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Abstract— Metagenomics is the study of environmental 
microbial communities and has various applications and 
implications in biological research. This paper aims to study 
the role of microbial communities in cattle rumen and their 
relation to probiotic diet supplement usage as part of the EU 
H2020 MetaPlat project1. In this research, we proposed and 
evaluated a computational framework to classify 16S rRNA 
samples from Bos taurus (cattle) rumen microbiome into a diet 
phenotype. We performed analysis by benchmarking various 
phylogeny-driven methods based on integration of biological 
domain knowledge of relationships and non-phylogenetic 
methods based on the raw abundances. The integrative 
approach incorporating phylogenetic tree structure into 
machine learning (ML) modelling achieved a high predictive 
performance with Accuracy of 0.925 and Kappa of 0.900 for 
classifying cattle microbiomes into diets supplemented with oil, 
nitrate, a combination and controls. 

Keywords— Metagenomics, Phylogeny, Machine Learning, 
Classification, Ordination, Cattle Microbiomes  

I. INTRODUCTION (HEADING 1)
     Metagenomics [1] involves the study of genome 
sequences of microorganisms existing in an ecological niche. 
Categorization of the microbial genomes into their functional 
roles (i.e. phenotypes) forms a significant machine learning 
(ML) problem of supervised classification in metagenomics
[2]. In this current study, we performed the classification of
cattle rumen microbiomes into different diet supplements.
The combinations of different dietary supplement strategies
are expected to reduce the methane emissions (CH4) in
livestock systems to further improve the cattle productivity.
Previous work [3, 4, 5], has highlighted the potential of
controlled feeding of cattle with nitrate or oil treated diet
and its effects on cattle rumen metabolism. Our aim is to
perform data analysis to identify a predictive model for
differentiating cattle microbiomes into four categories of
diets: - oil-based, nitrate-based, combined diet (Oil-Nitrate)
and controls. The objective was addressed through a ML-
based experimental framework.
    In this metagenomics use case, we exploited the 

integration of phylogenetic tree structure connecting the 
microbial group of microbial taxas/species (also known as 
Operational Taxonomic Units (OTUs) [6] or analogous 
Amplicon Sequence Variants (ASVs)) [6], and their 
neighbourhood, as naturally defined by common ancestral 
history in addition to their abundance count values. Recent 
advances in improving methods of grouping species [6], 

1 MetaPlat, http://www.metaplat.eu 

have devised a novel taxa picking method to create 
"amplicon sequence variants" or ASVs analogous to OTUs 
[6]. ASVs are advantageous outcome of metagenomic 
pipeline as they are obtained at finer resolution level of 
single-nucleotide differences and independently from a 
reference database, unlike OTUs which are sequenced over a 
gene region at a similarity threshold [6]. We implemented a 
computational framework to assess the predictive power of 
ASVs and their ancestors from phylogeny for the 
classification of cattle microbial samples. This resulted in an 
integrative ML pipeline to investigate the presence of related 
species (i.e. OTUs/taxas/ASVs) and their role in determining 
phenotype unlike studies which considered the microbial 
species as independent features [7-10]. We found that the 
incorporation of the phylogenetic tree structure into analysis 
has potential to increase the prediction power. More accurate 
predictions were obtained with the phylogeny-aware pipeline 
as proposed in [11], when benchmarked with other non-
phylogenetic [7-9] and phylogenetic-based approaches [12-
14]. Some high-level visualizations and their applicability to 
our data are also presented. The findings of the paper would 
aid readers in analysing the structure and function of 
metagenomes in cattle rumen effectively. The paper is 
organized as follows. Section 2 highlights the related work. 
Materials and methods are discussed in Section 3. 
Experimental results and discussions are enlisted in Section 
4. Section 5 provides the conclusion and future research
directions.

II. RELATED WORK

The studies by Knights et al. [7] and Statnikov et al. [8], 
highlighted the commonly used supervised classification 
methods such as Random Forest (RF), Logistic Regression 
(LR) and Support Vector machines (SVMs) for determining 
functions in metagenomic studies. RF has been established 
as a gold-standard method for classifying the metagenomes 
[7, 8]. Wassan et al. [9], suggested regularized-LR (reg-LR) 
and extreme gradient Boosting (XgBoost) ensemble with RF 
as a potential method in metagenomic data. Pasolli et al. [15] 
suggested feature engineering by RF is effective for 
functional meta-analysis of OTU abundances. Here, we also 
review and summarize the ML-based approaches based on 
phylogenetic measures from literature [12-14,16]. Phylogeny 
is typically represented as the evolutionary distances 
embarked on a phylogenetic tree consisting of nodes 
representing the common hierarchal ancestral [17]. 
Phylogeny proved potentially useful for functional analysis 
in our current study, since phylogenetically close 
microorganisms would likely to share the metabolism. 
Magee et al. [18], highlighted the increasing availability of 
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phylogenetic data to inform the research in biological 
domains. Pertaining to metagenomics, phylogeny has 
contributed to the following tools. MetaPhyl [12], is based on 
a hierarchical grouping of coefficients of LR model by 
regularizing it with tree penalty function, as was formulated 
by Kim et al. [13]. Phylogenetic Isometric Log-Ratio 
Transform (PhILR) [14] is primarily focused on the 
compositional nature of microbiomes. This tool used 
reference weights derived from a phylogenetic tree to 
transform the microbial feature space to an unconstrained 
Euclidean space, overcoming the challenges associated with 
the compositional nature of abundance count data. The 
approaches [12, 14], were applied to the data obtained from 
the Human Microbiome Project (HMP) [19]. Chen et al. [16], 
integrated relative taxon abundance with phylogenetic 
distances obtained from a phylogenetic tree to attain a score 
vector (i.e. taxon-proportion) for microbial analysis and 
applied adaptive sum of powered tests (SPU) on the obtained 
microbiome vector (i.e. aMiSPU) for microbiome studies 
[16].  The related permutation scheme is based on LR to 
calculate the p-values for the analysis [16].  

Recently, we proposed an approach involving integration 
of phylogenetic weights from the tree and abundance counts 
of leaves via formulation of phylogeny and abundance aware 
matrix (i.e. PAAM) [11]. The matrix consists of each node of 
the tree (i.e. leaves as well as ancestral nodes) as the 
microbial features and was used as a pre-processed input to 
ML models. The entries in the matrix were computed by 
combining phylogenetic distances (PD) and abundances of 
constituting nodes (OTUs/ASVs). The abundance of each 
leaf node was weighted by the phylogenetic weights on the 
branches (i.e. PD), to span them to the ancestral nodes at 
each level of the tree forming a hierarchal topology (Eq. (1)) 
[11].  

Assuming m leaf nodes and that Ams is the abundance 
count of mth leaf node in a sample s; there exists n = m-1 
ancestral nodes. Considering PDnm as the phylogenetic 
distance of mth leaf node from the nth ancestral node (derived 
from tree) and Ynm as a binary variable to represent whether 
mth leaf is descendent of nth ancestral node ( i.e. Ynm= 1 if mth 
leaf is descendent of nth ancestral node and  Ynm = 0 if  mth 
leaf is not a descendent of the nth ancestral node); weighted 
abundance of each ancestral node n in a sample s (WAns), was 
calculated by Eq. (1), where i ranges from 1 to the number of 
leaf nodes [11]. 

                                                  (1)                     

                         
      In the current study, the comprehensive evaluation of 
different ML methods of RF, SVMs, reg-LR, PhILR, 
MetaPhyl, and PAAM-based ML was conducted for 
classifying cattle rumen ASVs into functional phenotypes of 
diet. The �ndings indicate that the method based on 
phylogeny-aware matrix and feature engineering with RF 
importance and reg-LR provides a drive for a comparative 
very good classi�cation performance. 

III. MATERIALS AND METHODS 
 In this section, we provide a brief description of the 
dataset used in the current study and proposed methodology 
to effectively analyse the related metagenomes. 

A. Dataset under Study 

The current study involves analysis over the use case 
dataset of 16S rRNA sequences obtained form Bos taurus 
rumen samples playing an important role in cattle 
productivity, health, and immunity. The data was collected 
by Future Farming Systems, Scotland’s Rural College, 
Edinburgh,U.K.(https://www.sruc.ac.uk/info/120060/future_f
arming_systems), Edinburgh, U.K. to investigate Bos taurus 
rumen microbiota in the context of an environmental trait of 
supplemented diet. The community composition was 
determined in 80 case samples provided by the MetaPlat 
project1.  The dataset consisted of two breeds of Aberdeen 
Angus or Limousin sired steers; and four dietary treatments 
of Control (443 g concentrate and 25 g lipid / kg diet DM); 
Nitrate (18 g nitrate / kg DM); Oil/Lipid (maize distiller’s 
dark grains, 37 g lipid / kg diet DM) and Combined (18 g 
nitrate and 37 g lipid / kg dietary DM)]. The data consisted 
of 20 samples from each of the dietary treatments. ASV table 
(analogues to OTU table), consisted of raw abundance count 
of species. The related phylogenetic tree, was obtained by 
NSilico Life Science Ltd. (http:// www.nsilico.com/), using 
the QIIME2 pipeline (https://qiime2.org/) [20]. The samples 
were associated with meta-data describing their relationship 
with environmental factor of diet. The data consisted of 727 
microbial organisms at species level of study. 

B. The Proposed Framework 
 

1. The Schematic Workflow 
 

The schematic workflow of our computational 
framework for studying and classifying cattle 
metagenomes is described below.  

a. Inputs. ASV table and the phylogenetic tree served as 
two inputs to the proposed approach. The ASV table 
consisted of rows representing the microbial samples 
and columns representing ASVs; and the phylogenetic 
tree structure represented hierarchal relationships of  
ASVs. 

b. ML Modelling. To maximize the performance of our 
experimental design, the integrated work�ow focussed 
majorly on two aspects:- (1) analysis based on 
phylogenetic tree and abundance count data [11,12,14]  
(2) analysis based on only raw abundances [21-24] by 
evaluating its performance using the standard measures. 
The ML methods were trained with leave-one-out cross 
validation (LOOCV) [25]. The construction of the 
proposed framework can be divided into following 
distinct experimental pathways (as also shown in Fig.1.) 

i.          RF, reg-LR, SVMs, XgBoost models were 
applied over the raw-abundances of ASVs 
obtained by MetaPlat1 into functional 
phenotype of diet [21-24]. 
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ii.         The feature engineering technique of ranking 
taxonomic features using RF importance (RFI) 
was applied over the ASVs [27-28]. The top 
10, 30, 50 and 70 % features were derived 
with RFI modelling.  

iii.          RF and reg-LR were applied over the PhILR 
[14] transformed data. The input to the PhILR 
was filtered based on taxa not seen with more 
than 3 counts in at least 20% of samples [14]. 
Subsequently, those with a coefficient of 
variation � 3 were filtered [14]. Thereafter, 
data were normalized by adding a pseudo 
count of 1 to the remaining taxas to avoid 
calculating log-ratios involving zeros [14].  

iv.         The phylogenetic method of MetaPhyl was 
applied along the experimental pathway [12].  

v.         The phylogeny-aware classification was also 
conducted on the pre-processed input of 
phylogeny and abundance aware matrix (i.e. 
PAAM) [11], derived by the tree structure 
connecting the ASVs (based on phylogenetic 
weights) and their abundance count values 
according to Eq.1. We extended the matrix-
based approach by applying ML with RFI 
[27], reg-LR and XgBoost  [24]. 

vi.         The basic statistical association of cattle micro 
biome with phenotypes was operatively 
implemented with the aMiSPU [16]. 

vii.              Diversity within the microbial community 
between different phenotypic functions was 
visualized by comparing microbial 
composition in one environment to another .   
     The two predominant measures for 
performing diversity analysis are : - i) alpha 
diversity which measures the number of 
different microbial species present in a 
microbial sample, ii) beta diversity which 
measures species composition and abundance 
between different samples [29].  
     An abundance-based estimator of chao1 
estimator for species richness and shannon 
diversity for each sample were used for 
visualizing the alpha diversity [29]. UniFrac 
distances represent the fraction of branch 
length shared between two taxas placed on a 
phylogenetic tree. Principal Coordinate 
Analysis over UniFrac distances was used as 
an informative tool for representing the beta 
diversity [30,31].  
 

c. Performance Evaluation. The Accuracy [32] and Kappa 
[33] performance assessment metrics were used for 
evaluating the classi�cation models in our study. The 
accuracy is defined as the fraction of correctly classified 
samples (Eq. (2)).  

         �
 

                                                                                (2)        
 
Kappa is used to evaluate the agreement between two 
classifications on ordinal or nominal scales (Eq. (3)).  
[33]. 

 � (3)   

, where  represents the actual observed agreement        
     between the input/s and the outcome of interest, and  
      represents the chance agreement. 

 
2.  Description of ML Methods Used in the Workflow 

 
The following ML methods facilitated the 

predictive modelling over cattle metagenomes. The aim 
of this study is to identify ML model which provides 
good predictive performance. 

 
a.  RF. The RF model employs a collection of decision 

trees to classify metagenomic samples [21]. The 
model outputs the predictive class majority voting 
amongst the constituent individual trees [21]. 
Several studies have applied RF for the prediction 
of metagenomic functions [7-9]. 

b.  Reg-LR.  The LR method tries to fit a generalized 
logistic model (Eq. (4)) for classifying 
metagenomes [23]. 
 
m = natural log(p/(1-p)) =  

�0+ �1X1 +  �2X2 + ... �nXn            (4)   

,where natural log of the probability an event 
occurring is predicted as a linear function of the 
regression coefficients �i’s and the input features 
Xj’s. The regularization applied to LR penalizes 
highly weighted coefficients in Eq. (4) to optimize 
the cost of the model and preventing model to pick 
the noisy values. 

c.  SVMs. This method aims to calculate the optimal 
hyper-plane by using kernel functions to separate 
the metagenomic classes. The separating hyper-
plane tends to maximize the margin between 
separable classes [24].  

d.  XgBoost. XgBoost is a scalable ensemble method 
of decision tree boosting, supporting the fine 
tuning and regularization to learn the decisions 
iteratively [22]. The method continuously tries to 
improve its prediction in subsequent tree iterations 
to improve the classification performance.  

e.  RFI. RF consists of a number of decision trees to 
create a forest. The role each feature plays in 
decreasing the weighted impurity in a tree is noted 
in the approach [27-28]. For the whole forest, the 
impurity decrease over each feature is averaged to 
rank the features globally [27-28]. 

f. The PhILR [14], transform was used to map high-
dimensional compositional metagenomic data to a 
phylogeny-driven Euclidean space. 

 
3. Software Packages and Tools 

 
The various software packages related to ML 

models used in the current study are enlisted below. 
 
a.  ML models of RF, reg-LR, SVM, XgBoost were 

implemented with the help of caret package in R 
[26]. The source code for ML models is available 
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at https://github.com/topepo/caret/tree/master/mo 
dels/ files. 

b.  PhILR [14], is available as an R package available 
at https://bioconductor.org/packages/release/bioc/ 
html/philr.html. 

c.  RFI [27], was implemented with the help of 
importance() function available in R package of 
randomForest. 

d.  MetaPhyl [12], was compiled and run as a C++ 
library available at http://alumni.cs.ucr.edu 
/~tanaseio/metaphyl.htm. 

e.  Cattle microbiomes’ distribution was studied by 
alpha diversity, beta diversity, canonical and 
redundancy analysis with the help of 
plot_ordination() function available in phyloseq 
and ggplot2 packages in R[29]. 

f. aMiSPU [16] was implemented as a R package.  

IV. EXPERIMENTS AND RESULTS 
Predictive modelling provides a holistic understanding 

for functional metagenomics analysis. The objective of this 
study is to identify efficient ML models for classifying cattle 
metagenomes.  

The statistical pipeline of aMiSPU [16], was applied over 
the cattle rumen microbiomes, assuming the null hypothesis 
of “there exists no correlation between ASVs and diet as 
phenotype”. The advantages of using aMiSPU are: - i) it is 
independent of any parametric assumptions on the 
distribution of functional microbiome data as aMiSPU is 
based on adaptive sum of powered score (aSPU) tests with 
phylogenetic measure [16], ii) does not suffer from this curse 
of the compositionality problem in OTUs or ASVs.  

aMiSPU reported significant relationship of cattle 
microbiomes (p < 0.01) with diet by rejecting the null 
hypothesis. Therefore, we performed ML modelling over the 
cattle rumen microbiomes to associate it and classify into 
diet phenotype.  

We further evaluated the proposed experimental 
framework (shown in Fig.1.) by following a systematic 
comparison of ML models benchmarked on phylogenetic 
and non-phylogenetic approaches over the cattle ASVs. The 
results of  the conducted experiments are summarized in 
Table 1 and 3. 

Table 1 reports the ML models providing performance 
improvement over the state-of-the-art [7, 8]. The application 
of reg-LR (Accuracy:0.875)  and XgBoost (Accuracy:0.850)  
models, substantially depicted higher predictive performance 
in comparison to other state-of-art conventional ML 
classifiers of RF (Accuracy:0.787) [7] and SVMs 
(Accuracy:0.675) [8], when applied over the raw 
abundances. It was also observed that feature engineering 
with RFI further improved the performance of RF over the 
raw abundance count of ASVs. 

Feature engineering over PAAM [11], was conducted to 
deal with the high-dimensional nature of taxonomic features 
obtained from cattle microbiome. The following strategies 
with: i) RF applied over the features selected (top 
10,30,50,70 %) by RFI from the PAAM ii) XgBoost over 
PAAM and iii) reg-LR over PAAM; provided significantly 
better performance with highest Accuracy of 0.887 over the 
other state-of-the-art phylogenetic methods of MetaPhyl 
(Accuracy: 0.662) [12] and PhILR (Accuracy: 0.40) [14]. RF 
over the top 10 % of features selected from PAAM provided 
the best predictive performance (Accuracy: 0.887, Kappa: 
0.850) for classifying cattle microbiomes (Table 1). It was 
also noted that the ancestral nodes which attain weights by 
combining the abundance of leaves and phylogenetic 
distances annotated on the respective branches, played 
important role in top-ranked features by RFI in cattle 
microbiomes. Some of the important ancestors of ASVs 
(from phylum to genus level) in cattle microbial 
classification are noted in Table 2. 

In order to further improve the performance of 
classification with RF over the RFI selected features from 
the PAAM, we experimented with different ensembles of 
ML methods. The ensemble ML was constructed by 
applying XgBoost and reg-LR over the RFI selected features 
from PAAM. The ensemble ML methods as enlisted in 
Table 3, provided comparatively better performance over 
PAAM in comparison to the other ML models listed in Table 
1. The results of ensemble ML methods are useful for 
further comparative analysis (Table 3). The ensemble of top 
30 % of RFI selected features with reg-LR (over the 
PAAM), provided highest performance with Accuracy: 
0.925 and Kappa: 0.900 (Table 3). 

 

 

 

Fig. 1. Proposed Experimental Workflow for classifying  cattle metagenomes 
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TABLE 1. RESULTS OF ML METHODS BASED ON PHYLOGENY AND RAW 
ABUNDANCES OVER THE CATTLE MICROBIOME 

 
TABLE 2. TAXONOMY OF ASVS (TILL GENUS) THAT PLAYED IMPORTANT 
ROLE FOR CATTLE MICROBIAL CLASSIFICATION USING RFI OVER PAAM 
 

 
TABLE 3. RESULTS OF ENSEMBLE ML METHODS OVER PAAM 
 

 Few high-level ordinations were applied to visualize the 
distribution of cattle microbiomes within (alpha diversity) 
and across samples (beta diversity) w.r.t diet phenotype. 

 The plot_richness () in phyloseq R package [29] was 
used to estimate the alpha diversity with variously defined 
indices [29]. The resultant ordination is shown in Fig.2. For 
the beta diversity analysis, we used Principal Coordinate 
Analysis (PCoA) over weighted UniFrac matrix [30,31]. 
UniFrac is derived from the species’ distances obtained from 
the phylogenetic tree. The calculation of UniFrac is based on 
the fraction of branch length that is shared between two 
samples or unique to one or the other sample [30]. 
plot_ordination () from phyloseq [29], was used to visualize 
the beta diversity (Fig.3.). PCoA revealed the separation of 
the cattle samples from 4 different diets along the first axis, 
suggesting the observed diversity across the two different 
breeds of cattle.  

 Correspondence analysis (CCA) [29] was conducted 
to graphically represent the relationship between diet and 
microbial species (Fig.4a); and unconstrained redundancy 
data analysis (RDA) [29] (equivalent to principal component 
analysis) was conducted to visualize the variation in a 
functional phenotype of supplemented diet that can be 
explained by a set of abundance of microbial species (Fig.4b) 
[29].  CDA and RDA identified environmental gradients 
along the two main ordination axes. The impact of 
supplement usage on the cattle diet was mainly revealed by 
the dense proportion of nitrate-treated samples. 

V. CONCLUSION 
       In this paper, we classified cattle microbiomes into 
functional role of supplemented diet as part of the EU H2020 
MetaPlat project1. The project aims to analysis the cattle 
related metagenomic sequences to provide useful insights on 
the probiotic supplement usage, methane production, and 
feed conversion efficiency. It was shown that dietary 
nutrients supplements are significantly associated with cattle 
microbiome composition. We studied the effect of 
integrating phylogeny of microorganisms present in a 
microbial community into their abundance counts. 
Prioritizing nodes of a phylogenetic tree based on the 
integration of structural and abundance information, 
supported better metagenomic classification when compared 
to state-of-the-art [7, 8, 12, 14]. 
       ASVs reportedly provide better biological resolution and 
relevance than OTU methods [6]. In current study, we 
proposed an experimental workflow which applied ML 
models over the: - i) features as independent ASVs in 
classi�cation of metagenomic sequences and ii) features as 
related ASVs by phylogeny.  We uniformly evaluated 
metagenomic cattle microbiome data using leave-one-out 
cross validation to train and predict the performance of ML 
models for determining phenotypes. We recommended some 
of the best models for functional metagenomic analysis of 
cattle microbiomes.  We proposed that embedded ML 
methods of XgBoost or reg-LR are most effective in dealing 
with high-dimensional metagenomic raw data. RFI also 
played an important role over the inputs integrating 
phylogeny and abundance values with PAAM [11].  
 
 
 

Approach ML Model 
with (LOOCV) 

Accuracy Kappa 

Phylogenetic 
(Integrating 
phylogenetic 
weights with 
raw 
abundances of 
ASVs) 

RF over Top 10 % derived 
from PAAM as ranked by 
RFI 

0.887 0.850

RF over Top 30 % derived 
from PAAM as ranked by RFI 

0.875 0.833

RF over Top 50 % derived 
from PAAM as ranked by RFI 

0.863 0.817

RF over Top 70 % derived 
from PAAM as ranked by RFI 

0.850 0.800

reg-LR over PAAM 0.750 0.660

XgBoost over PAAM 0.850 0.800

RF over PhILR transformed 0.400  0.200

reg-LR over PhILR 
transformed data 

0.387     0.183 

MetaPhyl 0.662 0.559 

Non-
Phylogenetic  
(over Raw 
Abundances of 
ASVs) 

RF over Original Abundance 
Counts 

0.787 0.716 

reg-LR over Original 
Abundance Counts 

0.875 0.833

SVMs over Original 
Abundance Counts 

0.675 0.566 

XgBoost over Original 
Abundance Counts 

0.825    0.766 

RF over Top 10 % of ASVs 
as ranked by RFI  

0.850 0.799

RF over Top 30 % of ASVs as 
ranked by RFI 

0.813   0.750

RF over Top 50 % of ASVs as 
ranked by RFI 

0.825      0.766    

RF over Top 70 % of ASVs as 
ranked by RFI 

0.813   0.750

                              Taxonomy from Kingdom to Genus 
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; 
f__Corynebacteriaceae; g__Corynebacteriumftable 
k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; 
f__Bifidobacteriaceae; g__Bifidobacterium;  
k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; 
f__Alcaligenaceae; g__Sutterella;  
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; 
f__Acetobacteraceae; g__Rhodovarius 
k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhodospirillales; 
f__Rhodospirillaceae; g__Azospirillum;  
k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; 
f__Veillonellaceae; g__Veillonella;  

Ensemble ML Models (with 
LOOCV) 

Accuracy Kappa 

reg-LR over Top 10 % derived from 
PAAM as ranked by RFI 

0.887 0.850 

XgBoost over Top 10 % derived from 
PAAM as ranked by RFI 

0.912 0.883 

reg-LR over Top 30 % derived 
from PAAM as ranked by RFI 

0.925 0.900 

XgBoost over Top 30 % derived from 
PAAM as ranked by RFI 

0.900 0.867

reg-LR over Top 50 % derived from 
PAAM as ranked by RFI 

0.900     0.866 

XgBoost over Top 50 % derived from 
PAAM as ranked by RFI 

0.912 0.883 

reg-LR over Top 70 % derived from 
PAAM as ranked by RFI 

0.837 0.783 

XgBoost over Top 70 % derived from 
PAAM as ranked by RFI 

0.862    0.816 
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                Fig.2. Alpha Diversity in Cattle Rumen Samples 
 

 
Fig.3. PCoA over weighted UniFrac in Cattle Microbiome w.r.t 
Diet in the two cattle breeds of Aberdeen Angus Cross (AAx) and 
Limonsin sired (LIMx) 

    The ensemble of XgBoost or reg-LR methods with RFI 
ranking of features over PAAM, further improved the 
classification performance over the high-dimensional 
metagenomes. Additionally, the analysis was benchmarked 
along the integrated workflow using phylogeny-driven 
methods of PhILR [14] and MetaPhyl [12]. Overall, the 
ensemble ML method combining reg-LR with top 30 % 
features obtained by RFI over PAAM, attained the best 
performance (over state-of-the-art phylogenetic and non-
phylogenetic methods) in our use case. PAAM-based 
approach attained best performance over the sourced data. 
 
 

     Fig.4a. Correspondence analysis over Cattle Microbial Samples 
 

 
 

      Fig.4b. Redundancy data analysis over cattle microbial samples 
 
       This indicates ancestral relationships between different 
microbial taxas (derived from their phylogeny) are important 
and drive a good classification performance. We also 
highlighted a few high-level visualizations of cattle 
microbiome composition in relation to the functional 
phenotype of diet.   
      In future, we would like to explore other advances in 
ML such as deep learning with 2D neural nets, networks 
analysis (depicting co-occurrence, interrelations), etc. for 
increasing the reliability of microbiome analysis using 
phylogeny along the current work�ow. We will further 
explore other techniques to obtain phylogenetic rankings for 
all species and determine their effect on the classification 
process. 
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