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Sea-level histories during the two most recent deglacial-interglacial intervals experienced 17 

significant differences1-3 despite both periods having similar changes in global mean 18 

temperature4,5 and forcing from greenhouse gases6. Although the last interglaciation (LIG) 19 

experienced stronger boreal summer insolation forcing than during the present 20 

interglaciation7, understanding why LIG global mean sea level may have been 6-9 m higher 21 

than present has proven particularly challenging2. During glacial as well as interglacial 22 

periods, extensive areas of polar ice sheets were grounded below sea level, with grounding 23 

lines and fringing ice shelves extending onto continental shelves8, suggesting that oceanic 24 

forcing by subsurface warming may also have contributed to ice-sheet loss9-12 analogous to 25 

ongoing changes by the Antarctic13,14 and Greenland15 ice sheets. Such forcing would have 26 

been especially effective during glacial periods when the Atlantic Meridional Overturning 27 

Circulation (AMOC) experienced large variations on millennial timescales16, with a 28 

reduction of the AMOC causing subsurface warming throughout much of the Atlantic 29 

basin9,12,17. Here we show that greater subsurface warming induced by the longer duration 30 

of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level 31 

rise than during the last deglaciation. This greater forcing also contributed to excess loss 32 

from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level 33 

to rise at least 4 m above modern. When accounting for the combined influences of 34 

penultimate and last-interglacial deglaciation on glacial isostatic adjustment, this excess loss 35 

of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral 36 

reefs and speleothems at intermediate- and far-field sites.  37 

 38 
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 Climate evolution over the last two terminations shares a number of similarities (Extended 39 

Data Fig. 1). Proxy records of ocean circulation show that the last two terminations were 40 

accompanied by large reductions of the AMOC. Climate responses to these reductions show the 41 

characteristic bi-polar seesaw due to reduced northerly ocean heat transport and the weakening of 42 

the Asian monsoon due to the cooling of the Northern Hemisphere. Other similarities include an 43 

increase in the rate of sea-level rise when the AMOC begins to decrease and the occurrence of a 44 

Heinrich event during the period of reduced AMOC. Similar climate changes accompanied earlier 45 

terminations over the last 640 ka18, suggesting that an AMOC reduction is a characteristic feature 46 

of these periods of rapid deglaciation.  47 

 There are also several notable differences between the last two terminations (Extended 48 

Data Figs. 1, 2). First, proxy data suggest that the AMOC during T-II remained in a reduced state 49 

for ~7,000 years before recovering at the start of the LIG. In contrast, during T-I, the AMOC only 50 

remained weak for ~3,500 years before recovering to nearly full strength during the 1,500-year 51 

Bølling-Allerød warm interval. It then decreased again during the 1,200-year Younger Dryas cold 52 

interval, with its final recovery at the start of the present interglaciation. Second, the full T-II sea-53 

level rise occurred during the 7-kyr sustained “one-step” period of reduced AMOC, whereas only 54 

~50% of the T-I sea-level rise occurred during the ~6.5-kyr “two-step” period of reduced AMOC3 55 

(Fig. 1). Third, ice-rafted debris (IRD) suggests that Heinrich event 11 (H11), which is nearly 56 

twice as long as Heinrich event 1 (H1), was sourced from more than just the Hudson Strait Ice 57 

Stream (HSIS), which was the primary source for H119.  58 

 A transient simulation of T-I climate used an atmosphere-ocean general circulation model 59 

(the National Center for Atmospheric Research Community Climate System Model version 3; 60 

NCAR CCSM3) forced by changes in insolation, CO2, ice sheets, and freshwater fluxes that, while 61 
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not in full agreement with reconstructions, were designed to cause the two-step reduction of the 62 

AMOC17 (Fig. 1k). The simulation successfully captured many aspects of the climate evolution 63 

through T-I as recorded by proxy records17,20,21. Among the responses to the AMOC reduction was 64 

subsurface warming throughout much of the Atlantic basin17 (Fig. 1k, 1l), which is supported by 65 

proxy temperature records from intermediate-depth (1,000-1,500 m) North Atlantic core sites12.  66 

 We used the same climate model to conduct a transient simulation that spans T-II and the LIG 67 

(140-115 ka) (Methods). We applied freshwater forcing consistent with reconstructions that 68 

reproduced the 7-kyr “one-step” reduction in the AMOC suggested by proxy records of ocean 69 

circulation (Extended Data Figs. 1,3) in order to quantify associated changes in subsurface 70 

temperatures during T-II and into the LIG and thus allow direct comparison with subsurface 71 

warming simulated for T-I. 72 

Fig. 1 compares forcing of ice-sheet surface mass balance from insolation, greenhouse 73 

gases (GHGs), and low-latitude Pacific sea-surface temperatures (SSTs) for T-II and T-I to 74 

representative examples of the simulated oceanic forcing at sites in the North (30oW, 45oN) (Fig. 75 

1e, 1k) and South Atlantic (45oW, 70oS) (Fig. 1f, 1l). Changes in GHGs and SSTs are similar 76 

during the two terminations, with increases of ~2 W m-2 from GHGs and ~2oC warming from low-77 

latitude Pacific SSTs, which strongly influence Northern Hemisphere ice-sheet surface mass 78 

balance10. Despite these similarities, sea level reached modern by the end of T-II while it remained 79 

~50% below modern at the end of T-I (Fig. 1a, 1g). Some have attributed the faster rate of sea-80 

level rise during T-II to the greater boreal summer insolation forcing3, but that forcing only exceeds 81 

that of T-I after the majority (~80 m) of T-II sea-level rise had occurred (Fig. 1a, 1b, Extended 82 

Data Fig. 2). Otherwise, insolation forcing during the first 8,000 years of each termination is 83 
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similar (~55 W m2), whereas the associated 80 m of sea-level rise during T-II is much greater than 84 

the ~35 m during T-I.  85 

We attribute this contrast in sea-level response to the similar radiative forcing and 86 

temperature changes of the last two terminations to the greater subsurface warming during T-II 87 

associated with the “one-step” reduction in the AMOC than during the T-I “two-step” reduction, 88 

leading to greater oceanic forcing of marine ice-sheet margins in the North (Fig. 1e, 1k, Extended 89 

Data Fig. 4) and South (Fig. 1f, 1l, Extended Data Fig. 4) Atlantic. Moreover, the Eurasian Ice 90 

Sheet during the Penultimate Glacial Maximum (PGM, ~140 ka) was larger than during the Last 91 

Glacial Maximum (LGM, ~21 ka), with most of the excess mass located in low-lying areas south-92 

southeast of the glaciated Barents and Kara Seas22 that, from isostatic depression, was also marine 93 

based (Extended Data Fig. 5). We thus hypothesize that collapse of this large marine-based ice 94 

complex triggered by oceanic forcing would have also contributed to the rapid T-II sea-level rise, 95 

with the associated IRD contribution to H11 diluting the contribution from the HSIS19. In general, 96 

this greater FW flux from deglaciating Northern Hemisphere ice sheets during T-II provided an 97 

important positive feedback on that deglaciation through its influence on the AMOC and 98 

subsurface temperatures. 99 

 Fig. 2 compares forcings during the last two interglaciations. Peak global mean SSTs were 100 

similar (Fig. 2d, 2i) while LIG radiative forcing from CO2 was only slightly higher (~0.25 W m-2) 101 

than during the present interglaciation (Fig. 2c, 2j). The main difference is in the higher boreal and 102 

lower austral summer insolation forcing during the LIG (Fig. 2b, 2h). Modeling studies show that 103 

this forcing would cause excess mass loss from the Greenland Ice Sheet during the LIG, but the 104 

estimated 1-3 m of global mean sea-level equivalent (GMSLE) is too small to explain the LIG 105 

highstand, thus requiring a contribution from the Antarctic Ice Sheet2. Lower austral summer 106 
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insolation forcing during the LIG (Fig. 2b), however, results in surface cooling over most of 107 

Antarctica, suggesting an important role for oceanic forcing, with warming hypothesized to 108 

originate from an AMOC reduction during the LIG11 or from a lagged ice-sheet response to 109 

warming from a change in the strength and/or position of the Southern Ocean westerlies associated 110 

with the T-II AMOC reduction3. One ice-sheet model simulates up to 6.7 m of sea-level rise when 111 

specifying a uniform increase of Southern Ocean temperatures by 3°C11.  112 

 Our transient climate simulation shows that T-II oceanic forcing in the Southern Ocean as 113 

well as the North Atlantic continued into the early LIG (Fig. 2e, 2f, Extended Data Fig. 4). We use 114 

the Parallel Ice Sheet Model (PISM) to assess the response of the Antarctic and Greenland ice 115 

sheets to this oceanic as well as surface forcing through T-II and into the LIG as simulated by our 116 

transient climate run (Methods). The Greenland Ice Sheet starts to deglaciate from its PGM extent 117 

when adjacent ocean temperatures begin to warm at ~137.5 ka (Fig. 1e, Fig. 3g). It reaches its 118 

present extent at 131.5 ka and then loses an additional 0.88 m GMSLE by 119.5 ka largely by 119 

oceanic forcing of those sectors of the ice sheet that remain marine based, causing drawdown of 120 

the ice-sheet interior (Fig. 3c). The majority (3.42 m) of the total sea-level rise (3.88 m) occurs 121 

between 136-129 ka (Fig. 3g), corresponding to the period of rapid rise in global mean sea level 122 

(GMSL) (Fig. 1a). Sensitivity tests in which ocean temperatures are held constant at either PGM 123 

or LIG values show that the simulated deglaciation is controlled entirely by oceanic forcing 124 

(Methods, Extended Data Fig. 6), supporting our hypothesis that oceanic forcing contributed to 125 

deglaciation of other Northern Hemisphere ice sheets (Extended Data Fig. 4). 126 

Our simulations also show that the major deglacial phase of the Antarctic Ice Sheet from 127 

its PGM extent closely coincides with the onset of warming of adjacent ocean temperatures at 128 

~137.5 ka induced by the AMOC slowdown (Fig. 1f, Fig. 3g). In particular, the ice sheet retreats 129 
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to its present extent at ~128 ka, with the majority (6.25 m) of the total (6.65 m) sea-level rise also 130 

occurring during the rapid T-II rise in global sea level (Fig. 3g). Sea-level rise then slows beginning 131 

at 128 ka, followed by an acceleration starting at 126.5 ka, with a total of 2.99 m of LIG sea-level 132 

rise occurring by 116 ka (Fig. 3g). The majority of this LIG deglaciation is associated with collapse 133 

of the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) (Fig. 3e) largely in response 134 

to oceanic forcing (Extended Data Fig. 6), similar to what is suggested by observed recent changes 135 

and projected for future ice-sheet recession in this area13,14. This destabilization leads to retreat 136 

that continues after the period of peak oceanic forcing at a rate that is determined largely by the 137 

retrograde gradient of the bed beneath WAIS, followed by a slowing of retreat as the Southern 138 

Ocean cools (Fig. 2f). 139 

 We next apply an ice-age sea-level model23 to predict how our simulated changes in LIG 140 

ice-sheet mass would be recorded at three widely distributed sites with well-dated corals that 141 

provide minimum estimates of relative sea level (RSL) during the LIG24,25, and a speleothem 142 

record that bounds RSL during the same period26 (Methods). Of the five adopted ice histories, the 143 

two (LAM and HYB) based on studies that use a significantly larger Eurasian Ice Sheet during the 144 

PGM relative to the LGM22,27 best predict RSL histories during the LIG that are consistent with 145 

the elevation of the corals from the Bahamas, Western Australia and the Seychelles (Fig. 4a-c, 146 

Extended Data Fig. 7). However, all simulations tend to underestimate the first half (prior to 122 147 

ka) of the LIG RSL inferred from the speleothem record in Mallorca (Fig. 4d, Extended Data Fig. 148 

7). 149 

 In the absence of melting of polar ice during the LIG, predictions of RSL at the Bahamas 150 

and at Mallorca would show a monotonic rise, while those at the Seychelles and Western Australia 151 

would tend to show a monotonic fall28. Our ice-sheet simulations, however, are characterized by 152 
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excess melt from WAIS (relative to present day) that increases from 0 to 3 m GMSLE between 153 

127 ka and 124 ka (Fig. 3g). This signal is responsible for the accentuated RSL rise over the same 154 

period in the prediction for Bahamas and Mallorca and the reversal in the RSL trend at Western 155 

Australia and the Seychelles (Fig. 4).  156 

Our results do not account for several other processes that may have caused LIG global 157 

mean and relative sea level to have been even higher than modeled here. For example, our 158 

atmospheric modeling may underestimate surface melting around the lower-elevation margins of 159 

the Greenland Ice Sheet. The greater boreal summer insolation forcing during the LIG relative to 160 

the present interglaciation likely caused an even greater loss of glaciers, which today account for 161 

0.41 m GMSLE. Warmer-than-present LIG temperatures would have caused additional 162 

thermosteric sea-level rise5. Finally, we note that any additional melt near the start of the LIG 163 

would change the preferred Earth models identified in our analysis (Methods). LIG RSL can also 164 

be influenced by dynamic topography due to mantle convection, introducing meter-scale 165 

displacement on these 105-year timescales29.  166 

 In summary, several lines of evidence suggest that the greater oceanic forcing during T-II 167 

than during T-I, as simulated by our climate modeling, contributed to the more-rapid sea-level rise 168 

during T-II. First, forcing of ice-sheet surface mass balance was similar during the two 169 

terminations, indicating that an additional forcing was required to explain the differences in rates 170 

of sea-level rise. Second, our GIA modeling demonstrates that the larger PGM Eurasian ice sheet 171 

caused a significantly larger fraction of the ice-sheet bed to be below sea level, and thus be more 172 

vulnerable to oceanic forcing, than during T-I. Third, our ice-sheet modeling shows that >85% of 173 

the volume loss of the PGM Greenland and Antarctic ice sheets to their present sizes occurs in 174 

response to oceanic forcing during T-II. Although additional modeling of the deglaciation of the 175 
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former NH ice sheets during T-II will be required to further support this hypothesis, our ice-sheet 176 

modeling does show that oceanic forcing was the primary driver of excess ice loss from the 177 

Greenland and Antarctic ice sheets during the LIG. Our sea-level predictions demonstrate that the 178 

modeled 4 m of GMSLE from LIG deglaciation of Greenland and Antarctic ice sheets may explain 179 

much of the LIG RSL at intermediate- and far-field sites when GIA from T-II deglaciation is 180 

included, although additional melt is required to fully reconcile these data.  181 
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Fig. 1. Sea-level change and climate forcings during the penultimate and last deglaciations. 286 

a, g, Records of relative and global mean sea level (Methods, Extended Data Fig. 2). Uncertainty 287 

on blue line is 1σ; uncertainty on coral data (circles) is 2σ. b, h, June 21 insolation for 65oN7. c, i, 288 

Radiative forcing from greenhouse gases (CO2, CH4, and N2O)6. Uncertainty is square root of the 289 

sum of squares of the uncertainties of the individual greenhouse gases. d, j, Tropical (23.5°N-S) 290 

mean annual sea-surface temperature stack with 2 s.d. relative to the HadISST1.1 1870–1889 291 

data4,5. e, k, Changes in the model maximum Atlantic meridional overturning transport (below 500 292 

m) (black line) and of temperature as a function of time and depth at 30oW, 45oN relative to 140 293 

ka (e) and 22 ka17 (k) as simulated by the NCAR CCSM3 (Methods). f, l, Evolution of temperature 294 

as a function of time and depth at 45oW, 70oS relative to 140 ka (f) and 22 ka17 (l) as simulated by 295 

the NCAR CCSM3 (Methods). 296 

 297 

Fig. 2. Sea level and climate forcings during the last and present interglaciations. a, g, Records 298 

of relative and global mean sea level (Methods, Extended Data Fig. 2). Uncertainty on coral data 299 

(circles) is 2σ. b, h, June 21 insolation for 65oN7. c, i, Radiative forcing from greenhouse gases 300 

(CO2, CH4, and N2O)6. Uncertainty is the square root of the sum of squares of the uncertainties of 301 

the individual greenhouse gases. d, j, Global mean annual sea-surface temperature stack with 2 302 

s.d. relative to the HadISST1.1 1870–1889 data4,5. e, k, Evolution of temperature as a function of 303 

time and depth at 30oW, 45oN relative to 140 ka (e) and 22 ka17 (k) as simulated by the NCAR 304 

CCSM3 (Methods). f, l, Evolution of temperature relative to 140 ka as a function of time and depth 305 

at 45oW, 70oS relative to 140 ka (f) and 22 ka17 (l) as simulated by the NCAR CCSM3 (Methods). 306 

 307 
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Fig. 3. Simulations of the Greenland and Antarctic ice sheets. a, The Greenland Ice Sheet at 308 

the Penultimate Glacial Maximum. Logarithmic scale bar for velocity fields shown by color 309 

scheme; contours on ice sheet are for surface elevation in meters. b, The Greenland Ice Sheet at 310 

116 ka. Logarithmic scale bar for velocity fields shown by color scheme; contours on ice sheet are 311 

for surface elevation in meters. c, Difference in thickness of the Greenland Ice Sheet between 116 312 

ka and present day. Contours on ice surface and color scheme show change in thickness. d, The 313 

Antarctic Ice Sheet at the Penultimate Glacial Maximum. Logarithmic scale bar for velocity fields 314 

shown by color scheme; contours on ice sheet are for surface elevation in meters. e, The Antarctic 315 

Ice Sheet at 116 ka. Logarithmic scale bar for velocity fields shown by color scheme; contours on 316 

ice sheet are for surface elevation in meters. f, Change in thickness of the Antarctic Ice Sheet 317 

between 116 ka and present day. Contours on ice surface and color scheme show change in 318 

thickness. g, Contributions of the Greenland and Antarctic Ice Sheets to global mean sea level 319 

between 140 ka and 116 ka. 320 

 321 

Fig. 4. Predictions of relative sea level at four far-field sites. a, Relative sea-level (RSL) data 322 

from the Bahamas based on well-dated corals compared to a prediction of RSL using our simulated 323 

LIG loss from the Greenland and Antarctic Ice Sheets and the LAM ice history22 (solid green line) 324 

and the HYB ice history (solid blue line) (see Methods). Also shown are predictions of RSL using 325 

just the LAM ice history22 (dashed green line) and the HYB ice history (dashed blue line). b, c, As 326 

in a, except for Western Australia (b) and the Seychelles (c). Uncertainties are for age (2σ), 327 

elevation (downward) and coral-depth habitat (upward). d, RSL data from Mallorca based on 328 

speleothem records. Uncertainties are for age (2σ) and growth. The Earth models used in the 329 

calculations are characterized by a lithospheric thickness, and upper and lower mantle viscosity 330 
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of: 140 km, 0.3 X 1021 Pas, 8.0 X 1022 Pa s (a), 96 km, 0.3 X 1021 Pas, 5.0 X 1022 Pa s (b), 30 km, 331 

0.5 X 1021 Pas, 3.0 X 1022 Pa s (c), and 120 km, 2.0 X 1021 Pas, 8.0 X 1022 Pa s (d). Each of the 332 

coral records are comprised of data collected from multiple sites and the RSL predictions are 333 

shown for the following representative locations: 24.05°N, 285.47°E (a), 21.97°S, 113.93°E (b), 334 

4.28°S, 55.73°E (c), and 39.61°N, 3.38°E (d). The consistency between the data and the 335 

predictions would be unaffected if we plotted RSL histories at each location that accounted for the 336 

variable collection sites.  337 
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Methods 338 

Transient climate modeling. We use the fully-coupled configuration of the Community Climate 339 

System Model version 3 (CCSM3) in T31 resolution30 for the transient simulation of the 340 

penultimate deglaciation and last interglaciation (LIG) from 140 to 120 ka. CCSM3 was used in 341 

the TraCE-21K transient simulation of the past 21,000 years spanning the last deglaciation and the 342 

current interglaciation17,21,31. The transient simulation of the penultimate deglaciation was 343 

initialized with a 600-year equilibrium simulation of the penultimate glacial maximum that 344 

branched off the TraCE-21K last glacial maximum (LGM) simulation with orbital configuration7  345 

and greenhouse gas contribution (CO2) for 140 kyr32. The transient simulation of penultimate 346 

deglaciation with CCSM3 was integrated from 140 ka to 129 ka with changing atmospheric 347 

greenhouse gas concentrations32, Earth’s orbit7, and continental ice sheets based on ICE-5G33 but 348 

with the timing of the corresponding sea-level rise adjusted to closely follow the Waelbroeck et 349 

al.1 and Grant et al.34 sea-level reconstructions for the penultimate deglaciation (Extended Data 350 

Figs. 2, 3). We note that our sea-level modeling suggests that the sizes of the penultimate glacial 351 

maximum Northern Hemisphere ice sheets differed from the LGM and thus our climate modelling 352 

does no account for these important difference between the two terminations. Further climate 353 

modeling is thus needed to assess how these differences may have affected atmospheric circulation 354 

over the North Atlantic Ocean and the AMOC. 355 

 To simulate the impact of freshwater forcing from Heinrich event 11 on the Atlantic 356 

Meridional Overturning Circulation, freshwater is added at the surface of the North Atlantic in the 357 

area between 50°-70°N, being ramped to 0.17 Sverdrups (Sv; 106 m3 s-1) from 138 ka to 135.5 ka 358 

where it remains until 129.7 ka when it is shut off (Extended Data Fig. 3). The transient simulation 359 

of the LIG with CCSM3 was integrated from 129 ka to 116 ka with changing orbits and 360 
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atmospheric greenhouse gases under present-day ice-sheet configuration. No additional freshwater 361 

fluxes were applied during the transient simulation of the LIG. 362 

Ice-sheet modeling. We use version 0.7.1 of the Parallel Ice Sheet Model (PISM), in which the 363 

dynamical core superposes velocity fields from the shallow shelf and shallow ice approximations 364 

across the entire domain. Fast flow (“streaming”) of grounded ice is enabled by plastic failure of 365 

subglacial sediments, which depends on a prescribed but spatially-variable till friction angle, 366 

representing sediment strength and its degree of saturation. The till friction angle is based primarily 367 

on topography, so that deeper areas have lower friction angles. This mimics the effect of weaker 368 

sediments accumulating in deeper basins. The parameterization follows the form, phi min / phi 369 

max / elevation min / elevation max, in which the phi min is the friction angle applied 370 

below elevation min, phi max is the friction angle applied above elevation max, and values in 371 

between are linearly interpolated. For our Greenland simulations we prescribe values of 10 / 30 / 372 

-300 / 300, and for Antarctica 6 / 30 / -700 / -100. These values are based on, but modified from, 373 

previous work (Aschwanden et al.35 for Greenland; Golledge et al.36 for Antarctica), but these 374 

values are uncertain. Our values were chosen following exploratory simulations that sought to best 375 

capture the broad-scale geometric and dynamic features of the ice sheets. 376 

 Sediment strength evolves dynamically depending on the basal ice temperature. Where ice 377 

is sufficiently thick to allow basal melting, meltwater weakens the substrate until driving stresses 378 

exceed till cohesion. Failure of the substrate that results in acceleration of overlying ice follows a 379 

pseudo-plastic law37,38, such that a small increase in stress above the shear strength of the substrate 380 

leads to an increasing velocity response. This ultimately thins the ice, which reduces the 381 

gravitational driving stress and results in a deceleration of the ice sheet. The cyclic behavior of ice 382 

streams that occurs as a consequence of this mechanism is described in more detail elsewhere39. 383 
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PISM uses a sub-grid grounding line scheme40 in which the interpolation of sub-ice shelf melt 384 

across the grounded to floating transition may be turned on or off. When turned on, the scheme 385 

tends to accelerate ice-sheet retreat in marine basins, whereas when it is off, the scheme produces 386 

a slower response36. This difference in behavior results in differences in retreat rates, but 387 

equilibrium states (for example, ice volume) are less affected. In our experiments we investigated 388 

both approaches, and found that interpolating sub-shelf melt across the grounding line produced 389 

simulations that were most closely in keeping with geological constraints for Termination I (T-I) 390 

(see below).  391 

 We also used a range of enhancement factors for the shallow ice (SIAe) and shallow shelf 392 

(SSAe) equations (SIAe = 1, 2, 3; SSAe = 0.5, 1), and different values for the basal sliding 393 

exponent that controls how plastic or linear the substrate deformation response to applied driving 394 

stresses (q = 0.25, 0.6). Floating ice is controlled by two calving mechanisms – one based on 395 

horizontal strain rates41 and another that prescribes a minimum thickness criterion (50 m for 396 

Greenland, 200 m in Antarctica).  397 

 We run separate simulations for the Greenland and Antarctic ice sheets, both at 20-km 398 

resolution. To drive our ice-sheet model, we use output climatologies from the transient CCSM3 399 

simulations described above for T-I and Termination II (T-II). Atmospheric outputs are applied as 400 

anomalies to present-day air temperature and precipitation fields42,43, in the same manner as 401 

employed previously44. We employ a positive-degree day (PDD) model to translate temperatures 402 

above freezing into surface melt, of which 60% remains in the snowpack as a consequence of 403 

refreezing during percolation. The proportion of refreezing that takes place even under present 404 

conditions is difficult to constrain precisely45 so we use a uniform value both for the control and 405 

perturbation experiments, in order to minimize the effects of this parameterization. That is, 406 
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differences in the simulation outputs are unlikely to arise from uncertainty in this aspect of model 407 

parameterization.  408 

 During our model tuning process, we explored a wide range of degree-day values (from 1 409 

mm oC-1 day-1 up to 64 mm oC-1 day-1) independently for both snow and ice. We tried the more 410 

usual melt threshold of 273 K and the lower value of 270 K following van den Broeke et al.46. The 411 

latter method yields more widespread melt, mimicking the possible melt arising from short-wave 412 

radiation under sub-freezing conditions, and thus degree-day factors are typically lower (van den 413 

Broeke et al., 2010). We also allow for stochastic variability in daily temperatures using a zero-414 

mean white noise component whose standard deviation is set at 5 K. Although the choice of PDD 415 

parameters did exert some control on the geometry of the evolving ice mass, the basic shape of the 416 

ice sheet evolved in a similar manner regardless of either the melt forcing or the glaciological 417 

parameterization, suggesting that the dominant control on ice-sheet geometry is the climate forcing 418 

from the GCM. Recent work has shown that our simulations of surface mass balance (SMB) of 419 

the Greenland Ice Sheet under the high boreal summer insolation of the LIG may be sensitive to 420 

climate model resolution and SMB model type (i.e., PDD, surface energy balance)47. 421 

 Oceanic fields for temperature and salinity at 500 m depth were used as inputs to a 422 

thermodynamic ocean model that calculates basal melt from salt and heat-flux gradients across the 423 

ice/ocean interface, according to the scheme described in48. As with the atmospheric variables, we 424 

apply the oceanic fields as anomalies from a present-day ocean configuration that for Antarctica 425 

is tuned to reproduce observed melt-rate patterns49. Since such constraints are not currently 426 

available for Greenland, we use a spatially uniform melt factor instead, which is iteratively refined 427 

so that both LGM and present-day ice-sheet extents are reproduced (see below). Ice thickness and 428 

bed topography for the two ice sheets are taken from the most recent compilations50,51. 429 
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 With the model set-up as described above, we ran a series of time-evolving experiments 430 

that first focused on T-I, rather than T-II. The rationale for this approach is that substantial 431 

geological data exist with which to constrain the evolving ice-sheet geometry through the last 432 

deglaciation, whereas there are few constraints for the preceding T-II. Therefore, in order to 433 

optimize our parameter settings, we undertook >500 experiments of T-I for both ice sheets until a 434 

good fit to empirical constraints was found. For Antarctica, our guiding constraints are that the ice 435 

sheet at the LGM, immediately prior to T-I, should occupy the majority of the continental shelf, 436 

and have an ice-volume excess above present that is within the range of 5.6-14.5 m represented by 437 

previous simulations52-55. Furthermore, we required that the evolution of the simulated ice sheet 438 

must reproduce the glacial maximum thickening of West Antarctica and thinning of East 439 

Antarctica inferred from ice-core analyses55, and exhibit a pattern of mass loss that is consistent 440 

with geologically inferred deglacial changes in ice discharge56. In Greenland, geological 441 

constraints on the offshore extent of the LGM ice sheet are sparse, but the ice volume excess is 442 

thought to have been in the range 2 – 5 m global mean sea level equivalent57,58. We use this range 443 

as our target (Extended Data Fig. 8). Finally, both ice sheets are required to reproduce present-day 444 

grounded ice extent and volume as closely as possible at the end of the T-I simulations.  445 

 Once this phase of parameter optimization is complete, we run our experiments for T-II 446 

using the exact same settings, changing only the input climatology based on outputs from CCSM3. 447 

This dual approach allows for the robust simulation of a period, such as T-II, for which little data 448 

exist to constrain outputs. In addition, this methodology allows for the direct comparison of model 449 

outputs for the two periods, allowing any differences to be attributed solely to the imposed climate 450 

forcing rather than to uncertainties in the modelling procedure. Finally, by tuning the model to fit 451 

relatively well-known constraints such as LGM and present-day extent and volume, we reduce the 452 
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influence of any inaccuracies in the climate model representation of air or ocean temperatures 453 

during the periods of simulation. Thus, if CCSM3 under- or overestimates the magnitude of past 454 

climate anomalies with respect to present, the internal consistency between the T-I and T-II climate 455 

simulations coupled with the data-constrained simulation of T-I mean that the reliability of the T-456 

II simulation is unaffected. 457 

 A novelty of our ice-sheet simulations compared to previous studies59,60 is that we use a 458 

fully evolving T-I experiment to constrain our model parameterizations. This includes components 459 

such as degree-day factors for the PDD scheme. For Greenland, we run an ensemble of tuning 460 

experiments that explore a range of snow and ice melt factors as well as ice-flow enhancement 461 

coefficients (Extended Data Fig. 8). By then selecting the parameterization that at the end of the 462 

T-I simulation most closely reproduces present-day ice volume and geometry we ensure that the 463 

surface melt fields we generate are realistic. We then apply this setup to our T-II experiments. Our 464 

annual temperature range is defined by the CCSM3 outputs. However, we also experimented with 465 

duplicate simulations in which we modified our Greenland climatologies to incorporate summer 466 

temperatures from Fausto et al.42. These simulations resulted in only minor differences in mass 467 

change, suggesting that in our experiments, atmospheric forcing plays a lesser role than oceanic 468 

forcing (Extended Data Figs. 6, 9). This is supported by experiments in which we also explored 469 

alternative grounding line schemes to make the ice sheets either more or less sensitive to ocean 470 

temperature change. In the less sensitive experiments, the ice sheet failed to advance sufficiently 471 

far offshore, and was thus incompatible with geological constraints.  472 

Predictions of relative sea level. Calculations of glacial isostatic adjustment described in the text 473 

are based on a pseudo-spectral sea-level theory23 for the case of spherically symmetric (i.e., 474 

rheology varies with depth alone), Maxwell viscoelastic Earth models, with a truncation at 475 
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spherical harmonic degree and order 256. The theory incorporates time-varying coastlines, 476 

changes in the perimeter of grounded, marine-based ice sheets, and the impact on sea level of load-477 

induced perturbations to the Earth’s rotation axis, where these perturbations are computed using 478 

the rotational stability theory of Mitrovica et al.61. Profiles of the density and elastic structure of 479 

the Earth model are taken from the seismic Preliminary Reference Earth Model62. The viscosity 480 

structure of the Earth models is defined by three layers, a lithospheric zone of infinite viscosity, 481 

and sub-lithospheric upper and lower mantle regions, where the boundary between the latter two 482 

regions is taken to be 670 km depth. The thickness of the lithosphere and the viscosity of the upper 483 

and lower mantle are free parameters of the modeling and are varied, respectively, within the 484 

following ranges: 30 – 140 km; 2-20 X 1020 Pa s; and 2-100 X 1021 Pa s.  485 

 The set of five ice histories adopted in this study are based, in part, on histories constructed 486 

by Dendy et al.28 in their investigation of the sensitivity of LIG sea level predictions to variations 487 

in the timing and geometry of ice cover during Marine Isotope Stage 6. We begin by summarizing 488 

these ice histories.  489 

 All models in Dendy et al.28 use the ICE6G ice history63 for the period extending from the 490 

LGM to present day and they extend back four full glacial cycles. The models are constrained to 491 

have interglacial ice volumes and geometry identical to present-day ice cover on the Earth (i.e., 492 

there is no excess ice melting during previous interglaciations, including the LIG). The so-called 493 

WAE ice model adopts the eustatic sea-level curve estimated by Waelbroeck et al.1 on the basis of 494 

benthic foraminifera isotope records. In the period prior to the LGM, the ice geometry is 495 

constrained to be identical to the geometry post-LGM whenever the eustatic values are identical. 496 

The LAM and COL models in Dendy et al.28 also adopt the pre-LGM eustatic curve of Waelbroeck 497 

et al.1, but are distinguished from WAE by their ice history during the penultimate glacial cycle. 498 
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In particular, these models adopt the ice geometry during the penultimate glacial maximum (PGM) 499 

inferred by Lambeck et al.22 and Colleoni et al.27, which are both characterized by more significant 500 

ice cover over Eurasia during the PGM than the LGM. Since the difference in peak Eurasian ice 501 

volume during the PGM in the LAM and COL models is large (55 m and 71 m, respectively, in 502 

units of equivalent GMSL), we have constructed an intermediate ice history (HYB) that is 503 

essentially the average of these models (peak volume of 66 m GMSL equivalent during the PGM) 504 

The increased ice cover of the LAM, HYB and COL models relative to the WAE model is 505 

compensated, in large part, by a reduction of the volume of the Laurentide Ice Sheet during the 506 

PGM relative to the LGM22,27. All four models, WAE, LAM, HYB and COL, converge to the same 507 

ice geometry (i.e., the present-day ice geometry) at the beginning of the model LIG. We note that 508 

we have adapted the WAE, LAM and COL models described by Dendy et al.28 to more closely 509 

follow the eustatic curve of Waelbroeck et al.1. Finally, the model SHA in Dendy et al.28 is 510 

constructed in a manner identical to WAE, with the exception that the model adopts the eustatic 511 

curve derived by Shakun et al.64 in the period prior to the LGM.  512 

 The ice histories considered in the present study combine the five models described above 513 

with the Antarctic and Greenland Ice Sheet histories discussed in the main text. Specifically, the 514 

difference in ice height during the period from 140 ka to 116 ka relative to the present day in the 515 

ice-sheet simulations of the main text are applied to each of the Dendy et al.28 models. The net 516 

result is that the five models constructed in this manner are characterized, in contrast to those in 517 

Dendy et al.28, with excess melting of the Antarctic and Greenland Ice Sheets during the LIG 518 

relative to present-day. We ran 337 Earth models for each of the five ice histories (total of 1685 519 

simulations) in which parameters defining the Earth model were varied over plausible ranges. 520 
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 In exploring the fit of the relative sea level (RSL) predictions to the coral record, we 521 

considered three sites that have the largest data sets of well-dated corals (Bahamas, Seychelles and 522 

Western Australia) and a relatively new speleothem data set from Mallorca (43) (Extended Data 523 

Fig. 7). Given that corals provide a minimum bound on sea level, our metric for fit for these data 524 

was the number of coral records that any specific RSL prediction bounded from above. In contrast, 525 

we interpret the height uncertainties associated with the published speleothem data to represent a 526 

two-way bound on peak RSL.  527 

 None of the 1685 simulations (i.e., our sampling of 337 Earth models and 5 ice histories) 528 

were successful in bounding all coral records from above. As an indication of performance, 529 

Extended Data Fig. 7 shows predictions from the full suite of simulations that satisfy the following 530 

criteria: (1) all coral data from Western Australia and Bahamas, with the exception of the earliest 531 

datum at the latter site (at ~131 ka), fall below the prediction; and (2) the prediction at the 532 

Seychelles falls above all three coral records at an elevation of ~4 m. The various lines on the 533 

figure represent the different Earth models for each ice history that satisfy these constraints. For 534 

each ice history (i.e., each column of Extended Data Fig. 7), the Earth models sampled on each 535 

frame (i.e., each site) represent a discrete set that may or may not overlap with the set from a 536 

different site. As an example, in the case of the LAM and COL ice histories, no single Earth model 537 

appears on the results for all three sites. This is reflected in Fig. 4 in the main text, where the 538 

simulation highlighted in each frame is the result for a distinct Earth model. This variation is 539 

justified by the fact that the Earth’s mantle is subject to large amplitude variations in viscoelastic 540 

structure and so it would be unexpected if the sea-level response at each of the three sites preferred 541 

the same Earth model. 542 
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Note that the number of simulations that satisfy our plotting criterion for the Bahamas 543 

increases as one moves to ice histories with larger Eurasian ice cover at the PGM (i.e., from the 544 

WAE to the COL results), but the number of simulations that satisfy the criteria for the Seychelles 545 

decreases in the same sense. While not apparent from Extended Data Fig. 7, the predicted 546 

highstand at Seychelles increases as one considers Earth models with progressively thinner elastic 547 

lithospheres (see Ref. 28, Fig. 9A), and the simulations that predict RSL highstands above the 548 

Seychelles records are those based on a lithospheric thickness of 30 km (as in Fig. 4 of the main 549 

text) or, in a couple of cases for the WAE ice history, 50 km. This raises two important issues. 550 

First, none of the simulations that yield RSL above all the coral elevations at Seychelles also satisfy 551 

the geological constraints at the Bahamas. Second, since the predicted highstand at the Seychelles 552 

is sensitive to the adopted lithospheric thickness, there is a trade-off between the preferred value 553 

of this parameter and the level of excess melting during the LIG. That is, increasing polar ice sheet 554 

melting above the ~4 m GMSL equivalent adopted in the simulations in Extended Data Fig. 7, 555 

would increase the range of lithospheric thickness that would satisfy the Seychelles coral record, 556 

and thus bring the inference into better accord with other GIA-based estimates of this Earth model 557 

parameter.  558 

This issue may also have relevance in regard to the results for Mallorca (Extended Data 559 

Fig. 7) where simulations are only plotted if the misfit between the GIA predictions and the 560 

speleothem observations is within 50% of the minimum misfit achieved in all simulations. In this 561 

case, fewer of the simulations provide a reasonable fit to the speleothem record as one considers 562 

ice histories with progressively larger volumes over Eurasia at PGM and, indeed, no simulations 563 

based on the COL ice history satisfy our plotting criterion. However, regardless of the adopted ice 564 

history, none of the simulations fit the highstand constraints before 125 ka. Bringing the GIA 565 
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predictions in Extended Data Fig. 7 into accord with the Mallorca observations would require 566 

additional excess melting that is limited to the earliest phase of the LIG.  567 

As a final point, simulations based on the SHA ice history yielded misfits significantly 568 

larger than predictions shown in Extended Data Fig. 7. 569 

The sea-level simulations described above yield changes in sea level and topography at 570 

each time slice of the ice history. As an example, Extended Data Fig. 5 shows the reconstructed 571 

topography for the area covered by the Scandinavian Ice Sheet at 131 ka, near the end of the MIS6 572 

deglaciation, for a simulation based on the LAM ice history and a specific Earth model (see 573 

caption). The map supports the suggestion in the main text that the margin of grounded ice 574 

complexes in this region across MIS 6 through 5e were marine based. 575 

Evidence for warming over the Greenland Ice Sheet during the Last Interglaciation. Here we 576 

evaluate the evidence for warming over the Greenland Ice Sheet during the Last Interglaciation 577 

(LIG). This supports our climate model simulation that while the LIG atmosphere was warmer 578 

than pre-Industrial, it largely remained below freezing and did not lead to significant mass loss 579 

from surface melting.  580 

 Regarding the reconstructed LIG temperatures at the NEEM65 and GISP266 ice-core sites, 581 

there is uncertainty in which dδ18Oice/dT relationship should be used to reconstruct LIG 582 

temperatures, and this uncertainty is exacerbated when applying the modern dδ18Oice-dT 583 

relationship to past climates, where differences in orbital forcing, moisture transport pathways, 584 

ice-sheet topography, and sea-ice extent can change the relationship67-72. To illustrate some of 585 

these uncertainties, we have compared our simulated temperatures for the NEEM and GISP2 ice-586 

core sites with the temperature reconstructions for these sites based on δ18Oice (Extended Data Fig. 587 

10). These reconstructions span the interval 127-120 ka, which is the warmest interval in the ice-588 
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core records for the LIG suggested by this proxy. The published reconstructed temperatures for 589 

GISP2 (blue symbols on upper panel)66,73 and NEEM (dark blue line on lower panel)65  are based 590 

on the relation dδ18Oice/dT = ~0.5‰ C-1 which is derived from Greenland ice-core sites 591 

elsewhere74. During the LIG, the precipitation-weighted δ18O is likely biased to summer months 592 

rather than mean annual temperature (van de Berg et al., 2013), so we compare this reconstruction 593 

with our simulated summer temperature (JJA) (grey line on each panel). This suggests that our 594 

simulated JJA temperatures are underestimating the mean of the reconstructions by 4-5oC. This 595 

difference is reduced when we account for our simulated ice-surface lowering of ~200 m at NEEM 596 

and ~400 m at GISP2 (see Fig. 3C) and assume the lapse rate of 7.5oC km-1 used by Dahl-Jensen 597 

et al.65, thus placing our results within the published uncertainties of the reconstructions (green 598 

line on each panel). 599 

 However, following the publication of Dahl-Jensen et al.65, Masson-Delmotte et al.75 600 

established that the dδ18Oice/dT relation at the NEEM site is ~1.1‰ C-1, suggesting that the NEEM 601 

and GISP2 LIG summer temperatures are about half of the originally published values based on 602 

the Vinther et al.74 dδ18Oice/dT relation (red symbols on upper panel, red line on lower panel). 603 

Masson-Delmotte et al.75 (p. 1500) conclude that “For the last interglacial period, the observed 604 

δ18O anomaly of 3.6‰ at NEEM deposition site would then translate into 3.6+0.7 oC warming, 605 

instead of the estimate of 7.5+1.8 oC (NEEM, 2013) that was obtained using the Greenland average 606 

Holocene isotope–temperature relationship (Vinther et al., 2009).” 607 

 Our simulated JJA temperatures (grey line on each panel) are thus only 1-2oC colder than 608 

the mean reconstructions for GISP2 and NEEM based on this new calibration, but they are in 609 

excellent agreement with the mean values when accounting for our modeled ice-surface lowering 610 

(green line on each panel).  611 
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 Landais et al.76 used δ15N from the NEEM core to reconstruct temperatures that were 8.5o 612 

+ 2.5 oC warmer during the LIG compared to preindustrial (PI). However, the δ15N reconstruction 613 

represents annual temperature whereas the δ18Oice temperatures are biased to the summer, which 614 

is the critical season for influencing changes in surface mass balance through melting. The two 615 

temperature reconstructions are thus not directly comparable. Moreover, Landais et al.76 identify 616 

“large uncertainties” (p. 1944) in their temperature reconstruction, including in the firn model 617 

used, in the assumed accumulation rates, and in the potential influence of surface melt on firn 618 

depth.  619 

 We thus conclude that when using the most suitable temperature calibration for the ice-620 

core sites and within the uncertainties of the ice-core proxy reconstructions, our climate model 621 

successfully captures the LIG summer (JJA) temperature anomaly relative to pre-Industrial at 622 

NEEM and GISP2. Consistent with this model-data agreement for warmer LIG JJA temperatures, 623 

we find that the LIG surface mass balance of the GrIS is more negative than present day (Extended 624 

Data Fig. 9). 625 

 Dahl-Jensen et al.65 stated “during our NEEM field campaigns (2007-2012), the mean 626 

surface air temperature in July reached -5.4oC.” However, Box77 reported the average JJA 627 

temperature for 2007-2012 at NEEM site as -10.9 + 0.3oC, suggesting that Dahl-Jensen et al.65 are 628 

reporting a maximum July temperature value during their period of record rather than climatology. 629 

But the JJA temperature that matters for comparing to the LIG is the pre-Industrial, which Box77 630 

found to be -12.6 + 0.6oC for 1840-1870 (period of record closest to pre-Industrial). (Dahl-Jensen 631 

et al.65 compared to the average of the last millennium.) Thus, even if the Dahl-Jensen et al.65 LIG 632 

temperature reconstruction is correct (7.5+1.8 oC warmer than the mean of the past millennium), 633 

average LIG summer temperatures would still be well below freezing (~ -5oC). More likely, 634 
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however, they are even further below freezing when using the dδ18Oice/dT relation established for 635 

the NEEM site75, i.e., 3.6+0.7 oC warmer than the mean of the past millennium, with average LIG 636 

summer temperatures thus being -9oC.  637 

 The evidence for surface melt at the NEEM ice core site is based on: (1) a low-resolution 638 

record showing that out of 73 samples, seven have elevated CH4 and N2O during the interval 118-639 

127 ka, and (2) a high-resolution CH4 record that suggests five melt events in the 123.5-122.5 ka 640 

interval, or one every 200 years65,78. Noble gases that were measured at the times of four of the 641 

five elevated CH4 events in the high-resolution record confirm melting at these times78. This alone 642 

makes it clear that these were infrequent periods of melting rather than continuous melting 643 

throughout the LIG. According to Anais Orsi (personal communication, March, 2019), during a 644 

melt event, such as the  2012 event79, the melt percolates and refreezes in the top 1m of the firn, 645 

often in many layers, so one melt event may be represented by more than one melt layer. Moreover, 646 

although the noble gas results clearly identify four periods of enhanced melting, one cannot 647 

exclude the possibility that each sample represents a single 2012-like melt event.  648 

 In summary, ice-core proxies suggest that Greenland LIG temperatures were warmer than 649 

present, but constraining the amount of warming from these proxies remains uncertain. However, 650 

even the highest estimates of warming still suggest that average JJA temperatures remained well 651 

below freezing relative to pre-Industrial, and based on the more-appropriate δ18Oice-temperature 652 

calibration from Masson-Delmotte et al.75, are in good agreement with our simulated temperatures 653 

for the ice-core sites. Consistent with this model-data agreement for warmer LIG JJA temperatures, 654 

we find that the LIG surface mass balance of the GrIS is more negative then present day. Rare 655 

episodes of melting occurred, but while their frequency may increase under higher mean 656 

temperatures and insolation, such as is recorded in the Holocene section of the GISP2 ice core80, 657 
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we conclude that with a frequency of perhaps only one melt event every 200 years, they had a 658 

negligible influence on long-term surface mass balance, and average summer temperatures at the 659 

NEEM site otherwise remained well below freezing during the LIG. 660 

Influence of freshwater forcing from modeled mass loss from the Greenland and Antarctic 661 

Ice Sheets on ocean circulation during the last interglaciation. We did not include additional 662 

freshwater (FW) forcing after 129.5 ka, but we show here that the FW fluxes from our modeled 663 

mass loss from the Greenland and Antarctic ice sheets (GrIS and AIS) after 129.5 ka (during the 664 

LIG) were too small to have influenced the Atlantic Meridional Overturning Circulation (AMOC) 665 

or Antarctic Bottom Water (AABW) formation. Since global sea level reached modern at 129-130 666 

ka, and our modeled AMOC resumes at 129.5 ka, we only consider the FW fluxes from the GrIS 667 

and AIS since 129.5 ka. 668 

 From 129.5 to 127 ka, modeled GrIS mass loss was 0.2 m of sea-level equivalent, which 669 

is equivalent to a FW flux of 0.0009 Sv. From 127 ka to 117.5 ka, GrIS mass loss was 0.09 m, 670 

which is equivalent to 0.0001 Sv. For reference, Bakker et al.81 showed that a FW flux of 0.01 Sv 671 

from Greenland for the RCP4.5 scenario (see their Fig. SI3) results in a median reduction in the 672 

AMOC of ~5% (their Fig. 2, GrIS only). The FW fluxes from LIG loss of the GrIS in our model 673 

are two orders of magnitude smaller than this, and thus would have no impact on the AMOC, and 674 

thus on our ice-sheet model simulations. 675 

 From 129.5ka to 123.5 ka, AIS mass loss was 4.1 m, which is equivalent to a FW flux of 676 

0.008 Sv. Bakker et al.82 found that a FW flux of 0.12 Sv from the AIS increases variability in 677 

AABW by ~10% and in AMOC by ~5%. The FW fluxes from LIG loss of the AIS in our model 678 

is a factor of 15 smaller than this, and thus would have no impact on AABW or the AMOC, and 679 

thus on our ice-sheet model simulations. 680 
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Code availability.  681 

CCSM3 is freely available as open-source code from http://www.cesm.ucar.edu/models/ccsm3.0/ 682 

PISM is freely available as open-source code from https://github.com/pism/pism.git. 683 

Data availability 684 

Antarctic bedrock topography and ice thickness data are from the BEDMAP2 compilation, 685 

available at https://secure.antarctica.ac.uk/data/bedmap2/. Greenland topography and ice thickness 686 

data are from BedMachine v3, available at https://nsidc.org/data/idbmg4. Greenland mass balance 687 

and geothermal heat flux data are available from the seaRISE website: 688 

http://websrv.cs.umt.edu/isis/index.php/Data. Information on Antarctic surface mass balance data 689 

are available at http://www.projects.science.uu.nl/iceclimate/models/antarctica.php#racmo23. 690 

Antarctic geothermal heat flux data are available at the Open Science Framework 691 

https://doi.pangaea.de/10.1594/PANGAEA.882503. The datasets generated and used for this 692 

study (Figs. 1,2,3,4, Extended Data Figs. 3,4,5,6,7,8,9) are available from the Open Science 693 

Framework (DOI 10.17605/OSF.IO/FX7WK). 694 
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Extended Data Fig. 1. Climate and sea-level records for Termination II and Termination I. 888 

(a) εNd records from the North Atlantic Ocean as proxies of Atlantic meridional overturning 889 

circulation (AMOC)16,83. (b) CCSM3 maximum AMOC transport (below 500 m) (this study). (c) 890 

EPICA Dome C δD record on AICC2012 age model  as proxy of Antarctic temperature84 (blue 891 

line) and percentage of warm planktonic foraminiferal species as proxy of North Atlantic sea 892 

surface temperatures83 (grey line). (d) δ18O record from Chinese stalagmite as proxy of Asian 893 

monsoon strength18. (e) Rate of sea-level change derived from a relative sea level (RSL) 894 

reconstruction based on benthic foraminifera isotopes1. (f) A stack of North Atlantic ice-rafted 895 

debris records recording Heinrich event 11 (H11)83,85-87. (g) εNd88 (brown, orange symbols) and 896 

Pa/Th89 (purple, green symbols, 1 sigma uncertainty) records from the North Atlantic Ocean as 897 

proxies of AMOC. (h) CCSM3 maximum AMOC transport (below 500 m) (this study). (i) EPICA 898 

Dome C δD record on AICC2012 age model (dark blue line)84 as proxy of Antarctic temperature 899 

and temperature reconstruction from the Greenland GISP2 ice core (light blue line)70. (j) δ18O 900 

record from Chinese stalagmite as proxy of Asian monsoon strength18. (k) Rate of sea-level change 901 

derived from a RSL reconstruction based on benthic foraminifera isotopes1. (l) A stack of North 902 

Atlantic ice-rafted debris records recording Heinrich event 1 (H1)90. 903 

 904 

Extended Data Fig. 2. Sea-level records for the last two terminations and interglaciations. (a) 905 

Sea-level reconstructions for the penultimate deglaciation and the last interglaciation (the latter 906 

identified by the grey-shaded area). Eustatic sea-level record is based on benthic foraminifera 907 

isotopes (blue line with 1σ uncertainty)1 and relative sea-level (RSL) record is based on Red Sea 908 

isotopes  (gray crosses; green line, 1-kyr moving Gaussian filter)34 placed on a revised age model91. 909 

Also shown are RSL data from U-series dated corals at Tahiti (sky blue circles)92, Huon Peninsula 910 
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(light blue green circle; altered samples shown by gray circles)93, the Seychelles (light green 911 

circles)25, western Australia (blue circles)24, and the Bahamas (cyan circles)24. All of the U-series 912 

ages have been recalculated to normalize them with the same set of decay constants for 234U and 913 

230Th94 and are shown with 2σ age uncertainty. We note that the offset between the Red Sea record 914 

(green line) and the benthic foraminifera record (blue line) may reflect the complex 3-dimensional 915 

Earth structure in the vicinity of the Red Sea rift95,96. The variability in the Red Sea and Huon 916 

Peninsula RSL records may reflect a sea-level reversal at ~137 ka91 which, if it existed, was too 917 

small to be recorded by the benthic foraminiferal record. The rate of sea-level change based on the 918 

benthic foraminiferal record is also shown. (b) Sea-level reconstructions for the last deglaciation 919 

and the present interglaciation (the latter identified by the grey-shaded area). The record of global 920 

mean sea level is based on benthic foraminifera isotopes (blue line with 1σ uncertainty)1. Also 921 

shown are individual sea-level estimates (black circles, 2σ uncertainty) that have been corrected 922 

for glacial isostatic adjustment97. Rate of sea-level change based on the benthic foraminiferal 923 

record is also shown. (c) Upper panel shows eustatic sea-level reconstructions for the penultimate 924 

deglaciation (blue line with 1σ uncertainty) and the last deglaciation (black line with 1σ 925 

uncertainty)1. Lower panel shows June 21 insolation for 65oN for the penultimate deglaciation 926 

(blue line) and the last deglaciation (black line)7. 927 

 928 

Extended Data Fig. 3. Comparison of our freshwater forcing during T-II with other 929 

estimates. (a) Our simulated changes in AMOC. (b) Our FW forcing. (c) Reconstruction of 930 

freshwater (FW) flux from sea-level reconstructions from Waelbroeck et al.1. (d) Reconstruction 931 

of FW flux from sea-level reconstructions from Marino et al.3 (e) Our stack of ice-rafted for 932 

Heinrich event 11 (H11) (Extended Data Fig. 1), which shows that the H11 interval of iceberg 933 
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discharge is in good agreement with the timing of our FW forcing. (f) The sea-level change 934 

associated with our FW flux into the North Atlantic (grey line), the sea-level change associated 935 

with the ICE-5G ice sheets33 used as a boundary condition in our climate model (green line), and 936 

a reconstruction of global sea-level change1 (blue line with 1 sigma uncertainty). The timing of 937 

sea-level change in the ICE-5G time series shown here was adjusted from its chronology for T-I 938 

by adjusting the corresponding sea-level rise to closely follow the Waelbroeck et al.1 and Grant et 939 

al.34 sea-level reconstructions for the penultimate deglaciation. 940 

 941 

Extended Data Fig. 4. Maps of the evolution of temperature at 400-m water depth in the 942 

North Atlantic, Arctic, and Southern Oceans between 138 ka and 124 ka relative to 943 

temperature at 140 ka. a-h, Maps of the evolution of temperature at 400-m water depth in the 944 

North Atlantic and Arctic Oceans for (a) 138-140 ka, (b) 136-140 ka, (c) 134-140 ka, (d) 132-945 

140 ka, (e) 130-140 ka, (f) 128-140 ka, (g) 126-140 ka, and (h) 124-140 ka. i-p, Maps of the 946 

evolution of temperature at 400-m water depth in the Southern Ocean for (i) 138-140 ka, (j) 136-947 

140 ka, (k) 134-140 ka, (l) 132-140 ka, (m) 130-140 ka, (n) 128-140 ka, (o) 126-140 ka, and (p) 948 

124-140 ka. 949 

 950 

Extended Data Fig. 5. Predicted topography for the area covered by the Scandinavian Ice 951 

Sheet at 131 ka. The calculation is based on the LAM ice history (see text) and an Earth model 952 

characterized by a lithosphere of thickness 100 km, upper mantle viscosity of 3 X 1020 Pa s, and 953 

lower mantle viscosity of 5 X 1022 Pa s. The white zone in (a) represents coverage of grounded 954 

ice extent at this time and the dashed white line on this frame is the shoreline location. Frame (b) 955 

is identical to (a), except the area of ice coverage is removed. It is clear from frame (a) that all 956 
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but the southeast section of the perimeter of the Scandinavian ice sheet is predicted to be marine 957 

based at this time, and from frame (b) that much of the interior of the ice sheet was also marine 958 

based. 959 

 960 

Extended Data Fig. 6. Results of sensitivity tests to oceanic forcing of the Greenland and 961 

Antarctic ice sheets. (a) Response of Greenland Ice Sheet to atmospheric forcing from CCSM3 962 

with fixed ocean temperatures for the Penultimate Glacial Maximum (PGM) (blue line) and for 963 

the Last Interglaciation (LIG) (orange line) compared to ice-sheet response to atmospheric and 964 

oceanic forcing (black line). Present interglacial ice volume shown by horizontal dashed line. (b) 965 

Response of Antarctic Ice Sheet to atmospheric forcing from CCSM3 with fixed ocean 966 

temperatures for the PGM (blue line) and for the LIG (orange line) compared to ice-sheet response 967 

to atmospheric and oceanic forcing (black line). Present interglacial ice volume shown by 968 

horizontal dashed line. (c) As in a, response of Greenland Ice Sheet to atmospheric forcing from 969 

CCSM3 with fixed ocean temperatures for the LIG (orange line), but the vertical scale (grounded 970 

ice volume) has been increased to better illustrate the response. The initial ice-sheet size used in 971 

this experiment (and the comparable one for Antarctica) was the LIG ice sheet, whereas the climate 972 

forcing used was for the penultimate deglaciation and the LIG, i.e., from colder-than-present to 973 

LIG climate, resulting in a small response to the atmospheric forcing, since the LIG ice-sheet size 974 

had already adjusted to the combined atmospheric and oceanic forcing, as shown by the black line 975 

in a. 976 

 977 

Extended Data Fig. 7. Predictions of relative sea level (RSL) at three far-field sites (the 978 

Seychelles, Western Australia, and Mallorca) and one intermediate-field site (Bahamas). a-979 
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d, RSL predictions for the Bahamas from the full suite of simulations that bound from above all 980 

coral data with the exception of the earliest datum (at ~131 ka) for (a) the COL ice history, (b) the 981 

LAM ice history, (c) the HYB ice history, and (d) the WAE ice history. Age uncertainty is 2σ, and 982 

depth uncertainty reflects uncertainty in habitat depth. e-h, RSL predictions for the Seychelles 983 

from the full suite of simulations that lie above the three coral records with an elevation of ~4 m 984 

for (e) the COL ice history, (f) the LAM ice history, (g) the HYB ice history, and (h) the WAE ice 985 

history. Age uncertainty is 2σ, and depth uncertainty reflects uncertainty in habitat depth. i-l, RSL 986 

predictions for western Australia from the full suite of simulations that bound from above all coral 987 

data for (i) the COL ice history, (j) the LAM ice history, (k) the HYB ice history, and (l) the WAE 988 

ice history. Age uncertainty is 2σ, and depth uncertainty reflects uncertainty in habitat depth. m-989 

p, RSL predictions for Mallorca from the full suite of simulations that fit the data within 50% of 990 

the minimum misfit achieved for all simulations for (m) the COL ice history, (n) the LAM ice 991 

history, (o) the HYB ice history, and (p) the WAE ice history. Age uncertainty is 2σ, and depth 992 

uncertainty reflects uncertainty in speleothem water depth.       993 

 994 

Extended Data Fig. 8. Sensitivity of Greenland ice sheet model to melt parameterisation. (a) 995 

Time series of tuning experiments for the Greenland Ice Sheet with the preferred run in blue and 996 

three runs used for b-d shown in green, orange, and red. b-d. Surface elevation differences under 997 

a present-day climatology at the end of the 40,000-year T-I parameter tuning experiments, using 998 

degree-day factors drawn from our ensemble that (b), give a low amount of surface melting, (c), 999 

medium amount of surface melting, and (d), high amount of surface melting. Values shown are 1000 

differences from the reference experiment. These experiments are identical to the T-I reference 1001 

experiment used to parameterise the T-II simulations (Fig. 3) except for the degree-day factors 1002 
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used. The results show that our ice-sheet model is sensitive to the way in which surface mass 1003 

balance is parameterised by controlling the amount of surface melting. 1004 

 1005 

Extended Data Fig. 9. Simulated ice-volume changes and components of the mass balance 1006 

for the Greenland Ice Sheet. (a) Simulated changes in ice volume for T-I. (b) Simulated changes 1007 

in mass-balance components for T-I. (c) Simulated changes in ice volume for T-II. (d) Simulated 1008 

changes in mass-balance components for T-II.  (e) Modelled surface mass balance anomaly during 1009 

the Last Interglaciation (129-120 ka) with respect to modelled present day. 1010 

 1011 

Extended Data Fig. 10. Comparison of our simulated summer temperature for Greenland 1012 

ice-core sites with the temperature reconstructions for these sites based on δ18Oice. (a) The 1013 

simulated summer temperature (JJA) (grey line) and lapse-rate corrected JJA temperature (green 1014 

line) compared to reconstructed temperatures for the GISP2 ice-core site (blue symbols, 1 sigma 1015 

uncertainty)66,73 based on the relation dδ18Oice/dT = ~0.5‰ C-1 which is derived from Greenland 1016 

ice-core sites elsewhere74. Also shown are the reconstructed temperatures using the dδ18Oice/dT 1017 

relation established for the NEEM site (~1.1‰ C-1)75  (red symbols, 1 sigma uncertainty), 1018 

suggesting that the GISP2 LIG summer temperatures are about half of the originally published 1019 

values based on the Vinther et al.74 dδ18Oice/dT relation and in good agreement with our model 1020 

results. (b) The simulated JJA temperature (grey line) and lapse-rate corrected JJA temperature 1021 

(green line) compared to reconstructed temperatures for the NEEM ice-core site (dark blue line, 1022 

gray shading is uncertainty)65 based on the relation dδ18Oice/dT = ~0.5‰ C-1 which is derived from 1023 

Greenland ice-core sites elsewhere74. Also shown are the reconstructed temperatures using the 1024 

dδ18Oice/dT relation established for the NEEM site (~1.1‰ C-1)75 (red line, pink shading is 1025 
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uncertainty), suggesting that the NEEM LIG summer temperatures are about half of the originally 1026 

published values based on the Vinther et al.74 dδ18Oice/dT relation and in good agreement with our 1027 

model results. These reconstructions span the interval 127-120 ka, which is the warmest interval 1028 

in the ice-core records for the LIG suggested by this proxy.  1029 
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