lated into a well-known activity recognition dataset to allow

us to examine the impact of these anomalies. This analysis

allows us then to draw conclusions around which sensors are

most vulnerable to error, and the impact that they can have

on the overall classification performance, across all classes

in the model. This study performs this failure analysis on

two different data preparation approaches; binary and numeric

representation, to determine if either of these two approaches
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are more susceptible to failure. Three different classifiers were

trained and tested in this study for all cases being studied;

a binary and numeric representation of each classifier, and

then within each of these the two different failure types were

introduced across the 14 sensors, resulting in a total of 168

tests, the main findings of which are discussed in this paper.

The remainder of this paper is organised as follows: Section

II is a literature review of IoT issues, activity recognition,

and data preparation for classification. Section III provides

detail on the methodology used for this experiment. Section

IV details the findings from the experiment and discusses the

impact of these on the wider field of research. Section V

discusses opportunities for further research, and Section VI

concludes this study.

II. RELATED WORK

Research is continuing to grow in the fields of both IoT

reliability and activity recognition. The increasing availability

of low cost sensor and communication technology is enabling

us to create connected spaces that open up new opportunities.

AAL generally concerns a smart environment, equipped with

sensing capability that allows us to infer activity. Chen et

al. [4] defined this paradigm as ”dense sensing”, where the

environment is embedded with a large number of low-cost,

low-power miniature sensors. These sensors are normally

embedded into objects, which the human will then interact

with. These simple human-object interactions can provide

valuable information pointing to the activity being undertaken.

Jurek et al. [13], examined activity recognition using en-

semble classifiers. The study provides deep level detail on the

data preparation process needed to successfully infer activity

information from a feature vector generated in a smart-home

environment. The study describes two fundamental ways of

representing feature vectors; numerically and binary. A feature

vector is represented as:

S = (S0, S1...Sn)

where S is a sensor and n is the number of sensors in that

feature vector. The numeric representation of the feature vector

would mean that the range of Si is:

Si = [0, 1...n]

where n represents the number of times that Si was fired

during the window of time represented by the feature vector.

The binary representation of the feature vector would mean

that the range of Si is:

Si = [0, 1]

where Si has only two possible values within the feature

vector. A zero indicates that the sensor did not fire during

the time window, and a one indicates that the sensor fired at

least once during the window.

Interestingly, this study found that the binary representation

enabled the classifier to have a higher performance, resulting

in a unanimous improvement on classification f-measure. In

the areas for further research in this paper the author indicates

that further research is required to understand these two

representations for classification to ascertain if the number of

times the sensor was triggered may be significant with respect

to handling anomalous data.

IoT networks are known to be vulnerable to hacking at-

tempts. An example of constrained IoT devices being exploited

made mainstream news when hackers leveraged connected

surveillance cameras to bring down an entire network [14].

This problem is front-of-mind for many legislative bodies as

the public and private sector quickly attempt to secure the

IoT, which is evidenced by the U.K. government producing

consumer guidelines for the production of smart objects in

November 2018 [15].

In combination with IoT’s well documented security vulner-

abilities there are also some concerning data quality charac-

teristics related to IoT. These characteristics are described in

detail in [5]. One of the concerning characteristics documented

in this paper is the constrained nature of the devices in terms of

power, battery and storage. These constraints limit the devices

ability to perform complex operations, such as cryptography.

They also tend to operate on battery, which leads to a concern

where we are not always aware of the status of the battery,

meaning that the device could fail at any time without warning.

Another concerning characteristic which is detailed in [5] is

the propensity for IoT sensors to ”fail-dirty”, which is a par-

ticularly concerning phenomenon. This type of failure, which

comes without warning and is pervasive in IoT environments,

is a cause for concern - especially in circumstances where IoT

applications have a direct impact on humans, such as AAL.

The author of [5] also describes IoT applications’ tendency

to drop sensor readings. Depending on the quality of service

(QoS) standards of the protocols in use, which in IoT applica-

tions are heterogeneous and varied, there may not be delivery

guarantees associated with data transmissions meaning that

data can be dropped with no warning.

The tendency for IoT applications to lose power, drop

readings, and fail-dirty points to a prudent research question:

do we understand the impact that anomalous data has on an

IoT application? While the issue of fail-dirty data is well

documented in the literature, there is a lack of literature

that observes the impact of this erroneous data. Without first

understanding the impact of these issues, it is not possible

to fully understand the problem domain. This study is a novel

contribution to the literature, through its analysis of the impact

of common failures in a typical IoT environment. This study

serves as an important first step in determining the overall

reliability of our IoT systems.

III. METHODOLOGY & DATASET

This experiment seeks to assess the impact of fail-dirty and

device failure (i.e., loss of battery power) on the performance

of an activity recognition classifier in an IoT environment. This

experiment will introduce these two types of failures into two

different representations of the data, binary and numeric. The

remainder of this Section provides the methodology for the

experiment.
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A. Dataset Selection

A well-known dataset for activity recognition was identified

for use in this experiment, the details of which are discussed

fully in [16]. To summarise, the dataset consists of 14 digital

state-change sensors that were deployed in the home of a 26-

year-old male and collected data over a period of 28 days.

During this time, the inhabitant wore a bluetooth headset,

through which he annotated each activity as it occurred. This

resulted in a total of 2,120 sensor events and 245 activities

being recorded throughout the 28-day time period.

The 2,120 sensor events are recorded in a stream of data

which details the time the sensor began firing and the time that

it stopped. In order to transform the data into a state conducive

to activity recognition it must undergo a windowing process.

This process is discussed in detail in [13], and both the binary

and numeric windowing approaches have been tested in this

experiment.

B. Classifier Selection

Three classifiers were identified for use in the experiment;

Naive Bayes, Decision Tree and a Neural Network. These

classifiers were identified due to their popularity and suitability

to the task of classification in an IoT environment, as discussed

in [17] and [6]. Python’s Scikit Learn library [18] was used

to implement this experiment. With regards to the specific

algorithms chosen from Scikit Learn’s library, they were

as follows: for the neural network, Multi-layer Perceptron

classifier was used. For the decision tree, the Decision Tree

Classifer was used. For Naive Bayes, the numeric representa-

tion was trained and tested with the Multinomial Naive Bayes

algorithm, while the binary representation was trained and

tested with the Bernoulli Naive Bayes algorithm. The reason

for requiring a separate classifier for Naive Bayes is because

one of the algorithms (Multinomial) is designed for continuous

data and therefore is not suited to binary data, so it was

biased towards the numeric data. Bernoulli is designed for

binary data, but cannot be used on the numeric data because it

would transform each feature vector into binary representation,

therefore making the results identical to the binary results.

C. Data Preparation

In order to measure the impact of failures and anomalous

data, a baseline must be established so that the extent of the

failures can be benchmarked against it. This baseline was

created by training the three classifiers on a clean version

of the binary and numeric data. F-measures would then be

recorded from the tests performed against this data. Therefore,

once the trained classifiers were given the anomalous data to

test, we can easily observe the impact that this anomalous

data has on the classifier by observing how it changes the

F-measure.

The dataset was divided into a train and test set using the

train test split method from Scikit Learn, this allows for a set

of clean training data to be segregated for use in the training

of the classifiers, meaning that the test data will not have been

seen by the classifier in training. The same seed was used in

all cases for all classifiers to ensure that each classifier was

trained on the same training cases, and then each classifier

would be evaluated against the same test cases meaning that

the results would be a fair comparison across the classifiers.

The proportion decided for the training and test sets was 50%.

This number was chosen based upon van Kasteren’s analysis

in [16] that increasing the training data beyond half does not

yield higher accuracies.

D. Simulation of Anomalies

A variety of errors were introduced into the data so that

the F-measure for the classification performance could be

measured when the classifier was fed dirty data. These errors

were categorised as follows:

• Simulation of device power failure - changing all sensor

readings to zero for a given sensor.

• Simulation of fail-dirty data - inserting false sensor read-

ings into a feature vector for a given sensor.

In the case of the binary data, this is achieved by inserting

a value of one or zero. For the numeric data, this has been

tested by inserting zero, one, median and max values into each

separate sensor, performing an individual test with anomalous

data for each sensor.

Once failures have been simulated, the f-measure will be

collected for each test and compared against the clean f-

measure. Impact will be assessed by a gap analysis between

the clean and dirty f measures.

IV. RESULTS AND DISCUSSION

Using the methodology described in the previous Section,

results were produced for the three classifiers. Firstly, the

baseline f-measures were established for each classifier, which

are described in subsection IV-A. Next, results were generated

for fail-dirty and device shut-down simulations across each of

the 14 sensors in the environment, this was produced on both

the numeric and binary representations of the data and for all

three classifiers, meaning that a total of 168 result sets were

produced. The main findings of these results are presented and

discussed in this Section.

A. Baseline Performances of Classifiers

The trained classifiers for Naive Bayes, Decision Tree

and Neural network achieved f-measures of 96.1%, 94.1%

and 100.0%, respectively when trained and tested on the

clean binary data, as shown in figure 1. Using the numeric

representation of the data, these metrics were 92.7%, 93.1%

and 100.0%, respectively. Figure 1 illustrates the f-measures

collected from the classifiers when the two types of failure

were introduced, shut-down and fail-dirty, on both the binary

and numeric datasets. The f-measure, in this case, represents

a high-level view of the overall classification performance,

without providing individual detail on how each class within

the classifier performed. Even at this high level we can already

see some themes emerging. Firstly, we see that the most

largest reductions from the clean f-measure, after failures are

introduced, are found in the Decision Tree classifier - this is
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discussed in more detail later in this section. Secondly, we see

that while the use of binary data increases the f-measure when

using clean data, there are large reductions from the clean

f-measure when errors are introduced into the binary data.

Moreover, these reductions are considerably more significant

in the binary data than they are in the numeric representation.

Fig. 1. F-measure analysis of classifiers on numeric and binary datasets

B. Binary vs. Numeric Data Performance

Almost unanimously, across all classifiers and sensors

tested, there was a larger gap in f-measure performance when

using binary data, rather than the numeric data. Figure 2 shows

an analysis of the neural network results for both numeric

and binary shut-down and fail-dirty data to illustrate this

point, and the same thing can be seen in the naive bayes

and decision tree results. The numbers and bars in figure 2

represent the reduction in total f-measure observed from the

clean performance after dirty data was introduced. There is a

column for binary and numeric for both shut-down failures and

fail-dirty data. Firstly, we can observe that the reductions are

much larger in the binary cases. Secondly, we can observe that

within the binary failures, the largest reduction is to be seen

with the fail-dirty data. Given these results, we can conclude

that when we reduce the complexity of the data we make the

classifier significantly more vulnerable to erroneous data, in

particular fail-dirty data. Therefore, an IoT system architect is

left with a difficult decision, given that there is higher accuracy

to be gained from the binary representation, but pursuing this

avenue opens up vulnerability to failure.

This problem is illustrated further when we compare the

sensor failure data with human reasoning of which sensors

might cause the biggest drop in f-measure. For example, from

a human reasoning perspective, if we examine a feature vector

and see that the toilet flush sensor has been triggered, we

would likely conclude that the inhabitant had used the toilet,

so in the case of a fail-dirty toilet flush sensor we would often

be led to mislabel activities based on this fail-dirty sensor

informing us that the toilet flush sensor is firing when it is

Fig. 2. Failure impacts on numeric and binary datasets using neural network
classifier

not. Nonetheless, we can observe from figure 3, which is

the confusion matrix for a fail-dirty toilet flush sensor on the

numeric representation of the naive bayes classifier, that only

a single activity instance is misclassified as ”use-toilet”.

Fig. 3. Confusion matrix for fail-dirty toilet flush sensor using Naive Bayes
on numeric data.

This is contrasted greatly when we examine the same

failure simulated on the binary data. Using the binary data

and classifier, we see that the f-measure falls by 17% which

compared to the 0% drop in accuracy using the numeric data

is a large reduction by comparison. Figure 4 is the confusion

matrix for the fail-dirty toilet flush sensor on the binary

Naive Bayes classifier, showing that a total of 22 activities

from 3 different classes were mislabelled as ”use-toilet”. This

reduction of performance points to a very serious concern

regarding the use of binary data for this classification task.

Often, care providers cannot run the risk of critical activities

being mislabelled due to one sensor transmitting faulty data.

The problem can be extrapolated further when we con-
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sider the inherently insecure arena of IoT, and the possi-

bility of hacking attempts mentioned earlier in this paper.

The consequences would be dire if a malicious individual

staged a man-in-the-middle attack on this sensor network

to deliberately mislead the classifier when we consider the

vulnerable inhabitants that these systems are serving. With

this in mind, engineers must make careful and considered

decisions when choosing between binary and numerically

trained classifiers for activity recognition. Binary classifiers

do increase performance, but open up vulnerabilities which

may not be worth the risk.

Fig. 4. Confusion matrix for fail-dirty toilet flush sensor using Naive Bayes
on binary data.

C. Sensor Prioritisation

A key objective of this study was to determine the possibil-

ity of developing a ranking of sensors in the environment in

order to gain an understanding of the operational quality of the

system should a given sensor fail. By analysing the impact that

the failure of a single sensor has on the overall classification

performance, we can begin to form a rudimentary ranking of

sensor importance.

Figure 5 illustrates failure impacts of both device shut-down

from power failure and the introduction of fail-dirty data on

the numeric dataset with the Naive Bayes classifier. From this

we can observe that some sensors have a more significant

impact on the f-measure when erroneous data is introduced.

The highest impact from a single error-type on a single sensor

is to be found on the front door sensor when device shut-

down occurs. The confusion matrix for this particular failure is

presented in Figure 6, and this shows that for the 18 activities

labelled ”leave-house”, the NB classifier was unable to classify

any correctly. By contrast, the NB classifier correctly classified

100% of activities labelled ”leave-house” when tested on clean

data. This finding illustrates that the sensor on the front door is

vital to the classification of one activity, and when the sensor

fails it becomes impossible to correctly classify the activity.

This finding was also observed in both the neural network

and decision tree experiments. In environments where ADLs

are being classified to monitor patient health, the activity

of leaving the house is critical. Consider the example of a

dementia patient: the care staff may be relying on an alert

being triggered by the classification of this activity, and a

single sensor failure could jeopardise this entirely. From this

we can begin to extrapolate a list of which sensors are most

critical to the environment based upon those which have the

highest impact on classification.

Fig. 5. Impact of failure by sensor on Naive Bayes

Fig. 6. Naive Bayes confusion matrix for device shut-down on front door

Feature selection is often used in machine learning to

identify the features that contribute the most to classification

in order to reduce the dimensionality of the data. In particular,

Chi-square is well suited to multi-class problems, as op-

posed to other feature selection methods [19]. A comparative

analysis between chi-square, and the failure impacts from
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this experiment was produced to ascertain if a correlation

was found between the two approaches to further cement

the understanding of individual sensor importance within this

deployment, results of this are shown in 7.

Fig. 7. Scatter graph plotting the chi-square results against the failure impact
scores using the numeric naive bayes data. r=0.8097

Using the scatter graph from Figure 7, we can ascertain

that there is a strong positive correlation between the chi-

square results and the analysis of the failure impact scores,

resulting in an correlation coefficient of 0.8097. The top right

quadrant of the graph represents the most critical sensors in

the environment. This verifies that should these sensors fail,

we would see a large reduction in the performance of the

classifier. As such, these sensors should be treated as the

highest priority within the environment. This methodology of

determining sensor priority could be applied to any generic

sensor environment, allowing IoT architects to build a strong

situational awareness of the IoT deployment with regards to

information reliability.

D. Resilience of Decision Trees to Device Failure

Earlier in this Section, it was illustrated that the decision

tree classifier had notably lower f-measures once erroneous

data was introduced. The f-measure for the decision tree when

using clean data was 94.1%, but this metric was reduced

significantly when tested with device shut-down and fail-dirty

data, scoring 86.4% and 67.8%, respectively. This reduction

in accuracy is a serious cause for concern that, given the

inherently insecure IoT applications at hand, would indicate

that a decision tree is not a suitable classifier for activity

recognition applications in the real world.

Figure 8 depicts the individual impact scores for fail-dirty

and shut-down errors for each sensor in the deployment for the

decision tree. We can observe here that some sensors have a

disproportionately large impact on the classifier, whereas other

sensors have no impact at all. A fail-dirty front door sensor

results in a 75% reduction to the f measure, whereas failures to

the washing machine, cups and microwave sensors exhibited

no impact at all during testing. This suggests a concerning

Fig. 8. Failure impacts on decision tree based on binary data

behaviour with decision tree classifiers when handling these

types of errors.

Fig. 9. Confusion matrix for fail-dirty door sensor using binary data

Figure 9 presents the confusion matrix for the fail-dirty front

door sensor. We can observe that the majority of instances have

incorrectly been classified as the activity ”leave-house”. This

makes sense, given that the dirty data has been simulated on

the front door sensor. As discussed earlier in this section, we

know the front door sensor is vital with regard to classifying

the leave-house activity. Perhaps what is most concerning

here is the impact that the fail-dirty door sensor exhibits on

other labels which typically do not rely on the door sensor

for classification. By contrast, the Neural Network and Naive

Bayes were over 30% more accurate with this particular

failure, which illustrates that in this scenario the weakness

resides in the decision tree classifier, rather than the sensor.

Decision trees are structured by a series of leaf nodes,
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Fig. 10. Structure of the decision tree classifier

each of these nodes representing a decision boundary for a

feature within the dataset. The decision tree structures the

leaves hierarchically and begins at the top of the tree then

works down to the leaf nodes at the bottom. If a threshold

is met that satisfies the tree’s learned boundary of that class,

then the tree will classify the activity and move on to the

next. Importantly, the decision tree does not always reach the

lower-most leaf node. For example, depending on the structure

of the data and its dimensions, if a threshold is met on the first

leaf node at the top of the tree it is possible for the tree to

classify that activity immediately, and therefore it would not

examine the other thresholds at the lower leaf nodes. Figure

10 shows the structure that was generated by the Scikit Learn

decision tree classifier algorithm. This structure first examines

the threshold for sensor 3, checking if there is a 1 or a 0

reading for the sensor. If sensor 3 is reading as a 0, then the

next leaf node checks sensor 7 (which in a fail-dirty scenario

is going to be entirely populated with 1 values) to gauge if

the value is a 1 or a 0. If the value is a 1, then the activity

is classified as leaving the house. The decision tree makes

this decision without full awareness of the values in the other

13 sensors. With this particular tree structure, the only way

to avoid misclassification of activities in the event of a fail-

dirty front door sensor is if the decision tree never reaches

that leaf node, which is unlikely considering how high the

leaf node is in the tree’s hierarchy. This explains why the

”use-toilet” class was largely unaffected by the fail-dirty door

sensor, because if sensor 3, the bathroom door, is triggered

then the leaf node for sensor 7 is avoided. Unfortunately, with

this tree, the vast majority of leaf nodes can only be reached by

passing through sensor 7, meaning that all activities except for

using the bathroom are entirely jeopardised by one fail-dirty

sensor.

With the results of this decision tree classifier in mind, we

must critically examine the role of decision tree classifiers

within activity recognition IoT environments. By using a

decision tree, we are leaving the accuracy of the model at the

mercy of the tree structure, which due to its hierarchical nature,
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is destined to fail in the event of erroneous sensor readings.

Perhaps most concerning is the fact that, on a clean set of data,

the decision tree classifier performs extremely well: this could

potentially mislead developers into a false sense of security.

When using any classifier we must consider how resilient it is

to failure, and this experiment demonstrates that the decision

tree, while adequate on clean data, is simply not robust

when it comes to handling dirty data. Given the tendency for

constrained IoT environments to experience failure this is of

paramount importance.

V. AREAS FOR FURTHER RESEARCH

This study has identified some key concerns within the arena

of IoT data quality and reliability. With respect to the tendancy

for IoT sensors to fail-dirty, there is a need to observe this

phenomenon as it naturally occurs in a real-world dataset.

Given the nature of how this error occurs will mean it will be

challenging to catch, but it would be essential for researchers

to fully understand the phenomenon.

This study has also identified the impact of given failures in

an IoT environment, the logical next step would be to identify

some pre-emptive measures which identify these failures in

real-time so that they can be alerted before they are fed into

the classifiers. One possible way of doing this, given the

Markovian nature of the problem, would be to use a Markov

Chain to analyse the probability of a given state transition to

identify erroneous patterns in the raw sensor data.

VI. CONCLUSION

This study examined the impact of device shut-down and

fail-dirty data on a well-known activity recognition dataset

[16] across three different classifiers; Naive Bayes, Decision

Tree and Neural Networks in both numeric and binary repre-

sentations of the feature vectors. The study found that, while

performance of the classifier is enhanced when operating on

clean binary data, there are concerning impacts to all binary

classifiers in the study when sensors transmit erroneous data,

making the application much less reliable.

The study was also able to identify a group of sensors

that had the most significant impact on classification through

a fusion of the chi-square feature selection method and the

failure analysis of the fail-dirty and device shut-down data.

This group of sensors can then be treated as high-priority

within the environment and be given special care and attention

by engineers and care-home staff, in order to mitigate against

the possibility that they might fail and severely damage the

application.

Lastly, this study unveiled a concerning characteristic of the

decision tree classifier which illustrates the algorithms inability

to handle erroneous fail-dirty data. Given the propensity for

IoT applications to fail, or fall victim to attacks, this indicates

that the decision tree classifier is fundamentally unsuitable to

classification tasks within IoT environments.
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Kröse. Accurate activity recognition in a home setting. In Proceedings of
the 10th international conference on Ubiquitous computing - UbiComp
’08, page 1, 2008.

[17] Nesma Settouti, Mohammed El Amine Bechar, and Mohammed Amine
Chikh. Statistical Comparisons of the Top 10 Algorithms in Data Mining
for Classi cation Task. International Journal of Interactive Multimedia
and Artificial Intelligence, 4(1):46, 2016.

[18] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa,
Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer,
Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake Vanderplas,
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