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Abstract

To maintain normal cellular and physiological function, sufficient oxygen is required.

Recently, evidence has suggested that hypoxia, either pathological or environmental,

may influence bone health. It appears that bone cells are distinctly responsive to

hypoxic stimuli; for better or worse, this is still yet to be elucidated. Hypoxia has

been shown to offer potentially therapeutic effects for bone by inducing an

osteogenic–angiogenic response, although, others have noted excessive osteoclastic

bone resorption instead. Much evidence suggests that the hypoxic‐inducible path-

way is integral in mediating the changes in bone metabolism. Furthermore, many

factors associated with hypoxia including changes in energy metabolism, acid–base

balance and the increased generation of reactive oxygen species, are known to

influence bone metabolism. This review aims to examine some of the putative me-

chanisms responsible for hypoxic‐induced alterations of bone metabolism, with re-

gard to osteoclasts and osteoblasts, both positive and negative.
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1 | INTRODUCTION

To maintain normal cellular and physiological function, sufficient

oxygen is required. In the absence of sufficient oxygen, the body is

required to make adjustments to prolong survival. This physiological

hypoxia arises from reduced environmental oxygen content—as seen

with ascending altitude—or pathological factors, such as reduced

tissue perfusion (Grocott et al., 2009; Levy et al., 2008; Luks &

Swenson, 2011). Recently, evidence has shown that hypoxia, either

pathological or environmental, may influence bone health (Tanaka,

Minowa, Satoh, & Koike, 1992; Tando et al., 2016; Terzi & Yılmaz,

2016; W. Wang et al., 2017). Associations have been drawn between

hypoxic‐related conditions, such as anaemia, sleep apnoea and

chronic obstructive pulmonary disease and poor bone mineral den-

sity (BMD; Ramachandran, Mani, Gopal, & Rangasami, 2016; Terzi &

Yılmaz, 2016; Valderrábano et al., 2017). Although these relation-

ships offer little causative evidence, experimental research (mostly in

animal models) has suggested that hypoxia directly affects bone

health (Arnett, 2010; Basu et al., 2013; W. Wang et al., 2017). For

example, mice exposed to simulated 6000m altitude (~9.8% O2) for

21 days were reported to have 33% less trabeculae bone volume

when compared to controls (W. Wang et al., 2017). The structural

changes observed in this exposure group significantly reduced

histomorphometric measures of bone strength, indicating that

hypoxic exposure may increase the risk of bone fracture (W. Wang

et al., 2017). This review aims to examine some of the putative
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mechanisms responsible for hypoxic‐induced alterations of bone

metabolism including: hypoxic pathway activation; metabolic altera-

tions; reactive oxygen species generation; acidosis; and ery-

thropoietin production.

1.1 | Overview of basic multicellular units (BMUs)

Normal bone metabolism is governed by a BMU. The BMU consists of

osteoclasts resorbing bone; osteoblasts forming bone; and osteo-

cytes regulating bone metabolism and sensing mechanical forces

(Kular, Tickner, Chim, & Xu, 2012). While the intricacies of the BMU

are beyond the scope of this review, it is important to note that the

BMU operates in a well‐orchestrated manner to correctly regulate

bone turnover and that insufficiencies in the crosstalk and signalling

processes can result in maladaptation (Kular et al., 2012;

Raubenheimer, Miniggio, Lemmer, & van Heerden, 2017). Generally,

bone turnover works in three distinct phases: (a) initiation; (b) re-

versal; and (c) termination. The initiation phase recruits osteoclast

precursors, differentiates them to mature multinucleated osteoclasts

and activates them for resorption. This initiation phase largely op-

erates through the binding of receptor activator of nuclear factor‐κΒ
ligand (RANKL)‐ which is produced by osteoblasts, endothelial cells

and T cells‐ to receptor activator of nuclear factor κΒ (RANK)‐ pre-
sent on osteoclasts and their precursors (Asagiri & Takayanagi, 2007;

Burgess et al., 1999; Lacey et al., 1998; Xu et al., 2000). The reversal

phase involves the inhibition of osteoclastic activity and apoptosis

while osteoblasts differentiate before entering the termination phase

where bone formation occurs (Eriksen, Gundersen, Melsen, &

Mosekilde, 1984; Eriksen, Melsen, & Mosekilde, 1984; Raggatt &

Partridge, 2010). Regulation of the BMU is a complex interplay be-

tween cell signalling and endocrine influence (Kular et al., 2012).

Interestingly, hypoxia is believed to stimulate/alter several factors

capable of manipulating the BMU, such as, hypoxia‐induced factors,

energy metabolism, acidosis, reactive oxygen species (ROS) genera-

tion and erythropoietin (EPO) production (Arnett, 2010; Bartell

et al., 2014; Hiram‐Bab, Neumann, & Gabet, 2017).

1.2 | Overview of the cellular response to hypoxia

In the simplest form, hypoxia can be defined as the threshold

whereby normal cellular function is limited by the oxygen con-

centration (Zepeda et al., 2013). Hypoxic stimuli, such as low ambient

oxygen partial pressure/levels, poor oxygen diffusion and perfusion,

may initiate a cellular hypoxic response. Although the earth's atmo-

sphere consists of 20.9% oxygen, tissue oxygen typically ranges from

2% to 9% (Marenzana & Arnett, 2013; Reyes et al., 2012). Therefore,

small changes in atmospheric oxygen can potentially lead to im-

portant relative changes in cellular oxygen, which in turn stimulate

hypoxic pathways. The cellular response to hypoxia is largely medi-

ated through heterodimeric transcription factors: the hypoxia‐
inducible factors (HIFs; Déry, Michaud, & Richard, 2005). Each HIF

consists of a HIF‐α subunit and a constitutively expressed beta

subunit, HIF‐β. In normoxia (>~5% O2), HIF‐α is post‐translationally
hydroxylated by the enzymes prolyl hydroxylase domains (PHDs) 1–3

for subsequent interaction with the von Hippel–Lindau protein (pVHL)

for poly‐ubiquitination and proteasomal degradation. Furthermore,

factor‐inhibiting hypoxia (FIH) hydroxylates the HIFs asparagine re-

sidue, inhibiting the ability of HIF‐α to recruit its transcriptional cap-

ability (Bruick, 2001; Epstein et al., 2001; Knowles, 2015a). Whereas

under hypoxia (<~5% O2), PHD activity is reduced, leading to HIF‐α
accumulation and translocation to the nucleus. HIF‐α then dimerises

with HIF‐β and binds to the hypoxia‐response element of HIF target

genes, initiating transcription of more than two hundred genes (Déry

et al., 2005; Kaluz, Kaluzová, & Stanbridge, 2008; Semenza, 2003; see

Figure 1). The activation of HIFs result in the stimulation of several

physiological pathways such as: angiogenesis; pH regulation; cellular

apoptosis; and glycolysis, all of which are imperative for survival in

hypoxic environments (Hu, Wang, Chodosh, Keith, & Simon, 2003; J.‐W.

Lee, Bae, Jeong, Kim, & Kim, 2004).

2 | HYPOXIA AND BONE

The level of oxygen reaching bone tissue is thought to be around

6.6–8.6% O2, as measured in bone aspirates (Harrison, Rameshwar,

Chang, Bandari, & Persis, 2002). Considering this, it is entirely con-

ceivable that exposure to small changes in either inspired O2 or O2

delivery may influence cell homoeostasis, namely by stimulation of

HIF pathways (Arnett, 2010; Harrison et al., 2002; Marenzana &

Arnett, 2013). Although hypoxia is a stimulus for HIF stabilisation, we

consider the effects of HIF‐1 and HIF‐2 separately to the overall

effect of physiological hypoxia.

2.1 | Osteoblast

Utting et al. (2006) were among the first to note decreases in os-

teoblast bone formation when exposed to low‐oxygen environments.

Following in vitro osteoblast exposure to 2% O2, bone formation

decreased 10‐fold and was almost ablated in 0.2% O2. Hypoxia was

noted to delay both osteoblast growth and differentiation, limiting

overall bone formation (Utting et al., 2006). Similarly, short‐term
hypoxic exposure in ovariectomised (OVX) rats has been shown to

supress osteoblastogenesis further than OVX alone (Xian et al.,

2016). Reductions in osteoblastogenesis have been attributed to

reduced Runx2 expression and activity in hypoxia, subsequently re-

ducing multipotent mesenchymal cell differentiation to immature

osteoblasts (Komori, 2010; Ontiveros, Irwin, Wiseman, & McCabe,

2004; Park, Park, Kim, Park, & Baek, 2002; Salim, Nacamuli, Morgan,

Giaccia, & Longaker, 2004). Several in vitro studies have also noted

reductions in osteoblastogenesis through inhibition of the phospha-

tidylinositol 3‐kinase (PI3K)/Akt signalling pathways that are

normally involved in the antiapoptotic and survival function in cells

(H. P. Ma et al., 2014; Zou et al., 2014).
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In addition to reduced osteoblastogenesis, osteoblast matrix

mineralisation is also inhibited in hypoxia, as a result of reduced

expression and activity of alkaline phosphatase (ALP; Utting

et al., 2006). Hypoxic‐induced inhibition of osteoblast function may

also be the result of reduced PHD and lysyl oxidase enzyme activity

(Arnett, 2010; Utting et al., 2006). These oxygen‐dependent enzymes

are required for posttranslational modification of collagen; however,

they are reduced during hypoxia, resulting in impaired collagen cross‐
linking (Myllyharju, 2003; Utting et al., 2006). It may be the combi-

nation of reduced matrix mineralisation and collagen cross‐linking
that severely limits osteoblastic function (Utting et al., 2006). Fur-

thermore, osteoblasts have also been shown to release adenosine

triphosphate (ATP) in response to hypoxia, which concurrently in-

hibits bone formation and stimulates osteoclasts (Morrison, Turin,

King, Burnstock, & Arnett, 1998; Orriss et al., 2009). Generally, hy-

poxic exposures inhibit osteoblast activation and osteoblast numbers.

2.2 | Osteoclasts

The effect of hypoxia on osteoclasts appears more definitive than

that of osteoblasts. Exposure to 2% O2 has been shown to stimulate

increases in osteoclast number and activity (Arnett et al., 2003;

Knowles & Athanasou, 2009; Muzylak, Price, & Horton, 2006; Utting,

Flanagan, Brandao‐Burch, Orriss, & Arnett, 2010). In murine bone

marrow cultures, osteoclast activity has been reported to increase

21‐fold following exposure to 2% O2 (Arnett et al., 2003). Similarly,

2% O2 increased resorption pit formation 10‐fold in osteoclasts dif-

ferentiated from human peripheral blood mononuclear cells (Utting

et al., 2010). It first was noted that hypoxia maximally stimulated

osteoclastogenesis at 2% O2, resulting in a four‐fold increase in os-

teoclast number (Arnett et al., 2003). Others have noted similar in-

creases in osteoclast numbers when exposed to hypoxia (Muzylak

et al., 2006; Utting et al., 2010).

It is important to consider the hypoxic protocols used in such

studies as constant hypoxic exposure results in inhibition of osteo-

clast formation and activity, due to extensive cell death (Knowles &

Athanasou, 2009; Z. Ma et al., 2019). However, reoxygenation every

2–3 days has been shown to promote osteoclastogenesis (Knowles &

Athanasou, 2009). Clearly, osteoclast sensitivity to O2 is partially

responsible for the need to re‐oxygenate for continued differentia-

tion (Knowles, 2015a). The increase in osteoclast numbers following

intermittent hypoxic exposure may also be related to increases in

reactive oxygen species which may account for the increased dif-

ferentiation is some studies (ROS: discussed later). Mechanistically,

hypoxia has been shown to supress the RANKL decoy receptor,

osteoprotegrin (OPG), preventing RANK‐induced osteoclast forma-

tion and activity (Shirakura et al., 2010; Xian et al., 2016), although

this has not been consistently demonstrated (Hulley et al., 2017;

Kang et al., 2017; S. Y. Lee et al., 2019; Merceron et al., 2019; Shao

et al., 2015; Wu et al., 2015). It is difficult to ascertain this incon-

sistency, but it may be explained by experimental variations of

F IGURE 1 HIF pathway activation. The left‐hand side shows the moderators of rapid degradation of HIF‐α through posttranslational
hydroxylation by the enzymes PHD 1‐3 and poly‐ubiquitination and proteasomal degradation via the VHL protein. The right‐hand side shows
that under hypoxia and other mediators PHD activity is inhibited, leading to HIF‐α accumulation and translocation to the nucleus. HIF‐α then

dimerises with HIF‐β and binds to transcriptional co‐activators p300/CBP to elicit activation of the hypoxia‐response element for transcription
of hypoxic genes. HIF, hypoxic‐inducible factor; PHD, prolyl hydroxylase domain; ROS, reactive oxygen species; TCA, tricarboxylic acid cycle;
VHL, von Hippel–Lindau
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HIF‐induction (hypoxia or gene editing), cell lines or single cell line

work opposed to coculture or in vivo. Shirakura et al. (2010)

demonstrated that HIF‐1α knockdown could only significantly in-

crease OPG under hypoxic conditions and not normoxic. Hypoxia's

downstream effects may mediate OPG decreases and that

HIF‐induction alone may increase OPG or not at all. Although, it has also

been suggested that osteoclasts and osteoblasts have differing sensi-

tivities to HIF that is osteoclasts are more sensitive to HIF inhibition

whereas osteoblasts appear more sensitive to HIF activation (Knowles,

2015b). While hypoxia appears to inhibit osteoblast function and

number, it can stimulate these in osteoclasts, although constant

exposure may negate this. Some of the putative mechanisms are alluded

to above but we herein examine the primary suspects in mediating the

generally reported negative effect of hypoxia on bone below.

3 | HIF ‐1α : FRIEND OR FOE?

3.1 | Osteoblasts

Early research on hypoxia and osteoblasts provided insightful results:

Y. Wang et al. (2007) first reported that hypoxic/HIF stimulation led

to increased bone formation in mice via HIF‐1α‐dependent induction
of the angiogenic factor, vascular endothelial growth factor (VEGF).

Subsequent research noted the importance of HIF‐1α signalling in

skeletal development, terming it osteogenic–angiogenic coupling (C.

Wan et al., 2010; Wu et al., 2015). It was suggested that hypoxic

exposure induces HIF‐1α transcription of VEGF improving local

vascularisation and, in turn, increasing activation of target genes,

progenitor cells and nutrients enhancing bone formation (Schipani,

Maes, Carmeliet, & Semenza, 2009; Y. Wang et al., 2007). Using PHD

inhibition, X. Liu et al. (2014) demonstrated improved structural

measures of bone in OVX mice (X. Liu et al., 2014). This was likely the

result of the increased number of osteoblasts in mice overexpressing

HIF‐1α when compared to controls (Y. Wang et al., 2007). Such

findings led the same authors to hypothesise that HIF‐1α stimulation

may augment skeletal repair. Using a skeletal repair model, mice

overexpressing HIF‐1α demonstrated increased vascularity and bone

formation, whereas mice lacking HIF‐1α displayed significantly

poorer repair (C. Wan et al., 2010). The mechanism responsible for

the HIF‐1α driven bone formation is thought to be mediated through

the upregulation of glycolytic activity, subsequently increasing os-

teoblast activity (Regan et al., 2014; see Section 9.2). This tentative

evidence highlights a putative role for augmented HIF‐1α stimulation

in the treatment of poor bone health, but given the lack of human

studies, such approaches should be viewed with caution. Finally, it

should be noted that the osteoanabolic response is attributed to

HIF‐1α stimulation alone and may not prevail in hypoxia, due to the

multifaceted nature of reduced oxygen content or delivery. Utting

et al. (2006) has suggested that this discrepancy in bone cell re-

sponses may be due to in vivo systems eventually reaching sufficient

oxygen for increased bone formation via osteogenic‐angiogenesis.
Whereas, in vitro, VEGF would seemingly be unable to yield an

anabolic response in the absence of oxygen. The disparity in response

remains poorly understood and future work should aim to further

explore this variability.

3.2 | Osteoclasts

While osteoblasts appear capable of yielding an osteoanabolic re-

sponse to HIF‐1α stabilisation, osteoclasts appear to provide an an-

tagonistic response. The hypoxic‐induced resorption of osteoclasts

has been reported to be HIF‐1α dependent (Knowles & Athanasou,

2009). This was first noted when HIF‐1α siRNA completely ablated

the hypoxic increase in resorption (Knowles & Athanasou, 2009);

although, it has since been suggested that the hypoxic‐induction
enzyme, PHD2 and HIF‐1α play direct roles in hypoxic enhanced

resorption (Hulley et al., 2017). Hulley et al. (2017) found that het-

erozygous depletion of PHD2 in bone marrow cells increased ex-

pression of pro‐resorptive genes, resulting in 3.7‐fold higher

resorption when compared to wild type. In vivo deletion of PHD2

echoed in vitro observations: increased resorption and subsequently

reduced BV/TV, trabecular number and increased trabecular spacing.

The manner in which HIF‐1α affects osteoclast function still requires

clarification but appears to be related to the stimulation of pro‐
resorptive genes and glycolytic activity stimulating resorption (dis-

cussed later; Knowles, 2015a). Nonetheless, it would seem evident

that the hypoxic‐induced increase in osteoclast activity is, in part,

HIF‐1α mediated.

While the HIF‐1α‐induced increase in osteoclast activity is well

documented, the role of HIF‐1α in osteoclastogenesis is less clear.

Several reports note increased differentiation following HIF‐1α sti-

mulation, while others have noted decreases (Bozec et al., 2008;

Leger et al., 2010; Miyauchi et al., 2013). More recently, HIF‐1α
siRNA was shown to accelerate osteoclast cell fusion while HIF‐1α
induction moderately inhibited differentiation (Hulley et al., 2017).

Intriguingly, HIF‐1α stabilisation with hypoxic mimics, cobalt and

L‐mimosine, significantly reduced osteoclast differentiation and sub-

sequently resorption, whereas hypoxia did not. Hypoxic‐induction of

HIF‐1α caused a nonsignificant decrease in osteoclast numbers,

which the authors attribute to the longer reoxygenation times

compared to other studies (Arnett et al., 2003; Hulley et al., 2017;

Knowles & Athanasou, 2009; Muzylak et al., 2006; Utting et al.,

2010). Hypoxia did however increase resorption early on during

differentiation, significantly increasing the final resorption capacity

(Hulley et al., 2017). The discrepancy in differentiation between

hypoxic mimics and hypoxia may be explained by the fact that cobalt

and L‐mimosine are not PHD specific inhibitors, whereas hypoxia is.

Considering PHD2 is partly responsible for the hypoxic‐induced in-

crease in osteoclast activity, it is important to consider whether there

is a role for PHD in differentiation. In vivo deletion of PHD2 had no

effect on the number of TRAP‐positive osteoclasts (Hulley et al.,

2017). Homozygous knockdown of PHD3 mirrors the HIF1‐α siRNA

response, accelerating osteoclast formation, which is associated

with increased expression of the differentiation marker nuclear
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factor‐activated T cells c1 (Nfatc1; Hulley et al., 2017). Yet, this did

not affect the final number of osteoclasts formed. One explanation

may be that PHD3 depletion stimulates PHD2 expression to inhibit

HIF‐1α stabilisation and negate the catabolic effects, but this remains

speculative. It is possible that the hypoxic‐induced increase in os-

teoclast number is the result of osteoblast‐osteoclast crosstalk

(Shirakura et al., 2010; Xian et al., 2016), although studies examining

osteoclasts alone were able to demonstrate increased differentiation,

suggesting mediation by downstream effects (Arnett et al., 2003;

Brandao‐Burch, Meghji, & Arnett, 2003; Kato & Matsushita, 2014;

Knowles, 2019; Utting et al., 2010).

4 | HIF ‐2: TOO GOOD TO BE TRUE?

The role of HIF‐1 in bone metabolism appears to be well documented

when compared to HIF‐2. Though HIF transcription factors share

similarities and overlapping roles, they can have opposing actions.

Here we discuss HIF‐2's emerging role in bone metabolism.

4.1 | Osteoblasts

Initial research identified that loss of HIF‐2 in both osteoprogenitors

and osteoblasts did not impact osteoblast activity or number

(Shomento et al., 2010; Wu et al., 2015). However, it has recently

been reported that HIF‐2 is a negative regulator of osteoblastogen-

esis (S. Y. Lee et al., 2019; Merceron et al., 2019). Deficiency of HIF‐2
increases bone mass through promoting osteoblast differentiation and

inhibiting osteoclast differentiation (Merceron et al., 2019). HIF‐2's
impairment of osteoblastogenesis is partly regulated through Sox9—

a negative regulator of osteoblast differentiation (Merceron

et al., 2019; Zhou et al., 2006). Sox9 appears to limit differentiation

through reductions in expression of the important osteoblast dif-

ferentiation mediators, Runx2 and Sp7. Although previous research

has suggested that HIF‐induction of VEGF promotes osteoangio-

gensis, Merceron et al. (2019) demonstrated that despite increased

expression of VEGFA mRNA in PRX‐HIF2dPAf/+ mice, the os-

teoangiogenic response was inhibited. Stabilisation of HIF‐2 appears

to supersede the anabolic actions of VEGFA and inhibit bone for-

mation and osteoblastogenesis (Merceron et al., 2019).

Similarly, HIF‐2α deficiency is shown to promote osteoblast dif-

ferentiation and increase bone formation in mice (S. Y. Lee

et al., 2019). S. Y. Lee et al. (2019) suggest that HIF‐2α mediates its

inhibitory actions on osteoblasts through the target gene Twist2.

Twist2 inhibits RUNX2 and osteocalcin expression, resulting in re-

duced osteoblast mineralisation and bone mass (S. Y. Lee et al., 2019).

TWIST is also a downstream target of hypoxia and HIF‐1α stabili-

sation, which inhibits the expression of type 1 RUNX2. Such de-

creases in RUNX2 further inhibit expression of BMP‐2, type 2

RUNX2 and subsequently osteoblast mineralisation (Yang et al.,

2011). Therefore, in hypoxic microenvironments where HIF stabili-

sation occurs more ubiquitously, expression of TWIST may be greater

and could explain reductions in RUNX2 in hypoxic environments

(Komori, 2010; Ontiveros et al., 2004; Park et al., 2002; Salim

et al., 2004).

4.2 | Osteoclasts

HIF‐2α deficiency appears to influence osteoclasts through both

primary and secondary mechanisms. HIF‐2α overexpression in os-

teoclasts with M‐CSF and RANKL treatment enhanced differentia-

tion, as evidenced by the increase in number of TRAP‐positive cells

(S. Y. Lee et al., 2019). The overexpression of HIF‐2α resulted in large

osteoclast formation with large cytoplasmic compartments, sug-

gesting that HIF‐2α may also stimulate osteoclast maturation, similar

to HIF‐1α (Hulley et al., 2017; S. Y. Lee et al., 2019). The increased

expression of osteoclast‐fusion related genes, during M‐CSF and

RANKL‐induced osteoclastogenesis, supports the notion that HIF‐2α
is capable of stimulating and accelerating osteoclastogenesis (S. Y.

Lee et al., 2019). Interestingly, inhibition of HIF‐2α reduced the

RANKL‐mediated differentiation of osteoclasts as evidenced by the

reduced number of nuclei and the expression of osteoclast‐related
genes in a dose‐dependent manner. The direct molecular mechanism

of HIF‐2α mediated osteoclastogenesis may be due to the upregu-

lation of the target gene TRAF6 (S. Y. Lee et al., 2019). TRAF6 is an

adapter of RANK, leads to Nfatc1 activation and promotes osteo-

clastogenesis (Gohda et al., 2005; Kanemoto et al., 2015; S. Y. Lee

et al., 2019). TRAF6 expression increased during RANKL‐mediated

osteoclast differentiation but when combined with HIF‐2α over-

expression, its expression was enhanced. Similarly, when HIF‐2α was

inhibited so was TRAF6 (S. Y. Lee et al., 2019). Inhibition of TRAF6

blocked the HIF‐2α induced increase in osteoclast differentiation and

formation (S. Y. Lee et al., 2019).

HIF‐2 stabilisation appears to regulate aspects of differentiation

and osteoclastogenesis but not osteoclastic resorption (Knowles,

2015b). Silencing of HIF‐2α in human monocyte‐derived osteoclasts

had no effect on the hypoxic‐induced resorption when cells were

exposed to hypoxia (Knowles & Athanasou, 2009; Knowles, Cleton‐
Jansen, Korsching, & Athanasou, 2010). Others have noted that

HIF‐2α is capable of increasing mineral resorption, evidenced by the

increase in osteoclast activity genes: Trap, Ctsk and Nfatc1 (S. Y. Lee

et al., 2019). However, this may also be the result of the increased

osteoclast number seen with HIF‐2α stabilisation.

It has been suggested that HIF‐2α is an important mediator of

osteoblast‐osteoclast crosstalk. Osteoclast‐specific loss of HIF‐2α
increases bone mass via affecting solely osteoclasts, whereas

osteoblast‐specific loss of HIF‐2α increases bone mass via affecting

osteoblasts and osteoclasts (S. Y. Lee et al., 2019). HIF‐2 may directly

bind to the RANKL promoter to increase osteoclast differentiation

(S. Y. Lee et al., 2019; Ryu et al., 2014). However, it has also been

suggested that the HIF target gene, OPG and its intermediary

interleukin 33, may be responsible for the osteoblast‐mediated

inhibition of osteoclastogenesis (Kang et al., 2017; Merceron et al.,

2019; Shao et al., 2015; Wu et al., 2015). It seems plausible that part
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of the osteoclastogenic response to hypoxia may be mediated

through independent cell action but also osteoblast‐osteoclast
crosstalk.

5 | BRIEF SUMMARY: HYPOXIA, HIF‐1
AND HIF‐2

True hypoxia—a reduction in oxygen availability—results in the

concomitant stabilisation of HIFs. Although similar, HIF‐1 and HIF‐2
have different oxygen sensitivities (Greer, Metcalf, Wang, & Ohh,

2012; Patel & Simon, 2008). Intuitively, one would expect reduced

oxygen availability and HIF stabilisation to have similar effects;

however, this is not the case and antagonistic relationships have

been demonstrated in other tissues (Hu et al., 2003; Maxwell et al.,

1999; Raval et al., 2005; V. Wang, Davis, Haque, Huang, & Yarchoan,

2005). Therefore, any hypoxic exposure should be considered care-

fully, as the level and duration of hypoxia may elicit differential HIF

stabilisations. This may account for why some hypoxic exposures

elicit potentially favourable changes whereas others show potentially

detrimental effects.

In Figure 2, we summarise the hypoxic signalling effects on both

osteoclasts and osteoblasts. Hypoxia generally stimulates osteoclasts

and inhibits osteoblasts. While HIF‐1a stimulates both osteoblasts

and osteoclasts, HIF‐2 stimulates osteoclasts but inhibits osteoblasts.

HIF‐1 and HIF‐2 both stimulate angiogenesis but only HIF‐1 is cap-

able of yielding an anabolic response as HIF‐2 inhibits osteoblast

differentiation and proliferation (Shomento et al., 2010). Therefore,

in hypoxia where both HIF‐1 and HIF‐2 stabilisation occurs, HIF‐2
appears to limit the anabolic response. Although it could be argued

that the increase in VEGF during HIF‐2 stabilisation was insufficient

to elicit the anabolic response (S. Y. Lee et al., 2019). However, it has

been suggested that HIF may exert differential effects depending on

age and bone cycle (modelling vs. remodelling). Research examining

bone modelling in young mice has found that HIF‐2 has no significant

effect on bone mass, albeit this may have been the result of only a

F IGURE 2 Summary of hypoxia and HIF regulation on osteoclasts and osteoblasts. Hypoxia stimulates osteoclast activity and number while

also inhibiting osteoblast activity and number through numerous mechanisms. Hypoxia induces HIF‐1 and HIF‐2 stabilisation, which exert
differential effects on osteoclasts and osteoblasts. HIF‐1 stimulates osteoclast activity through the upregulation of pro‐resorptive and glycolytic
genes, and ATP release which subsequently invokes further ATP release and HIF‐1α stabilisation. HIF‐1 also stimulates increases in VEGF which
stimulates osteo‐angiogenesis by increasing osteoblast bone formation and number. HIF‐2 may negatively regulate of osteoblast differentiation,

mediated by increases in Sox9 and decreases in Twist2 and subsequent decreases in Runx2, Sp7 and osteocalcin. HIF‐2 may also inhibit the
osteoangiogenic response mediated by HIF‐1, but this remains speculative. HIF‐2 exerts both a direct effect and indirect effect on osteoclasts.
HIF‐2 stimulates increases in TRAF6 which stimulate RANKL‐induced osteoclastogenesis but has also been shown to increase and decrease

OPG and RANKL. Further research is needed to fully understand bone cell crosstalk during hypoxia. Finally, osteoblasts release ATP in response
to hypoxia which, as previously mentioned, stimulate osteoclast activity. The purinergic signalling appears to be cyclic, whereby hypoxia releases
ATP from both cells, which drives further HIF‐1α stabilisation and subsequent increased ATP release (discussed further below). Key: green lines

indicate stimulation; red lines indicate inhibition; dashed lines indicate HIF‐2 mediated; and contrasting evidence is bold followed by a question
mark. HIF, hypoxic‐inducible factor; OPG, osteoprotegerin; RANKL, receptor activator of nuclear factor κB ligand; VEGF, vascular endothelial
growth factor
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modest increase in VEGF expression (S. Y. Lee et al., 2019). Whereas,

during bone remodelling, HIF‐2 is crucial in regulating osteoblast

differentiation (S. Y. Lee et al., 2019). HIF‐1 is clearly the crucial anabolic

response element with regard to the osteogenesis‐angiogenesis
phenomenon but HIF‐2 may contribute to remodelling through altera-

tion of osteoblast and osteoclast key markers (S. Y. Lee et al., 2019).

The regulation of bone metabolism through HIF is admittedly

complex and comparisons must be drawn carefully especially in dif-

ferent physiological/pathological contexts. For example, consider HIF

stabilisation in OVX‐induced osteoporosis: deficiency of oestrogen

increases cytokine expression, which subsequently may affect the

level of HIF stabilisation and negate HIF‐induced actions.

5.1 | Stimulating hypoxia

While HIF are the hypoxic regulators, they do not necessarily require

hypoxia to be stimulated. Several factors stimulate the HIF‐1α
pathway including: hypoxic mimicking agents such as cobalt or

L‐mimosine; gene therapy; and iron chelators (Drager, Harvey, &

Barralet, 2015). Interestingly, bone cells appear to respond differ-

ently to each of these stimuli. While stimulation of the HIF‐1α
pathway with cobalt or L‐mimosine has been shown to stimulate bone

resorption, it has also been shown to reduce the final number of

osteoclasts when compared to hypoxia (Hulley et al., 2017). This

direct comparison may offer some explanation of the variance seen in

bone cell responses to HIF‐1α stabilisation. Similarly, iron chelators

produce varying outcomes depending on cell iron specificity and

membrane permeability (Cho et al., 2013). The nonspecific iron

chelator, desferoxamine (DFO), is shown to produce greater FIH and

PHD enzyme inhibition when compared to the specific Fe2+ iron

chelators, 1, 10‐phenanthroline and dipyridyl (Cho et al., 2013). Cho

et al. (2013) suggests that such discrepancies may be the result of

cellular Fe2+ maintaining FIH‐1 while DFO inhibits PHD, possibly

explaining why HIF‐1α and EPO expression were significantly higher

in specific Fe2+ iron chelators.

More recently, RNA sequencing has demonstrated that PHD and

VHL inhibitors produce different transcriptional responses to hy-

poxia (Frost, Ciulli, & Rocha, 2019). While the PHD inhibitor, IOX2

and the VHL inhibitor, VH032 mimic the hypoxic response, hypoxia

induces a broader transcriptional response. A common expression of

306 genes was observed between hypoxia, PHD and VHL inhibitors,

however, hypoxia induced a significantly greater gene repression

response. Hypoxic transcriptional repression has been associated

with several mechanisms; the transcriptional regulatory protein,

SIN3A, has been attributed to 75% of hypoxia‐repressed genes

(Batie, del Peso, & Rocha, 2018; Tiana et al., 2018). Furthermore,

knockdown of SIN3A inhibited approximately 47% of upregulated

hypoxic genes (Tiana et al., 2018). The complex transcriptional reg-

ulation seen under hypoxia may offer some insight into the varying

responses in bone cells.

Some of the equivocal data may be a function of the level of

“hypoxia” used in the highlighted studies. However, as previously

mentioned, bone O2 content rests between 6.6% and 8.6% (Harrison

et al., 2002). Therefore, it is possible this may not have provoked a

meaningful effect. Others have reported significant increases in re-

sorption and differentiation using 2% O2, suggesting a possible hy-

poxic threshold (Arnett et al., 2003; Knowles & Athanasou, 2009;

Muzylak et al., 2006; Utting et al., 2010). As such, the wide degree of

variance stimulating cellular “hypoxia” makes it difficult to ascertain

the true bone cell response. Whereas the activation of the HIF

transcription factor appears to be integral to the bone response,

limiting or inhibiting different components of the hypoxia signalling

pathway appears to exert differential effects. Further research is

needed to assess the intricacies of hypoxic mimicking agents and

gene editing to note whether these truly represent the physiological

stress of hypoxia.

6 | METABOLISM AND BONE

Activation of the HIF pathway is important in moderating many

cellular responses and adaptations to hypoxic stress. To operate ef-

fectively in hypoxic environments, a shift from aerobic to anaerobic

metabolism is required. HIF signalling typically increases energy

supply and demand via glycolysis, maintaining normal cellular func-

tion in low‐oxygen environments (Majmundar, Wong, & Simon,

2010). However, in bone, metabolic functionality differs in several

distinct ways to most tissues (discussed below), which may offer in-

sight for the effects exerted by hypoxia (Knowles, 2015b).

6.1 | Osteoclasts

Osteoclasts are inherently glycolytic cells often characterised by their

motility, numerous mitochondria and high expression of citric acid cycle

and oxidative phosphorylation enzymes (Lemma et al., 2016). This is

evident during normal monocyte‐osteoclast differentiation where there

is a steady but consistent increase in glucose consumption (Indo

et al., 2013; J. M. Kim et al., 2007; Lemma et al., 2016). Osteoclast

glucose dependence exceeds differentiation and manifests as the

primary energy source for bone resorption (Indo et al., 2013; Williams

et al., 1997). Considering hypoxia is a primary regulator of metabolic

shift and glucose metabolism (Nakazawa, Keith, & Simon, 2016) and that

osteoclasts demonstrate a high dependence on glycolysis, it is interesting

to consider how hypoxia influences osteoclast function.

It is plausible to suggest that the high glycolytic rate of osteo-

clasts is accentuated by hypoxia. For example, HIF stimulation leads

to the upregulation of glucose transporters and enzymatic genes

(Morten, Badder, & Knowles, 2013), subsequently increasing osteo-

clast glucose consumption (Cramer et al., 2003; Larsen, Falany,

Ponomareva, Wang, & Williams, 2002). The increased exposure of

glucose subsequently leads to transcription of A‐subunit of vacuolar
H+ ATPase: the primary mechanism involved in acidifying the bone

matrix (Larsen et al., 2002). A‐subunit of vacuolar H+ ATPase

primarily relies on glucose to produce and secrete hydrochloric acid
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into the resorption lacunae (Cappariello, Maurizi, Veeriah, &

Teti, 2014). This is further supported as insufficient glucose reduces

intracellular ATP and subsequently decreases bone resorption, as

observed with glucose inhibitors (Cai et al., 2018; El Hajj Dib et al.,

2006; B. Li & Yu, 2003; Morten et al., 2013). Henceforth, the

synergistic relationship between hypoxia and glucose consumption

may contribute to the increased resorption seen upon exposure.

To maintain the increased demand of glucose consumption under

hypoxic conditions, osteoclasts make several interesting metabolic ad-

justments that deviate from the traditional HIF metabolic shift. Osteo-

clasts exposed to hypoxia exhibit increased levels of ATP, mitochondrial

reductase activity and consume almost maximal levels of O2 through the

electron transport chain (ETC; Morten et al., 2013). Knowles (2015a,

2015b) suggests that osteoclasts undergo a form of “selective utilisation”

of the typical HIF‐mediated metabolic shift. For example, in hypoxic

osteoclasts, pyruvate dehydrogenase (PDH) activity is not inhibited;

BNIP3 production is not stimulated; and AMP‐activated protein kinase

(AMPK) phosphorylation is inhibited (Morten et al., 2013). Intracellular

ratios of ATP:ADP or ATP:AMP may support AMPK de‐phosphorylation
and subsequent inactivation as a result of the high ATP production seen

in osteoclasts (Knowles, 2015b).

More recently, purinergic signalling has been implicated as a

potential mediator for hypoxic‐induced bone resorption (Knowles,

2019). Following hypoxic exposure, osteoblasts and osteoclasts

secrete adenosine (Knowles, 2019; Strazzulla & Cronstein, 2016).

Furthermore, the P1 adenosine receptor, A2B, is also hypoxic‐
inducible (Knowles et al., 2010) and thus presents a hypoxic‐specific
purinergic signalling pathway. Inhibition of the A2B receptor during

hypoxic exposure is shown to prevent hypoxic‐induced bone re-

sorption, somewhat through glycolytic and mitochondrial reductase

attenuation (Knowles, 2019). Under hypoxic conditions, HIF stabili-

sation increases A2B transcription and subsequent signalling due to

both osteoblasts and osteoclast secretion of adenosine (Knowles,

2019). Increased A2B activation further stimulates HIF‐1α via an in-

tracellular feedback loop leading to increased glycolysis and mi-

tochondrial reductase activity, which as previously discussed, are

intrinsically linked to osteoclast resorption (Knowles, 2019). Inter-

estingly, A2B inhibition in normoxia has no effect on resorption levels.

It appears the A2B receptor is hypoxic specific in this instance, where

there is sufficient extracellular adenosine. Overall, hypoxic osteo-

clasts deviate from the classical metabolic shift via PDH activity,

which results in significant mitochondrial metabolic flux and sub-

sequent accumulation of mitochondrial ROS (Dandajena, Ihnat, Disch,

Thorpe, & Currier, 2012; Srinivasan & Avadhani, 2007; Srinivasan

et al., 2010). It appears plausible that hypoxia stimulates further

glucose metabolism, which may be responsible for the increased

number and activation of hypoxic osteoclasts.

6.2 | Osteoblasts

Similar to osteoclasts, osteoblasts are characterised with many mi-

tochondria (Klein, Gal, Hartshtark, & Segal, 1993; Komarova,

Ataullakhanov, & Globus, 2000; Passi‐Even, Gazit, & Bab, 1993).

However, unlike osteoclasts, osteoblasts mainly metabolise glucose

into lactate, even in the presence of sufficient oxygen (Esen &

Long, 2014). This 'aerobic glycolysis' prevails despite osteoblasts

exhibiting active oxidative phosphorylation (Klein et al., 1993;

Komarova et al., 2000; Passi‐Even et al., 1993). HIF‐1α stabilisation is

seen to stimulate the glycolytic rate and enzymes in vivo (Regan

et al., 2014). Interestingly, further research has identified that

parathyroid hormone can stimulate an anabolic response in osteo-

blasts, achieved by increasing aerobic glycolysis indirectly via tran-

scriptional induction of insulin insulin‐like growth factor 1 (IGF‐1).
Subsequent induction of mTORC2 elevates numerous glycolytic en-

zymes and increases bone formation (Esen, Lee, Wice, & Long, 2015).

Reducing aerobic glycolysis with dichloroacetate allows for greater

pyruvate entry to the citric acid cycle that is subsequently shown to

inhibit bone formation. This is supported in HIF‐1α overexpression

models (Regan et al., 2014), suggesting that osteoblasts are to some

degree regulated through their metabolic pathways which appears to

be the case when exposed to environmental hypoxia (Utting

et al., 2006; W. Wang et al., 2017). The HIF‐1α target gene, glucose

uptake transporter 1 (GLUT1), has been highlighted to play a critical

feed‐forward role in osteoblast differentiation, whereby Runx2 is

unable to successfully differentiate osteoblasts in its absence (Wei

et al., 2015). Increases in glycolytic metabolism appear to be linked to

positive osteoblast function, once again demonstrating the antag-

onistic relationship between osteoblasts and osteoclasts.

7 | REACTIVE OXYGEN SPECIES (ROS)
AND BONE

7.1 | Osteoclasts

Hypoxia is known to stimulate many biochemical changes including

increases in ROS (Dosek, Ohno, Acs, Taylor, & Radak, 2007; Moller,

Loft, Lundby, & Olsen, 2001). ROS are reactive molecules containing

oxygen and are produced during normal metabolism. However, ex-

cessive production of ROS can induce an imbalance between

pro‐ oxidants and antioxidants resulting in oxidative stress and

subsequent oxidative damage (Thannickal & Fanburg, 2000). ROS are

ordinarily involved in bone resorption, but elevations in ROS and

oxidative stress have been suggested to negatively affect bone me-

tabolism (Wauquier, Leotoing, Coxam, Guicheux, & Wittrant, 2009).

During monocyte‐osteoclast differentiation, RANKL signalling re-

quires ROS to serve as second messengers in signalling pathways

that induce expression of NFATc1 (Callaway & Jiang, 2015; M. S. Kim

et al., 2010; Nakashima & Takayanagi, 2011). Cathepsin K‐mediated

degradation of TRAP, a bone resorption process, activates TRAP's

ability to produce ROS, enabling the final breakdown of the bone

matrix (Vääräniemi et al., 2004). It is possible that hypoxic‐induced
ROS accumulation may increase organic matrix breakdown. In addi-

tion to the normal function of ROS in osteoclasts, hypoxic micro-

environments induce accumulation of mitochondrial ROS due to the
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accumulation of reducing equivalents (Morten et al., 2013;

Srinivasan & Avadhani, 2007). ROS produced by complex III of the

ETC are of particular importance due to their involvement in med-

iating HIF‐1α stabilisation. Prolonging HIF‐1α stabilisation likely

leads to further ROS accumulation and subsequent oxidative stress,

activating osteoclasts (Bell, Emerling, Ricoult, & Guarente, 2011;

Chandel et al., 1998). Furthermore, it has been noted that RANKL

inhibits FoxO transcription and expression activity causing a de-

crease in the target gene for the antioxidant, Catalase, which sca-

venges hydrogen peroxide (H2O2; Bartell et al., 2014). Incidentally,

mice deficient in FoxO transcription factors are shown to have in-

creased levels of H2O2, bone resorption and subsequent reductions

in trabecular bone (Bartell et al., 2014). This was further confirmed

when mice that overexpressed mitochondrial catalase in osteoclasts

displayed greater bone density (Bartell et al., 2014). Antioxidants

appear capable of attenuating the ROS‐induced osteoclast function,

for example, in vivo administration of N‐acetyl cysteine (NAC) has

been shown to reduce osteoclast formation and subsequently reduce

bone resorption (Lean et al., 2003).

7.2 | Osteoblasts

The overproduction of ROS appears to exert a similarly negative

effect on osteoblasts. A. L. Liu, Zhang, Zhu, Liao, and Liu (2004) were

amongst the first to report oxidative stress inhibited osteoblast

differentiation, characterised largely by a reduction in ALP. Other

differentiation markers were later noted to be inhibited under H2O2‐
induced oxidative stress, such as, phosphorylation of the transcrip-

tion factor Runx2 and colony‐forming unit‐osteoprogenitor forma-

tion (Bai et al., 2004). It was confirmed to be the result of ROS

production when metallothionein, an inhibitor of ROS production,

restored osteoblast differentiation (A. L. Liu et al., 2004). ROS‐
induced inhibition was later found to be largely regulated through

the extracellular‐signal‐regulated kinase (ERK) and NF‐kB signalling

pathways (Bai et al., 2004). Excessive ROS have since been shown to

inhibit bone formation, specifically during mineralisation (Arai,

Shibata, Pugdee, Abiko, & Ogata, 2007). In fact, exposure to nontoxic

levels of H2O2 resulted in half the mineralisation of normal osteo-

blast function due to decreased ALP production (Arai et al., 2007).

Although H2O2 may have mediated the response, it should be noted

that other ROS may be responsible for the changes in bone meta-

bolism (i.e., hydroxyl radical). In addition to the negative influences'

ROS exert on osteoblast differentiation, they also modulate their

lifespan. Glutaredoxin 5 (Grx5), a glutathione‐dependent oxidor-

eductase, is highly expressed in bone and is involved in maintaining

cellular redox homoeostasis (Linares, Xing, Govoni, Chen, & Mohan,

2009). Grx5 silencing resulted in apoptosis when exposed to H2O2,

whereas overexpression of Grx5 in osteoblasts prevents ROS cell

apoptosis (Linares et al., 2009). Similarly, the mitochondrial targeted

drug, metformin, has been shown to reduce the hypoxic‐induced
oxidative stress and osteoblast apoptosis through suppression

of cytochrome c release and cleavage of procaspase‐9 and

poly(ADP‐ribose) polymerase (Lai et al., 2018). Oxidative stress may

mediate osteoblast apoptosis through Wnt/B‐catenin signalling

(Manolagas & Almeida, 2007). The increased phosphorylation of the

protein p66shc by oxidative stress may result in greater osteoblast

apoptosis by redirecting B‐catenin to FOXO transcription factors

(Manolagas & Almeida, 2007). A summary of the afore‐mentioned

mechanisms can be found in Figure 3.

8 | ACIDOSIS AND BONE

Following tissue exposure to hypoxia, both respiratory and metabolic

acidosis occur, shifting extracellular pH (Kingsley, Fournier, Chirgwin, &

Guise, 2007; Lewis, Lee, Underwood, Harris, & Lewis, 1999; Raghunand,

Gatenby, & Gillies, 2003; Swenson et al., 1991), a well‐documented

modulator of bone. While HIF‐1α exerts both positive and negative

effects on bone cells, acidosis is long known to stimulate unfavourable

changes in bone (Goto, 1918). Early findings suggested that bone acted

as a buffer to acidosis, but it was later found to directly inhibit

and stimulate osteoblasts and osteoclasts, respectively (Bushinsky &

Lechleider, 1987; Frick & Bushinsky, 1998). Several extensive reviews

have summarised the distinct effects of acidosis on bone (Arnett,

2007, 2008, 2010; Yuan et al., 2016). Therefore, this review briefly

discusses these as an associated factor of hypoxia.

8.1 | Osteoblasts

Osteoblasts are largely inhibited in acidic environments, specifically

their mineralisation capacity (Brandao‐Burch, Utting, Orriss, &

Arnett, 2005). For example, osteoblast ALP activity is reduced eight‐
fold at pH 6.9 and its expression is similarly decreased (Brandao‐Burch
et al., 2005). Osteoblasts have a high sensitivity to pH, a 0.1 pH change

is shown to reduce bone mineralisation three‐fold (Brandao‐Burch
et al., 2005). Similar findings have been observed in human osteoblasts,

whereby acidosis decreased matrix mineralisation (Disthabanchong,

Radinahamed, Stitchantrakul, Hongeng, & Rajatanavin, 2007; Takeuchi,

Hirukawa, & Togari, 2013). The decreased activity of ALP would ex-

plain the reduced mineralisation, as ALP is responsible for the hydro-

lysis of phosphate and supply of inorganic phosphate (Coleman, 2002).

Others have noted significant increases in OPG in conjunction with

decreases in ALP (Takeuchi et al., 2013). Treatment of cells with OPG

in normal pH resulted in diminished matrix mineralisation, suggesting

OPG may be involved in the acidic inhibition at physiological levels

(Takeuchi et al., 2013). Despite low pH inhibiting mineralisation, col-

lagen deposition remains stable and continues to be synthesised in

vitro (Brandao‐Burch et al., 2005). However, in the context of hypoxic‐
induced acidosis, this is unlikely to be the case due to reduced activity

of PHD and lysyl oxidase enzymes, which are involved in the

posttranslational modification of collagen (Myllyharju, 2003; Utting

et al., 2006).

Chronic metabolic acidosis has been associated with decreased

cell proliferation and altered differentiation. For example, Runx2
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expression was greater in acidosis while levels of osterix, a tran-

scription factor for osteoblast differentiation, were suppressed re-

sulting in altered differentiation of osteoblasts (Disthabanchong

et al., 2007). Furthermore, cell viability is decreased in low pH con-

ditions until eventually triggering osteoblast apoptosis at pH 6.0

(Zhang et al., 2017). As pH declines, increased levels of P62, the

primary substrate of autophagy and LC3‐II expression, a protein

marker of autophagy, have been demonstrated in osteoblasts. Of

note, suppression of autophagy increases osteoblast apoptosis fol-

lowing acidic exposure, suggesting that autophagy may act as a

survival mechanism in acid conditions (Zhang et al., 2017). Ultimately,

the evidence suggests that osteoblast function appears to be sig-

nificantly hindered in acidic environments.

8.2 | Osteoclasts

Osteoclasts are typically shown to be almost inactive at normal

physiological pH (~7.4). However, when pH is reduced below 7.6,

significant increases in osteoclast pit formation are observed before

plateauing at a pH of 6.8 (Arnett & Dempster, 1986). In primary

human osteoclasts, a change <0.1 unit pH doubles their resorptive

activity (Arnett, 2008; Arnett & Spowage, 1996). Regardless of ex-

posure length, osteoclasts maintain their resorptive capacity and

continue to increase their resorption capacity in response to small pH

changes (Arnett, 2010). Acidosis is thought to play three distinct

regulatory roles in osteoclasts:

(a) Differentiation: Acidosis‐induced osteoclast formation has been

reported to target late preosteoclast differentiation (Kato &

Matsushita, 2014; Kato & Morita, 2011). Cultures of bone marrow

cells in acidic compared to normal pH media, promoted formation of

large osteoclasts via late phase preosteoclast differentiation to os-

teoclasts (Kato & Morita, 2011). Subsequently, osteoclasts formed

under acidic conditions display greater resorption capacity than

those matured at higher pH (Kato & Morita, 2011). However,

mRNA levels of NFATc1 and DC‐STAMP, molecules intimately in-

volved in cell differentiation and fusion, revealed no significant

differences between cells treated with pH 6.8 or 7.4.

Kato and Matsushita (2014) suggested that acid‐induced ROS

F IGURE 3 Effects of hypoxia/HIF‐1 on osteoclast and osteoblast activity. Osteoclasts: Induction of HIF results in increased glycolytic
activity and mitochondrial flux in osteoclasts. Increases in osteoclast metabolic activity results in greater H+‐ATPase activity and increased bone
resorption. The hypoxic‐induced metabolic flux results in ROS accumulation and increased TRAP activity. Stabilisation of the HIF protein leads

to nucleus translocation and subsequent transcription responses. The increased concentration of glucose within hypoxic osteoclasts may also
stimulate transcription of H+ ATPase. Adenosine leakage from both osteoclasts and osteoblasts attaches to A2B receptors on osteoclast, further
stabilising HIF‐1α in a positive feedback loop. Osteoblasts: (Left) Reduced oxygen availability results in PHD and lysyl oxidase inhibition
resulting in impaired collagen cross‐linking. ALP activity and transcription are also inhibited reducing calcification of the bone matrix. (Right)

Proposed osteogenic–angiogenic signalling, whereby HIF‐1a stabilisation increases transcription of the hypoxic response gene, VEGF, to
stimulate angiogenesis and restore O2 delivery and bone formation. A, adenosine; ALP, alkaline phosphatase; Cox, cyclooxygenase; OPG,
osteoprotegrin; G, glucose; HIF, hypoxic‐inducible factor; PHD, prolyl hydroxylase domains; ROS, reactive oxygen species; RUNX2, Runt‐related
transcription factor 2; VEGF, vascular endothelial growth factor
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(Riemann et al., 2011) may be responsible for osteoclastic differ-

entiation. The use of the antioxidant NAC has been shown to inhibit

osteoclast formation suggesting that osteoclasts are, somewhat,

dependent on ROS (Kato &Matsushita, 2014; Lean et al., 2003). It is

still uncertain how acidosis stimulates osteoclast differentiation and

future investigations are needed to clarify the exact mechanism.

However, acidosis as a result of hypoxia may exert a cumulative

effect in hypoxia‐induced osteoclast differentiation. As previously

noted, hypoxia is a known stimulant of ROS, beyond ROS produc-

tion via acidosis per se. Therefore, it may be that hypoxia is capable

of large increases in osteoclast numbers due to accumulative ROS

generation from differing sources.

(b) Activation: Acid activation of osteoclasts has been reported ex-

tensively (Arnett & Dempster, 1986; Frick & Bushinsky, 2003; Indo

et al., 2013; Yuan et al., 2016). The excessive level of resorption

has been demonstrated by complete perforation of neonatal

mouse calavaria samples (Meghji, Morrison, Henderson, &

Arnett, 2001). Furthermore, activation of osteoclasts allows for

other factors to exert further resorptive stimuli (Arnett, 2008;

Arnett & Dempster, 1986; Morrison et al., 1998). Evidence sug-

gests that acidosis may activate osteoclast activity through both

direct and indirect methods. Acidosis has been shown to increase

the expression of key resorption tools such as carbonic

anhydrase II (Biskobing & Fan, 2000), cathepsin K and TRAP

(Brandao‐Burch et al., 2003; Muzylak, Arnett, Price, & Horton,

2007) while rapidly increasing intracellular Ca2+ (Komarova,

Pereverzev, Shum, Sims, & Dixon, 2005). The increased intracellular

Ca2+ causes further activation of NFATc1 and subsequent eleva-

tions in resorption. Others have found that osteoblasts produce

prostaglandin E2 in response to acidosis stimulating osteoclastic

bone resorption (Bushinsky, Parker, Alexander, & Krieger, 2001;

Frick & Bushinsky, 2003; Krieger, Parker, Alexander, & Bushinsky,

2000). Furthermore, acidosis increases adhesion and migration of

osteoclasts allowing for greater bone resorption (Ahn, Kim, Lee,

Kim, & Jeong, 2012).

(c) Survival: The effect of acid‐induced NFATc1 on osteoclasts has

been shown to be two‐fold. Not only have reports noted its effect

on osteoclast activation, but it is also involved in prolonging os-

teoclast life. Alongside RANKL, NFATc1 is an inhibitor of osteo-

clast apoptosis (Yuan et al., 2016). As stated, increased

intracellular Ca2+ activates NFATc1, but it has also been shown

to activate the mitogen‐activated protein kinase (MAPK) path-

way, which is also important for osteoclast survival (Komarova

et al., 2005; Yuan et al., 2016).

9 | ERYTHROPOIETIN AND BONE

The immediate response to hypoxia is the result of HIF activation to

prolong survival. As part of this survival response, HIF targets the

hypoxic response element for transcription of 90–100 genes

(Choudhry & Harris, 2018). One of particular importance is ery-

thropoietin (EPO), a hormone for stimulating red blood cell

production. While hepatocytes remain the primary source of EPO

expression, other cells located in the brain, liver and bone are capable

of stimulating EPO production (Jelkmann, 2011). EPO expression is

predominantly controlled by HIF‐2 stabilisation and subsequent

transcription (Warnecke et al., 2004). Following tissue hypoxia, cir-

culating serum EPO can increase by 1,000‐fold (Ebert & Bunn, 1993).

The subsequent interaction of EPO to its receptor EPO (EPO‐R) in
erythroid progenitor cells, located in the bone marrow, signals Janus

kinase 2 (JAK2), which is a transducer and activator of transcription

3 (STAT3) and STAT5 pathways for erythropoiesis (Jelkmann, 2011).

Several clinical observations have observed correlations between

EPO‐related diseases such as polycythaemia and impaired

bone health (Farmer, Horváth‐Puhó, Vestergaard, Hermann, &

Frederiksen, 2013; Oikonomidou et al., 2016). This has raised con-

cerns about recombinant use of EPO for both clinical and ergogenic

purposes (i.e., for sports and exercise performance). However, further

experimental research is needed to determine causality.

Like HIF‐1α, EPO has been found to stimulate osteogenesis.

Using a femoral fracture repair murine model, exogenous adminis-

tration of EPO has been shown to improve both biomechanical and

volumetric measures of bone (Holstein et al., 2011; L. Wan

et al., 2014). It is suggested that osteoblastic expression of EPO re-

ceptors (EPO‐R) and subsequent interaction with mammalian target

of rapamycin (mTOR), JAK2 and PI3K signalling pathways, produce a

osteogenic response (J. Kim et al., 2012; Rölfing et al., 2014). Exo-

genous EPO treatment has also been reported to be associated with

increased angiogenesis, which alluded to previously, is key to the

osteogenic–angiogenic coupling response (Holstein et al., 2011;

Rölfing et al., 2012; L. Wan et al., 2014). It has also been suggested

that EPO plays an important role in angiogenesis, as deletion of EPO

or EPO‐R from endothelial cells leads to improper vascularisation

during development (Eggold & Rankin, 2018; Kertesz, Wu, Chen,

Sucov, & Wu, 2004). The role of EPO in the angiogenic response is

reportedly dependent on normal osteoclastogenesis. When blocked

with OPG or bisphosphonates, the reported EPO‐induced angio-

genesis was largely inhibited (Sun, Jung, Shiozawa, Taichman, &

Krebsbach, 2012). Others have suggested that EPO stimulates os-

teoblastic differentiation through direct interaction with mesenchy-

mal and hematopoietic stem cells, or indirect stimulation of

hematopoietic stem cell production via bone morphogenetic protein

(J. Kim et al., 2012; Rölfing et al., 2014; Shiozawa et al., 2010).

Though several studies report an osteogenic effect of EPO, the

dosages utilised would be considered supra‐physiological. Hiram‐Bab
et al. (2017) note that in vitro doses between 10 and 100U/ml (Guo

et al., 2014; J. Kim et al., 2012; C. Li et al., 2015; Rölfing et al., 2014)

sufficiently invoke osteogenesis whereas dosages 1–10U/ml do not

(Guo et al., 2014; Hiram‐Bab et al., 2015; Rölfing et al., 2014). This is an

important consideration as human endogenous EPO production ranges

between 6 and 32mU/ml (Jelkmann, 2011), ultimately questioning the

physiological relevance of some findings. Considering this, it is unlikely

that endogenous production through hypoxic exposure would stimulate

any osteogenic effect. Nonetheless, higher exogenous doses are indeed

used in clinical populations and are therefore important.
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Beyond the osteogenic response noted previously, several ob-

servations have found paradoxical increases in bone resorption, de-

creases in bone formation and bone volume in both exogenously

treated mice and in EPO overexpressing transgenic mice

(Deshet‐Unger et al., 2016; Hiram‐Bab et al., 2015; Oikonomidou

et al., 2016; Rauner et al., 2016). More importantly, low physiological

doses of EPO, similar to that of the increase in EPO following hypoxic

exposure (10 mU/ml; Mackenzie, Watt, & Maxell, 2008; Mounier

et al., 2009; Turner et al., 2017), have been shown to stimulate in

vitro osteoclastogenesis (Hiram‐Bab et al., 2017). It is suggested that

EPO directly stimulates EPO‐R activation of the JaK2 and PI3K

pathways, subsequently stimulating osteoclastogenic activity

(Hiram‐Bab et al., 2015, 2017; Rauner et al., 2016). Hiram‐Bab et al.

(2015) noted that EPO stimulates differentiation of pre‐osteoclasts
to mature osteoclasts, subsequently increasing resorption. Interest-

ingly, osteoclast differentiation decreased EPO‐R transcription sug-

gesting that EPO‐R expression is restricted to pre‐osteoclasts
(Hiram‐Bab et al., 2015). Though it is apparent that osteoclastogen-

esis is a distinct effect of EPO, it is unclear whether EPO stimulates

osteoclast activity independent of increased osteoclast number

(Hiram‐Bab et al., 2015). Shiozawa et al. (2010) have previously

suggested that EPO inhibits osteoclast activity, but this has since

been refuted as bone resorption and tartrate‐resistant acid phos-

phatase+ (TRAP+) area are unaffected in cultures treated with EPO

(Hiram‐Bab et al., 2015). However, current evidence does not sug-

gest that osteoclast activity is stimulated following increases in EPO.

Osteoblast‐specific cultures have demonstrated that physiological

ranges of EPO inhibit mineralisation while supra‐physiological dosages
increased formation in a dose response manner (Deshet‐Unger
et al., 2016; Hiram‐Bab et al., 2015, 2017; Rauner et al., 2016).

Differentiation of bone marrow stromal cells with a low EPO dosage

(1mU/ml) inhibited expression of Runx2, osteocalcin and ALP,

whereas a higher dose had no effect (25mU/ml; Rauner et al., 2016).

Silencing of EPO‐R using siRNA ablated the inhibition of bone for-

mation suggesting EPO‐R signalling is responsible for osteoblast in-

hibition (Rauner et al., 2016). Others have noted increased expression

of fibroblast growth factor 23 (FGF23) in bone marrow haemato-

poietic stem cells in response to EPO, subsequently increasing serum

FGF23 and decreasing phosphate (Chang et al., 2008). It is suggested

that the increased levels of EPO may inhibit bone mineralisation

through the bone‐kidney‐parathyroid gland axis (Sapir‐Koren &

Livshits, 2011; H. Wang et al., 2008).

Interestingly, Rauner et al. (2016) found that loss of the PHD2

enzyme in EPO producing cells subsequently led to impaired bone

density, attributed to decreased osteoblast function; whereas mea-

sures of osteoclast function revealed no changed. Loss of PHD2 in

the osteoblastic lineage resulted in significantly greater femoral and

lumbar bone density which was associated with decreased osteoclast

number and surface (Rauner et al., 2016). Deletion of PHD2 in

haematopoietic cells however did not result in increased bone re-

sorption or decreased bone mass, contradictory to other findings

(Hulley et al., 2017; Wu et al., 2015). Rauner et al. (2016) suggests

that osteoblast inhibition in mice with conditional loss of PHD2 is

independent of any intrinsic effect. The discrepancy between the

osteogenic and resorption effect of EPO is poorly understood but

may be the result of large differences in dosages of EPO and in vitro

models used. Nonetheless, EPO is a downstream target of the HIF

pathway and clearly plays a role in modulating bone cell activity, at

least in animal models. In conjunction with HIF‐mediated changes,

exposure to hypoxia may lead to further alteration in bone via in-

creases EPO.

10 | IN VIVO HYPOXIA

Hitherto, this review has mostly examined the molecular response of

bone cells to hypoxia. However, it is also pertinent to inspect the

responses from the available in vivo studies (for a more compre-

hensive overview, please see the work of Camacho‐Cardenosa,
Camacho‐Cardenosa, Timón, et al. (2019). Like the other experi-

mental approaches considered in this review, it has been suggested

that different types of in vivo hypoxic exposure may elicit different

responses. For instance, Camacho‐Cardenosa, Camacho‐Cardenosa,
Timón, et al. (2019) systematically reviewed available in vivo studies,

concluding that the different types of hypoxic exposure sustained:

cyclic and intermittent, may be responsible for some of the observed

changes in bone.

Long‐term sustained exposure has been reported to reduce

several indices of bone health (Basu et al., 2013, 2014; O'Brien

et al., 2018; W. Wang et al., 2017) whereas shorter term sustained

exposure appears less noticeable (Rittweger et al., 2016). Bone's

varied response to hypoxia may be a function of the oxygen con-

centration it receives. For instance, Rittweger et al. (2016) simulated

4,000m altitude during bed rest in humans for 21 days. Basu et al.

(2013) monitored members of the Indian army exposed to real alti-

tudes of 5,400 to 6,700m over 4 months and W. Wang et al. (2017)

exposed rats to a simulated ~6,000m for 21 days. The difference in

altitude, and outcomes, suggests a possible hypoxic threshold, which

may account for the lack of effect during Rittweger et al. (2016)

research. Considering sea level FiO2 is 20.9%, and that bone O2 is

thought to rest between 6.6% and 8.6%, then at ~4,000m (~12.8%

O2; 38.7% decrease from sea level) bone oxygen delivery would be

~4–5.3%. Whereas at 6,000m, the effective oxygen reaching bone

would be ~3.1–4%. Based upon the findings of Arnett et al. (2003),

6,000m would be closer to maximally stimulating osteoclast re-

sorption activity (i.e., 2% O2) than 4,000m. While this appears a small

difference, it has been noted that 2% O2 stimulates osteoclast re-

sorption approximately twice that of 5% O2 exposure (Arnett et al.,

2003). Although it is important to note the differing oxygen

concentrations in such studies; it is unlikely that bone O2 was stable

during the course of each study due to variations in experimental

conditions that is bed rest versus field research.

Cyclic exposure appears to produce varying responses. One study

has reported improvements in structural measures of bone following 5

weeks of exposure of 4,500m, lasting 5 hr a day for 5 days a week

(Guner et al., 2013). Yet, others have noted that less severe
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exposures are unable to yield similar responses (Camacho‐Cardenosa,
Camacho‐Cardenosa, Burtscher, et al., 2019; Martínez‐Guardado
et al., 2019; Ramos‐Campo, Rubio Arias, & Jimenez Diaz, 2015).

Similarly, no differences in structural measures of bone have been

shown when comparing healthy rats exposed to 3,000 to 5,000m 4 hr/

day for 14 days when compared to normoxic controls. Interestingly,

when rats were OVX, hypoxia was shown to intensify bone loss (Xian

et al., 2016). The variations in responses to cyclic hypoxic exposures

may be explained by the variance in protocols that is the hypoxic dose

and exposure time, but this is yet to be fully understood. Intermittent

hypoxia, like that of obstructive sleep apnoea syndrome (Swanson

et al., 2015), also has varying effects on bone. Some studies document

reductions in bone health (Terzi & Yılmaz, 2016; Tomiyama

et al., 2008) whereas others present greater BMD preservation in

older individuals (Sforza, Thomas, Barthelemy, Collet, & Roche, 2013).

It appears apparent that hypoxia is capable of manipulating bone in

vivo, but that it may, crucially, be dependent on the exposure level,

time and frequency. Future research should strive to understand the

time response to hypoxic stimuli both constant and cyclic.

11 | CONCLUSION

Reduced oxygen availability is accompanied by the stimulation of

hypoxic pathways, glycolysis, ROS, acidosis and downstream effects

(Arnett, 2010; Jelkmann, 2011; Zepeda et al., 2013). This hypoxia

appears to be an important mediator of bone metabolism and may be

associated with poor bone health. While hypoxia generates a more

consistent bone response in vitro; the response to hypoxic mimicking

agents and gene therapy appear more varied. Generally, hypoxic

signalling appears capable of providing both positive and negative

influences on bone cells (see Table 1). An antagonistic relationship

may exist to provide balance in bone metabolism under conditions of

hypoxia; yet, when assessing in vivo hypoxic exposure this is not

consistently found within the available scientific literature, possibly

owing to variations in hypoxic dose and exposure type. Hypoxia

clearly presents itself as a regulator of bone cell function and po-

tentially offers therapeutic options but may also have negative ef-

fects for bone health; however, there is currently a lack of

experimental human research investigating bone's response to hy-

poxic stimuli. Therefore, further research is warranted, particularly

aimed at comparing responses to differing hypoxic protocols. The

effects of hypoxia in pathological conditions is of utmost importance

as many of these conditions appear to be related to impairments in

BMD (Ramachandran et al., 2016; Terzi & Yılmaz, 2016; Valderrá-

bano et al., 2017). It is also important to consider the implications of

hypoxia on individuals exposed to environmental hypoxia. For ex-

ample, mountaineers, athletes attending high altitude camps, astro-

nauts, pilots and native highlanders may be at risk of compromised

bone health (Tanaka et al., 1992; Tando et al., 2016; Terzi & Yılmaz,

2016; W. Wang et al., 2017). However, it is important to recognise

that all in vivo findings to date, do not support the notion that

TABLE 1 Summary of the effects of hypoxia on osteoblasts and osteoclasts

Cell Stimulus Effect on bone remodelling Mechanisms

Osteoblasts Hypoxia/HIF‐1α • Increased bone formation

• Delayed growth and differentiation

• Suppressed osteoblastogenesis

• Decreased mineralisation and collagen

production

• Osteogenic–angiogenic coupling

• Reduced Runx2 expression

• PI3K/Akt inhibition

• Reduced ALP expression and activity

• Inhibition of collagen cross‐linking enzymes

Glycolysis: • Increased bone formation • Increased Runx2 and GLUT1 expression

ROS • Inhibited differentiation

• Decreased mineralisation

• Increased apoptosis

• Decreased ALP, Runx2 and colony‐forming unit osteoprogenitor

• ERK and NF‐kB stimulation

• Increased p66sch and B‐catenin redirection

Acidosis • Decreased differentiation

• Reduced mineralisation

• Decreased cell proliferation

• Decreased cell viability

• Inhibition of mRNA Runx2 and osterix

• Reduced ALP expression

• Reduced OPG

• Increased P62 and LC3‐II

Osteoclasts Hypoxia/HIF‐1α • Increase resorption

• Increased differentiation

• Osteoclastogenesis

• PHD2 induction of HIF‐1α
• PHD3 induction of HIF‐1α
• Suppressed OPG production

Glycolysis • Increased resorption • Increased A‐subunit of vacuolar H+ ATPase and subsequent H+

production

ROS • Increased resorption • Increased collagen breakdown

Acidosis • Increased differentiation

• Increased resorption

• Increased survival

• Increased expression of carbonic anhydrase II, cathepsin K

and TRAP

• Increases in prostaglandin E2

• Increases in NFATc1 and MAPK signalling

Abbreviations: ALP, alkaline phosphatase; ERK, extracellular‐signal‐regulated kinase; GLUT1, glucose transporter 1; HIF, hypoxic‐inducible factor; MAPK,

mitogen‐activated protein kinase; NFATc1, nuclear factor‐activated T cells c1; NF‐kB, nuclear factor‐kB; OPG, osteoprotegerin; PHD2, prolyl hydroxylase

domain 2; PI3K, phosphoinositide 3‐kinase; ROS, reactive oxygen species; Runx2, runt‐related transcription factor 2.
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hypoxia poses a risk to bone. Furthermore, it is interesting to con-

sider exercise as an endogenous hypoxic stimulus. Many studies note

increases in bone resorption markers following acute exercise (Barry

& Kohrt, 2007; Sale et al., 2015; Scott et al., 2011). Such increases in

bone turnover may be associated with the metabolic demands of

exercise and the stabilisation of HIF (Baker & Parise, 2016;

Milkiewicz et al., 2007; Vogt et al., 2001). Further research is war-

ranted on such populations to determine whether exercise or en-

vironmental exposure pose a risk or benefit to bone health, both

acutely and chronically.
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