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Abstract

This paper provides a new approach to inference to the best explanation
(IBE) based on a new coherence measure for comparing how welthespo
ses explain the evidence. It addresses a number of criticisms of the use of
probabilistic measures in this context by Clark Glymour ([2015]), including
limitations of earlier work on IBE (Glass [2012]). Computer experiments
are used to show that the new approach finds the truth with a high degree
of accuracy in hypothesis selection tasks and that in some cases itscgccura
is greater than hypothesis selection based on maximizing posterior proba-
bility. Hence, by overcoming some of the problems with the previous ap-
proach, this work provides a more adequate defence of IBE and sisgge
that IBE not only tracks truth but also has practical advantages overdéhe
vious approach. Applications of the new approach to parameter estimation

and model selection are also explored.
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1 Introduction

Inference to the best explanation (IBE) has often been peapasd defended as
a mode of reasoning in both science and everyday life (s¢em.{2004]). IBE is
also of particular relevance to debates about scientifisreaince proponents of
realism often appeal to it (see Psillos [1999]). The basaioh IBE is that com-
peting hypotheses are compared in terms of how well theya@xghe evidence in
a given context and an inference made to the winning hypsthéhile IBE has

intuitive appeal, it has come in for serious criticism (seetipularly van Fraassen



[1989]), though significant defences have also been predgisee particularly
Douven [1999], [2013]).

A significant challenge for advocates of IBE is to show how arption is re-
lated to truth. Clearly, such a link is fundamental to IBE, big hot immediately
obvious why hypotheses that provide better explanationdovoe more likely to
be true. One approach to this problem is to consider praktbimeasures of
explanatory goodness and investigate, either analyticalvia computer simula-
tions, how successful they are at selecting the true hypmh®arious measures
of this kind have been proposed in the literature (see Saulp[2011a] and ref-
erences therein), but here the focus is on using two measticefierence to rank
explanations.

There has been considerable discussion of probabilisgooaghes to coher-
ence in the literature (see for example Bovens and Hartma@3]2 Olsson
[2005]). In previous work, it was argued that a particulah@@nce measure,
the overlap measure, has some merit as a measure for ranilagations (Glass
[2007]) and, based on simulations, that it tracks truth wheed for hypothesis
selection (Glass [2012]). It was further shown that whemedhg uncertainty in
the prior probabilities of the hypotheses, this measureotdperform other ap-
proaches to hypothesis selection including the approaaimiiaximizes the pos-
terior probability.

This work, along with other probabilistic measures of erplary power, has
received some significant criticisms recently (Glymour13]). In addition to
raising general concerns about the ability of these appexsmto handle cases
involving ‘excellent but false explanations’ and ‘causgpkanations’, Prof. Gly-

mour presents a number of specific criticisms of the coherérased approach to



hypothesis selection. Perhaps the most significant anitien this category is that
in cases where there is uncertainty in the priors the adganté this approach

decreases rapidly as the sample size increases. The fothis ofiginal paper

(Glass [2012]) was on IBE in the context where a hypothesigliscged on the

basis of a piece of evidence. In modelling this probabdaty, the simulations

involved making an inference on a single trial and hence g#asize of one. As

the current work will show, not only is Glymour’s criticisnowect, but even when
priors are known the approach does not track truth as clegsiy the sample size
is larger. As such, more work is needed if IBE is to be defended.

In this paper, another coherence measure is proposed tmerawv alternative
way to rank explanations and it is shown to overcome the prolmioted above and
to address several other concerns identified by Glymoutid®e2 provides a brief
overview of the various measures and considers Glymoutisisms. The new
measure is then presented in section 3 and its performanee applied to hy-
pothesis selection is considered when the priors are knowadtion 4 and when
there is uncertainty in the priors in section 5. Applicasiarf the new approach
to parameter estimation and model selection are explorsedtion 6 before con-

clusions are drawn in section 7.

2 A Responseto Prof. Glymour

For a hypothesid that provides an explanation ef the measures considered
by Glymour include Schupbach and Sprenger’s ([2011]) nreastiexplanatory

power:
P(hle) — P(h|~e)
P(hle) + P(hl~e)’

555(67 h) = (1)
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an alternative measure of explanatory power proposed byi @ngjprentori ([2012]):

P(elh) — P(e)
1 — P(e)
P(e[h) — P(e)
P(e)
and the overlap coherence measure (OCM) used to rank explasdly Glass

([2007], [2012]):

if P(elh) > P(e)

Ecrle,h) = (2)

if Pe|h) < P(e).

P(h Ne)
—. 3

P(hVe) ®)
The focus here is on responding to criticisms insofar as &pply toEocas, but

5OOM(€a h) =

the other measures are included for comparative purposes all three can be
used to compare hypotheses in terms of how well they exgiaietidence. Other
measures considered by Glymour include Myrvold's ([2003@asure of unifica-
tion, Wheeler’s ([2009]) measure of coherence or ‘focusedetation’ and Fitel-
son’s ([2003]) measure of coherence, but these measuregpwmyosed to address
different problems and are not so relevant to the currenédap

Before responding to criticisms, it is worth noting someeliéinces between
Eocy on the one hand angks and&q-+ on the otherEgqg and&q- are both mea-
sures of confirmation or relevance since it follows from tlukfinitions that ifh
explainse, then the degree of explanatory power is greater than (e¢quakess
than) O if and only ifP(e|h) is greater than (equal to / less thaR)e). Schup-
bach and Sprenger seek to explicate explanatory powenmstef the ability of a
hypothesis ‘to decrease the degree to which we find the eapthnm surprising’
([2011], p. 108) and Crupi and Tentori adopt this approacb.afs -, by con-

trast is not a confirmation measure and so a high value doesenessarily imply

Though Fitelson’s measure has been used to rank explasaiimh compared witloc

previously (Glass [2012]).



positive relevance. This is because a high prior probgldit a hypothesis could
compensate to some extent for negative relevance.

A further difference is that in proposir&y -, the focus was on using it in the
context of IBE to compare different hypotheses in terms of la@N they explain
a common explanandura, so thath, is to be preferred over, as an explanation
foreif Eocnr(e, hi) > Eocn(e, ho) (See Glass [2012]Ess andEqr are intended
not merely for comparative purposes, but to provide a satisfy absolute value
of explanatory power. Of course, they can then be used to amrip/potheses,
but in fact for a given explanandum bafls and&q-+ will give the same ordering
of hypotheses and this turns out to be the same orderingas lgvthe likelihood,
i.e. hy is to preferred oveh, as an explanation farif P(elh,) > P(e|hs).

Much more could be said by way of comparison of the differguraaches.
For example, arguabl§ss and&Eq-r can be construed as alternative measures of
the extent to which a hypothesis leads us to expect the expiam given the
truth of that hypothesis, whereds,, also attempts to take into account how
plausible the hypothesis is in the first place. This might mimatEss andEqr
should not be seen as rivals o), but rather as explicating a different con-
cept. However, a detailed comparison is beyond the scopesgb@per and so the
above discussion is just intended to provide some relevaniegt before consid-

ering Glymour’s criticisms.

2.1 Excellent but false explanations

The first problem arises from the fact that scientific theocdan provide excellent
explanations even though they are now known to be false. As@lr points

out, ‘Newtonian explanations of various planetary orlwtsof Kepler’s laws, still
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count as explanations although the falsity of Newtoniaothés settled’ ([2015],
p. 594). The difficulty is that if the probability assignedadheory is zero, the
measures ‘that are functions of the unconditional or camt probability of a
hypothesis are either undefined or give perverse resultste that&ocn, will
have the value zero in such cases.

Glymour discusses a suggestion from a reviewer to treabrigal hypothe-
ses as true and make the probabilities to be the subjectolepilities of those
who justly accepted the theories. He rightly raises corgabout this proposal,
mentioning problems about how to compare the explanatonepof historical
theories that cannot both have probability one as well d&dlfies concerning
probability and acceptance. Apart from this particulargm®al, though, Gly-
mour also raises more general problems about which protiedihre to be used.
Should we use our marginal probabilities for the hypothesekthe evidence or
those of historical figures or perhaps some combination®two? And this is
further complicated by the fact that the same question camaibed for the vari-
ous likelihoods. If we use our probability for the evidendeaen dealing with past
cases then the probability of the evidence will be one, wipigsents problems
for confirmation measures lik& s and&qr.

Of course, many of these and related questions can be raisiee context of
Bayesianism, but those debates will not be revisited herd&e@p the discussion
more focused, let us consider whether there are problengsthat go beyond

those faced by the Bayesian. And it seems there are. In deaithchistorical

2|f regularity is assumed, then the theory will not be assigagrobability of zero, but if it
is assigned a very low value, thélyc,, will also be very low provided the probability of the

evidence is not too low.



cases, Bayesians will attempt to capture key aspects oftsimeaasoning by us-
ing probabilities (both marginal and conditional) that \wbliave been reasonable
in that context. Now, of course, questions can be raisedtabat;, but propo-
nents of the measures of explanatory power might appearrtakéng ahistorical
claims about scientific theories and in that case Glymouwrgerns seem partic-
ularly pertinent.

In response, it can be noted that this appearance is misbtpadt least in
the context in which€yc), was proposed. As noted earlier, it was proposed to
compare explanations in the context of IBE. This means tloalytapplies, just as
Bayesianism does, in contexts where there are competinghsges, each with a
probability greater than zero and less than one. Hefige,, was not intended to
provide a value of how well a theory that is now known to bedagplains some
body of evidence, a value which could then be compared wahdha current
theory. If we are usingoc s to implement IBE in order to compare current viable
theories, it seems appropriate tdat,, gives a value of zero to theories that are
known to be false since they are no longer viable options @amdddo not need
to be considered in IBE. Alternatively, if we are usifig-,, to implement IBE in
order to capture aspects of scientific reasoning in a hestbdase then a theory
that is now known to be false could be given a non-zero prdibafand non-zero
value ofEpcyy) if it was a viable option at the time. Also, since the focusis
the comparative use of this measure, precision in detengpithie absolute values
is not so important provided reasonable judgments can be @taalit the ranking
of explanations.

In light of the comments made earlier, it is not so clear whethis response

is open to the proponents 6fs and&qr. It is doubtful whether they can focus



solely on comparative judgments since these measuresivéltige same ranking
of hypotheses for a given explanandum. Furthermore, Glyimoancerns would
need to be addressed if the explanatory merits of theoriwsegarded to be false
are to be compared with those of current theories. Howeyerestricting their
measures to particular historical contexts perhaps a nsgpglong similar lines is
possible.

The claim here is that in terms of concerns about which pritibab should
be used, i€y, is used as intended in the context of IBE, it faces no problems
over and above those faced by Bayesianism. This of courseedth like a weak
response to those who think that Bayesianism has no ademsgtense to these
kinds of concerns, but to go further than that in this papeulddake us too far
off track.

A possible objection to the response outlined here is timatesihe approach
is not intended to quantify the explanatory power of theotleat are known to
be false, it is inadequate as an approach to IBE; insteadoitldlbe seen as an
approach to model selectiérClearly, as Glymour has pointed out, false theories
can still count as explanations. Hence, if one assumes tiyaagproach to IBE
based on the sorts of quantitative measures consideredlin@ukl provide reason-
able non-zero values to false theories, which could therobepared with other
theories, then this is a reasonable objection. Howeves,nbt clear that IBE re-
guires such a general comparison of theories. In his impbb@ok on IBE, Peter
Lipton characterized it in terms of inferring the best exgatgon out of a pool of
potential explanations. One option he considered woula lrectude all possible

explanations within the pool, but Lipton’s favoured optigas to ‘define the pool

31 would like to thank a reviewer for raising this objection.



more narrowly, so that the potential explanations are dmy‘live options”: the
serious candidates for an actual explanation’ (Lipton 2@059]). In either case,
however, the pool of potential explanations would not idelany theories known
to be false. Understood in this way, using a measure suéhpag to compare
‘live options’ is compatible with IBE.

The suggestion that the approach being advocated shouldderstood in
terms of model selection is reasonable, but understantinghis way need not
be incompatible with IBE. Whatever the merits of Bayesianisgsproponents
seek to apply it not only as a general approach to scientifiizence in contexts
where IBE might be applied, but also to the problem of modeltain in statis-
tics. The current work could be seen as an attempt to do samgesimilar for
IBE. By articulating IBE in terms of probabilistic measures an@luating its
performance in various inference tasks, it provides arairstep towards an IBE-
based approach to model selection. More will be said ab@utdmnection with

model selection in section 6.

2.2 Causal explanation

Suppose:; ande; are probabilistically independent effects of a common eaus
h. If h raises the probability of; ande,, Glymour points out that the various
measures (apart from Myrvold’s and Wheeler’s) give a pasit@liue. Glymour’s
concern is that the measures ‘confound probability or jgted relations with ex-
planatory relations’ ([2015], p. 596). He acknowledged thaossible response
to this problem is to claim that the measures are ‘to be apmmy in cases
which, on other grounds, an explanatory relation obtaira/é&en two proposi-
tions’ (Glymour [2015], p. 596). This point is emphasizeddnth Glass ([2007])
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and Schupbach ([2011]), but Glymour thinks that this is etadte.

To make his point he discusses another case where there mraarocause,
h say, ofe; ande,, but this timee; is also a cause af,. He considers the par-
ticular case in which the probability relation betwegrande, arising from the
causal pathway between them is exactly cancelled by theapiity relation be-
tween them due to their common cause. He claims that ‘evargththe value of
e; causes and helps to explain the valueegfaccording to all the probabilistic
measures of explanatory power,has no power to explai,’ (Glymour [2015],
p. 596). While this is correct for th€ss andE-r measures since, ande, are
probabilistically independent and hence have an explanatwver of zero, it is
not correct for the€, -, measure. Consider the following example. Let

P(esler&h) = 0.9,

P(ey|~e1&h) = 0.8,
P(es]e1& ~h) = 0.55,
P(eg|~e & ~h) = 0.2,
P(e1]h) = 0.3,
P(ey|~h) =0.8,

P(h) =04,

P(~h) = 0.6.
It is easy to show thaP(es|e;) = P(es|~e;) = 0.62 and hence:; ande, are
independent even though they are positively dependentadnather giverh and

also given~h. If e; is a cause oé,, then the positive influence betweenand
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eo IS cancelled by the probability relation between them du¢gh&r common
cause. However, it turns out th&bc(e2, €1) = 0.4387 whereasfsg(es, e1) =
Eor(ea,e1) = 0. Furthermore oo (e2, ~e1) = 0.3212 and soe; provides a
better explanation of; than doesve;. Hence,£ocy deals with this case in a
satisfactory manner.

While this response is not open to advocate§g@fand&q-r, they could argue
that in cases involving common causes the explanatory pevweibe determined
by conditioning on each value of the common causes. Thessuresawill typi-
cally give different values, as willoc,/, in examples such as the one above when
conditioning onh and~h respectively. However, Glymour considers and rejects
this response precisely on the grounds that ‘conditionmditierent values of the
common causes will give different values to the measuresmfeatory power’
([2015], p. 596). It is difficult to see why this is a problem.the example above,
the focus is on how welk; explainse,, but sinceh is also causally and hence
explanatorily relevant te; ande,, there is no reason to think that the extent to
which e; explainse; should be the same irrespective of whethés true or false.
For example, when considering the likelihoods in the exangplen above, it is
clear that the difference (and ratio) between the proldgwh e, givene; ande,
given~e; is greater when conditioning dnthan on~h.

In a final point about causal explanation, Glymour drawsnéitte to an ap-
proach to explanatory power based on the difference betweeprobability of
the effect,e, when a manipulation is carried out to force a causal vagiablto
take on the value true and the corresponding probabilitynndnenanipulation
forcesH to be false. Several points can be made in response. Firi thbre is

certainly merit to this approach it is not immediately clézat it should be seen
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as a rival to the approaches based on the various measuteséahaiticized by
Glymour and, even if it is, more detailed argument would bedn® show that
it is superior to these approaches. Second, manipulatiobeancorporated into
these approaches (see Eva and Stern [2018]). Finally, wititeporating manip-
ulation seems appropriate for quantifying causal influenée not clear that it is
the right approach for quantifying explanatory power. Ascdssed earlie€ss
and&qor can be construed as measures of the extent to which a hyolbads
us to expect the explanandum and it seems plausible to ia@gmanipulation
into measures of this kind.o,; also attempts to take into account how plausible
the hypothesis is in the first place, but this is missing whamipulation is taken
into account since the relevant hypothesis variable is lsifigpced to be true or

false.

2.3 Finding thetruth

In addition to the problems discussed so far, Glymour alsavdrattention to the
limitations of the various measures in hypothesis seleaitd he focuses in par-
ticular on the use of théy,, measure by Glass ([2012]) since it seemed to show
some merit in this regarl A general problem for using these measures as statis-
tical tests concerns how various probabilities, suctP&g~h) and P(e), are to

be acquired. Focusing af(e), he rightly points out that ‘hypothesis selection by
statistical testing requires comparing ratios so that thegbility of the evidence

does not appear’ (Glymour [2015], p. 601). This criticisngjiste legitimate and

4Glymour also presents criticisms of the psychological ptedrried out by Schupbach

([20114a]), but these will not be considered here.

13



so whatever the merits of ti&),, in hypothesis selection, this presents a limita-
tion on its practical usage. A new measure will be proposeéation 3 to address
this problem.

Previous work employed computer experiments to compareviriwarious
measures performed in a hypothesis selection task (Gl8&2]R Prior probabil-
ities of hypotheses and likelihoods were randomly seleftted uniform distribu-
tions and then one of the hypotheses was selected as thé¢ [agbothesis based
on the prior distribution. Eitheg, or ~e¢ was then selected based on the likeli-
hood for the actual hypothesis. Various measures were thed 10 select the
best hypothesis (i.e. the one that had the highest scorediwea measure) and
if it matched the actual hypothesis it was counted as a ssdoeshat measure.
This process was repeated ten million times to get an accpretiure of how well
the various measures performed. The results showed tleatisgl the hypothesis
with the greatest value &), gave results that closely tracked hypothesis selec-
tion by maximum posterior probability and outperformedth# other measures,
including maximum likelihood.

The same paper also considered cases where there is umiyeataimodelled
by a normal distribution in the prior probabilities or, totpianother way, where
the prior probabilities are subjective and do not corregdorthe objective prob-
abilities. These subjective priors along with the actuadlihoods were then used
in the various measures and the experiments re-run. Thésehowed that if
there is sufficient uncertainty in the priors, then selertime hypothesis with the
greatest value of,; gave more accurate results than hypothesis selection by
maximum posterior probability.

Referring to work by Teng et al. ([unpublished]), Glymoure®that the re-

14



sults do not depend on the choice of the normal distributtomadel uncertainty
since similar results are obtained when a uniform distrdouis used (see section
5 below for further discussion of this point). However, Glyun raises several
concerns about these findings. First, he claims that thendalya of the€yc
measure vanishes with small errors in the specificationkefiioods. It is true
that the advantage over maximum posterior probability $¢ Vehen there are er-
rors in the likelihoods, but as shown by experiments cawigtidy Glass and Mc-
Cartney ([2014]), when there are errors in the likelihoodsrmt the priors, the
approach based on tl& -, measure still tracks maximum posterior probabil-
ity quite closely and it performs much better than the otheasures considered,
including maximum likelihood.

Second, Glymour says that the approach based o&84hg measure never
dominates maximum likelihood. However, as just noted, @slim fact dominate
it when there are errors in the likelihoods but not in the midt also dominates
maximum likelihood in cases where there are no errors (fallssample sizes)
in either the priors or the likelihoods. Where it fails to domie maximum like-
lihood is in the case where there are errors in the priors. é¥ew of the three
approaches compared in this case (Glass [2012]) — maximstepor probabil-
ity, maximum likelihood and the approach based ondbg,; measure — no ap-
proach dominates the other two for the range consideredhwas for values of
0 to 1 for standard deviations in the prior probabilitieswdoer, the€y-,, mea-

sure performed better than maximum likelihood for valuegt0 to 0.7 and better

SMore experiments would need to be carried out to investigases where there are errors in
both priors and likelihoods, but based on experiments tha¢ lbeen carried out it seems likely
that unless the errors for the prior were very large&be; measure would perform better than

maximum likelihood.
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than maximum posterior probability for values from 0.4 tdVloreover, when the
results were averaged over the entire rangefthe,, measure performed best.

Third, Glymour points out that in cases where there are mrein the prior
probabilities the advantage of tlsg~,, measure over other measures vanishes
when the sample size increadds. fact, as we shall see in section 4 its advantage
over maximum likelihood vanishes for a sample size of absuthd so a signif-
icant advantage only occurs for very small sample sizess, Hhs, is correct and
it also applies when there are errors in the priors (also showection 4).

This issue is closely related to another point mentioned bym@ur: the
asymptotic behaviour of the various measures. The med&surg (e, h) can be
expressed a P(}lle) + ﬁ — 1] 71. Since it incorporates both the likelihood and
the posterior probability, this explains why it gives bettesults than maximum
likelihood for small sample sizes (when there are no ernoithé priors or like-
lihoods). What is the asymptotic behaviour&f-,, in the limit of large sample
sizes? Let,, represent the evidence for a sample size.ofaking the limit of the

ratio of €51 to the likelihood gived:

lim Eocm(en, h)

T Plen) D @

which explains why the advantage &b, (e, h) over maximum likelihood de-

creases as the sample size increases. This behaviour enefidm results pre-

5Glymour actually refers to the advantage over posteriobabdity, but since there is no ad-
vantage over posterior probabilities unless there aresimahe priors he presumably means the

advantage over other approaches such as maximum likelihood
"€ocm(en, h) = P(en|h)P(h)/P(e,Vh) and hence the ratio can be written/2&:) / P(e,, V

h). Assuming the probability of each outcome is less than dve the limit of P(e,,) asn tends
to infinity is zero and hence the limit d?(e,, VV h) asn tends to infinity isP(%). Hence, the limit

of Eocar(en, h)/P(en|h) asn tends to infinity isl.
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sented in section 4.

In summary, Glymour has raised a number of very interestiajlenges for
measures of explanatory goodness. In offering a respdmséotus has been on
the Eocp measure. It has been argued that the problem of ‘excellanfalze
explanations’ is no more serious for this measure than wridBayesianism and
that adequate responses are available in the case of capkaiaions. However,
in the context of usingoc,, for hypothesis selection, there are two significant
issues to which no adequate response has been providet. usirgy this mea-
sure to compare hypotheses requires obtaining probabilithich are difficult to
determine in practice and, second, the advantage dshg; vanishes for larger
(but still relatively small) sample sizes.

It could perhaps be argued that these problems serve tadhgfimitations
of using the€y ), measure in practice, but do not undermine it as a measure that
can be used to show that IBE tracks truth. Indeed, when IBE mdtated using
Eoc 1t tracks results obtained by maximizing posterior probgbclosely for
very small sample sizes, performing better than maximuelilibod, and as the
resultin (4) shows, it gives the same results as maximurfiiked in the limit of
large sample sizes. Nevertheless, a new measure will nowrsdered in order

to address some of the practical limitations of the&be,, measure.

3 A New Measurefor Comparing Explanations

For a hypothesis that explains:, a simple measure of how good an explanation

it is can be defined as the product of the likelihood and pmstprobability:
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Epcur(e, h) = P(elh) x P(hle), (5)

which will be referred to as the product coherence measutdijP Note that
given Bayes’ theorem, it can also be expressef@sh)>P(h)/P(e) or alterna-
tively asP(hle)?P(e)/P(h).

As the name suggestSpc); can be considered as a coherence measure. In
fact, it has many features in common with the overlap colmremeasurefoc,.
Clearly, its range is the interval, 1] with Epcy(e,h) = 0 when P(elh) =
P(hle) = 0 and&pcpr(e,h) = 1 when P(e|lh) = P(hle) = 1. If itis just
used as a coherence measure (in which case it need not beealsthath ex-
plainse according to some account of what constitutes an explanéatics means
that consistent logically equivalent beliefs are maxisnathherent (for example,
Epcu(e, e) = 1), while logically inconsistent beliefs are incoherentr @ample,
Epcu(e, ~e) = 0). Like Eocnr, Epcn depends only on the extent of agreement
between two beliefs rather than how probable those belrefsnathe first place.
More precisely, for fixed values of the relevant conditiopadbabilities,P(e|h)
andP(hle), it is independent of prior probabilitiés.

Hence, like the overlap measuig;,, exhibits the characteristics of a par-
ticular type of coherence — coherence as agreement ratlieashstriking agree-
ment — which has been argued in previous work to capture ineirituitions
about coherence better than other approaches (Glass )260&Jever, arguably

it also has some advantages over the overlap measure. Not€qth, can be

8See (Glass [2005]) for further discussion of this point. aotfEpc,, was mentioned in a

footnote in this paper.
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expressed as:
P(e Ah)
P(e)P(h)

where the first term on the right hand side is Shogeniji’'s mreasticoherence

EPCM(e,h) = X P(e A h), (6)

(Shogenji [1999]). Like many of the coherence measuresqsegh in the litera-
ture, Shogenji’'s measure is also a relevance or confirmatigasure (in fact, it is
the ratio measurd; (h|e)/ P(h) of confirmation), whereas this is not true of either
Eocm O Epcyr. However, as equation (6) showd; -, can be expressed as the
product of a confirmation measure and the joint probabiBty.taking confirma-
tion into account, it is sensitive to the dependence betviiemde in a way that
Eocr 1S Not.

Consider an example adapted from Bovens and Olsson ([200@]ydight
the difference between coherence as agreement and coberestriking agree-
ment. Suppose there is a roulette wheel with one hundred etsnalmd in the first
scenario Joe says the winning number is 49 or 50 and Amy s&y/S@or 51. In
the second, scenario Joe says the winning number is 41, 42r 60 and Amy
says it is 51, 52,.., or 70. As measures of coherence as agreendgit,, or
Epcy Will each yield the same degree of coherence in both casg$od€oc s
and 1/4 for€pcy,. However, now consider a third scenario where Joe says the
winning number is 41, 42,.., or 50 and Amy says it is 41, 42, ., or 70. In
this case&pcis gives the same result of 1/3 as in scenarios one and two $iace t
relative overlap is unchanged, i, gives a higher coherence than in the other
two scenarios (1/3 compared to 1/4). The difference lieh@nfact that there is
stronger dependence between the statements in this caselsigis being correct

entails that Amy is also correét.

9This difference betweefio s and&pc s leads to a possible disadvantage€iq-,, because
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A well known problem with the overlap coherence measureasifht is ex-
tended to multiple belief in the obvious way so tlgt- s (hy, ..., h,) = P(hy A
...\hy)/P(hyV...Vh,), then coherence cannot increase as the number of beliefs
increases. However, it seems clear that acquisition dféurbeliefs can enhance
the coherence of previously held beliefs. For example, &iyweés a bird’ does not
cohere well with “Tweety cannot fly’, but combining theseibfd with ‘“Tweety is
a penguin’ results in much greater coherence. In light ob&qo (6), an obvious
way to extendp-,, to the general case is as follows:

P(hy A ... Ahy)

Epcar(h, ... hy) = P(hy)...P(hy)

X P(hy A ... A ), 7)

which avoids the problerf. Suppose for example that = h; A h, then it is
easy to show thafpcys(hi, he, hs) > Epcar(hi, he). ExtendingEpcyy in this
way makes it a sort of hybrid between measures of agreeméthw is in the
case of two beliefs, and measures of striking agreementuallg, this means it
is able to capture the merits of different measures sucheasuérlap coherence
measure and Shogenji's measure.

In previous work (Glass [2007]), it was argued that whiler¢hes merit to

Eocr s known to be truth-conducive in the case of informationrpéGlass [2007]). It fol-
lows from these differences théb ), is not truth-conducive for the same setagfteris paribus
conditions, though it can be shown to be truth-conduciveaferspecificceteris paribuscondi-
tions are defined. However, arguably truth-conduciveniessld not be considered as an adequacy
condition for coherence: coherence measures should beduaigother criteria and then their con-
sequences for truth-conduciveness evaluated. As arguedthere are reasons to pretasci,

to Eocr @s a measure of coherence and it turns out to have betterqumrsees for explanatory

inference.
100ther generalizations could also avoid this problem. Fangxe, it could be generalized to

takej-wise (in)dependence, wheje< n, into account, see Schupbach ([2011b]).
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using either the posterior probability of a hypothedi§/|e), or its likelihood,
P(e|h), to rank explanations, these approaches also face problemas also
claimed that€s), takes account of their advantages while avoiding their prob
lems. The same points could be made in favou€ &f,, since it is also a com-
bination of posterior probability and likelihood. One peutar reason wWhy pc s
is a plausible candidate for comparing explanations is tha&t £y, it satisfies
the explanation ranking condition (Glass [2007]), which be stated as follows:
For two hypotheses;; andh, that explaine, if P(e|hy) > P(e|hs)
andP(hi|e) > P(hs|e) thenh, is a better explanation efthanhs,.
Furthermore, in terms of differences betwe®gs,, on the one hand antks and
Ecr on the other, the same points could be made abpyt,. In particular, like
Eocus Epcr 1S NOt @ confirmation measure and so a high prior probabitityaf
hypothesis could compensate to some extent for negatigearste. In addition,
the responses presented in defenc€®f,, in sections 2.1 and 2.2 to the ‘excel-
lent but false explanations’ and ‘causal explanation’ otigms, apply equally to
Epcm-

Some advantages é%¢,, overEocyr as a measure of coherence have been
noted and one of these is also an advantage&fen, over Eocy @s a measure
of explanation. As discussed earlier, equation (6) shows&h-,, can be ex-
pressed as a product of a confirmation measure and the jabapility. Given
that the approach to explanation in this paper takes intoladdow plausible the
hypotheses are in the first place, there are reasons forpnef€ocns Or Epcns
to either€ss or Ec1 as a measure for comparing explanations. However, the de-
pendence between the hypothesis and the evidence is cefadyor in how well

the hypothesis explains the evidence and this providessome® prefelfpcns
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to Eocs in the context of explanation. Suppose there are two hygete, and
hs, each of which provides a potential explanation of evidencé&urther sup-
pose thatP(e) = 2/5, P(hy) = 2/15, P(he) = 2/3 and thath, entailse so that
P(elhy) = 1 while h, is probabilistically independent efso thatP(e|hy) = 2/5.
It is easy to show thafocns(e, hi) = Eocni(e, hy) = 1/3 and so€pcy fails to
discriminate between the hypotheses. By cont@sta, (e, h1) = 1/3 > 4/15 =
Epcu (e, hy). More generally, in cases where two hypotheses have edatilee
overlap as measured By, but where one hypothesis,, entails the evidence,
while the otherh.,, neither entails nor is entailed by the evidence &hg), mea-
sure will favourh, .t

Recall that there were two problems for which no defencéf,; was pro-
vided in section 2. DoeSp( ), fare any better? FirsEoq,, requires the probabil-
ity of the evidence to be determined and yet often this is ait@vle. By contrast,
the probability of the evidence is not needed when compaither likelihoods or
posterior probabilities. In the case of posterior probaéd, ratios can be taken,
in which case the prior probability of the evidence cancelsso that just the like-
lihoods and priors are needed. Sirif&:,, is just a product of the likelihood and
posterior probability it also avoids the problem. Suppaege hypotheses; and

hs are to be compared. This can be done as follows:

-1
HSince&oc (e, h) can be expressed {W + ﬁ - 1} , it follows thatﬁ +
PRy = Poae) T Py Furthermorep(e|hy) = 1 sinceh, entailse, and soP(e|hy) ™! <
min{P(e|h2) ™, P(hale)~1}. SupposeP(e|h1)~t = min{P(e|hy)~t, P(hale)~t} — &, where

§ > 0, and hence’(hyle) ™' = max{P(e|hy)™1, P(ha|e)~1} +§. From this it can be shown that

P(elhile) x P(hi|e) > P(e|lhs) x P(hale) and sa€pcns(e, h1) > Epcni(e, ha).
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5PCM(€, h1) - P(e\hl) X P(h1|€) . P(@]h1)2 X P(h1>
- - 2 ) (8)
Epcn(e,he)  Plelhy) x P(hale)  P(elhy)? x P(hs)
and hence there is no need to determine the probability oftftence. Hence,

from this practical point of view€ pcy, has a significant advantage ov&yq;.*?

Second, the advantage of comparing explanations sjpg, over likelihood
decreases with increase in sample size and this was exglainthe fact that in
the limit of large sample size the ratio 6§, to the likelihood tends to one,
but this is not the case witBpcy,. As with Eocar, Epcnr combines both the
posterior probability and likelihood, but taking the linat the ratio ofEpcy, to
the likelihood trivially gives:

Ji S = J Pt ©
and so the influence of the posterior probability is retainedsample size in-
creases, which is not the case &y, as is clear from equation (4). The signif-
icance of this contrast betweén,; andEocys Will be investigated experimen-
tally in section 4.

Previous work made a case ., as a measure for comparing explanations
Glass [2007, 2012] based on its properties as a coherencgineedlowever, as
we saw in section 2, two shortcomings with this approach videatified. To
address these issues, a new coherence measure has beese@&pe,,. The
previous arguments in support 86y, all apply toEpcas as well, but further

motivation for€pcj; has been provided both in terms of its merits as a measure of

120f course £pc s requires the prior probabilities of the hypotheses, buhis tespect it is no
worse than hypothesis selection based on posterior pitabideed, as a reviewer has pointed
out, it only requires the ratio of priors which may be easteestimate. It also does not require
probabilities such a®(e|~h).
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coherence and as a measure for comparing explanationstticuper, the way in
which it incorporates dependence between the hypothedis\adence has been
highlighted as an important benefit in the context of expiana Sincefpc,, is
also able to address the two issues identified, it has cleansaes for explana-
tory inference. In terms of how it deals with the second ofthissues, it appears
that inference based &b, will still have an advantage over other approaches
such as maximum likelihood as sample size increases. Congutelations will

now be used to investigate this in more detail.

4 |BE and Truth Tracking Revisited

In order to determine how the new measure fares when usegtigsis selec-
tion, computer simulations were carried out as in the egolger (Glass [2012]).
Consider the case of two mutually exclusive and jointly extiza hypotheses,
hi and hy, each of which can bring about eitheror ~e. A prior probabil-
ity is obtained from the uniform distribution and assigned/(/;) and hence
P(hy) = 1— P(hy). By sampling this distribution, one hypothesis is selectetl a
designated the actual hypothesis. Values are also obthioreda uniform distri-
bution for the likelihoods of the hypothesd3(e|h,) and P(e|hy). By sampling
the conditional distribution for the actual hypothesig thutcome is determined
to be either or ~e.

Four hypothesis selection strategies can now be considéieen knowledge
of the prior probabilities, the likelihoods, and the out@reach strategy uses a

different measure to try to identify the actual hypotheSise strategies are given
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below:
MPE: most probable explanation; selects the hypotheskstivt maximum pos-

terior probability,
ML.: selects the hypothesis with the maximum likelihood,
OCM: selects the hypothesis with the maximum valu€&f,,,
PCM: selects the hypothesis with the maximum valu&f,,,

For a given strategy, if it correctly identifies the actuapbthesis, this is counted
as a success, otherwise it is a failure. The process is thpmated 10,000,000
times with different priors and likelihoods and the accyrat each strategy at
selecting the actual hypothesis is determined. Furtheoagpes could be defined
based on thé€ss and&-1 measures presented in section 2, but these approaches
give the same ordering as ML and so would yield identicalltesu

As described above, there are just two hypotheses and ooenoeieach time,
but this can be generalized for multiple hypotheses, asaretrlier paper, and
for multiple outcomes (i.e. increased sample size). Fotipialoutcomes, this
is achieved by sampling the conditional distribution fog throbability of the evi-
dence given the actual hypothesis the required number ektimget a sequence
x = (x1,29,...,x,) Wherex; is eithere or ~e. The probability of this sequence
of outcomes given each hypothesis can then be determines thmelassumption
that the outcomes are independent and identically disathand these probabil-
ities used in the four different strategies to select the bggothesis. In Figure
1, percentage accuracy is plotted for each of the hypotksesistion approaches
against sample size for the case of two hypotheses. As pladuotigpreviously, the

OCM approach achieves an accuracy very close to that of MP teesample
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size is one, but as sample size increases it does not trabkREeaesult so closely.
When the sample size is 20, for example, the accuracy of OCMoigtabe same
as ML and some way short of MPE. This is consistent with thalté@s equation

(4) which showed that the ratio é% ¢, to likelihood tends to one in the limit of
large sample size. It should be noted that all of these appesaeventually con-
verge to an accuracy of one as sample size increases, botetisthat the OCM
approach has limited merit when compared with ML since iydvas a significant

advantage for very low sample sizes.
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Figure 1: Accuracy plotted as a function of sample size fahez the different

hypothesis selection approaches when there are two hygesthe

By contrast, the new measure PCM obtains the same level ofaaycas OCM
for a sample size of one, but continues to track the MPE retusely for larger
sample sizes. Again, this is consistent with the resultrgimeequation (9). This
advantage of PCM over OCM is also obtained as the number of hgpes varies.

Previous work (Glass [2012]) found that the OCM result tradiBE very closely
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as the number of hypotheses increases when the sample@nee ignfortunately,
OCM does not perform so well when the sample size is larger disated in
Figure 2. For a sample size of 20, OCM gets progressively watsive to
MPE as the number of hypotheses increases from 2 to 10. Agaivever, PCM
performs much better. It is much closer to MPE to start witd aantinues to

track it closely for larger numbers of hypotheses.
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Figure 2: Accuracy plotted as a function of the number of cetimg hypotheses
for each of the different hypothesis selection approacheswthe sample size is
20.

These results for the PCM approach to hypothesis selecteowuesy encour-
aging. In terms of IBE, if PCM is an appropriate measure for camnmg explana-
tions, then these results go some way to showing that IBE daek truth. Fur-
thermore, it does significantly better than ML, and hence #yaproaches based
on the measureSss and&qr. Let us now consider how PCM performs whenever

there is uncertainty in the priors.
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5 Hypothesis Selection under Uncertainty

This section implements the computer simulations carrigdrothe earlier paper
(Glass [2012]), but now the PCM approach is included and thmilsitions are
extended to the case where the sample size is greater tharnTbagrobability
model for priors and likelihoods is the same as in sectionud jirbthis case the
true prior probability distribution is no longer assumed®known. Instead of
adopting the true prior fok,, an incorrect value is obtained in the following way.
A number is drawn from a normal distribution with mean zerd anspecified
standard deviation and this is added to the true pFigr;). We can think of this
as an agent's subjective prid?;(h,), provided it lies between 0 and 1. If it does
not, the process is repeated until a value is obtained ineéseat! interval. The
corresponding value fa¥, is thenP’(hy) = 1 — P’(hy). This provides a way of
representing uncertainty in the agent’s knowledge of prior

Results are presented in Figure 3 for the case of two hypahé&s€igure 3a,
the results are for a sample size of one and so correspondjtioel3 in (Glass
[2012]). Note that the results for PCM and OCM are indistingaide. As ex-
pected, when the standard deviation is small, correspgndiiow uncertainty,
MPE outperforms all the other approaches. It is also notrging that for very
large values, corresponding to a high degree of uncertdifityoutperforms all
other approaches since it does not depend on the priors atlaWever, for in-
termediate values between about 0.25 and 0.55 PCM and OCMrfartpeboth

MPE and ML. Indeed, as reported in the earlier paper, if tselte are averaged
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Figure 3: Accuracy plotted as a function of the standardat®sn in the case of

two hypotheses for a sample size of (a) 1, and (b) 10.

over the entire range then PCM and OCM come out on top. This stgyteat

these approaches are best for hypothesis selection if tireelef uncertainty in
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the priors is unknown.

However, as Glymour ([2015]) has pointed out there is a miobWith the
OCM approach for greater sample sizes. This is illustratédgnre 3b where the
sample size is 10. Note that for low values of the standariatien, OCM per-
forms much worse than MPE and it has little advantage overNtite, however,
that the results are very different for PCM. It still exhikdtsimilar advantage over
MPE and ML as in Figure 3a.
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Figure 4: Accuracy plotted as a function of sample size indase of two hy-

potheses for a standard deviation of 0.4.

Figure 4 presents results for a fixed value of the standaraiti@v (0.4) as
a function of sample size for the case of two hypotheses. i§hasvalue where
PCM and OCM outperform MPE and ML for a sample size of one as caeée
from Figure 3a, but when the sample size has increased to@®| kas lost any
advantage it had. By contrast PCM retains its advantage fohrtauger sample

sizes.
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Figure 5: Accuracy plotted as a function of the standardat®sn in the case of

five hypotheses for a sample size of (a) 10, and (b) 30.

Figure 5 presents results for the case of five hypothesesrlgIsanilar be-

haviour is found. The relative merits of PCM over MPE and ML agey similar
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Figure 6: Accuracy plotted asvaries in the uniform distribution used to represent

uncertainty in the case of two hypotheses for a sample sig@) df, and (b) 10.

for sample sizes of 10 and 30, whereas OCM has lost most ofiansage over

MPE and ML for a sample size of 10 and is almost indistinguh&om ML for
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a sample size of 30.

As pointed out in section 2.3, Glymour ([2015]) notes thatrdsults for OCM
do not depend on the normal distribution to model uncergamthe priors since
similar results are obtained with a uniform distributiom drder to investigate
this point further and in particular to see whether the sappties for PCM, the
following experiment has been carried out. Priors are driiam a uniform dis-
tribution in the intervalmax{ P(h;) — a, 0}, min{ P(hy) + «, 1}] (or equivalently
from the intervalP(hy) — o, P(h1) + ] with resampling if the value does not
lie between 0 and 1). Results obtained for the case of two hgges and sam-
ple sizes of one and 10 are presented in Figure 6. Overadletresults illustrate
very similar behaviour to those presented for the normatidigion in Figure 3.
Note, however, that PCM only outperforms MPE for values gnetttan about
0.4, whereas in the case of the normal distribution it odgwers MPE for a stan-
dard deviation of about 0.25. This can be explained as faloora = 0.25
the subjective priors are within 0.25 of the true value whsrthis is not the case
for a standard deviation of 0.25 where the subjective pgarsbe much greater.
Hence, it seems plausible that= 0.25 corresponds to a lower degree of uncer-
tainty than a standard deviation of 0.25 and so the advastageCM are greater
in the latter case.

Hence, in addition to the success of the PCM approach whenribies @re
known (section 4), the results in this section show thatsit glerforms much bet-
ter than OCM when the priors are not known accurately. Its aidgges persist
when there are more hypotheses to be compared, when theessiaglncreases,

and when uncertainty in the priors is modelled in a differaanner.
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6 Parameter Estimation and M odel Selection

The focus so far has been on applying the PCM and OCM approaci#g aind,
in particular, to selecting the best hypothesis from a finiienber of mutually
exclusive hypotheses. However, we can think of the diffehgipotheses as dif-
ferent values of a discrete random variable and this railseguestion whether a
similar approach can be applied to continuous variablesanBwer this question
the PCM approach will be applied to simple examples of pararmegtimation,
where the goal is to obtain point estimates of an unobseruvadtdy, and the re-
sults compared with two other approaches. After that, wesicen whether the

PCM approach can be applied to the model selection problem.

6.1 Parameter estimation

Let X be random variable with observed datand suppose we want to use this
data to estimate a parameterThe maximum likelihood approach to parameter
estimation obtains the valdethat maximizes the likelihood function. This can be
expressed in terms of maximizing the probability densityhef observed data as
follows:

01, = arg max p(x|6). (10)
0e©

An alternative approach to parameter estimation cattiedimum a posteriori
or MAP defines a prior distribution(¢) over the parametérand then maximizes
the posterior probability of given the data:

Oriap = ar% rgax p(x[0)m(6). (11)
S

Note that this approach corresponds to the MPE approachwidmatused in the
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discrete case.
Following a similar strategy, a new approach to parametenaton based on
PCM can be defined as follows:
Opcas = arg max p(x| 0)*m(6). (12)
6co
Let us see how these approaches apply in the cas®efnoulli trials such as
the tossing of a coin with an unknown bidss [0, 1], so that the probability af:

heads im tosses is given by the binomial distribution:
(ml6) = (" )om(1 -0y (13)
p(m =\ .
The maximum likelihood estimation is simply the proportmrheads:
é]y[L = @ (14)
n

MAP estimation requires a suitable prior distribution todh®sen. Adopting a

beta distribution with parametetsand so that:
(0], B) oc 0771 (1 - 0)7 ! (15)

results in the following MAP estimate:

m+a—1

n+a+p8—2 (16)

Orrap =

The PCM estimate can be obtained by substituting (13) andifi®)12), and
then maximizing with respect t by taking the log, then the derivative with re-
spect tod, and then setting to zero. This results in the followingreate:

2m+a—1

n+a+3—2 (7)

Opcn =
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Before commenting on this result, let us briefly consider pet@r estimation

for a one dimensional Gaussian distribution with meaand variancer? from

observations = (z1,...,x,). The maximum likelihood estimation for the mean
is:
= 23 a9
Hmr = n 4 Zj,
7=1
while the MAP estimate is:
2 2
N nJO N g
= — —_— 19
HaAP ol T g2 HML + ol + o2 Hos (19)

wherey, ando? are the mean and variance respectively of the prior digtdbu
It is easy to show that PCM gives the following estimate:
2no? o’

— i —lp. 20
2n0§ + o2 Hare + 2na§ + o2 Ho (20)

ﬂPCM -
For both the binomial and Gaussian cases, the PCM result @&nelot from the
MAP result by a factor of two being applied to the data (term@lving m and
n). This derives from the fact that maximizingx| 6)?=(6) in equation (12) is
equivalent to maximizing(x, x| 0)7(6) in equation (11) which corresponds to
the data points ik having occurred twice.
What do these results tell us? It can be shown that the PCM dstintia

between the ML and MAP estimates. That is, for the binomiakca
min{fyrr, Oarap} < Operr < max{yr, Orrap} (21)
and similarly for the Gaussian case:
min{/inr, fisrap} < fipom < max{jin, fivrap} (22)

This shows that an approach to IBE based on PCM can be applieashhoto

scientific inference in a general sense, but also to pararastenation and that
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in doing so it produces sensible results. Furthermore ethesults suggest that
this approach might have benefits over the ML and MAP estisnatsome cases.
PCM provides a way of taking prior probabilities into accowithout giving them
as much weight as MAP. And just as this gave rise to bettettseissome cases
where there was uncertainty in the priors in section 5, soutcresult in better
parameter estimates in some cases.

Having shown that PCM can give rise to reasonable resultsicdise of pa-
rameter estimation, let us now consider whether it might &ls applied to the

model selection problem.

6.2 Modd sdelection

In the model selection problem, we can think of a model as dyaohstatistical

hypotheses such as polynomials of a given order used to &tidat regression
problem. Suppose we have dataand a set of modeld1. The goal in model
selection is to select the model that scores best accordiagpecified criterion,
where the criterion is intended to represent a trade-off/éen the complexity of
a model and how well it fits the data. The Akaike Informationt&ron (AIC)

is a well-known approach that is based on the classicakstat procedure of

estimation and is given by (Akaike [1973]):
AIC(M,x) = —2logp(x | O + 2k, (23)

whereM € M, pis a probability densityéML is the maximum likelihood esti-
mate, and: is the number of parameters to be estimated.

From a Bayesian perspective, the posterior probabilitiesvofmodels,M;
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and)M; can be compared as follows:

p(M;] x) _ p(x|M;) % p(M;)
p(Mj|x)  p(x|M;) — p(M;)’

where the termp(x| ;) /p(x|M;) is the Bayes factor (Kass and Raftery [1995]).

(24)

Adopting a MAP approach, we wish to find the modé}, ,» which maximizes
p(M|[x):

Mrap = arg max p(x |M)p(M) (25)
MeM

or equivalently we can minimize the negative log to get:
Myap = argmin [—logp(x|M) —logp(M)] (26)
MeM

where—logp(x|M) relates to how well the model fits the data anldg p(M) is
a penalty term, where smaller valuespofi/) result in greater penalties.

How might the PCM approach be used for model selection? Basequation
(8), we can compare two models using the following expressaresponding to
(24):

Epor(x, M) p(x|M;)?  p(M;)

EPCM(X, M]) - p(X|Mj)2 X p(Mj). (27)

Hence, we can select the model that maximjzeg M )?p(M):

Mpon = argmax p(x|M)?*p(M) (28)
MeM

or equivalently we can minimize the negative log:

Mpcy = atg min [—2logp(x|M) — logp(M)], (29)
and so by comparing (29) with (26) we see that the PCM approaels gnore
weight to the data and less to the penalty than does MAP. Théeclge for
Bayesian approaches such as MAP and hence for PCM as well igeoriiee
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the factorp(x|M) and to identify appropriate priors. One approach is to uae th
adopted in the Bayesian Information Criterion (BIC) which ergplthe Laplace
approximation to integrate over the parameter space angnassthat the num-
ber of data pointsy, is large so that only terms that dependroare taken into
account (Schwarz [1978]). This means that the priors drdp dsing the PCM
approach with this approximation yields the the same resuthe standard BIC

approach to model selection, which can be expressed awfollo
BIC(M,x) = —2logp(x|0y1) + klogn. (30)

These results are somewhat encouraging. Based on (29), wkatesn ap-
proach to model selection based on PCM is similar to MAP, brggimore weight
to the data. Clearly, in cases where a uniform prior distitiouis adopted over
models there will be no difference between the approachiesilagly, given the
assumptions underlying BIC, PCM gives rise to the same restience, just
as Bayesian approaches can be applied to model selectice, tbsults suggest
that IBE based on PCM can be similarly applied. Could PCM haverddgas
over other approaches such as BIC? One direction for futur& wothis area
would be to consider other approximations where differenoehe priors of the
models would differentiate between the approaches. Retatd#ds, another di-
rection would be to investigate how the PCM approach mighetsted to other
approaches such as the minimum message length (see WalthBowae [1999]).
Model selection has given rise to debate between Bayesiaha@mnBayesians
(see Forster and Sober [1994]; Dowe et al. [2007]), so it didnd interesting to
see whether the preliminary work here on an approach metiva IBE might be

extended to contribute to that debate.
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7 Conclusion

An earlier paper set out to show that IBE tracks truth when tteglap coherence
measure (OCM) was used to compare explanations (Glass [R0atgrestingly,
when IBE was formulated in this way it was extremely succdsftinding the
true hypothesis, almost as good as an approach based on iziagifposterior
probability and better than maximum likelihood. Even mouepsising was the
discovery that in some cases where there was uncertairtig jorior probabilities
IBE wasmore successfait finding the truth than maximizing posterior probability
or maximizing likelihood. These results appeared to aghmwre than is needed
to defend IBE as a mode of reasoning.

However, Glymour ([2015]) identified a number of generalljpeons for var-
ious measures that seek to use probability to quantify holvaneypothesis ex-
plains the evidence. Responses have been presented heseotgdutions con-
cerning ‘excellent but false explanations’ and ‘causallaxation’, but some of
his criticisms of the work on hypothesis selection desctilbBove have been ac-
cepted. First, it would be difficult to use OCM in practice g@ntrequires deter-
mining the probability of the evidence which is often unaalie and, second, the
advantages of this approach over maximum likelihood vafuskarger (but still
relatively small) sample sizes.

To address these issues, a new measure (the product canhereasure, PCM)
has been proposed which has several advantages comparé&Ma@d solves
both problems. Hence, this new version of IBE, which uses PClotopare
explanations, is more successful at tracking the truth thanprevious version
based on OCM. Some preliminary work has also been presensédiohow this

approach might be applied to parameter estimation and nsetkxtion. Frequent
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criticisms of IBE are that it is not clearly defined and that¢banection between
explanation and truth has not been established. Howe\RGM provides an ade-
guate measure for comparing explanations, then not only th@eaccount of IBE
provided here address both these criticisms, but IBE is showrack the truth

much more closely than might have been expected. Furthetramice it is more

accurate at finding the truth than standard approaches sutladmizing poste-
rior probability or maximizing likelihood in cases invohg uncertainty and since
these advantages persist for larger sample sizes, IBE mahaa scientific as

well as philosophical merit.
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