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Abstract: This article considers semi-flexible composite (SFC) pavement materials made with 11 

reclaimed asphalt planings (RAP) and geopolymer cement-based grouts. Geopolymer grouts were 12 
developed and used to fill the internal void structure of coarse RAP skeletons with varying levels 13 
of porosity. The geopolymer grouts were formulated at ambient temperature using industrial by-14 
products to offer economic and environmental savings relative to conventional Portland cement-15 
based grouting systems. They were characterised on flowability, setting time and compressive 16 
strength. The effect of grout and RAP on SFC material performance was evaluated using permeable 17 
porosity, compressive strength and ultrasonic pulse velocity. SFC performance was significantly 18 
influenced by both grout type and RAP content. Improved performance was associated with 19 
mixtures of high-flowability/high-strength grout and low RAP content. A practical limitation was 20 
identified for combination of grout with low-flowability/fast-setting time and well-compacted RAP 21 
skeletons. Solids content exceeding 49% by volume was not feasible owing to inadequate grout 22 
penetration. A suite of SFC materials was produced offering performance levels for a range of 23 
practical pavement applications. Preliminary relationships enabling prediction of SFC elastic 24 
modulus based on strength and/or ultrasonic pulse velocity test data are given. A pavement design 25 
is given using SFC as a sub-base layer for an industrial hardstanding. 26 
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porosity, compressive strength, ultrasonic pulse velocity 28 

 29 

1. Introduction 30 

Construction of highway pavement and hardstanding assets can consume significant amounts 31 
of natural resources such as aggregate, bitumen and concrete, as well as energy in material heating, 32 
mixing and compaction [1–3]. Significant quantities of greenhouse gases are emitted into the 33 
atmosphere through aggregate extraction and asphalt and Portland cement production [4,5]. As 34 
pressure to reduce natural resource extraction grows, using construction and industrial wastes as an 35 
alternative to raw materials can help to resolve environmental issues caused by depletion of natural 36 
sources and reduce wastes going to landfill. Construction products using cold recycling techniques 37 
to minimize use of energy and natural resources play an important part in the delivery of 38 
environmentally responsible infrastructure systems. 39 

Recycling reclaimed asphalt planings (RAP) and other industrial wastes has drawn tremendous 40 
attention from researchers and scientists. Generated from road surfacing maintenance works or full-41 
depth pavement removal and reconstruction, RAP has been the most important source of recycled 42 
material used in the pavement construction for many years [6]. It can be recycled into hot [7], warm 43 
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[4,8] and cold mix asphalt [9] with up to 100% aggregate replacement levels possible depending on 44 
different design purposes. While the use of RAP as a construction product is potentially restricted 45 
due to a perception of lower strength and durability [10,11], research reports its use leading to 46 
increased stiffness levels compared to conventional hot mix asphalt (HMA) [12,13]. In addition to its 47 
reuse in asphalt, work has explored alternative uses of RAP by combining it with Portland cement 48 
[14–16] to create cementitious grouted materials. Generally referred to as semi-flexible composite 49 
(SFC) pavements [17,18], grouted macadam [15,19] or resin-modified pavement [20], their use has 50 
typically been for heavy and slow trafficked-areas such as distribution centres, industrial areas or 51 
airports. Hossiney at al. [21] studied properties including compressive and flexural strength of 52 
Portland concrete containing up to 40% by volume of aggregate replaced by RAP, with performance 53 
generally decreasing with increasing RAP content. Laboratory test results by Huang et al. [16] 54 
indicated that the energy absorbing-toughness value of Portland concrete containing RAP improved 55 
compared to normal concrete with natural aggregate. This can be explained by the aged bitumen 56 
layer coating RAP behaving as an energy absorbing layer between the coarse aggregate and cement 57 
matrix leading to reduced levels of crack propagation [22]. Commercial cement-based products [23] 58 
incorporating single-size open texture RAP with 25-30% voids and cement mortar have been 59 
developed to produce pavement materials with high load-bearing capacity and rapid installation 60 
times. Such examples of commercial products offer sustainable options for construction products 61 
because of their long-term, in-service performance abilities. 62 

Against this background, reported in this paper is an investigation into the use of geopolymer 63 
cement-based grout as an alternative to conventional cement [9,15]. The aim is to create 64 
environmentally responsible, RAP-based highway material solutions offering a wide range of 65 
performance levels in terms of strength and stiffness. The term geopolymer usually refers to gels 66 
formed through alkaline liquid reacted with silica and alumina contained in alumina-silicates; in this 67 
case sourced from by-product industrial wastes including fly ash (FA), ground generated blast 68 
furnace slag (GGBS), metakaolin (MK) and silica fume (SF). Use of these materials helps to offset the 69 
relatively high embodied carbon footprint of Portland cement or other types of bitumen or resin-70 
based binder [24–26]. In this way, infusion of porous RAP with geopolymer grouts at ambient 71 
temperature offers an alternative type of waste-based pavement product. Related available literature 72 
considering mixtures of RAP and geopolymer grout without the use of heat or vibration for pavement 73 
applications is limited. 74 

This paper initially characterises geopolymer grout performance in terms of flow time, setting 75 
time and compressive strength. Use of selected grouts to infill voids in open-graded RAP skeletons 76 
to create SFC pavement materials is then explored, with performance evaluated based on permeable 77 
porosity, compressive strength and ultrasonic pulse velocity test data. The microstructure of 78 
interfacial transition zones between RAP and geopolymer grout matrices is investigated using SEM 79 
observations. A key output from the reported research is a preliminary methodology to predict the 80 
stiffness of geopolymer-based SFC based on rapidly attainable laboratory or site-based test methods 81 
including strength and ultrasonic pulse velocity. 82 

2. SFC Pavement Materials  83 

SFC pavement specimens were manufactured at a laboratory scale using open-graded RAP 84 
aggregate skeletons infused with geopolymer grouts as explained in the following sections.  85 

2.1 Open-graded aggregate skeleton 86 

Open-graded aggregate skeletons were prepared using 8-14 mm sized RAP particles with solid 87 
content levels ranging from 45-62% by volume. To achieve the 45% solid content level, RAP particles 88 
were placed in moulds without compaction. Otherwise, RAP skeletons were compacted manually to 89 
achieve the required solids content level. In a related study, open-graded aggregate skeletons with 90 
polymer modified emulsion binder were prepared using a vibrating compactor at 130oC to achieve 91 
porosity levels ranging from 29-32% [9]. In contrast, both the un-compacted and compacted aggregate 92 
skeletons used in this study were prepared at room temperature and without the addition of any 93 
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virgin bitumen or heating energy. The main properties of the RAP aggregates are presented in Table 94 
1, together with an indication of the RAP skeleton preparation process in Figure 1 (a-b). While RAP 95 
bitumen content was not measured as part of this study, it was assumed to be within the range 5.8-96 
6.3% [9,14]. RAP particles comprised original natural aggregate coated with irregular layers of aged 97 
bitumen as shown in Figure 1 (f). From subsequent SEM image analysis (see Figure 1 (g)), interfacial 98 
transition zones (ITZ) between original aggregates and aged bitumen layers were largely porous in 99 
nature, with 10-40 µm diameter pores and 30-90 µm length fine cracks present; a significant feature 100 
given the established [27,28] impact of ITZ structure on the mechanical behaviour of cementitious 101 
materials.  102 

2.2 Geopolymer grouts 103 

Geopolymers formed through reactions between an alkaline liquid activator and Si and Al 104 
contained in alumina-silicate based binders were developed in this study using binders principally 105 
sourced as industrial by-products. Depending upon local resources and availability, solid alumina-106 
silicate precursors can be in natural form such as zeolite, clays, shales and amphibole or in industrial 107 
by-products such as fly ash (FA), ground-granulated blast furnace slag (GGBS), metakaolin (MK), 108 
silica fume (SF), red mud and waste glass [29]. In this study, the binders included fly ash, GGBS, silica 109 
fume and metakaolin sourced locally from Kilroot power station (Northern Ireland), Ecocem Ireland 110 
Ltd., Elkem and Imerys respectively. The chemical composition, particle size and specific gravity of 111 
the materials are presented in Table 2 [29]. 112 

Table 1. Properties of RAP aggregate. 113 

Properties RAP 

Compacted bulk density (g/cm3) 1.39 

Loose bulk density (g/cm3) 1.25 

Specific density (g/cm3) 2.53 

Water absorption (%) 1.03 

Moisture content (%) 0.31 

Aggregate impact value (%) 5.10 

 114 

Table 2. Chemical composition, particle sizes, and specific gravity of geopolymer powders. 115 

Material 

Chemical composition  

(% by mass) 
Particle size1 (m) Specific gravity  

(g/cm3) 
SiO2 Al2O3 CaO Fe2O3 D(10) D(50) D(90) 

FA 57 24 3.9 6 2.9 18.8 124.6 2.7 

GGBS 36.5 10.4 42.4 0 1.1 5.3 22.5 2.85 

MK 55 40 0.3 1.4 0.9 2.7 8.2 2.6 

SF 96 0.8 0.5 0.8 0.1 0.15 0.4 2.2 

1 where D(10), D(50), and D(90) are 10%, 50%, and 90% of particles smaller than this size respectively. 116 
 117 
By considering diverse binders, the aim was to achieve a range of geopolymer grout properties. 118 

For instance, as high levels of grout flowability were potentially required, FA was considered based 119 
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on its spherical shape and relatively smooth surface texture [30]. MK and SF were considered based 120 
on their reported contribution to good flow and high silicate and aluminium content [25], whilst 121 
GGBS was chosen based on its reported significant contribution to strength development without the 122 
need for heat curing [26]. Commercially available liquid activator, Geosil, with 45% solid potassium 123 
silicate (K2SiO3) content by mass, molar ratio of 1.6 and density of 1.51 g/cm3, was sourced from 124 
Woellner and used throughout for all geopolymer grout mixes. 125 

3. Experimental Programme 126 

3.1 Geopolymer grout mix design 127 

Table 3 is a mix design summary of the various geopolymer grout types considered. Investigated 128 
were binder combinations GGBS+FA, GGBS+FA+MK and GGBS+FA+MK+SF with liquid-to-solid 129 
(LS) ratios ranging from 0.27-0.52. Based on previous related research [31], these binder combinations 130 
were chosen to offer a range of grout performance levels in terms of flow, setting time and 131 
compressive strength, appropriate for a range of potential SFC pavement applications. 132 

3.2 Geopolymer grout characterisation 133 

Determined by measuring the time taken for 1200 ml of grout to flow through a Marsh flow cone 134 
apparatus with an internal orifice diameter of 12.7 mm, geopolymer grout flowability was assessed 135 
according to ASTM C939-02 [32]. It should be noted that grout fluidity is reported as being ideal for 136 
times in the range 8-35 seconds [20,32], albeit that these studies considered grout volumes of 1750 ml. 137 
Initial setting time of geopolymer grouts was defined by observing Vicat needle penetration 138 
according to BS EN 480-2:2006 [33]. Given geopolymer grout’s tendency to set more quickly than 139 
conventional portal cement grout, measurements in this study were recorded every 3-10 minutes 140 
(instead of 10 minutes as stated in the standard method) to improve accuracy levels. Compressive 141 
strength at 28 days was measured using 50 mm cubes according to BS EN 1015:11:1999 [34]. 142 
Specimens were covered with a polyethylene sheet and stored at room temperature at 20oC until the 143 
time of testing. 144 

Table 3. Geopolymer grout compositions. 145 

Binder combinations 

Geopolymer powder contents 

(% by mass of total binder) 
Liquid-to-solid ratios 

(LS) 
GGBS FA MK SF 

GGBS+FA 

80 20 0 0 

0.27, 0.33, 0.38, 0.52 

60 40 0 0 

50 50 0 0 

GGBS+FA+MK 40 40 20 0 

GGBS+FA+MK+SF 40 20 20 20 

 146 

3.3 SFC characterisation 147 

SFC samples were prepared by pouring geopolymer grout into moulds containing RAP 148 
skeletons from a height of around 30 cm to ensure full grout penetration (see Figure 1 (c-d)). All SFC 149 
specimens were covered with polyethylene film and kept at room temperature until time of testing. 150 
For compressive strength measurements, 200 x 200 x 50 mm SFC slabs were initially cast, from which 151 
50 mm cubes were cut using a diamond saw and discarding material from at least 15 mm from the 152 



Materials 2020, 13, x FOR PEER REVIEW 5 of 18 

 

slab edges (see Figure 1 (e)). Testing was conducted using an ELE compression machine according to 153 
BS EN 1015:11 [34]. An average value of compressive strength was determined based on at least 3 154 
specimens after 3, 7 and 28 days curing at room temperature.  155 

 156 

Figure 1. SFC manufacturing steps, including: (a) preparation of single-sized RAP particles; (b) hand 157 
compaction of RAP particles; (c) RAP particles infused with fresh geoplolymer grout; (d) hardened 158 
SFC slab (200x200x50 mm); (e) extraction of SFC specimens for testing (50 mm cubes for compressive 159 
strength testing shown); (f,g) SEM characterisation of RAP particle and (h,i) SFC specimen. 160 
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Permeability of SFC specimens was determined by the vacuum saturation method according to 161 
ASTM 1202 [35]. This method was considered to be more accurate than alternative ASTM techniques 162 
such as cold-water and boiling water saturation [36]. Testing involved splitting 100 mm SFC cube 163 
specimens into two halves along the vertical plane with thin end layers removed to reduce edge 164 
effects. Specimen slices were then dried at 100 ± 10oC for over 24 hours, cooled at room temperature 165 
and weighed to determine oven-dry mass (WD). For each test specimen, three SFC slices were placed 166 
in a sealed desiccator connected to a vacuum pump operating at a pressure of -90 kPa and exposed 167 
to air drying for three hours followed by water saturation for a further one hour. The vacuum pump 168 
was then turned off and the specimens were soaked underwater in the desiccator for a further 20 169 
hours. Surface moisture was removed using a towel and specimens weighed to determine saturated 170 
mass (WST) and apparent mass in water (WW). Permeable porosity  (%) of SFC specimens was then 171 
calculated using the equation: 172 
 173 

𝜌(%) =
𝑊𝑆𝑇−𝑊𝐷

𝑊𝑆𝑇−𝑊𝑊
× 100               (1) 174 

Ultrasonic pulse velocity (UPV) measurements were used to estimate material properties such 175 
as compressive strength and dynamic and static elastic moduli [37–40]. According to IS 13311 (Part 176 
1):1992 [41], UPV can be used to classify concrete quality, with values in the range 3000-4500 m/s 177 
corresponding to a medium-good classification. In this study, 100 mm SFC cubes were assessed using 178 
a PUNDIT pulse velocity tester with 50 mm diameter transducers at 54 kHz based on BS EN 12504-179 
4:2004 [42] using the equation: 180 
 181 

                               𝑈𝑃𝑉 =
 𝐿

𝑇
                                        (2) 182 

where: UPV is the ultrasonic pulse velocity (km/s); L is path length of the shortest distance from two 183 
transducers (mm); and T is transit time or the time spent by the ultrasonic pulse to transit through 184 
path length L (µs). Microstructural characteristics of RAP particles and SFC specimens were observed 185 
using SEM JEOL JSM-601PLUS apparatus. Except for RAP particles, all specimens with a dimension 186 
of approximately 15x15x12 mm were cut from SFC cubes using a diamond slicing wheel prior to 187 
sample preparation. 188 

4. Results and Discussions 189 

4.1 Geopolymer grout characterisation 190 

In this phase of the research, all 20 of the GGBS+FA, GGBS+FA+MK and GGBS+FA+MK+SF 191 
geopolymer grout mixes listed in Table 3 were characterised in terms of flow time, initial setting time 192 
and 28-day compressive strength. Figure 2 illustrates the relationship between each property and LS 193 
ratio in the range 0.27 to 0.52. Given the diverse suite of mixes considered, a wide range of 194 
performance levels was achieved. To help categorise performance, flowability, initial setting time and 195 
compressive strength results were classified as follows: 196 

 Flow time (s):    High (<24); Average (24-80); Low (>80); 197 
 Setting time (mins):  Fast (<25); Average (25-75); Slow (>75); 198 
 28-day strength (MPa): Low (<40); Average (40-80); High (>80). 199 
 200 
In terms of grout flowability (Figure 2 (a)), water content was the clear dominant factor, with 201 

flow times generally decreasing with increasing LS ratio for all binder types considered. Very similar 202 
rates of ‘high’ performance were noted for all binder types at LS ratios greater than 0.38. Below 0.38, 203 
the influence of binder type became more significant, with a wide range of ‘average’ and ‘low’ 204 
performance levels noted; particularly at LS ratio 0.27. The GGBS+FA+MK binder exhibited the 205 
lowest level of flowability at this LS ratio, with a flow time of over 800 seconds. Looking forward to 206 
in situ application of this technology, grout flowability is a key property to control; particularly for 207 
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large area grout pours into potentially well-compacted RAP. At the lowest LS ratio considered (0.27), 208 
the GGBS+FA+MK+SF binder combination offered the lowest flow time of 80 s (i.e. the highest 209 
flowability). In contrast to flow time, LS ratio had a much less significant influence on grout setting 210 
time, particularly for LS ratios greater than 0.38 where performance levels attained steady state 211 
(Figure 2 (b)).  212 

Binder combination was the dominant controlling factor, with a wide disparity in setting times 213 
recorded across all LS ratios considered. For all binder combination types, setting time consistently 214 
decreased slightly at LS ratios less than 0.38. For all grout mixes exhibiting ‘high’ flowability, the 215 
corresponding range of setting times ranges from 27 (GGBS+FA binder) to 80 (GGBS+FA+MK+SF 216 
binder) minutes. Similar to flowability, grout setting time has practical significance when considering 217 
in situ applications. Whereas large area pours are likely to require ‘average’ or ‘slow’ setting times, 218 
smaller or emergency repair pours may require much shorter initial setting times. In this study, the 219 
fastest setting time was recorded for the GGBS+FA+MK+SF binder combination at a LS ratio of 0.27 220 
(13 mins). In terms of 28-day grout strength development (Figure 2 (c)), the general trend for all 221 
binder types was increasing strength corresponding to decreasing LS ratio. Strength values increased 222 
dramatically when LS decreased from 0.52 to 0.27. Binder type had a significant influence on strength 223 
development, with values ranging from 56 MPa (GGBS+FA+MK) to 108 MPa (GGBS+FA+MK+SF) at 224 
the lowest LS ratio considered (0.27). 225 

 226 

Figure 2. Performance of 20 geopolymer grout mixtures in terms of: (a) flow time; (b) initial setting 227 
time; and (c) 28-day compressive strength; (e) summary of selected grout mixes (Mix A, B, C and D) 228 
for subsequent SFC characterisation phase. 229 
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In summary there is an element of performance contradiction. This was particularly the case for 230 
flow time and strength results, with mixes with the highest level of flowability (a characteristic likely 231 
to be deemed as favourable for large area pours) exhibiting the lowest values of strength, and vice 232 
versa. Within the ranges of performance levels of flow time, setting time and compressive strength 233 
recorded, opportunity exists for selecting mixes with contrasting performance characteristics. This is 234 
highlighted by the solid and dashed lines added to Figure 2 (d), which demonstrate that for a starting 235 
design specification of ‘high’ flowability, for instance, mixes with ‘average’ setting time and either 236 
‘average’ or ‘low’ strength can be chosen. Given the variation of pavement applications envisaged for 237 
this technology, this flexibility offers a significant benefit in terms of subsequent SFC implementation. 238 

4.2 SFC Characterisation 239 

The next phase of the research focused on exploring the impact of grout performance on the 240 
properties of resulting SFC specimens. From the 20 grout mixes previously described, four (labelled 241 
mix A, B, C and D from this point forward) were chosen for this work as highlighted in Figure 2 (d) 242 
and summarised in further detail in Table 4. Mixes A, B and C were selected from the 243 
40%GGBS+20%FA+20%MK+20%SF binder category and mix D from the 80%GGBS+20%FA category, 244 
based on the provision of contrasting performance classifications in terms of grout flowability, setting 245 
time and compressive strength as follows: 246 

 Mix A (‘High’ | ‘Slow’ | ‘Low’) 247 
 Mix B (‘Average’ | ‘Average’ | ‘Average’) 248 
 Mix C (‘Low’ | ‘Average’ | ‘High’) 249 
 Mix D (‘Low’ | ‘Fast’ | ‘High’) 250 

To develop a more comprehensive understanding of SFC behaviour, each of these grout types 251 
was then used to manufacture SFC test specimens comprising RAP skeletons with 45, 49, 54 and 62% 252 
solid contents by volume. Example images of resultant SFC specimens are provided in Figure 1 (d,e,i), 253 
as well as an SEM image of the aggregate-asphalt-geopolymer ITZ (grout mix B) in Figure 1 (h). In 254 
the latter, the visible aged bitumen layer is approximately 140 µm wide, with any non-visible 255 
localised pores and fine cracks filled/bounded by well-formed geopolymer grout. On further analysis 256 
of SEM images of this nature, networks of cracks with widths in the range 4-20 µm were evident in 257 
the ITZ between aged bitumen and geopolymer grout in the SFC specimens. This is a common 258 
mechanism reported in the literature [43] for materials incorporating cementitious- and bitumen-259 
based materials. While this phenomenon may help to impede crack propagation in SFC materials and 260 
improve its energy-absorbing capacity [16,22,43,44], their presence will contribute to reduced levels 261 
of compressive strength. 262 

Compressive strength results for the 16 SFC mixtures is presented in Figure 3, which shows wide 263 
ranges of performance at all ages. At 28-days for instance, and reflecting the wide range of mixture 264 
proportions considered, strength values ranged from 9 MPa (grout mix A, RAP content 62%) to 31.5 265 
MPa (grout mix D, RAP content 45%). The 28-day compressive strength of SFC materials is in 266 
compliance with the recommended minimum compressive strength of 8 MPa for base layer 267 
established by the Design Manual for Roads and Bridges (DMRB): Volume 7 – Section 2 [56], 268 
considering SFC as behaving similarly to hydraulically bound material (HBM) in accordance with BS 269 
9227:2019 [50]. In terms of strength development with time, Figure 3 (a-d) shows that, on average, 270 
SFC specimens gained approximately 80% of their 28-day strength value after three days. This trend 271 
reflects the established ability of geopolymer grouts to gain early strength rapidly [45], and offers a 272 
significant benefit for pavement applications where high early strength leading to early potential 273 
exposure to traffic is preferential. Also clear from Figure 3 is a general negative influence of RAP 274 
addition on compressive strength. If considering geopolymer grout mix B for example, 275 
corresponding SFC strength at 28 days were 34, 32, 29 and 26% of the parent grout strength (67 MPa) 276 
as the RAP content increased from 45, 49, 54 to 62% respectively. Similar trends were noted for all 277 
SFC mixes, irrespective of the parent geopolymer grout type used (see Figure 3 (e-h)). 278 

SFC performance is further characterised in Figure 4 (d-f), which plots 28-day permeable 279 
porosity, ultrasonic pulse velocity and compressive strength. Also plotted in Figure 4 (a-c) are the 280 
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properties of the parent geopolymer grouts used (mixes A, B, C and D) in terms of their flow time, 281 
initial setting time and compressive strength. Key influences of both parent grout type and RAP 282 
addition on SFC performance can be reviewed simultaneously. 283 

Table 4. Properties and composition of geopolymer grouts used for SFC pavement material. 284 

MIX 

GGBS/FA/MK/SF 

binder composition 

(%) 

LS 

Grout properties 

Grout performance summary: 

Flowability | Setting time | Strength2 Flow  

(s) 

Setting 

time 

(mins) 

Strength 

(MPa) 

A 40/20/20/20 0.52 9.0 80 36.0 ‘High’ | ‘Slow’ | ‘Low’ 

B 40/20/20/20 0.33 32.6 65 67.0 ‘Average’ | ‘Average’ | ‘Average’ 

C 40/20/20/20 0.27 84.8 48 93.0 ‘Low’ | ‘Average’ | ‘High’ 

D 80/20/0/0 0.27 608.6 13 108.0 ‘Low’ | ‘Fast’ | ‘High’ 

2Grout performance summary classification: 285 

Flow time (s): >80 24-80 <24 

Flowability: ‘Low’ ‘Average’ ‘High’ 

Initial setting time (mins): >75 25-75 <25 

Setting time: ‘Slow’ ‘Average’ ‘Fast’ 

28-day compressive strength (MPa): <40 40-80 >80 

Strength: ‘Low’ ‘Average’ ‘High’ 

 286 
In terms of SFC compressive strength, significant influences of both RAP content (as highlighted 287 

in Figure 3) and parent grout strength are clear from Figure 4 (d), with increasing SFC strength 288 
corresponding to increasing grout strength and decreasing RAP contents respectively. It is clear from 289 
Figure 4 (d) for SFC mixes comprising grout mix D there is an interrelated negative impact of grout 290 
flowability, initial setting time and RAP content. Given the ‘low’ flowability of grout mix D (flow 291 
time > 600 seconds), full-depth aggregate skeleton penetration was not achievable at the higher RAP 292 
contents of 54 and 62% by mass; a problem compounded by mix D classified as having ‘fast’ setting 293 
set (13 mins.) As a result, these SFC specimen types were deemed to have failed at the manufacturing 294 
stage (see Figure 4 (d)) and further performance characterisation was not attempted. 295 

In terms of permeable porosity, Figure 4 (e) shows a less pronounced influence of RAP content 296 
when compared to compressive strength; particularly for grout types A and B (‘low’ and ‘average’ 297 
strength classifications respectively). For grout mixes C and D (‘high’ strength), a negative impact of 298 
increasing RAP content did emerge, albeit that performance levels were not possible for grout mix D 299 
at RAP contents 54 and 62%. The main factor influencing permeable porosity was the compressive 300 
strength of the parent grout used, with porosity values ultimately ranging from 20% for SFC 301 
specimens comprising grout mix A (36 MPa) to 11% for those comprising grout mix D (108 MPa). 302 

In terms of ultrasonic pulse velocity, similar general trends were noted as for permeable porosity 303 
(see Figure 4 (f)). Firstly, a minor influence of increasing RAP content was noted for SFC specimens 304 
comprising ‘low’ and ‘average’ strength grouts A and B. For ‘high’ strength grout mixes C and D, 305 
however, a clear influence emerged, with decreasing pulse velocities corresponding to increasing 306 
RAP contents. For example, the pulse velocity for grout mix C decreased from 4.1 to 3.6 km/s as the 307 
RAP content increased from 45 to 62% by mass. In addition, and reflecting improving paste 308 
microstructures, a general trend of increasing SFC pulse velocity with increasing grout strength is 309 
apparent in Figure 4 (f). Similar to permeable porosity, the lowest (3.3 km/s) and highest (4.4 km/s) 310 
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values of pulse velocity were achieved by grout mixes A (36 MPa) and D (108 MPa) respectively. It is 311 
worth noting that, for conventional concrete, this range corresponds to performance quality category 312 
‘Medium-Good’ as defined in IS 13311 (Part 1):1992 [41]. 313 

 314 

Figure 3. (a-d) SFC compressive strength development with time data; (e-h) 28-day SFC strength 315 
relative to the compressive strength of the parent grout at the same age. 316 
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 317 

Figure 4. (a-c) Performance summary for grout Mix A, B, C and D; SFC performance in terms of: (d) 318 
28-day compressive strength; (e) permeable porosity; and (f) ultrasonic pulse velocity; and (g) images 319 
showing failure of selected specimens owing to insufficient grout penetration. 320 
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4.3. SFC performance predictions 322 

Having undertaken the preliminary characterisation steps described above for SFC materials 323 
incorporating different types of geopolymer grouts and open-grade RAP skeletons, work progressed 324 
to review how the ultrasonic pulse velocity results might be utilised to provide meaningful rapid 325 
performance predictions. In the first instance, this was achieved by analysing the relationship 326 
between UPV and compressive strength for SFC; a relationship defined [37] by the exponential 327 
equation: 328 

𝑓𝑐𝑢 = 𝑎. 𝑒
(𝑏.𝑈𝑃𝑉)                               (3) 329 

where: 𝑓𝑐𝑢 is compressive strength (MPa); and 𝑎 and 𝑏 are empirical parameters determined by 330 
the least-squares method. 331 

The relationship between UPV and compressive strength for the SFC results measured in this 332 
study are presented in Figure 5 (a), compared to published relationships for Portland cement concrete 333 
[40,46]. Comparable positive relationships between UPV and compressive strength exist for both SFC 334 
and conventional concrete, with the strongest relationship in Figure 5 (a) associated with the SFC 335 
specimens assessed as part of this study (R2 = 0.87). Given this commonality, established relationships 336 
for conventional concrete in relation to elastic modulus (static and dynamic) were then compiled as 337 
shown in Figure 5 (b). This included using published relationships between elastic modulus and both 338 
UPV [38,47] and compressive strength [48,49]. With measured values from this study used as inputs 339 
into related prediction equations, comparable relationships existed for both approaches, with 340 
resulting values of static (Es) and dynamic (Ed) elastic modulus ranging from 12-26 and 23-40 GPa 341 
respectively. As the work presented in this paper did not include direct measurement of SFC elastic 342 
modulus, this figure provided a means for deriving preliminary predictions of SFC elastic modulus 343 
based on measured values of UPV. As shown in Figure 5 (b), for instance, a measured UPV value of 344 
4.0 km/s for SFC correlates to a predicted static elastic modulus value of 20 GPa. 345 

4.4. Preliminary design for industrial hardstanding application 346 

To investigate the practical implications of the work presented to this point, a preliminary design 347 
methodology for industrial hardstandings comprising SFC as a base layer is presented Figure 6. The 348 
approach adopted considers SFC as behaving similarly to a hydraulically bound material (HBM) in 349 
accordance with BS 9227:2019 [50]. 350 

Suitable materials included in this standard include cement, slag and fly ash bound granular 351 
mixtures in accordance with BS EN 14227:2013 Parts 1-3 respectively [51–53], with permissible 352 
compressive strength classifications in the range C.04/0.5 to C36/48 (where the subscript figures define 353 
minimum values for cylinder specimens with a slenderness ratio of two and one, or cubes, 354 
respectively). 355 

The 28-day strength value range for SFC recorded in this study (9-31 MPa) complies with this 356 
range and the minimum compressive strength of 8 MPa for base layer required by the Design Manual 357 
for Roads and Bridges (DMRB): Volume 7 – Section 2 [56]. A simplified analytical pavement design 358 
approach presented by Williams [54] was used as the basis of the design methodology, which ignores 359 
the contribution of the surfacing and idealises the pavement as a two-layer system comprising HBM 360 
(or SFC in this case) on a supporting layer. The approach recognises that semi-flexible materials will 361 
ultimately crack under loading to form discrete slabs (not unlike paving concrete) and considers the 362 
stress situation at interior zones away from edges and corners. For the interior loading condition, the 363 
tensile stress (s) at the bottom of the HBM layer is given by the expression: 364 

𝑠 = 1.8𝑝 (
𝑎

ℎ
)
1.85

× 𝑙𝑜𝑔10 (
𝐸1

𝐸2
)                               (4)  365 

where: p = tyre pressure; a = radius of tyre contact; h = layer thickness; E1 = layer modulus of elasticity; 366 
and E2 = foundation modulus of elasticity (approximated from 10 x CBR in MPa). 367 
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Equation (4) can be simplified by making use of the relationship between maximum wheel load 368 
(P) and tyre pressure (p) (𝑃 = 𝑝𝜋𝑎2) and also by simplifying the power function from 1.85 to 2. As 369 
such, the equation may be rearranged to approximate the thickness of HBM layers as: 370 
 371 
 372 

ℎ = (0.57 (
P

𝑠
) × 𝑙𝑜𝑔10 (

𝐸1

𝐸2
))

0.5

                         (5)  373 

The hardstanding surfacing layer, although ignored in the calculation, is assumed to compensate 374 
for edge/corner loading conditions that will induce cracks and produce greater stresses than the 375 
interior loading condition. 376 
 377 

Figure 5. (a) Relationships between ultrasonic pulse velocity and compressive strength for both 378 
measured and published data (for Portland cement concrete); (b) Relationships between ultrasonic 379 
pulse velocity and both static and dynamic elastic modulus for published data (for Portland cement 380 
concrete). 381 

In the worked example presented in Figure 6, the assumed design inputs included: maximum 382 
wheel load, P (10 tonne, i.e. 100 kN); subgrade conditions (sand with CBR of 8%, i.e. E2 = 0.08 GPa); 383 
and pavement surfacing layer (80 mm asphalt layer). As shown Figure 6 (a), the starting point of the 384 
design methodology required selection of a preferred SFC mixture. Selected in this instance was grout 385 
mix C with RAP volume of 62% and 28-day compressive strength of 16 MPa (correlating to strength 386 
class C12/16 in EN 14227:2013 [51]. This enabled subsequent tensile strength, UPV and elastic modulus 387 
predictions of 1.9 MPa, 3.6 km/s and 16 GPa respectively. Tensile strength prediction was based on 388 
relationships provided in BS EN 1992-1-1:2004 [55] for conventional Portland cement concrete, while 389 
for UPV and elastic modulus, the relationships presented previously in Figure 5 were used. Using 390 
Equation (5) above, this led to an SFC base layer thickness design of 265 mm. 391 
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5. Conclusions  392 

The aim of this study is to investigate the properties of semi-flexible composite materials 393 
incorporating geopolymer grouts and reclaimed asphalt planings to develop innovative, 394 
predominantly waste-based pavement layers that do not require heating or mechanical compaction 395 
energy. Based on the results obtained, the following conclusions may be drawn: 396 
1. To facilitate the manufacture of SFC suitable for a broad range of practical applications, a diverse 397 

suite of 20 geopolymer grouts was initially produced using binder combinations GGBS+FA, 398 
GGBS+FA+MK and GGBS+FA+MK+SF with liquid-to-solid (LS) ratios ranging from 0.27-0.52. 399 
The grouts had a wide range of performance in terms of flow (9-609 s), initial setting time (13-80 400 
mins) and compressive strength (19-108 MPa). 401 

2. A suite of 16 SFC mixtures was assessed based on four grout mixes chosen based on contrasting 402 
performance classifications. Each grout type was used to impregnate RAP skeletons with solids 403 
contents ranging from 45-62% by volume, resulting in corresponding wide ranges of SFC 404 
performance in terms of compressive strength (9-32 MPa), permeable porosity (10-20%) and 405 
ultrasonic pulse velocity (3.32-4.40 km/s). SFC performance was influenced by both grout 406 
properties and RAP content, with increasing performance values generally associated with 407 
decreasing RAP contents combined with highly flowable, high strength grout. All but two of the 408 
SFC mixtures considered, yielded viable pavement material solutions. Despite having the 409 
highest compressive strength (108 MPa), use of grout mix D was not practically possible with 410 
solid RAP contents of 54 and 62% by volume, owing to its relatively ‘slow’ flowability (609 s) 411 
and ‘fast’ setting time (13 mins) resulting in incomplete RAP penetration. 412 

3. A strong correlation between ultrasonic pulse velocity and compressive strength was found for 413 
the range of SFCs considered (R2=0.87). Given the similarity between this relationship and those 414 
established for conventional Portland cement-based materials, published relationships relating 415 
UPV and elastic modulus for the latter were adopted to enable preliminary pavement designs 416 
incorporating SFC layers. An example for SFC use as an industrial hardstanding sub-base layer 417 
was presented. For a maximum wheel load of 10 tonnes, subgrade CBR of 8% and 80 mm-thick 418 
asphalt surfacing layer, the resultant SFC thickness requirement is 265 mm. For a hardstanding 419 
area of 100 m2, this equates to the consumption of approximately 35 tonnes of RAP and 15 tonnes 420 
of geopolymer-based product; thereby presenting a potentially economic and environmentally 421 
responsible pavement solution. 422 

4. The behaviour of SFC conformed with the mechanical performance levels required by the 423 
Design Manual for Roads and Bridges (DMRB): Volume 7 – Section 2 [56] for base layer made of 424 
hydraulically bound material (HBM) in accordance with BS 9227:2019 [50]. As such, this initial 425 
investigation has successfully proven the potential suitability of this material. 426 
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 443 

 444 

Figure 6. Mix design example for SFC utilised as a sub-base layer in a heavy- duty pavement application including: (a) laboratory-based compressive strength data; (b) 445 
predicted tensile strength values; (c) laboratory-based UPV data; and (d) predicted elastic modulus values. 446 
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