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Abstract 

Converting CO2 to fuels is required to enable the production of sustainable fuels and to 

contribute to alleviating CO2 emissions. In considering conversion of CO2, the initial step of 

adsorption and activation by the catalyst is crucial. In addressing this difficult problem, we 

have examined how nanoclusters of reducible metal oxides supported on TiO2 can promote 

CO2 activation. In this paper we present density functional theory (DFT) simulations of CO2 

activation on heterostructures composed of clean or hydroxylated extended rutile and anatase 

TiO2 surfaces modified with chromia nanoclusters. The heterostructures show non-bulk Cr 

and O sites in the nanoclusters and an upshifted valence band edge that is dominated by Cr 

3d- O 2p interactions. We show that the supported chromia nanoclusters can adsorb and 

activate CO2 and that activation of CO2 is promoted whether the TiO2 support is oxidised or 
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hydroxylated. Reduced heterostructures, formed by removal of oxygen from the chromia 

nanocluster, also promote CO2 activation. In the strong CO2 adsorption modes, the molecule 

bends giving O-C-O angles of 127 - 132o and elongation of C-O distances up to 1.30 Å; no 

carbonates are formed. The electronic properties show a strong CO2-Cr-O interaction that 

drives the interaction of CO2 with the nanocluster and induces the structural distortions. 

These results highlight that a metal oxide support modified with reducible metal oxide 

nanoclusters can activate CO2, thus helping to overcome difficulties associated with the 

difficult first step in CO2 conversion. 
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1. Introduction 

CO2 emissions from fossil fuels are the major cause of climate change and need to be eliminated 

in the near future to meet the targets of the COP21 Paris agreement to keep average global 

temperature increases below 2oC. Thus finding solutions to remove and store or use this CO2 

is a key concern. A solar driven photo- or thermochemical process for the conversion of CO2 

to CO, coupled with solar water splitting can produce synthesis gas, while direct conversion of 

CO2 to liquid fuels would enable a sustainable approach to producing fuels and storing solar 

energy in high energy chemical bonds[1-11]. 

However, CO2, as the most oxidised form of carbon, is highly stable and therefore activating it 

as part of the conversion process is difficult. In fact, to date, there are no widely available 

catalysts that can exploit solar energy (either directly or via thermochemical processes) to 

efficiently reduce CO2 to useful chemicals. One successful example of a photocatalyst has been 

Pt-modified TiO2 nanotubes[8, 12, 13] that produce methane. However, the efficiencies for 
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methane production are extremely low and Pt will never be an economically viable catalyst for 

large scale CO2 conversion.  

Copper has been shown to promote conversion of CO2 into hydrocarbons, while many other 

metallic catalysts promote hydrogen evolution. More recently, catalysts based on oxide-derived 

Cu or Cu with mixed oxidation states have been shown to reduce CO2 to useful molecules such 

as methane, methanol or ethanol [2, 14-26]. While this is encouraging, there is still an urgent 

need from a fundamental perspective to understand the factors that drive CO2 activation and 

find materials to promote this process. Since a CO2 anion (CO2
δ-) is implicated in CO2 

conversion, using materials with excess electrons is one path to the development of CO2 

activation catalysts. These electrons could be produced through light excitation or formation 

of oxygen vacancies which release electrons to the catalyst. Transition metal-oxide based 

catalysts could show some promise in this regard; the work on Cu-based catalysts suggests a 

pathway towards exploiting reducible metal oxides for CO2 conversion. It is also possible to 

promote CO2 activation without necessarily producing an anionic species and this would be 

driven by interactions at suitable sites in the catalyst and/or suitable energy level alignments of 

the catalyst and CO2. 

Irrespective of the origin of the electrons that reduce CO2, in any CO2 conversion process the 

initial adsorption and activation of CO2 is a key step. Thereafter there may be transfer of 

electron(s) to the CO2 through light absorption or from excess electrons present in the catalyst 

after catalyst (pre-)reduction or in a combined PV+electrolysis system. Thus, the key challenge 

in fuel production from CO2 is to discover catalysts that will promote the crucial first step, 

namely the adsorption and activation of CO2.  

Copper-based catalysts have been widely studied for CO2 activation and conversion and this 

includes Cu metal, oxide-derived Cu and mixed oxidation state Cu [2, 14-26]. Modelling the 
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interaction of CO2 with copper oxides uses density functional theory (DFT) to provide insights 

for further development of CO2 activation catalysts. Wu et al. studied the adsorption of CO2 at 

the Cu2O (111) surface with oxygen vacancies [17], and found that dissociative adsorption was 

thermodynamically unfeasible. In addition, while a CO2
 δ- radical anion species can form on a 

defective surface, this is not stable. Wu et al. examined at the adsorption of CO2 at Cu2O (111) 

using Hybrid DFT [21] and found adsorption only in non-activated form. This was confirmed 

by Bendavid and Carter [18]. Mishra et al. found similar results for CO2 adsorption at Cu2O 

(111), but reported strong chemisorption at the high energy Cu-O terminated (110) surface[14] 

and at the (011) surface of CuO [2]. Uzunova et al. studied the conversion of CO2 to methanol 

on Cu2O nanolayers and clusters [16] using Hybrid DFT. In the work of Favaro et al.[24] a 

model of Cu with subsurface oxygen was found to activate CO2. 

The adsorption of CO2 molecules at different titania surfaces, including rutile and anatase, and 

nanostructures has also been well studied and the role of low coordinated sites, surface structure 

and oxygen vacancies has been discussed [27-32]. The presence of excess electrons and holes 

was shown to drive adsorption and activation of CO2 at rutile (110) [33]. Yang et al. showed 

that sub-nm Pt clusters at the anatase (101) surface enhanced CO2 activation through providing 

of additional adsorption sites and the transfer of electron density to the TiO2 substrate [34]. 

Fewer studies exist for other metal oxide systems, but some examples include Cu/CeO2 and 

Cu/CeO2/TiO2 [35], Cu/ZnO/Al2O3 [36] and dispersed CeO2/TiO2 [37]; the role of Ce3+ in 

visible light absorption, photogenerated charge separation and strengthening CO2-surface 

bonding was highlighted. 

Previously we have used first principles density functional theory (DFT) simulations to study 

heterostructured materials composed of TiO2 (rutile or anatase) modified with metal oxide 

nanoclusters. In earlier work, the emphasis focussed on systems with predicted visible light 

absorption[38-49] and reduced charge recombination[39-43, 50, 51]. We have begun to extend 
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this work to study the interaction of molecules, such as CO2, with these metal oxide nanocluster 

modified TiO2 systems [38, 52]. We have investigated modified TiO2 systems, e.g. ZrO2-

anatase, where CO2 can adsorb and be activated [38] and reduced MnOx-TiO2 which show 

weak or unfavourable interactions with CO2 [52]. There is therefore still much work to be done 

to understand the factors that drive CO2 activation on metal oxides.  

In the present paper, we use first principles density functional theory to examine in detail the 

interaction and activation of CO2 at Cr2O3 nanocluster modified rutile and anatase TiO2 

surfaces, which are oxidised or hydroxylated. The interaction of CO2 with reduced Cr2O3-TiO2 

heterostructures, upon loss of oxygen from the nanocluster, is also examined. While chromia 

is by far less studied for CO2 adsorption compared to other oxides, there have a number of 

experimental surface science studies devoted to this topic [53-57]. These have discussed 

difficulties in obtaining high quality films of chromia or single crystals of Cr metal. Thus, 

chromia grown through oxidation of metallic Cr or chromia micropowders have been 

employed. These studies use infra red (IR) spectroscopy and thermal desorption spectroscopy 

(TDS) to examine the role of the termination of the chromia film on CO2 adsorption. 

Termination with Cr enables strong adsorption of CO2, as determined from TDS, with 

formation of carboxylate or carbonates. Termination with chromyl oxygen can bury these Cr 

sites and facilitates physisorption of linear CO2, with a lower temperature TDS peak. The IR 

spectra show clear differences between the CO2 adsorption modes. We find that chromia 

modified TiO2 heterostructures are able to activate CO2, causing O-C-O bending and 

elongation of C-O distances. This is independent of the state or identity of the TiO2 surface, 

indicating that chromia nanoclusters drive CO2 activation. In addition, reduced Cr2O3-TiO2 

heterostructures also activate CO2. These findings thus show that transition metal oxide 

nanocluster modification of rutile and anatase TiO2 produces heterostructures that can activate 

CO2. 
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2. Methods 

Following our approach from previous work on chromia-modified rutile and anatase[58] we 

prepare heterostructures of nanoclusters with Cr4O6 stoichiometry supported on rutile (110) 

and anatase (101); the Supporting Information contains full details. We use a three dimensional 

periodic surface slab within VASP [59-62], and a plane wave basis set. Projector augmented 

wave potentials[63, 64], with 4, 12, 6, 4 and 1 valence electrons for Ti, Cr, O, C and H are used 

[58]. The cut-off for the kinetic energy is 396 eV and the exchange-correlation functional is 

the Perdew-Wang 91[65] approximation. A Monkhorst-Pack (2×1×1) k-point sampling grid is 

used. We apply the DFT+U approach [66] to describe the Ti 3d and Cr 3d states, with U = 4.5 

eV for the Ti 3d states and 3.5 eV for the Cr 3d states [67, 68]. This DFT+U set-up is designed 

to recover a consistent description of the localisation of electrons in reduced cations rather than 

to recover the band gap. Convergence criteria for electronic and ionic relaxations are 0.0001 

eV and 0.02 eV/ Å. All calculations are spin polarised.  

(2x4) and (4x2) surface supercell expansions are employed for rutile and anatase, respectively 

and the vacuum gap in all cases is 12 Å. The TiO2 surfaces are unmodified oxidised or 

hydroxylated rutile (110) and anatase (101) surfaces [40, 58]. The free chromia nanoclusters 

are relaxed within the same computational described above, starting from different atomic 

arrangements. The most stable atomic structure of the free chromia Cr4O6 nanocluster is then 

adsorbed on the oxidised and hydroxylated TiO2 surfaces in different adsorption configurations 

and these are relaxed. We then use the most stable relaxed chromia-TiO2 heterostructures for 

subsequent study with CO2 [39, 48, 51]. When clean rutile is modified with Cr4O6, this is 

denoted Cr4O6-o-rutile and when hydroxylated rutile is modified with Cr4O6, this is denoted 

Cr4O6-oh-rutile; a similar nomenclature is used for anatase. The term Cr2O3-TiO2 indicates a 
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non-specific Cr2O3 nanocluster-modified TiO2 heterostructure. Although the detailed study of 

the interaction of water at chromia-TiO2 heterostructures is beyond the scope of this work, we 

have found that adsorption of water at Cr4O6-o-rutile and Cr4O6-oh-rutile is molecular with 

adsorption energies of -0.3 and -0.8 eV, so that there is a barrier to hydroxyl formation on 

adsorbed chromia. 

The stability of the heterostructure is characterised by the nanocluster adsorption energy, Eads 

Eads =  E[(Cr4O6)-TiO2] – {E[(Cr4O6)] + E[TiO2] }  (1) 

Where E[(Cr4O6)-TiO2] is the computed total energy of Cr4O6 nanocluster-modified TiO2, 

E(Cr4O6) is the computed total energy of the free Cr4O6 nanocluster and E(TiO2) is the 

computed total energy of the unmodified TiO2 (rutile/anatase) surface. 

The CO2 adsorption energy is defined in Eqn (2): 

Eads = E[CO2@Cr4O6-TiO2] – {E[Cr4O6-TiO2] + E[CO2]}  (2)  

where E[CO2@Cr4O6-TiO2] is the computed total energy of CO2 adsorbed at Cr4O6-modified 

TiO2.  

 

3. Results 

We first briefly summarise the atomic structure of chromia-modified rutile and anatase TiO2, 

in which the TiO2 supports are oxidised or hydroxylated ½ ML coverage. These are shown in 

Figures S1 and S2 of the supporting information. Adsorption and relaxation of Cr4O6 on both 

TiO2 surfaces gives adsorption energies of -4.25 eV and -5.85 eV on oxidised rutile and anatase 

and -1.08 eV and -2.21 eV on hydroxylated rutile and anatase, indicating strong nanocluster-

surface interactions. The presence of surface hydroxyls and the migration of hydrogen to the 

support nanocluster reduce the energy gain upon chromia adsorption at hydroxylated surfaces. 
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Ti and Cr sites have the expected +4 and +3 oxidation states. Exceptions to this are Cr4O6-o-

anatase, where a reduced Ti3+ and an oxidised Cr4+ cation are formed, and Cr4O6-oh-anatase, 

where 2 Cr2+ and 2 Cr4+ cations are present. In all heterostructures, the valence band edge is 

modified by the adsorption of Cr4O6 pushing the VB edge to higher energy. Oxygen vacancies 

can form readily in these systems, with formation energies of 0.22 eV and 1.95 eV on Cr4O6-

o-rutile and Cr4O6-o-anatase, while these formation energies are 0.69 eV and 0.35 eV on Cr4O6-

oh-rutile and Cr4O6-oh-anatase. Upon reduction, heterostructures of chromia on oxidised and 

hydroxylated supports show the presence of reduced Ti3+ and Cr2+ species. 

 

3.1 Adsorption and Activation of CO2 at Chromia-Modified Rutile (110) and Anatase 

(101) 

 

3.1.1 CO2 Adsorption at Cr4O6-modified rutile 

 

Figure 1 shows the atomic structure for the two most stable CO2 adsorption modes that we 

have found at Cr4O6-o-rutile (110) (Figure 1(a), (b)), modes I and II) and Cr4O6-oh-rutile (110) 

(Figure 1(c), (d) modes I and II). The computed adsorption energies for the two CO2 adsorption 

modes on Cr4O6-o-rutile (110) are -0.63 eV and -0.91 eV for modes I and II. In Cr4O6-oh-rutile 

(110), the CO2 adsorption energies are -0.92 eV and -0.31 eV for modes I and II. Clearly the 

modification of rutile with chromia produces heterostructures that show moderately strong 

adsorption capability for CO2, which is the first requirement for CO2 conversion. These 

energies are 0 K DFT energy differences and if we include the zero point energy corrections 

(ZPE) for CO2 adsorption these are only on the order of 0.03 eV which makes no significant 

change to the adsorption energies at chromia-modified TiO2. If we compare with the available 
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work on CO2 adsorption at chromia, then the moderately strong adsorption energies can arise 

from the availability of Cr sites in the nanocluster to interact with oxygen of CO2, in a similar 

to the stronger Cr-CO2 interaction described experimentally in refs[54-56]. 

We have examined multiple CO2 adsorption sites on each chromia-TiO2 system and other, less 

favourable adsorption modes are shown in Figures S3 and S4 and the energies relative to the 

most stable adsorption mode are shown in Table S1 of the Supporting Information. Even 

though these adsorption modes are less stable than those shown in Figure 1, we can see that 

they still generally show moderate CO2 adsorption energies and similar adsorption structures, 

so that CO2 adsorption and activation at multiple sites of chromia-modified TiO2 is likely. We 

have also relaxed the adsorption structures in Figure 1 with no +U correction and find that the 

adsorption of CO2 and the changes to its geometry are not influenced by the inclusion of the 

+U correction into the computational set-up. 

In discussing the adsorption structure of CO2, we focus on the change in molecular C-O 

distances and the O-C-O angle. In gas phase CO2, the C-O distances are 1.16 Å, while the O-

C-O angle is 180o. On Cr4O6-o-rutile, CO2 adsorption in mode I results in the C-O distances 

elongating to 1.27 and 1.23 Å, while the O-C-O angle is 132o. One oxygen atom of CO2 binds 

to a Cr site in the nanocluster, with a Cr-O distance of 2.05 Å. Finally, the C-O distance to the 

nanocluster is 1.44 Å. In adsorption mode II, the C-O distances in adsorbed CO2 both lengthen 

to 1.27 Å and the O-C-O angle is 130o. Both oxygen atoms of the molecule bind to Cr sites in 

the nanocluster, with Cr-O distances of 2.08 Å and 2.13 Å. The carbon of CO2 shows a C-O 

distance to the nanocluster of 1.39 Å. Thus, the adsorption of CO2 causes a lengthening of 

molecular C-O distances and bending of the molecule, characteristic of CO2 activation [4, 69]. 

We also note that the deviation from linearity in the O-C-O angle increases with the strength 

of CO2 adsorption. 



10 
 

Finally, we have computed the vibrational frequencies of adsorbed CO2; for reference our 

computed vibrational modes for gas-phase CO2 are 2354, 1325, and 632 cm-1 and the 

experimental CO2 vibrational modes are 2349, 1333 and 667 cm-1 [70] so that our gas phase 

CO2 vibrational modes are in good agreement with experiment. In mode I, the computed 

vibrational modes are 1720, 1221, 791 and 767 cm-1, while in mode II, the vibrational modes 

are 1589, 1226, 921 and 803 cm-1. We note the large red shift of up to 765 cm-1 in the C=O 

stretching mode and the lifting of the degeneracy of the O-C-O bending mode upon adsorption 

of CO2 on the chromia nanocluster. The C-O elongation is not as large in mode I so the shift in 

the C=O stretching mode is correspondingly smaller. These results strongly indicate that CO2 

adsorbs in an activated mode. 

 

 

Figure 1: Relaxed atomic structures for CO2 adsorbed in two adsorption modes at (a), (b) 

Cr4O6-o-rutile and (c), (d) Cr4O6-oh-rutile. The colour scheme is Ti: grey spheres, O: red 

spheres, Cr: blue spheres and C: grey spheres. The ring shows the CO2 molecule. 
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If we turn to activation of CO2 at the Cr4O6-oh-rutile (110) heterostructure, adsorption of CO2 

in mode I (Figure 1(c)) results in an elongation of the molecular C-O distances to 1.21 and 1.31 

Å, while the O-C-O angle is bent, with an angle of 132o. The C-O distance to the nanocluster 

is 1.44 Å and the Cr-O distance to the molecule is 1.99 Å. In adsorption mode II (Figure 1(d)), 

the C-O distances are 1.24 and 1.30 Å, while the O-C-O angle is 128o. We note the stronger 

elongation of one C-O distance upon adsorption at Cr4O6-oh-rutile compared to adsorption at 

Cr4O6-o-rutile. The oxygen involved is bound to Cr in the nanocluster, so this extra interaction 

permits a lengthening of the C-O bond.  

The computed vibrational modes are 1774, 1152, 899, 796 cm-1 and 1658, 1206, 927 and 772 

cm-1 for modes I and II, respectively. These are similar to CO2 adsorption at the Cr4O6-o-rutile 

heterostructure and the non-uniform elongation of the C-O distances results in a smaller red 

shift in the C=O stretching mode. Thus, the interaction of CO2 at chromia-modified rutile 

results in strong adsorption and activation of the molecule and this is irrespective of the state 

of the support. The activation of CO2 is accompanied by distortions to the molecule, namely 

C-O bond elongation and O-C-O bending. 

 

3.1.2 CO2 Adsorption at Cr4O6-modified anatase 

Figure 2 shows the atomic structure for two CO2 adsorption modes at Cr4O6-o-anatase (101) 

(Figure 2(a), (b)), modes I and II) and Cr4O6-oh-anatase (101) (Figure 2(c), (d) modes I and 

II). On Cr4O6-o-anatase (101), adsorption of CO2 in mode I has a rather large adsorption energy 

of -2 eV, suggesting that the CO2 may be overstabilised upon adsorption. In mode II, the 

computed adsorption energy is -0.13 eV. However, we note for adsorption mode II that a CO 

molecule is directly formed and this process is exothermic. The C-O distance in the free CO 

molecule is 1.14 Å.  
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In adsorption mode I, the C-O distances elongate to 1.26 and 1.28 Å and the O-C-O angle is 

133o. The C-O distance to the nanocluster is 1.39 Å and the Cr-O distance to the molecule is 

2.13 Å. Computed vibrational modes of adsorbed CO2 in mode I are 1617, 1201, 915 and 906 

cm-1, which again show activation of adsorbed CO2.  

After CO2 adsorption on Cr4O6-oh-anatase (101), the computed adsorption energies are -0.71 

eV and -1.11 eV for modes I and II, respectively. In a similar fashion to the results on chromia-

rutile, the availability of Cr sites in the nanocluster permits interaction with CO2. In mode I the 

molecular C-O distances are 1.25 and 1.28 Å, with an O-C-O bending angle of 127o. In mode 

II, the C-O distances are 1.24 and 1.29 Å and the O-C-O bending angle is 128o. Computed 

vibrational modes for adsorbed CO2 are 1628, 1246, 908 and 799 cm-1 on Cr4O6-o-anatase and 

1642, 1243, 959 and 777 cm-1 on Cr4O6-oh-anatase. Thus, the activation of CO2 at chromia 

modified anatase is not dependence on the state of the TiO2 support. 

We recall that Cr4O6-o-anatase has a reduced Ti3+ and a Cr4+ cation [58]. Upon formation of 

activated CO2 (mode I), both cations are partially reoxidised and there is a charge 

redistribution, with a transfer of 0.5 electrons to CO2. Upon formation of CO, examination of 

the computed indicates reoxidation of the Cr2+ and Ti3+, with a transfer of 2 electrons to 

adsorbed CO2 which promotes the formation of CO. 
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Figure 2: Relaxed atomic structures for CO2 adsorbed in two adsorption modes at (a), (b) 

Cr4O6-o-anatase and (c), (d) Cr4O6-oh-anatase. The colour scheme is the same as Figure 1. 

The ring shows the CO2 molecule. 

 

3.2 Adsorption and Activation of CO2 at Reduced Chromia-Modified Rutile and 

Anatase 

 

We finally consider the adsorption of CO2 at two examples of reduced Cr2O3-TiO2, where the 

rutile and anatase supports are hydroxylated. Since in any process for conversion of CO2, water 

is likely to be used as a proton source, the supports will most likely have some coverage of 

water present and this is accounted for by using our ½ ML hydroxylated supports. In addition, 

the reduction energies of chromia-modified hydroxylated TiO2 are moderate, so this needs to 

be taken into account when investigating CO2 activation. 
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Figure 3: Relaxed atomic structures for CO2 adsorbed at (a) reduced Cr4O5-oh-rutile and (b) 

reduced Cr4O5-oh-anatase. The colour scheme is the same as Figure 1. 

 

Figure 3 shows the atomic structure of CO2 adsorbed at reduced Cr4O5-oh-rutile (110) and 

Cr4O5-oh-anatase (101). The computed CO2 adsorption energies are -0.6 eV and -1.85 eV on 

rutile and anatase, respectively. The presence of the oxygen vacancy in the chromia nanocluster 

promotes adsorption of CO2, particularly on the anatase support. Hydrogen atoms from the 

hydroxyl sites do not migrate to the adsorbed CO2.  

The C-O distances in the molecule elongate to 1.21 and 1.29 Å upon adsorption at Cr4O5-oh-

rutile and to 1.24 and 1.31 Å upon adsorption at Cr4O5-oh-anatase. The corresponding O-C-O 

angles are 133o (rutile) and 127o (anatase). The third C-O distance to the nanocluster is 1.47 

and 1.37 Å in Cr4O5-oh-rutile and Cr4O5-oh-anatase.  

When we examine the oxidation states of the Ti and Cr cations in the supports and the 

nanocluster, the adsorption of CO2 does not result in any significant change in the oxidation 

states of Ti and Cr cations; such changes are on the order of < 0.1 electrons so that reduced 

cation species persist. Thus, we suggest that there is some charge redistribution upon bonding 

with CO2. 
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4. Discussion and Conclusion 

 

Finding materials that can activate CO2 is of high interest for using CO2 as a feedstock for 

sustainable fuel production. The present study shows that CO2 can adsorb and activate at 

chromia nanocluster modified rutile and anatase TiO2 heterostructures. We characterise the 

activation of CO2 by the strength of adsorption, the elongation of C-O distances, the bending 

of the O-C-O angle and the red shift in the C=O stretching mode. In almost all cases we find 

moderately strong CO2 adsorption; the exception is at Cr4O6-o-anatase. The C-O distances 

elongate, with a particularly strong elongation on chromia-anatase heterostructures, where the 

C-O distances elongate up to 1.30 Å. On chromia-rutile, the elongation is not uniform, with 

one C-O bond clearly longer than the other. The O-C-O angle always shows significant 

bending, where we find angles in the range of 127 – 132o. The state of the TiO2 support, 

whether perfect or hydroxylated, and reduction of the chromia nanocluster, do not influence 

the adsorption and activation of CO2 and it is therefore the chromia nanocluster modifier that 

promotes CO2 adsorption.  

The supported nanoclusters offer some advantageous properties for CO2 activation. Firstly, 

there are low coordinated metal and oxygen sites in such non-bulk like structures, which have 

the potential to be active towards molecular adsorption. Secondly the presence of non-bulk like 

atomic environments can modify the electronic structure relative to bulk materials and the 

support. To examine any electronic structure effects, we show the projected electronic density 

of states (PEDOS) for the examples of CO2 adsorption in mode I on C4O6-oh-rutile and in mode 

I on Cr4O6-oh-anatase in Figures 4 and 5. We recall that in the heterostructures, there are Cr4O6-

derived electronic states above the valence band edge of the TiO2 support. The PEDOS show 
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that these states persist upon adsorption of CO2. Importantly, the CO2 PEDOS, decomposed 

into C 2p and O 2p contributions, shows broad PEDOS peaks which are indicative of strong 

interactions between CO2 and the oxide nanocluster. In particular, the O 2p states are found in 

the same energy range as the Cr4O6 states, while the C 2p PEDOS is also broad in the region 

from -2 eV to -6 eV below the highest occupied states. Thus, it is clear that the position of the 

Cr4O6-TiO2 electronic states is suitable to allow hybridisation with the C 2p and O 2p states of 

CO2. We note also that some supported chromia nanoclusters have Cr2+ oxidation states, and 

reducing the heterostructure through oxygen removal produces Ti3+ and Cr2+ sites. After 

adsorption of CO2, we find that there can be reoxidation of these reduced cations, particularly 

in the case of CO formation, in which electron transfer from reduced Ti and Cr species is found. 

In other cases there is a redistribution of charge upon CO2 adsorption. Thus, the chromia-

modified TiO2 heterostructures display suitable characteristics, namely active sites, suitable 

energy level positions and variable cation oxidation states which promote the adsorption and 

activation of CO2. 
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Figure 4: Projected electronic density of states for CO2 adsorbed on Cr4O6-oh-rutile (110). 

The PEDOS is shown for Cr 3d and O 2p states in chromia, Ti 3d and O 2p states in TiO2 and 

C and O 2p states in adsorbed CO2. The zero of energy is the top of the highest occupied 

states. 
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Figure 5: Projected electronic density of states for CO2 adsorbed on Cr4O6-oh-anatase (110). 

The PEDOS is shown for Cr 3d and O 2p states in chromia, Ti 3d and O 2p states in TiO2 and 

C and O 2p states in adsorbed CO2. The zero of energy is the top of the highest occupied 

states. 
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In conclusion, the results of DFT studies of CO2 adsorption at chromia-modified rutile and 

anatase TiO2 surfaces show that these heterostructures are able to adsorb and activate CO2, thus 

contributing to expanding the range of oxide-based structures that can promote the critical first 

step in the conversion of CO2. 
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