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Abstract

This paper provides a new approach to inference to the best explanation

(IBE) based on a new coherence measure for comparing how well hypothe-

ses explain the evidence. It addresses a number of criticisms of the use of

probabilistic measures in this context by Clark Glymour ([2015]), including

limitations of earlier work on IBE (Glass [2012]). Computer experiments

are used to show that the new approach finds the truth with a high degree

of accuracy in hypothesis selection tasks and that in some cases its accuracy

is greater than hypothesis selection based on maximizing posterior proba-

bility. Hence, by overcoming some of the problems with the previous ap-

proach, this work provides a more adequate defence of IBE and suggests

that IBE not only tracks truth but also has practical advantages over thepre-

vious approach. Applications of the new approach to parameter estimation

and model selection are also explored.
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1 Introduction

Inference to the best explanation (IBE) has often been proposed and defended as

a mode of reasoning in both science and everyday life (see Lipton [2004]). IBE is

also of particular relevance to debates about scientific realism since proponents of

realism often appeal to it (see Psillos [1999]). The basic idea in IBE is that com-

peting hypotheses are compared in terms of how well they explain the evidence in

a given context and an inference made to the winning hypothesis. While IBE has

intuitive appeal, it has come in for serious criticism (see particularly van Fraassen
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[1989]), though significant defences have also been presented (see particularly

Douven [1999], [2013]).

A significant challenge for advocates of IBE is to show how explanation is re-

lated to truth. Clearly, such a link is fundamental to IBE, but it is not immediately

obvious why hypotheses that provide better explanations would be more likely to

be true. One approach to this problem is to consider probabilistic measures of

explanatory goodness and investigate, either analytically or via computer simula-

tions, how successful they are at selecting the true hypothesis. Various measures

of this kind have been proposed in the literature (see Schupbach [2011a] and ref-

erences therein), but here the focus is on using two measuresof coherence to rank

explanations.

There has been considerable discussion of probabilistic approaches to coher-

ence in the literature (see for example Bovens and Hartmann [2003]; Olsson

[2005]). In previous work, it was argued that a particular coherence measure,

the overlap measure, has some merit as a measure for ranking explanations (Glass

[2007]) and, based on simulations, that it tracks truth whenused for hypothesis

selection (Glass [2012]). It was further shown that when there is uncertainty in

the prior probabilities of the hypotheses, this measure canoutperform other ap-

proaches to hypothesis selection including the approach that maximizes the pos-

terior probability.

This work, along with other probabilistic measures of explanatory power, has

received some significant criticisms recently (Glymour [2015]). In addition to

raising general concerns about the ability of these approaches to handle cases

involving ‘excellent but false explanations’ and ‘causal explanations’, Prof. Gly-

mour presents a number of specific criticisms of the coherence-based approach to
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hypothesis selection. Perhaps the most significant criticism in this category is that

in cases where there is uncertainty in the priors the advantage of this approach

decreases rapidly as the sample size increases. The focus ofthe original paper

(Glass [2012]) was on IBE in the context where a hypothesis is selected on the

basis of a piece of evidence. In modelling this probabilistically, the simulations

involved making an inference on a single trial and hence a sample size of one. As

the current work will show, not only is Glymour’s criticism correct, but even when

priors are known the approach does not track truth as closelywhen the sample size

is larger. As such, more work is needed if IBE is to be defended.

In this paper, another coherence measure is proposed to provide an alternative

way to rank explanations and it is shown to overcome the problem noted above and

to address several other concerns identified by Glymour. Section 2 provides a brief

overview of the various measures and considers Glymour’s criticisms. The new

measure is then presented in section 3 and its performance when applied to hy-

pothesis selection is considered when the priors are known in section 4 and when

there is uncertainty in the priors in section 5. Applications of the new approach

to parameter estimation and model selection are explored insection 6 before con-

clusions are drawn in section 7.

2 A Response to Prof. Glymour

For a hypothesish that provides an explanation ofe, the measures considered

by Glymour include Schupbach and Sprenger’s ([2011]) measure of explanatory

power:

ESS(e, h) =
P (h|e)− P (h|∼e)

P (h|e) + P (h|∼e)
, (1)
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an alternative measure of explanatory power proposed by Crupi and Tentori ([2012]):

ECT (e, h) =























P (e|h)− P (e)

1− P (e)
if P (e|h) ≥ P (e)

P (e|h)− P (e)

P (e)
if P (e|h) < P (e).

(2)

and the overlap coherence measure (OCM) used to rank explanations by Glass

([2007], [2012]):

EOCM(e, h) =
P (h ∧ e)

P (h ∨ e)
. (3)

The focus here is on responding to criticisms insofar as theyapply toEOCM , but

the other measures are included for comparative purposes since all three can be

used to compare hypotheses in terms of how well they explain the evidence. Other

measures considered by Glymour include Myrvold’s ([2003])measure of unifica-

tion, Wheeler’s ([2009]) measure of coherence or ‘focused correlation’ and Fitel-

son’s ([2003]) measure of coherence, but these measures were proposed to address

different problems and are not so relevant to the current paper.1

Before responding to criticisms, it is worth noting some differences between

EOCM on the one hand andESS andECT on the other.ESS andECT are both mea-

sures of confirmation or relevance since it follows from their definitions that ifh

explainse, then the degree of explanatory power is greater than (equalto / less

than) 0 if and only ifP (e|h) is greater than (equal to / less than)P (e). Schup-

bach and Sprenger seek to explicate explanatory power in terms of the ability of a

hypothesis ‘to decrease the degree to which we find the explanandum surprising’

([2011], p. 108) and Crupi and Tentori adopt this approach also. EOCM by con-

trast is not a confirmation measure and so a high value does notnecessarily imply

1Though Fitelson’s measure has been used to rank explanations and compared withEOCM

previously (Glass [2012]).
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positive relevance. This is because a high prior probability for a hypothesis could

compensate to some extent for negative relevance.

A further difference is that in proposingEOCM the focus was on using it in the

context of IBE to compare different hypotheses in terms of howwell they explain

a common explanandum,e, so thath1 is to be preferred overh2 as an explanation

for e if EOCM(e, h1) > EOCM(e, h2) (see Glass [2012]).ESS andECT are intended

not merely for comparative purposes, but to provide a satisfactory absolute value

of explanatory power. Of course, they can then be used to compare hypotheses,

but in fact for a given explanandum bothESS andECT will give the same ordering

of hypotheses and this turns out to be the same ordering as given by the likelihood,

i.e. h1 is to preferred overh2 as an explanation fore if P (e|h1) > P (e|h2).

Much more could be said by way of comparison of the different approaches.

For example, arguablyESS andECT can be construed as alternative measures of

the extent to which a hypothesis leads us to expect the explanandum given the

truth of that hypothesis, whereasEOCM also attempts to take into account how

plausible the hypothesis is in the first place. This might mean thatESS andECT

should not be seen as rivals toEOCM , but rather as explicating a different con-

cept. However, a detailed comparison is beyond the scope of this paper and so the

above discussion is just intended to provide some relevant context before consid-

ering Glymour’s criticisms.

2.1 Excellent but false explanations

The first problem arises from the fact that scientific theories can provide excellent

explanations even though they are now known to be false. As Glymour points

out, ‘Newtonian explanations of various planetary orbits,or of Kepler’s laws, still
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count as explanations although the falsity of Newtonian theory is settled’ ([2015],

p. 594). The difficulty is that if the probability assigned toa theory is zero, the

measures ‘that are functions of the unconditional or conditional probability of a

hypothesis are either undefined or give perverse results’. Note thatEOCM will

have the value zero in such cases.2

Glymour discusses a suggestion from a reviewer to treat historical hypothe-

ses as true and make the probabilities to be the subjective probabilities of those

who justly accepted the theories. He rightly raises concerns about this proposal,

mentioning problems about how to compare the explanatory power of historical

theories that cannot both have probability one as well as difficulties concerning

probability and acceptance. Apart from this particular proposal, though, Gly-

mour also raises more general problems about which probabilities are to be used.

Should we use our marginal probabilities for the hypothesesand the evidence or

those of historical figures or perhaps some combination of the two? And this is

further complicated by the fact that the same question can beraised for the vari-

ous likelihoods. If we use our probability for the evidence when dealing with past

cases then the probability of the evidence will be one, whichpresents problems

for confirmation measures likeESS andECT .

Of course, many of these and related questions can be raised in the context of

Bayesianism, but those debates will not be revisited here. Tokeep the discussion

more focused, let us consider whether there are problems here that go beyond

those faced by the Bayesian. And it seems there are. In dealingwith historical

2If regularity is assumed, then the theory will not be assigned a probability of zero, but if it

is assigned a very low value, thenEOCM will also be very low provided the probability of the

evidence is not too low.
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cases, Bayesians will attempt to capture key aspects of scientific reasoning by us-

ing probabilities (both marginal and conditional) that would have been reasonable

in that context. Now, of course, questions can be raised about that, but propo-

nents of the measures of explanatory power might appear to bemaking ahistorical

claims about scientific theories and in that case Glymour’s concerns seem partic-

ularly pertinent.

In response, it can be noted that this appearance is misleading, at least in

the context in whichEOCM was proposed. As noted earlier, it was proposed to

compare explanations in the context of IBE. This means that itonly applies, just as

Bayesianism does, in contexts where there are competing hypotheses, each with a

probability greater than zero and less than one. Hence,EOCM was not intended to

provide a value of how well a theory that is now known to be false explains some

body of evidence, a value which could then be compared with that of a current

theory. If we are usingEOCM to implement IBE in order to compare current viable

theories, it seems appropriate thatEOCM gives a value of zero to theories that are

known to be false since they are no longer viable options and hence do not need

to be considered in IBE. Alternatively, if we are usingEOCM to implement IBE in

order to capture aspects of scientific reasoning in a historical case then a theory

that is now known to be false could be given a non-zero probability (and non-zero

value ofEOCM ) if it was a viable option at the time. Also, since the focus ison

the comparative use of this measure, precision in determining the absolute values

is not so important provided reasonable judgments can be made about the ranking

of explanations.

In light of the comments made earlier, it is not so clear whether this response

is open to the proponents ofESS andECT . It is doubtful whether they can focus
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solely on comparative judgments since these measures will give the same ranking

of hypotheses for a given explanandum. Furthermore, Glymour’s concerns would

need to be addressed if the explanatory merits of theories now regarded to be false

are to be compared with those of current theories. However, by restricting their

measures to particular historical contexts perhaps a response along similar lines is

possible.

The claim here is that in terms of concerns about which probabilities should

be used, ifEOCM is used as intended in the context of IBE, it faces no problems

over and above those faced by Bayesianism. This of course willseem like a weak

response to those who think that Bayesianism has no adequate response to these

kinds of concerns, but to go further than that in this paper would take us too far

off track.

A possible objection to the response outlined here is that since the approach

is not intended to quantify the explanatory power of theories that are known to

be false, it is inadequate as an approach to IBE; instead, it should be seen as an

approach to model selection.3 Clearly, as Glymour has pointed out, false theories

can still count as explanations. Hence, if one assumes that any approach to IBE

based on the sorts of quantitative measures considered hereshould provide reason-

able non-zero values to false theories, which could then be compared with other

theories, then this is a reasonable objection. However, it is not clear that IBE re-

quires such a general comparison of theories. In his important book on IBE, Peter

Lipton characterized it in terms of inferring the best explanation out of a pool of

potential explanations. One option he considered would be to include all possible

explanations within the pool, but Lipton’s favoured optionwas to ‘define the pool

3I would like to thank a reviewer for raising this objection.
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more narrowly, so that the potential explanations are only the “live options”: the

serious candidates for an actual explanation’ (Lipton [2004, p.59]). In either case,

however, the pool of potential explanations would not include any theories known

to be false. Understood in this way, using a measure such asEOCM to compare

‘live options’ is compatible with IBE.

The suggestion that the approach being advocated should be understood in

terms of model selection is reasonable, but understanding it in this way need not

be incompatible with IBE. Whatever the merits of Bayesianism, its proponents

seek to apply it not only as a general approach to scientific inference in contexts

where IBE might be applied, but also to the problem of model selection in statis-

tics. The current work could be seen as an attempt to do something similar for

IBE. By articulating IBE in terms of probabilistic measures andevaluating its

performance in various inference tasks, it provides an initial step towards an IBE-

based approach to model selection. More will be said about the connection with

model selection in section 6.

2.2 Causal explanation

Supposee1 ande2 are probabilistically independent effects of a common cause,

h. If h raises the probability ofe1 ande2, Glymour points out that the various

measures (apart from Myrvold’s and Wheeler’s) give a positive value. Glymour’s

concern is that the measures ‘confound probability or predictive relations with ex-

planatory relations’ ([2015], p. 596). He acknowledges that a possible response

to this problem is to claim that the measures are ‘to be applied only in cases

which, on other grounds, an explanatory relation obtains between two proposi-

tions’ (Glymour [2015], p. 596). This point is emphasized byboth Glass ([2007])
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and Schupbach ([2011]), but Glymour thinks that this is inadequate.

To make his point he discusses another case where there is a common cause,

h say, ofe1 ande2, but this timee1 is also a cause ofe2. He considers the par-

ticular case in which the probability relation betweene1 ande2 arising from the

causal pathway between them is exactly cancelled by the probability relation be-

tween them due to their common cause. He claims that ‘even though the value of

e1 causes and helps to explain the value ofe2, according to all the probabilistic

measures of explanatory power,e1 has no power to explaine2’ (Glymour [2015],

p. 596). While this is correct for theESS andECT measures sincee1 ande2 are

probabilistically independent and hence have an explanatory power of zero, it is

not correct for theEOCM measure. Consider the following example. Let

P (e2|e1&h) = 0.9,

P (e2|∼e1&h) = 0.8,

P (e2|e1& ∼h) = 0.55,

P (e2|∼e1& ∼h) = 0.2,

P (e1|h) = 0.3,

P (e1|∼h) = 0.8,

P (h) = 0.4,

P (∼h) = 0.6.

It is easy to show thatP (e2|e1) = P (e2|∼e1) = 0.62 and hencee1 ande2 are

independent even though they are positively dependent on each other givenh and

also given∼h. If e1 is a cause ofe2, then the positive influence betweene1 and
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e2 is cancelled by the probability relation between them due totheir common

cause. However, it turns out thatEOCM(e2, e1) = 0.4387 whereasESS(e2, e1) =

ECT (e2, e1) = 0. Furthermore,EOCM(e2,∼e1) = 0.3212 and soe1 provides a

better explanation ofe2 than does∼e1. Hence,EOCM deals with this case in a

satisfactory manner.

While this response is not open to advocates ofESS andECT , they could argue

that in cases involving common causes the explanatory poweris to be determined

by conditioning on each value of the common causes. These measures will typi-

cally give different values, as willEOCM , in examples such as the one above when

conditioning onh and∼h respectively. However, Glymour considers and rejects

this response precisely on the grounds that ‘conditioning on different values of the

common causes will give different values to the measures of explanatory power’

([2015], p. 596). It is difficult to see why this is a problem. In the example above,

the focus is on how welle1 explainse2, but sinceh is also causally and hence

explanatorily relevant toe1 ande2, there is no reason to think that the extent to

which e1 explainse2 should be the same irrespective of whetherh is true or false.

For example, when considering the likelihoods in the example given above, it is

clear that the difference (and ratio) between the probability of e2 givene1 ande2

given∼e1 is greater when conditioning onh than on∼h.

In a final point about causal explanation, Glymour draws attention to an ap-

proach to explanatory power based on the difference betweenthe probability of

the effect,e, when a manipulation is carried out to force a causal variable H to

take on the value true and the corresponding probability when a manipulation

forcesH to be false. Several points can be made in response. First, while there is

certainly merit to this approach it is not immediately clearthat it should be seen
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as a rival to the approaches based on the various measures that are criticized by

Glymour and, even if it is, more detailed argument would be need to show that

it is superior to these approaches. Second, manipulation can be incorporated into

these approaches (see Eva and Stern [2018]). Finally, whileincorporating manip-

ulation seems appropriate for quantifying causal influence, it is not clear that it is

the right approach for quantifying explanatory power. As discussed earlier,ESS

andECT can be construed as measures of the extent to which a hypothesis leads

us to expect the explanandum and it seems plausible to incorporate manipulation

into measures of this kind.EOCM also attempts to take into account how plausible

the hypothesis is in the first place, but this is missing when manipulation is taken

into account since the relevant hypothesis variable is simply forced to be true or

false.

2.3 Finding the truth

In addition to the problems discussed so far, Glymour also draws attention to the

limitations of the various measures in hypothesis selection and he focuses in par-

ticular on the use of theEOCM measure by Glass ([2012]) since it seemed to show

some merit in this regard.4 A general problem for using these measures as statis-

tical tests concerns how various probabilities, such asP (e|∼h) andP (e), are to

be acquired. Focusing onP (e), he rightly points out that ‘hypothesis selection by

statistical testing requires comparing ratios so that the probability of the evidence

does not appear’ (Glymour [2015], p. 601). This criticism isquite legitimate and

4Glymour also presents criticisms of the psychological study carried out by Schupbach

([2011a]), but these will not be considered here.
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so whatever the merits of theEOCM in hypothesis selection, this presents a limita-

tion on its practical usage. A new measure will be proposed insection 3 to address

this problem.

Previous work employed computer experiments to compare howwell various

measures performed in a hypothesis selection task (Glass [2012]). Prior probabil-

ities of hypotheses and likelihoods were randomly selectedfrom uniform distribu-

tions and then one of the hypotheses was selected as the actual hypothesis based

on the prior distribution. Eithere, or ∼e was then selected based on the likeli-

hood for the actual hypothesis. Various measures were then used to select the

best hypothesis (i.e. the one that had the highest score for agiven measure) and

if it matched the actual hypothesis it was counted as a success for that measure.

This process was repeated ten million times to get an accurate picture of how well

the various measures performed. The results showed that selecting the hypothesis

with the greatest value ofEOCM gave results that closely tracked hypothesis selec-

tion by maximum posterior probability and outperformed allthe other measures,

including maximum likelihood.

The same paper also considered cases where there is uncertainty as modelled

by a normal distribution in the prior probabilities or, to put it another way, where

the prior probabilities are subjective and do not correspond to the objective prob-

abilities. These subjective priors along with the actual likelihoods were then used

in the various measures and the experiments re-run. The results showed that if

there is sufficient uncertainty in the priors, then selecting the hypothesis with the

greatest value ofEOCM gave more accurate results than hypothesis selection by

maximum posterior probability.

Referring to work by Teng et al. ([unpublished]), Glymour notes that the re-
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sults do not depend on the choice of the normal distribution to model uncertainty

since similar results are obtained when a uniform distribution is used (see section

5 below for further discussion of this point). However, Glymour raises several

concerns about these findings. First, he claims that the advantage of theEOCM

measure vanishes with small errors in the specification of likelihoods. It is true

that the advantage over maximum posterior probability is lost when there are er-

rors in the likelihoods, but as shown by experiments carriedout by Glass and Mc-

Cartney ([2014]), when there are errors in the likelihoods but not the priors, the

approach based on theEOCM measure still tracks maximum posterior probabil-

ity quite closely and it performs much better than the other measures considered,

including maximum likelihood.5

Second, Glymour says that the approach based on theEOCM measure never

dominates maximum likelihood. However, as just noted, it does in fact dominate

it when there are errors in the likelihoods but not in the priors. It also dominates

maximum likelihood in cases where there are no errors (for small sample sizes)

in either the priors or the likelihoods. Where it fails to dominate maximum like-

lihood is in the case where there are errors in the priors. However, of the three

approaches compared in this case (Glass [2012]) — maximum posterior probabil-

ity, maximum likelihood and the approach based on theEOCM measure — no ap-

proach dominates the other two for the range considered, which was for values of

0 to 1 for standard deviations in the prior probabilities. However, theEOCM mea-

sure performed better than maximum likelihood for values from 0 to 0.7 and better

5More experiments would need to be carried out to investigatecases where there are errors in

both priors and likelihoods, but based on experiments that have been carried out it seems likely

that unless the errors for the prior were very large theEOCM measure would perform better than

maximum likelihood.
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than maximum posterior probability for values from 0.4 to 1.Moreover, when the

results were averaged over the entire range theEOCM measure performed best.

Third, Glymour points out that in cases where there are no errors in the prior

probabilities the advantage of theEOCM measure over other measures vanishes

when the sample size increases.6 In fact, as we shall see in section 4 its advantage

over maximum likelihood vanishes for a sample size of about 15, and so a signif-

icant advantage only occurs for very small sample sizes. This, alas, is correct and

it also applies when there are errors in the priors (also shown in section 4).

This issue is closely related to another point mentioned by Glymour: the

asymptotic behaviour of the various measures. The measureEOCM(e, h) can be

expressed as
[

1
P (h|e)

+ 1
P (e|h)

− 1
]−1

. Since it incorporates both the likelihood and

the posterior probability, this explains why it gives better results than maximum

likelihood for small sample sizes (when there are no errors in the priors or like-

lihoods). What is the asymptotic behaviour ofEOCM in the limit of large sample

sizes? Leten represent the evidence for a sample size ofn. Taking the limit of the

ratio ofEOCM to the likelihood gives:7

lim
n→∞

EOCM(en, h)

P (en|h)
= 1, (4)

which explains why the advantage ofEOCM(e, h) over maximum likelihood de-

creases as the sample size increases. This behaviour is evident from results pre-

6Glymour actually refers to the advantage over posterior probability, but since there is no ad-

vantage over posterior probabilities unless there are errors in the priors he presumably means the

advantage over other approaches such as maximum likelihood.
7EOCM (en, h) = P (en|h)P (h)/P (en∨h) and hence the ratio can be written asP (h)/P (en∨

h). Assuming the probability of each outcome is less than one, then the limit ofP (en) asn tends

to infinity is zero and hence the limit ofP (en ∨ h) asn tends to infinity isP (h). Hence, the limit

of EOCM (en, h)/P (en|h) asn tends to infinity is1.
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sented in section 4.

In summary, Glymour has raised a number of very interesting challenges for

measures of explanatory goodness. In offering a response, the focus has been on

the EOCM measure. It has been argued that the problem of ‘excellent but false

explanations’ is no more serious for this measure than it is for Bayesianism and

that adequate responses are available in the case of causal explanations. However,

in the context of usingEOCM for hypothesis selection, there are two significant

issues to which no adequate response has been provided. First, using this mea-

sure to compare hypotheses requires obtaining probabilities which are difficult to

determine in practice and, second, the advantage of theEOCM vanishes for larger

(but still relatively small) sample sizes.

It could perhaps be argued that these problems serve to highlight limitations

of using theEOCM measure in practice, but do not undermine it as a measure that

can be used to show that IBE tracks truth. Indeed, when IBE is formulated using

EOCM it tracks results obtained by maximizing posterior probability closely for

very small sample sizes, performing better than maximum likelihood, and as the

result in (4) shows, it gives the same results as maximum likelihood in the limit of

large sample sizes. Nevertheless, a new measure will now be considered in order

to address some of the practical limitations of the theEOCM measure.

3 A New Measure for Comparing Explanations

For a hypothesish that explainse, a simple measure of how good an explanation

it is can be defined as the product of the likelihood and posterior probability:
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EPCM(e, h) = P (e|h)× P (h|e), (5)

which will be referred to as the product coherence measure (PCM). Note that

given Bayes’ theorem, it can also be expressed asP (e|h)2P (h)/P (e) or alterna-

tively asP (h|e)2P (e)/P (h).

As the name suggests,EPCM can be considered as a coherence measure. In

fact, it has many features in common with the overlap coherence measure,EOCM .

Clearly, its range is the interval[0, 1] with EPCM(e, h) = 0 whenP (e|h) =

P (h|e) = 0 and EPCM(e, h) = 1 whenP (e|h) = P (h|e) = 1. If it is just

used as a coherence measure (in which case it need not be assumed thath ex-

plainse according to some account of what constitutes an explanation) this means

that consistent logically equivalent beliefs are maximally coherent (for example,

EPCM(e, e) = 1), while logically inconsistent beliefs are incoherent (for example,

EPCM(e,∼e) = 0). Like EOCM , EPCM depends only on the extent of agreement

between two beliefs rather than how probable those beliefs are in the first place.

More precisely, for fixed values of the relevant conditionalprobabilities,P (e|h)

andP (h|e), it is independent of prior probabilities.8

Hence, like the overlap measure,EPCM exhibits the characteristics of a par-

ticular type of coherence — coherence as agreement rather than as striking agree-

ment — which has been argued in previous work to capture certain intuitions

about coherence better than other approaches (Glass [2005]). However, arguably

it also has some advantages over the overlap measure. Note that EPCM can be

8See (Glass [2005]) for further discussion of this point. In fact, EPCM was mentioned in a

footnote in this paper.

18



expressed as:

EPCM(e, h) =
P (e ∧ h)

P (e)P (h)
× P (e ∧ h), (6)

where the first term on the right hand side is Shogenji’s measure of coherence

(Shogenji [1999]). Like many of the coherence measures proposed in the litera-

ture, Shogenji’s measure is also a relevance or confirmationmeasure (in fact, it is

the ratio measure,P (h|e)/P (h) of confirmation), whereas this is not true of either

EOCM or EPCM . However, as equation (6) shows,EPCM can be expressed as the

product of a confirmation measure and the joint probability.By taking confirma-

tion into account, it is sensitive to the dependence betweenh ande in a way that

EOCM is not.

Consider an example adapted from Bovens and Olsson ([2000]) tohighlight

the difference between coherence as agreement and coherence as striking agree-

ment. Suppose there is a roulette wheel with one hundred numbers and in the first

scenario Joe says the winning number is 49 or 50 and Amy says itis 50 or 51. In

the second, scenario Joe says the winning number is 41, 42,. . ., or 60 and Amy

says it is 51, 52,. . ., or 70. As measures of coherence as agreement,EOCM or

EPCM will each yield the same degree of coherence in both cases, 1/3 for EOCM

and 1/4 forEPCM . However, now consider a third scenario where Joe says the

winning number is 41, 42,. . ., or 50 and Amy says it is 41, 42,. . ., or 70. In

this case,EOCM gives the same result of 1/3 as in scenarios one and two since the

relative overlap is unchanged, butEPCM gives a higher coherence than in the other

two scenarios (1/3 compared to 1/4). The difference lies in the fact that there is

stronger dependence between the statements in this case since Joe’s being correct

entails that Amy is also correct.9

9This difference betweenEOCM andEPCM leads to a possible disadvantage toEPCM because
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A well known problem with the overlap coherence measure is that if it is ex-

tended to multiple belief in the obvious way so thatEOCM(h1, . . . , hn) = P (h1 ∧

. . .∧hn)/P (h1∨. . .∨hn), then coherence cannot increase as the number of beliefs

increases. However, it seems clear that acquisition of further beliefs can enhance

the coherence of previously held beliefs. For example, ‘Tweety is a bird’ does not

cohere well with ‘Tweety cannot fly’, but combining these beliefs with ‘Tweety is

a penguin’ results in much greater coherence. In light of equation (6), an obvious

way to extendEPCM to the general case is as follows:

EPCM(h1, . . . , hn) =
P (h1 ∧ . . . ∧ hn)

P (h1) . . . P (hn)
× P (h1 ∧ . . . ∧ hn), (7)

which avoids the problem.10 Suppose for example thath3 = h1 ∧ h2, then it is

easy to show thatEPCM(h1, h2, h3) > EPCM(h1, h2). ExtendingEPCM in this

way makes it a sort of hybrid between measures of agreement, which it is in the

case of two beliefs, and measures of striking agreement. Arguably, this means it

is able to capture the merits of different measures such as the overlap coherence

measure and Shogenji’s measure.

In previous work (Glass [2007]), it was argued that while there is merit to

EOCM is known to be truth-conducive in the case of information pairs (Glass [2007]). It fol-

lows from these differences thatEPCM is not truth-conducive for the same set ofceteris paribus

conditions, though it can be shown to be truth-conducive if more specificceteris paribuscondi-

tions are defined. However, arguably truth-conduciveness should not be considered as an adequacy

condition for coherence: coherence measures should be judged on other criteria and then their con-

sequences for truth-conduciveness evaluated. As argued here, there are reasons to preferEPCM

to EOCM as a measure of coherence and it turns out to have better consequences for explanatory

inference.
10Other generalizations could also avoid this problem. For example, it could be generalized to

takej-wise (in)dependence, wherej < n, into account, see Schupbach ([2011b]).
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using either the posterior probability of a hypothesis,P (h|e), or its likelihood,

P (e|h), to rank explanations, these approaches also face problems. It was also

claimed thatEOCM takes account of their advantages while avoiding their prob-

lems. The same points could be made in favour ofEPCM since it is also a com-

bination of posterior probability and likelihood. One particular reason whyEPCM

is a plausible candidate for comparing explanations is that, like EOCM , it satisfies

the explanation ranking condition (Glass [2007]), which can be stated as follows:

For two hypotheses,h1 andh2 that explaine, if P (e|h1) > P (e|h2)

andP (h1|e) > P (h2|e) thenh1 is a better explanation ofe thanh2.

Furthermore, in terms of differences betweenEOCM on the one hand andESS and

ECT on the other, the same points could be made aboutEPCM . In particular, like

EOCM , EPCM is not a confirmation measure and so a high prior probability for a

hypothesis could compensate to some extent for negative relevance. In addition,

the responses presented in defence ofEOCM in sections 2.1 and 2.2 to the ‘excel-

lent but false explanations’ and ‘causal explanation’ objections, apply equally to

EPCM .

Some advantages ofEPCM overEOCM as a measure of coherence have been

noted and one of these is also an advantage forEPCM overEOCM as a measure

of explanation. As discussed earlier, equation (6) shows that EPCM can be ex-

pressed as a product of a confirmation measure and the joint probability. Given

that the approach to explanation in this paper takes into account how plausible the

hypotheses are in the first place, there are reasons for preferring EOCM or EPCM

to eitherESS or ECT as a measure for comparing explanations. However, the de-

pendence between the hypothesis and the evidence is clearlya factor in how well

the hypothesis explains the evidence and this provides a reason to preferEPCM
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to EOCM in the context of explanation. Suppose there are two hypotheses,h1 and

h2, each of which provides a potential explanation of evidencee. Further sup-

pose thatP (e) = 2/5, P (h1) = 2/15, P (h2) = 2/3 and thath1 entailse so that

P (e|h1) = 1 while h2 is probabilistically independent ofe so thatP (e|h2) = 2/5.

It is easy to show thatEOCM(e, h1) = EOCM(e, h2) = 1/3 and soEOCM fails to

discriminate between the hypotheses. By contrast,EPCM(e, h1) = 1/3 > 4/15 =

EPCM(e, h2). More generally, in cases where two hypotheses have equal relative

overlap as measured byEOCM , but where one hypothesis,h1, entails the evidence,

while the other,h2, neither entails nor is entailed by the evidence, theEPCM mea-

sure will favourh1.11

Recall that there were two problems for which no defence ofEOCM was pro-

vided in section 2. DoesEPCM fare any better? First,EOCM requires the probabil-

ity of the evidence to be determined and yet often this is unavailable. By contrast,

the probability of the evidence is not needed when comparingeither likelihoods or

posterior probabilities. In the case of posterior probabilities, ratios can be taken,

in which case the prior probability of the evidence cancels out so that just the like-

lihoods and priors are needed. SinceEPCM is just a product of the likelihood and

posterior probability it also avoids the problem. Suppose two hypothesesh1 and

h2 are to be compared. This can be done as follows:

11SinceEOCM (e, h) can be expressed as
[

1
P (h|e) +

1
P (e|h) − 1

]−1

, it follows that 1
P (h1|e)

+

1
P (e|h1)

= 1
P (h2|e)

+ 1
P (e|h2)

. Furthermore,P (e|h1) = 1 sinceh1 entailse, and soP (e|h1)
−1 <

min{P (e|h2)
−1, P (h2|e)

−1}. SupposeP (e|h1)
−1 = min{P (e|h2)

−1, P (h2|e)
−1} − δ, where

δ > 0, and henceP (h1|e)
−1 = max{P (e|h2)

−1, P (h2|e)
−1}+ δ. From this it can be shown that

P (e|h1|e)× P (h1|e) > P (e|h2)× P (h2|e) and soEPCM (e, h1) > EPCM (e, h2).
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EPCM(e, h1)

EPCM(e, h2)
=

P (e|h1)× P (h1|e)

P (e|h2)× P (h2|e)
=

P (e|h1)
2 × P (h1)

P (e|h2)2 × P (h2)
, (8)

and hence there is no need to determine the probability of theevidence. Hence,

from this practical point of view,EPCM has a significant advantage overEOCM .12

Second, the advantage of comparing explanations usingEOCM over likelihood

decreases with increase in sample size and this was explained by the fact that in

the limit of large sample size the ratio ofEOCM to the likelihood tends to one,

but this is not the case withEPCM . As with EOCM , EPCM combines both the

posterior probability and likelihood, but taking the limitof the ratio ofEPCM to

the likelihood trivially gives:

lim
n→∞

EPCM(en, h)

P (en|h)
= lim

n→∞
P (h|en), (9)

and so the influence of the posterior probability is retainedas sample size in-

creases, which is not the case forEOCM as is clear from equation (4). The signif-

icance of this contrast betweenEPCM andEOCM will be investigated experimen-

tally in section 4.

Previous work made a case forEOCM as a measure for comparing explanations

Glass [2007, 2012] based on its properties as a coherence measure. However, as

we saw in section 2, two shortcomings with this approach wereidentified. To

address these issues, a new coherence measure has been proposed,EPCM . The

previous arguments in support ofEOCM all apply toEPCM as well, but further

motivation forEPCM has been provided both in terms of its merits as a measure of

12Of course,EPCM requires the prior probabilities of the hypotheses, but in this respect it is no

worse than hypothesis selection based on posterior probability. Indeed, as a reviewer has pointed

out, it only requires the ratio of priors which may be easier to estimate. It also does not require

probabilities such asP (e|∼h).
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coherence and as a measure for comparing explanations. In particular, the way in

which it incorporates dependence between the hypothesis and evidence has been

highlighted as an important benefit in the context of explanation. SinceEPCM is

also able to address the two issues identified, it has clear advantages for explana-

tory inference. In terms of how it deals with the second of these issues, it appears

that inference based onEPCM will still have an advantage over other approaches

such as maximum likelihood as sample size increases. Computer simulations will

now be used to investigate this in more detail.

4 IBE and Truth Tracking Revisited

In order to determine how the new measure fares when used in hypothesis selec-

tion, computer simulations were carried out as in the earlier paper (Glass [2012]).

Consider the case of two mutually exclusive and jointly exhaustive hypotheses,

h1 and h2, each of which can bring about eithere or ∼e. A prior probabil-

ity is obtained from the uniform distribution and assigned to P (h1) and hence

P (h2) = 1−P (h1). By sampling this distribution, one hypothesis is selected and

designated the actual hypothesis. Values are also obtainedfrom a uniform distri-

bution for the likelihoods of the hypotheses,P (e|h1) andP (e|h2). By sampling

the conditional distribution for the actual hypothesis, the outcome is determined

to be eithere or∼e.

Four hypothesis selection strategies can now be considered. Given knowledge

of the prior probabilities, the likelihoods, and the outcome, each strategy uses a

different measure to try to identify the actual hypothesis.The strategies are given
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below:

MPE: most probable explanation; selects the hypothesis with the maximum pos-

terior probability,

ML: selects the hypothesis with the maximum likelihood,

OCM: selects the hypothesis with the maximum value ofEOCM ,

PCM: selects the hypothesis with the maximum value ofEPCM ,

For a given strategy, if it correctly identifies the actual hypothesis, this is counted

as a success, otherwise it is a failure. The process is then repeated 10,000,000

times with different priors and likelihoods and the accuracy of each strategy at

selecting the actual hypothesis is determined. Further approaches could be defined

based on theESS andECT measures presented in section 2, but these approaches

give the same ordering as ML and so would yield identical results.

As described above, there are just two hypotheses and one outcome each time,

but this can be generalized for multiple hypotheses, as in the earlier paper, and

for multiple outcomes (i.e. increased sample size). For multiple outcomes, this

is achieved by sampling the conditional distribution for the probability of the evi-

dence given the actual hypothesis the required number of times to get a sequence

x = (x1, x2, . . . , xn) wherexi is eithere or ∼e. The probability of this sequence

of outcomes given each hypothesis can then be determined under the assumption

that the outcomes are independent and identically distributed and these probabil-

ities used in the four different strategies to select the best hypothesis. In Figure

1, percentage accuracy is plotted for each of the hypothesisselection approaches

against sample size for the case of two hypotheses. As pointed out previously, the

OCM approach achieves an accuracy very close to that of MPE when the sample
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size is one, but as sample size increases it does not track theMPE result so closely.

When the sample size is 20, for example, the accuracy of OCM is about the same

as ML and some way short of MPE. This is consistent with the result in equation

(4) which showed that the ratio ofEOCM to likelihood tends to one in the limit of

large sample size. It should be noted that all of these approaches eventually con-

verge to an accuracy of one as sample size increases, but it isclear that the OCM

approach has limited merit when compared with ML since it only has a significant

advantage for very low sample sizes.
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Figure 1: Accuracy plotted as a function of sample size for each of the different

hypothesis selection approaches when there are two hypotheses.

By contrast, the new measure PCM obtains the same level of accuracy as OCM

for a sample size of one, but continues to track the MPE resultclosely for larger

sample sizes. Again, this is consistent with the result given in equation (9). This

advantage of PCM over OCM is also obtained as the number of hypotheses varies.

Previous work (Glass [2012]) found that the OCM result tracksMPE very closely
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as the number of hypotheses increases when the sample size isone. Unfortunately,

OCM does not perform so well when the sample size is larger as indicated in

Figure 2. For a sample size of 20, OCM gets progressively worserelative to

MPE as the number of hypotheses increases from 2 to 10. Again,however, PCM

performs much better. It is much closer to MPE to start with and continues to

track it closely for larger numbers of hypotheses.
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Figure 2: Accuracy plotted as a function of the number of competing hypotheses

for each of the different hypothesis selection approaches when the sample size is

20.

These results for the PCM approach to hypothesis selection are very encour-

aging. In terms of IBE, if PCM is an appropriate measure for comparing explana-

tions, then these results go some way to showing that IBE does track truth. Fur-

thermore, it does significantly better than ML, and hence than approaches based

on the measuresESS andECT . Let us now consider how PCM performs whenever

there is uncertainty in the priors.
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5 Hypothesis Selection under Uncertainty

This section implements the computer simulations carried out in the earlier paper

(Glass [2012]), but now the PCM approach is included and the simulations are

extended to the case where the sample size is greater than one. The probability

model for priors and likelihoods is the same as in section 4, but in this case the

true prior probability distribution is no longer assumed tobe known. Instead of

adopting the true prior forh1, an incorrect value is obtained in the following way.

A number is drawn from a normal distribution with mean zero and a specified

standard deviation and this is added to the true priorP (h1). We can think of this

as an agent’s subjective prior,P ′(h1), provided it lies between 0 and 1. If it does

not, the process is repeated until a value is obtained in the desired interval. The

corresponding value forh2 is thenP ′(h2) = 1 − P ′(h1). This provides a way of

representing uncertainty in the agent’s knowledge of priors.

Results are presented in Figure 3 for the case of two hypotheses. In Figure 3a,

the results are for a sample size of one and so correspond to Figure 3 in (Glass

[2012]). Note that the results for PCM and OCM are indistinguishable. As ex-

pected, when the standard deviation is small, corresponding to low uncertainty,

MPE outperforms all the other approaches. It is also not surprising that for very

large values, corresponding to a high degree of uncertainty, ML outperforms all

other approaches since it does not depend on the priors at all. However, for in-

termediate values between about 0.25 and 0.55 PCM and OCM outperform both

MPE and ML. Indeed, as reported in the earlier paper, if the results are averaged
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Figure 3: Accuracy plotted as a function of the standard deviation in the case of

two hypotheses for a sample size of (a) 1, and (b) 10.

over the entire range then PCM and OCM come out on top. This suggests that

these approaches are best for hypothesis selection if the degree of uncertainty in

29



the priors is unknown.

However, as Glymour ([2015]) has pointed out there is a problem with the

OCM approach for greater sample sizes. This is illustrated inFigure 3b where the

sample size is 10. Note that for low values of the standard deviation, OCM per-

forms much worse than MPE and it has little advantage over ML.Note, however,

that the results are very different for PCM. It still exhibitsa similar advantage over

MPE and ML as in Figure 3a.
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Figure 4: Accuracy plotted as a function of sample size in thecase of two hy-

potheses for a standard deviation of 0.4.

Figure 4 presents results for a fixed value of the standard deviation (0.4) as

a function of sample size for the case of two hypotheses. Thisis a value where

PCM and OCM outperform MPE and ML for a sample size of one as can beseen

from Figure 3a, but when the sample size has increased to 10, OCM has lost any

advantage it had. By contrast PCM retains its advantage for much larger sample

sizes.
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Figure 5: Accuracy plotted as a function of the standard deviation in the case of

five hypotheses for a sample size of (a) 10, and (b) 30.

Figure 5 presents results for the case of five hypotheses. Clearly, similar be-

haviour is found. The relative merits of PCM over MPE and ML arevery similar
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Figure 6: Accuracy plotted asα varies in the uniform distribution used to represent

uncertainty in the case of two hypotheses for a sample size of(a) 1, and (b) 10.

for sample sizes of 10 and 30, whereas OCM has lost most of its advantage over

MPE and ML for a sample size of 10 and is almost indistinguishable from ML for
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a sample size of 30.

As pointed out in section 2.3, Glymour ([2015]) notes that the results for OCM

do not depend on the normal distribution to model uncertainty in the priors since

similar results are obtained with a uniform distribution. In order to investigate

this point further and in particular to see whether the same applies for PCM, the

following experiment has been carried out. Priors are drawnfrom a uniform dis-

tribution in the interval[max{P (h1)−α, 0},min{P (h1)+α, 1}] (or equivalently

from the interval[P (h1) − α, P (h1) + α] with resampling if the value does not

lie between 0 and 1). Results obtained for the case of two hypotheses and sam-

ple sizes of one and 10 are presented in Figure 6. Overall, these results illustrate

very similar behaviour to those presented for the normal distribution in Figure 3.

Note, however, that PCM only outperforms MPE for values greater than about

0.4, whereas in the case of the normal distribution it outperforms MPE for a stan-

dard deviation of about 0.25. This can be explained as follows. Forα = 0.25

the subjective priors are within 0.25 of the true value whereas this is not the case

for a standard deviation of 0.25 where the subjective priorscan be much greater.

Hence, it seems plausible thatα = 0.25 corresponds to a lower degree of uncer-

tainty than a standard deviation of 0.25 and so the advantages of PCM are greater

in the latter case.

Hence, in addition to the success of the PCM approach when the priors are

known (section 4), the results in this section show that it also performs much bet-

ter than OCM when the priors are not known accurately. Its advantages persist

when there are more hypotheses to be compared, when the sample size increases,

and when uncertainty in the priors is modelled in a differentmanner.
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6 Parameter Estimation and Model Selection

The focus so far has been on applying the PCM and OCM approaches to IBE and,

in particular, to selecting the best hypothesis from a finitenumber of mutually

exclusive hypotheses. However, we can think of the different hypotheses as dif-

ferent values of a discrete random variable and this raises the question whether a

similar approach can be applied to continuous variables. Toanswer this question

the PCM approach will be applied to simple examples of parameter estimation,

where the goal is to obtain point estimates of an unobserved quantity, and the re-

sults compared with two other approaches. After that, we consider whether the

PCM approach can be applied to the model selection problem.

6.1 Parameter estimation

Let X be random variable with observed datax and suppose we want to use this

data to estimate a parameterθ. The maximum likelihood approach to parameter

estimation obtains the valueθ that maximizes the likelihood function. This can be

expressed in terms of maximizing the probability density ofthe observed data as

follows:

θ̂ML = argmax
θ∈Θ

p(x| θ). (10)

An alternative approach to parameter estimation calledmaximum a posteriori

or MAP defines a prior distributionπ(θ) over the parameterθ and then maximizes

the posterior probability ofθ given the data:

θ̂MAP = argmax
θ∈Θ

p(x| θ)π(θ). (11)

Note that this approach corresponds to the MPE approach thatwas used in the
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discrete case.

Following a similar strategy, a new approach to parameter estimation based on

PCM can be defined as follows:

θ̂PCM = argmax
θ∈Θ

p(x| θ)2π(θ). (12)

Let us see how these approaches apply in the case ofn Bernoulli trials such as

the tossing of a coin with an unknown bias,θ ∈ [0, 1], so that the probability ofm

heads inn tosses is given by the binomial distribution:

p(m| θ) =

(

n

m

)

θm(1− θ)n−m. (13)

The maximum likelihood estimation is simply the proportionof heads:

θ̂ML =
m

n
. (14)

MAP estimation requires a suitable prior distribution to bechosen. Adopting a

beta distribution with parametersα andβ so that:

π(θ|α, β) ∝ θα−1(1− θ)β−1 (15)

results in the following MAP estimate:

θ̂MAP =
m+ α− 1

n+ α + β − 2
. (16)

The PCM estimate can be obtained by substituting (13) and (15)into (12), and

then maximizing with respect toθ by taking the log, then the derivative with re-

spect toθ, and then setting to zero. This results in the following estimate:

θ̂PCM =
2m+ α− 1

2n+ α + β − 2
. (17)

35



Before commenting on this result, let us briefly consider parameter estimation

for a one dimensional Gaussian distribution with meanµ and varianceσ2 from

observationsx = (x1, . . . , xn). The maximum likelihood estimation for the mean

is:

µ̂ML =
1

n

n
∑

j=1

xj, (18)

while the MAP estimate is:

µ̂MAP =
nσ2

0

nσ2
0 + σ2

µ̂ML +
σ2

nσ2
0 + σ2

µ0, (19)

whereµ0 andσ2
0 are the mean and variance respectively of the prior distribution.

It is easy to show that PCM gives the following estimate:

µ̂PCM =
2nσ2

0

2nσ2
0 + σ2

µ̂ML +
σ2

2nσ2
0 + σ2

µ0. (20)

For both the binomial and Gaussian cases, the PCM result is obtained from the

MAP result by a factor of two being applied to the data (terms involvingm and

n). This derives from the fact that maximizingp(x| θ)2π(θ) in equation (12) is

equivalent to maximizingp(x,x| θ)π(θ) in equation (11) which corresponds to

the data points inx having occurred twice.

What do these results tell us? It can be shown that the PCM estimates lie

between the ML and MAP estimates. That is, for the binomial case:

min{θ̂ML, θ̂MAP} ≤ θ̂PCM ≤ max{θ̂ML, θ̂MAP} (21)

and similarly for the Gaussian case:

min{µ̂ML, µ̂MAP} ≤ µ̂PCM ≤ max{µ̂ML, µ̂MAP}. (22)

This shows that an approach to IBE based on PCM can be applied notonly to

scientific inference in a general sense, but also to parameter estimation and that
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in doing so it produces sensible results. Furthermore, these results suggest that

this approach might have benefits over the ML and MAP estimates in some cases.

PCM provides a way of taking prior probabilities into accountwithout giving them

as much weight as MAP. And just as this gave rise to better results in some cases

where there was uncertainty in the priors in section 5, so it could result in better

parameter estimates in some cases.

Having shown that PCM can give rise to reasonable results in the case of pa-

rameter estimation, let us now consider whether it might also be applied to the

model selection problem.

6.2 Model selection

In the model selection problem, we can think of a model as a family of statistical

hypotheses such as polynomials of a given order used to fit data in a regression

problem. Suppose we have datax and a set of modelsM. The goal in model

selection is to select the model that scores best according to a specified criterion,

where the criterion is intended to represent a trade-off between the complexity of

a model and how well it fits the data. The Akaike Information Criterion (AIC)

is a well-known approach that is based on the classical statistical procedure of

estimation and is given by (Akaike [1973]):

AIC(M,x) = −2 logp(x | θ̂ML) + 2k, (23)

whereM ∈ M, p is a probability density,̂θML is the maximum likelihood esti-

mate, andk is the number of parameters to be estimated.

From a Bayesian perspective, the posterior probabilities oftwo models,Mi
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andMj can be compared as follows:

p(Mi|x)

p(Mj|x)
=

p(x|Mi)

p(x|Mj)
×

p(Mi)

p(Mj)
, (24)

where the termp(x|Mi)/p(x|Mj) is the Bayes factor (Kass and Raftery [1995]).

Adopting a MAP approach, we wish to find the modelMMAP which maximizes

p(M |x):

MMAP = argmax
M∈M

p(x |M)p(M) (25)

or equivalently we can minimize the negative log to get:

MMAP = argmin
M∈M

[−logp(x|M)− logp(M)] , (26)

where−logp(x|M) relates to how well the model fits the data and−logp(M) is

a penalty term, where smaller values ofp(M) result in greater penalties.

How might the PCM approach be used for model selection? Based onequation

(8), we can compare two models using the following expression corresponding to

(24):
EPCM(x,Mi)

EPCM(x,Mj)
=

p(x|Mi)
2

p(x|Mj)2
×

p(Mi)

p(Mj)
. (27)

Hence, we can select the model that maximizesp(x|M)2p(M):

MPCM = argmax
M∈M

p(x|M)2p(M) (28)

or equivalently we can minimize the negative log:

MPCM = argmin
M∈M

[−2 logp(x|M)− logp(M)] , (29)

and so by comparing (29) with (26) we see that the PCM approach gives more

weight to the data and less to the penalty than does MAP. The challenge for

Bayesian approaches such as MAP and hence for PCM as well is to determine
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the factorp(x|M) and to identify appropriate priors. One approach is to use that

adopted in the Bayesian Information Criterion (BIC) which employs the Laplace

approximation to integrate over the parameter space and assumes that the num-

ber of data points,n, is large so that only terms that depend onn are taken into

account (Schwarz [1978]). This means that the priors drop out. Using the PCM

approach with this approximation yields the the same resultas the standard BIC

approach to model selection, which can be expressed as follows:

BIC(M,x) = −2 logp(x| θ̂ML) + k logn. (30)

These results are somewhat encouraging. Based on (29), we seethat an ap-

proach to model selection based on PCM is similar to MAP, but gives more weight

to the data. Clearly, in cases where a uniform prior distribution is adopted over

models there will be no difference between the approaches. Similarly, given the

assumptions underlying BIC, PCM gives rise to the same results.Hence, just

as Bayesian approaches can be applied to model selection, these results suggest

that IBE based on PCM can be similarly applied. Could PCM have advantages

over other approaches such as BIC? One direction for future work in this area

would be to consider other approximations where differences in the priors of the

models would differentiate between the approaches. Relatedto this, another di-

rection would be to investigate how the PCM approach might be related to other

approaches such as the minimum message length (see Wallace and Dowe [1999]).

Model selection has given rise to debate between Bayesians and non-Bayesians

(see Forster and Sober [1994]; Dowe et al. [2007]), so it would be interesting to

see whether the preliminary work here on an approach motivated by IBE might be

extended to contribute to that debate.
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7 Conclusion

An earlier paper set out to show that IBE tracks truth when the overlap coherence

measure (OCM) was used to compare explanations (Glass [2012]). Interestingly,

when IBE was formulated in this way it was extremely successful at finding the

true hypothesis, almost as good as an approach based on maximizing posterior

probability and better than maximum likelihood. Even more surprising was the

discovery that in some cases where there was uncertainty in the prior probabilities

IBE wasmore successfulat finding the truth than maximizing posterior probability

or maximizing likelihood. These results appeared to achieve more than is needed

to defend IBE as a mode of reasoning.

However, Glymour ([2015]) identified a number of general problems for var-

ious measures that seek to use probability to quantify how well a hypothesis ex-

plains the evidence. Responses have been presented here to his objections con-

cerning ‘excellent but false explanations’ and ‘causal explanation’, but some of

his criticisms of the work on hypothesis selection described above have been ac-

cepted. First, it would be difficult to use OCM in practice since it requires deter-

mining the probability of the evidence which is often unavailable and, second, the

advantages of this approach over maximum likelihood vanishfor larger (but still

relatively small) sample sizes.

To address these issues, a new measure (the product coherence measure, PCM)

has been proposed which has several advantages compared to OCM and solves

both problems. Hence, this new version of IBE, which uses PCM tocompare

explanations, is more successful at tracking the truth thanthe previous version

based on OCM. Some preliminary work has also been presented toshow how this

approach might be applied to parameter estimation and modelselection. Frequent
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criticisms of IBE are that it is not clearly defined and that theconnection between

explanation and truth has not been established. However, ifPCM provides an ade-

quate measure for comparing explanations, then not only does the account of IBE

provided here address both these criticisms, but IBE is shownto track the truth

much more closely than might have been expected. Furthermore, since it is more

accurate at finding the truth than standard approaches such as maximizing poste-

rior probability or maximizing likelihood in cases involving uncertainty and since

these advantages persist for larger sample sizes, IBE may well have scientific as

well as philosophical merit.
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