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Abstract. Much mathematical writing exists that is, explicitly or im-
plicitly, based on set theory, often Zermelo-Fraenkel set theory (ZF) or
one of its variants. In ZF, the domain of discourse contains only sets, and
hence every mathematical object must be a set. Consequently, in ZF with
the usual encoding of an ordered pair (a,b), formulas like {a} € (a,b)
have truth values, and operations like P({a, b)) have results that are sets.
Such ‘accidental theorems’ do not match how people think about the
mathematics and also cause practical difficulties when using set theory in
machine-assisted theorem proving. In contrast, in a number of proof assis-
tants, mathematical objects and concepts can be built of type-theoretic
stuff so that many mathematical objects can be, in essence, terms of
an extended typed A-calculus. However, dilemmas and frustration arise
when formalizing mathematics in type theory.

Motivated by problems of formalizing mathematics with (1) purely
set-theoretic and (2) type-theoretic approaches, we explore an option
with much of the flexibility of set theory and some of the useful features
of type theory. We present ZFP: a modification of ZF that has ordered
pairs as primitive, non-set objects. ZFP has a more natural and abstract
axiomatic definition of ordered pairs free of any notion of representation.
This paper presents axioms for ZFP, and a proof in ZF (machine-checked
in Isabelle/ZF) of the existence of a model for ZFP, which implies that
ZFP is consistent if ZF is. We discuss the approach used to add this
abstraction barrier to ZF.

Keywords: set theory - formalisation of mathematics - theorem proving

1 Introduction

1.1 Background: Set Theory and Type Theory as Foundations

A large portion of the mathematical literature is based on set theory, explicitly or
implicitly, directly or indirectly. Set theory is pervasive in mathematical culture.
University mathematics programmes have introductory courses on set theory and
many other courses that rely heavily on set-theoretic concepts (sets, classes, etc.),
notation (comprehensions a.k.a. set-builders, power set, etc.), and reasoning.
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Formal foundations for mathematics have been developed since the early 20th
century, with both set-theoretic and type-theoretic approaches being considered.
Although there are a number of set-theoretic foundations, for this paper it is suf-
ficient to consider Zermelo-Fraenkel set theory (ZF), which anyway seems to be
broadly accepted and reasonably representative of the strengths and weaknesses
of set theory in actual practice. The core concept of ZF is the set membership
relation €, which acts on a domain of objects called sets. The theory is a col-
lection of formulas (known as azioms) of first-order logic which characterise the
membership relation. Logical deduction from these axioms yields a rich theory
of sets. Moreover, mathematical objects such as ordered pairs, functions, and
numbers can be represented as sets in ZF.

At roughly the same time as Zermelo was formulating his axiomatic set the-
ory, Russell introduced the first type theory. Both Zermelo and Russell had the
goal of rigorous, formal, logical reasoning free from the paradoxes that plagued
the earlier systems of Cantor and Frege. Most modern type theories are descen-
dants of Church’s typed A-calculus [9]. Many of the methods of modern type
theory have been developed by computer scientists to solve problems in pro-
gramming languages and formal verification. Types add layers of reasoning that
help with soundness and representation independence. Some type theories have
been used to formulate foundations of mathematics in which mathematical ob-
jects (e.g., groups, rings, etc.) are represented by terms and types of what is
essentially a very fancy typed A-calculus.

Formalizing mathematics that has been developed in a set-theoretic culture
using a type-theoretic foundation can lead to dilemmas and frustration [6]. Sub-
typing may not work smoothly when formalising chains of structures such as
the number systems and those belonging to universal algebra. There are also
design choices in how to model predicates which can make proving some things
easier but other things much harder. The rules of powerful type systems are also
very complicated, so users require machine assistance to follow the typing rules,
and even with machine support it can be quite challenging. In contrast, ZF-like
set theories typically have very few ‘types’, e.g., there might be a type of sets
and a type of logical formulas or perhaps a type of classes. When nearly every
mathematical object you need is of ‘type set’ it is easy to obey the typing rules.

There are problems formalizing mathematics in pure ZF set theory also.
When everything is of ‘type set’, a computer proof system has no easy way to
know that it would be wasting its time to try to prove a theorem about ordinal
numbers using lemmas and tactics for groups or rings, so automated support
is more challenging. When representing mathematical objects (e.g., numbers)
as sets, the bookkeeping of the intended ‘type’ of these objects is not avoided,
but must be managed by the user outside the realm of a type system. In many
not-too-tricky cases, a type inference algorithm can automatically infer type in-
formation that represents necessary preconditions for successful use of theorems
and lemmas, but in pure set theory such automated inference is not very useful
when the only type is ‘set’.
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Furthermore, practical computerisation in ZF requires abbreviation and def-
inition mechanisms which first-order logic does not provide. Two contrasting ex-
amples of how this can be done are Metamath and Isabelle/ZF. Metamath [10] is
mostly string based, and has ‘syntax definitions’ to introduce new constants, or
syntax patterns. These definitions are given meaning by ‘defining axioms’ (whose
correctness is not checked by the verifier). Isabelle/ZF is built on top of Is-
abelle/Pure, which is a fragment of intuitionistic higher-order logic that is based
on Church’s typed A-calculus |11]. This means that meta-level activities such as
variable binding, definitions, and abbreviations are handled by Isabelle/ZF in a
type theory, albeit a very simple type theory. Isabelle also handles proof tactics
in SML, which can be seen as another typed A-calculus.

1.2 The Issue of Representation and the Case of the Ordered Pair

As discussed above, set theory can represent a multitude of mathematical objects
as sets, but in some cases the user might prefer that some of their mathematical
objects are genuinely not sets. The alternative of using a sophisticated type-
theoretic foundation might not be the right solution, for a variety of reasons,
some of which are mentioned above. So the user might ask: “May I please have
a set theory which has genuine non-sets that I can use for purpose XYZ?”

There are indeed set theories with non-set objects [7], which are generally
known as urelements, so named because they are often considered to be primor-
dial, existing independently of and before the sets. A popular use for urelements
is as ‘atoms’ whose only properties are being distinct from everything else and
existing in large enough multitudes. Adding genuine non-sets takes some work,
because the assumption that ‘everything is a set’ is deeply embedded in ZF’s
axioms. One example is the axiom of Extensionality,

Ve,y: (Ma:a€x+ac€y) sax=y

which asserts that any two objects are equal if they have exactly the same set
members. Because non-set objects of course have no set members, this ZF axiom
forces them all to equal the empty set, meaning there can not be any.

Existing set theories with urelements generally (except see GST below) do
not consider urelements with ‘internal” structure that might include sets. The
ordered pair is a simple and important example of a mathematical object with
‘internal’ structure which is not usually intended to be viewed as a set. Ordered
pairs have been of enormous value in building theories of relations, functions, and
spaces. The most widely used set-theoretical definition, by Kuratowski, defines
the ordered pair (a,b) to be the set {{a},{a,b}}. Because a is in all sets in
(a,b) and b is only in one, a first-order logic formula using only the membership
relation can check if an object is the first (or second) projection of an ordered
pair. Kuratowski pairs satisfy the characteristic property of ordered pairs:

(a,by = (¢,d) > (a=cAb=d)
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Like for any ZF representation of mathematical objects not thought of as sets,
Kuratowski pairs have ‘accidental theorems’ such as {b} € (b, c), and {(b,b)} =
{{{b}}} = ({b},{b}), and {(0,0)} = (1, 1) with Von Neumann numbers.

The set representation of conceptually non-set objects raises issues. There
are places in the literature where some mathematical objects are thought of
as (or even explicitly stated to be) non-sets with no set members. One can find
definitions or proofs by cases on ‘type’ that assume the case of sets never overlaps
with the cases of pairs, numbers, etc. To view such writing as being founded
on pure set theory requires either proving that none of the sets used overlap
with the set representations used for abstract objects or inserting many tagging
and tag-checking operations (see, e.g., the translation we give in
as part of proving a model for our system ZFP can be built in the pure set
theory ZF). When formalizing and machine-checking mathematics, additional
difficulties arise, some of which are mentioned above.

1.3 ZFP: Extending ZF Set Theory with Primitive Ordered Pairs

We aim to go beyond previous set theories with urelements to develop methods
for extending set theories with genuine non-set objects whose internal structure
can contain other objects including the possibility of sets. As a first instance of
this aim, we achieve the objective of ZFP, a set theory with primitive non-set
ordered pairs such that there is no limit on the ‘types’ of objects that sets and
ordered pairs may contain. We axiomatise ZFP and prove its consistency relative
to ZF. We hope that our explanation of how we did this will be useful guidance
for other work extending set theories.

ZFP extends € with two new binary predicate symbols, m; and 7y, whose
intended meanings are ‘is first projection of’ and ‘is second projection of’. We
define abbreviations for formulas Set(x) and Pair(z) that distinguish sets and
ordered pairs by the rule that an ordered pair has a first projection and a set
does not. ZFP’s axioms are in two groups, one for sets and one for ordered pairs.
We were able to generate nearly all of ZFP’s axioms for sets by modifying the
axioms of ZF by restricting quantifiers using Set(z) in the right places. The
axiom of Foundation needed to be modified to handle sets and ordered pairs
simultaneously. ZFP’s axioms for ordered pairs specify the expected abstract
properties, including that ordered pairs have no set members.

To prove ZFP is consistent if ZF is, we construct in ZF a model and prove it
satisfies ZFP’s axioms [4]. Building a model for a set theory with non-set objects
with ‘internal’ structure that can include sets differs from building a model for
a set theory with no urelements or with only simple urelements, because there
can be new non-set objects at each stage of the construction. W, the domain of
our model, is similar to the domain V of the Von Neumann hierarchy. Each tier
of V is constructed by taking the power set of the previous tiers. In contrast,
when building the tiers of W, each successor tier W,+ is formed by taking the
disjoint sum of the power set P(W,,) and the cartesian product (W,)?. Hence
every object in W has a tag that tells whether it is intended to model a set or an
ordered pair. This supports defining relations that model ZFP’s €, w1, and 75
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which may only return true when their second argument is of the correct ‘type’.
This proof has been machine-checked in Isabelle/ ZFH

Although our model for ZFP is built purely of sets and implements ordered
pairs as sets, another model could use other methods (e.g., type-theoretic) and
implement ordered pairs differently. Hence, we have put an ‘abstraction barrier’
between the user of ZFP and the implementation of ordered pairs.

1.4 Related Work

Harrison [6] details the challenges that face both type-theoretic and set-theoretic
foundations for formalised mathematics. Harrison makes the case for using set
theory as ‘machine code’, leaving theorem proving to layers of code. Harrison
suggests using a set theory with urelements to avoid the issue of ‘accidental
theorems’. Weidijk |13] formulates axiomatic set theories and type theories in
AutoMath in order to compare them and assess their relative complexity.

A significant work aiming to make computer formalisation of set-theoretical
mathematics practical is Farmer’s Chiron [5], a conservative extension of the
set theory NBG (itself a conservative extension of ZF). Chiron has additional
features such as support for undefinedness, definite descriptions, quotation and
evaluation of expressions, and a kind of types.

Aczel and Lunnon worked on Generalised Set Theory (GST) [1] with the
aim of better supporting work in situation theory. GST extends set theory with
a mechanism for primitive functions, as well as a number of other features. It
appears that GST assumes the Anti-Foundation axiom instead of Foundation
which ZF uses. Unfortunately, we failed to find a specification of the axioms
of GST. Part of GST seems similar to our work but a technical comparison is
difficult without the axioms.

Although ordered pairs now seem obvious, Kanamori’s excellent history [8]
shows a sequence of conceptual breakthroughs were needed to reach the modern
ordered pair. How we built a model for ZFP was heavily inspired by the way
Barwise |2] interprets KPU (Kripke-Platek set theory with Urelements) in KP.

1.5 Outline

presents and discusses the first-order logic we use and definitions and
axioms of ZF. presents and discusses ZFP in the form of definitions
and two collections of axioms, one for sets, and one for ordered pairs.
proves the existence in ZF of a model for the axioms of ZFP (which implies that
ZFP is consistent if ZF is). discusses the significance of these results,
and how they will be used in further investigation.

! The source and a prettier HTML rendering of the Isabelle/ZF proofs is contained
in a ZIP archive embedded in this PDF file as an ‘attachment’. If your viewer does
not support extraction of attachments embedded in PDF files, you can also see
http://www.macs.hw.ac.uk/~cmd1/cicm2020/ZFP. thy for the source, and http://
www.macs.hw.ac.uk/~cmd1/cicm2020/ZFPDoc/index.html| for the HTML.


http://www.macs.hw.ac.uk/~cmd1/cicm2020/ZFP.thy
http://www.macs.hw.ac.uk/~cmd1/cicm2020/ZFPDoc/index.html
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2 Formal Machinery

Let X :=Y be meta-level notation meaning that X stands for Y.

2.1 First-Order Logic with Equality

We use a fragment of first-order logic (FOL) with equality sufficient for defining
ZF and ZFP. We consider only four binary infix predicate symbols including
equality. The MBNF [12] specification of the syntax is:

a,...,z€Varz=v0|vl|--- ~EPredui=€|m |m|=
A...,ZE€Termu=x |1 :p o, EForm =X ~Y ||~ | Voo

We work with terms and formulas modulo a-conversion where Yz and 7z bind
x. Except where explicitly specified otherwise, we require metavariables ranging
over the set Var to have the attribute of distinctness. Two different metavariables
with the distinctness attribute can not be equal. For example, = v9 and
x1 = v27 and y = v53 could hold simultaneously, but neither z = v9 = x;
nor x = vb3 = y are allowed. This restriction applies only to metavariables:
the same object-level variable can be used in nested scopes, e.g., the formula
(VV7 : Y7 : v7 € v7) is fine and equal to (Vv0 : Vvl : vl € vl). We assume
the usual abbreviations for logical connectives (A, V, <), for quantifiers (3, 3!,
Vx1,...,Tp, 3T1,...,Ty,), and for predicate symbols (#, ¢, 3).

A term can be a definite description (1x : @) which, if there is exactly one
member z of the domain of discourse such that the formula ¢ is true, evaluates
to that member and otherwise evaluates to a special value 1 outside the domain
of discourse such that any predicate symbol (including equality) with L as an
argument evaluates to falseE|A term is said to be undefined or to have no value iff
it evaluates to L. An alternative specification of definite descriptions that gives
formulas the same meanings is eliminating them by the following rule (only the
left case is given; the right case is similar):

(lx:@)~Y):i=Fx:x~Y Ap) ATz : @ where x is not free in Y

2.2 Zermelo-Fraenkel Set Theory

The only predicate symbols ZF uses are the membership relation € and equality.
ZF makes no use of the FOL predicate symbols m; and 7o, but instead we define
these symbols as parts of abbreviations in We use the following ab-
breviations where n > 3 and a, ¢, x, y, and z are not free in the other arguments

2 When working with functions that might be applied outside their domain, one might
prefer to have | = 1, but this is a bit more complex and not needed for this paper.
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and b is not free in X:

(VbeX:p)=(Wb:be X — o) (FbeX:p):=(Fb:be X Ap)
UX:=(y:Va:acy+3ze X a€z) XCY:=WceX:ceY)
{A,B} :=(1z:Ve:cex+ (c=AVe=DB)) XUY =U{X,Y}
PX):=0y:Vz:zey+2CX) {A}:={A A}

{A1,..., Ay} = {A1}U{As,... A} 0:=(x:Va:a¢ )

{beX |p}t=(y:Vo:bey+- (be X Np)) XT:=XU{X}
These abbreviations are defined if their arguments are defined due to the axioms.

Definition 2.1. The azioms of ZF are all the instances of the following formu-
las for every formula ¢ with free variables at most a, b, ¢ and cs.

1. Extensionality: Vz,y: Va:a€x+a€y) sz =y

2. Union:Vr:3Jy:Va:acy< (Iz€x:a€2)

3. Power Set:Vxr:3y:Vz:z€y+zCux

4. Infinity (ugly version; see pretty version below): Iy : (3z € y:Vb:b ¢ z) A
Vzxey:Isey:Ve:ces (cexVe=n1a))

Replacement: Vey,co,x: Va€x:Ab: ) = (Jy:Vo:bey<«— Jacx: p)
Foundation: Vo :x =0V (Jyex:-TFbex:bey)

S &

The axioms are due to Zermelo, except for Replacement which is due to
Fraenkel and Skolem [3] and Foundation which is due to Von Neumann. Exten-
sionality asserts that sets are equal iff they contain the same members. Union
and Power Set state that UX and P(X) are defined if X is defined; this im-
plies the domain of discourse is closed under U and P. Infinity states that there
exists a set containing () which is closed under the ordinal successor operation;
from this we can extract the Von Neumann natural numbers N. Here is a pret-
tier presentation of Infinity that we do not use as the axiom to avoid bootstrap
confusionPt

Jy:Dcyn(Vecy:at cy)

The powerful infinite axiom schema Replacement asserts the existence of the
range of a function determined by any formula ¢ where the values of the variables
a and b that make ¢ true have a functional dependency of b on a and where the
domain of the function exists as a set. Foundation enforces the policy that there
are no infinite descending chains of the form X¢ > X7 3 ---.

Lemma 2.2. The following theorems of ZF are often presented as axioms. For
every formula ¢ such that any free variable must be a, the following hold in ZF:

1. Empty Set: 3x :Vb:b & x
2. Pairing: Va,b: 3z :Ve: (c€x < (c=aVe=0D))
3. Specification: Vx : Jy:Va: (a €y < (a €x A p))

3 Provided some object exists, Replacement can build @, and then further axiom use
can build operations like {B,C}, {B}, X UY, and X, thus ensuring the terms ()
and =T are defined in the pretty version of Infinity. We prefer getting that initial
object from an axiom over using the FOL assumption that the domain of discourse is
non-empty. The only axiom giving an object for free is Infinity. We find it confusing
to use Infinity in proving the definedness of subterms of itself, so we don’t.
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2.3 Ordered Pairs in ZF

We define the Kuratowski ordered pair (A4, B) and related operations as follows
where a, b, p, and z are not free in A, B, and Q:

(4,B) == {{A}, {4, B}}
Am Q:=NMreQ:Acx) BrQ:=3zreQ:Bex)
AxB:=(x:Vp:pex+ (Ic€e A,de B:p={cd)))

We call a and b the first and second projections of {(a,b) respectively. The first
projection of an ordered pair ¢ is in all sets in ¢, whereas the second is only in
oneEI The projection relations 71 and 7o only give meaningful results when the
set () on the right side of the relation is an ordered pair, i.e., this holds:

(Fe,d: Q = {c,d)) = Va,b: (am QAbm Q) < Q = (a,b))

Kuratowski ordered pairs are sets and have set members that are distinct from
their projections. In fact, no matter which representation we use, there will
always exist some x such that x € (a,b) (for all but at most one ordered pair
which can be represented by ). If A and B are defined, we can show the cartesian
product A x B is defined using Replacement nested inside Replacemen

AxB=U{z|3ceA:z={p|3deB:p={(cd)}}

3 Extending ZF to ZFP

This section introduces Zermelo-Fraenkel Set Theory with Ordered Pairs (ZFP),
a set theory with primitive non-set ordered pairs. ZFP axiomatises the member-
ship predicate symbol € similarly to ZF. The ordered pair projection predicate
symbols 7 and 7o are axiomatised in ZFP instead of being abbreviations that
use € as in ZF. Ordered pairs in ZFP qualify as urelements because they contain
no members via the set membership relation €, but they are unusual urelements
because they can contain arbitrary sets via the m; and 7o relations.

3.1 Definitions and Axioms of ZFP

We use the metavariables p, ¢, P, and @) where it might help the reader to think
‘ordered pair’, and the metavariables s, x, y, z, X, Y, and Z where it might
help the reader to think ‘set’; this convention has no formal status and all FOL
variables continue to range over all objects in the domain of discourse. We call
b a member of x iff b € x. We call b a projection of q iff b 71 q or b 3 q. An

4 This holds even in the case of (a,a) = {{a}, {a,a}} = {{a}}.

® The traditional construction of A x B as {p € P(P(AUB)) | 3c € A,d € B :
p = (¢, d) } is only needed if the weaker Specification is preferred over Replacement.
We avoid the traditional construction because it depends on a set representation of
ordered pairs and thus will not work for ZFP.



Adding an Abstraction Barrier to ZF Set Theory 9

ordered pair is any object with a projection, and a set is any object that is not
an ordered pair. We use the following abbreviations where b is not free in () and
X and ¢ is not free in A and B:

Pair(Q) =3b:bm Q Set(X) := —Pair(X)
Vpair D 1 @ := Vp : Pair(p) — ¢ Vset @ : @ := Va : Set(z) — ¢
Fpairp : p 1= Tp: Pair(p) A Jset 1 @ := Jx : Set(x) A ¢
pair P 1 @ = 1p : Pair(p) A ¢ 15t X @ = 1x : Set(x) A @
(A,B) :=(1g:Am gANBmaq)

We reuse the text of the abbreviation definitions for ZF for {4, B}, X UY, {4},
and {A1,...,A,} where n > 3. We redefine the following abbreviations a bit
differently for ZFP, where a, b, ¢, p, x, y, and z are not free in A, B, X and Y:

XCY = Set(X)ASet(Y)A(Vece X :ceY)
ux = (1sety:Va:a€y+Ize€X:a€z2)
P(X) = (15t y:Vz:2z€y+ 2C X)

(
0 = (1setz:Va:a¢x)

{beX|p}i= (tset y:Vb:bey <+ (be X Ng))

AXx B = (w:Vp:pex<+> (Ice A, de B:p=(cd)))

These abbreviations are defined if their arguments are defined due to the axioms.

Definition 3.1. The azioms of ZFP are all the instances of the following for-
mulas for every formula ¢ with free variables at most a, b, c1, co.

— Sets:

S1.
52.
3.
4.

S55.

S6.

Set Extensionality: Vseex,y: Va:a€x+a€y) >z =y

Union: Vseew : Jy:Va:a €y <> (Iz€x:a € 2)

Power Set: Vseex : Jy:Vz:z€y+ 2Cux

Infinity (ugly version): Iy : (st z €y :Vb:0¢ 2) ANV €y :Is€y:
Veice€ser (cexVe=u1a)).

Replacement:

Very,eo,x: (Va€x:3b: @) = (Fsery :Vo:beEy > Jaca: )
Foundation: Vseqex :x =0V (Ja€x:-FbEx:bmaVbmaVbeEa)

— Ordered Pairs:

P1.
P2.
P3.
PJ.
P5.

Ordered Pair Emptiness: Vpa,p:Va:a & p

Ordered Pair Formation: Ya,b:3dp:am pAbmap

Projection Both-Or-Neither: Vp: (Ja: am p) < (Fb: by p)
Projection Uniqueness: Vpairp : (3la : am p) A (3b: b s p)
Ordered Pair Extensionality:

Vear0yq: Va:(ampeamg ANlamepeamq) > p=gq

Lemma 3.2. For every formula ¢ such that any free variable must be a, the
following hold in ZFP:

1. Unordered/Set Pairing: Ya,b:3x:Ve:c€x < (c=aVe=Db)
2. Specification: Vs @ : Jsery : Va:a €y <> (a € x A p))
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3. Cartesian Product Eristence:
Vet ,Y : Jset 2 :Vp:pE 2z (Jac€x,beEy:am pAbmy D)

For (@), note that the cartesian product A x B can be built in
ZFP using the same construction given for ZF in which does not

depend on any set representation of ordered pairs.

3.2 Discussion

Axioms for Sets. Each ZF axiom was transformed to make a ZFP axiom.
First, because we use abbreviations for more readable axioms, those used in
axioms needed to be modified for ZFP. The definition of C (used in Power Set)
was changed to ensure an ordered pair is neither a subset nor has a subset. The
definition of §) (used in Foundation) was changed to ensure a defined result.
Second, some occurrences of (Vb : 1) and (3b : ¢) needed to enforce that
1 can be true only when b stands for a set. Where needed, such occurrences
were changed to (Vser b : 9) respectively (Jset b : 9). Each quantifier needed
individual consideration. If the sethood of b was already enforced by 1 only
being true when b has at least 1 set member, there was no need for a change but
a change might also clarify the axiom. If the truth of ¢ was unaffected by any
set members of b, there was no need for a change and this generally indicated
that a change would go against the axiom’s intention. We needed to understand
the axiom’s intention and expected usage because it was not written to specify
where it is expected that ‘X is a set’ (because this always holds in ZF).
Finally, Foundation was extended to enforce a policy of no infinite descending
chains through not just € but also m; and 79, so that ZF proofs using Kuratowski
ordered pairs (having no such chains) would continue to work in ZFP.
Consider the example of Power Set which states that for any set X there
exists a set Y containing all of the subsets of X and nothing else, i.e., P(X):

Vot : Jy:Vz: (z €y <+ 2 Cux)

We could have left Vs & as Vx, because when z is an ordered pair it would
act like () and this would only add another reason that P(() exists. However,
we thought this would be obscure. It would not hurt to change Jy to Jse vy but
there is no need to do so because the body forces y to contain a set member and
hence rejects y being an ordered pair. We did not change Vz to Vse 2 because
this would allow y to contain extra junk ordered pairs that proofs expecting to
get P(x) would have to do extra work using Replacement to filter out.

Axioms for Ordered Pairs. The ZFP axioms for ordered pairs specify the
abstract properties of ordered pairs via the relations m; and m5. These ordered
pairs have no ‘type’ restrictions, i.e., each pair projection can be either a set
or an ordered pair. Ordered Pair Emptiness ensures that no object has
both a projection (ordered pairs only) and a set member (sets only). Ordered
Pair Formation ensures that for every two objects b and c there exists
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an ordered pair with b as first projection and ¢ as second. Projection Both-Or-
Neither ensures that every object either has no projections (sets) or both
projections (ordered pairs). Projection Uniqueness ensures each ordered
pair has exactly one first projection and one second projection. Ordered Pair
Extensionality ensures that for every choice of first and second projections,
there is exactly one ordered pair.

Comparing the Objects and Theorems of ZF and ZFP. A set is pure iff
all its members are pure sets. Each ZF object is a pure set and is also a pure
set of ZFP, but ZFP has additional impure sets which have members that are
primitive ordered pairs or impure sets, and ZFP also has primitive ordered pairs.
The set membership relation € of ZF is the restriction of the relation € of ZFP
to pure sets. Let Pure(z) be a formula (implemented with transfinite recursion)
that holds in ZFP when x is a pure set. For every ZF formula ¢, let PRestrict(p)
be the ZFP formula obtained from ¢ by changing each subformula (Vz : ¢) to
(Vx : Pure(z) — v). Then ¢ is a ZF theorem iff PRestrict(y) is a ZFP theorem.
If one wants to go the other direction and take a ZFP formula ¢ and find a
ZF formula 1’ that ‘does the same thing’, one must represent as ZF sets both
(1) the primitive ordered pairs and (2) the sets of ZFP, and then one must either
prevent or somehow manage the possible confusion between the representations

of (1) and (2). is an example of doing this rigorously.

Design Alternatives. We considered having the projections 71 and w5 be
unary FOL function symbols, but this would require the term 7 (x) to denote
an object within the domain of discourse for every set z, so we avoided this. We
considered having the pairing operator (-,-) be a binary FOL function symbol.
Using a binary function symbol would mean the graph model would have hyper-
edges (i.e., connecting 3 or more nodes) which is more difficult to think about.
Because we used two separate binary predicate symbols, one for each projection,
we get a fairly standard-looking directed-graph model with ordinary edges. If
we used a binary FOL function symbol (-,-) for pairing, we could replace our
axioms [P2] [P3] [P4] and [P5] by the characteristic property of ordered pairs:

Va,b,e,d: (a,b) = (c,d) = (a=bAc=d)

Our axioms can be seen as the result of applying a function-symbol-elimination
transformation to this alternative.

Very early on, we considered simply using ZF’s axioms as they are, adding
a binary pairing function symbol, and adding the characteristic property of or-
dered pairs as an axiom. In this theory, formulas such as {b} € (b,c) would
be independent, because the representation of ordered pairs would be unknown
(and need not even be definable in ZF), so some ‘junk theorems’ would no longer
hold. We avoided this alternative for many reasons. First, Extensionality would
force all but one ordered pair (which could be §)) to have set members, so there
would be ‘junk theorems’ such as (a,b) # (¢,d) — Je: e € (a,b) < e ¢ (¢, d).
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Second, we could not see how to do transfinite induction and recursion. Third,
genuine non-sets make it easier to talk about the distinction between sets and
conceptually non-set objects, e.g., to students. Fourth, we hope our approach
might help a weak form of ‘type checking’, where a prover might more quickly
solve or disprove subgoals, and if a user mistakenly requires a non-set to have a
set member, this might be detected earlier and result in a more understandable
failure message. Some further reasons are discussed in

4 A Model of ZFP

We define within ZF a model for ZFP, i.e., an interpretation of the domain and
predicate symbols of ZFP. A translation from a ZFP formula v to a ZF formula
1¥* is defined to interpret ZFP formulas in the model. Terms and formulas in
this section belong to ZF except for the arguments of (- )*. All axioms of ZFP
hold under this translation, which implies that if ZF is consistent, so is ZFP [4].
That each axiom’s translation holds has been checked in Isabelle/ZF.

4.1 The Cumulative Hierarchy W

Like the Von Neumann universe V used as the domain of a model of ZF, our
domain W is a set hierarchy indexed by ordinal numbers.

An ordinal is a transitive set that is totally ordered by €, which we specify
formally by Ord(z) :== (Vy€z:y Cax)AN(Vy,z€x:y=2Vy € zVzey). Let
a and 3 range over ordinals. Let 0 := (), 1 := 0%, 2 := 17, and so on. Ordinal
B is a successor ordinal iff 3 = at for some a. Ordinal 3 is a limst ordinal
iff 8 is neither 0 nor a successor ordinal. Let \ range over limit ordinals. Let
(x <y):=(x €y ANOrd(y)) and define related symbols (e.g., <) as usual.

Any model of ZFP must have some way of distinguishing between the objects
in its domain representing ZFP sets, and those that represent ZFP pairs, i.e.,
ZFP needs a domain split into two disjoint subdomains. We model this in ZF
using Kuratowski ordered pairs and cartesian products to tag all domain objects
with 0 (‘set’) or 1 (‘ordered pair’).

Definition 4.1. For ordinal v, define the set W, via transfinite recursion thus:

Wo=0,  Wsr = ({0} x P(Ws) U ({1} x (Wp)®),  Wi=[J Ws
BEX

Starting from (), each successor tier W+ is built by taking the disjoint union
of the power set and cartesian square of the previous tier. Each limit tier W), is
the union of all preceding tiers. The use of disjoint union to build each successor
tier W+ gives a set-theoretic universe split into two. Although our disjoint
union uses Kuratowski pairs with 0 and 1 tags, we could use instead any two
definable injective operators from a large enough class (e.g., the universe) to
disjoint classes that raise rank by at most a constant.
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Let W be the proper class such that x € W iff x € W, for some a. We use a
bold upright serif font to emphasize that W is not a ZF setﬂ By the transfinite
recursion theorem, given x there is a definite description W(z) that evaluates to
W, when x evaluates to aE] We express X belonging to W as follows:

Definition 4.2. H(X) := (Jy: Ord(y) A X € W(y)).

Let an m-object be any member of W (i.e., a ZF set x such that H(x) holds),
an m-set be any m-object of the form (0, z), and an m-pair be any m-object of
the form (1, ). The following result says every m-object x is either an m-set or
an m-pair, and tells where in the hierarchy the contents of x are.

Lemma 4.3. Suppose H(x), so that x € W,. Then for some 8 < « either:
=(0,2") where 2’ C Wp, or x=(1,(a,b)) where a,b € Wps.
It holds that W is a cumulative hierarchy:
Lemma 4.4. If o < 3, then W, C W3p.

4.2 Interpreting ZFP in ZF

As explained above, we interpret the sets and ordered pairs of ZFP as the mem-
bers of W. says any m-object is an ordered pair whose left projection
is an integer which decides its ‘type’ and whose right projection is either a set
or an ordered pair. We define our interpretations of ZFP’s predicate symbols:

Definition 4.5. Let €, 71, and T3 be defined by these abbreviations:

a€r = 3y:x=0,y) Nacy)
a7 pi=CFuv:p=(1,{uv) ANa=u)
a7mep:i= Fu,v:p=(1{uv))Na=0o)

W is downward closed under these three relations. That is:

Lemma 4.6. Suppose H(z), i.c., x € W, for some . Suppose a € x, a 7 =,
or a T x for some a. Then a € Wg for some < «, and thus H(a).

To interpret a ZFP formula ¢ in ZF, we must show the formula holds when
quantification is restricted to the domain W, and the predicate symbols are
replaced by the interpretations defined above.

Definition 4.7. Let ¢ be a ZFP formula. Define p* recursively as follows:

(XeY) = (X)e)  (p=v) = ()= ()

(XmY) = (X")m (V) (2p)" = (¢)

(X m Y)" = (XN)m (Y7) (Vo) = (Va: H(z) = (¢7))
x (1z:@)* = (1x: H(z) A (p"))

5 W is a mathematical object in some other set theories.

" A nested definite description is used that specifies the function f such that f(3) =
Wp for 8 < q, i.e., f is an initial prefix of the hierarchy. Then f(«) is returned.
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Lemma 4.8. (Fx: )" < (Fx: H(z) A (¢¥)).

Because the translation (-)* inserts quite a lot of extra structure, a ZFP user
wanting to understand “the ZF formula corresponding to the ZFP formula "
might be tempted to instead translate ZFP’s € directly to ZF’s € and ZFP’s m;
and 7y to the ZF abbreviations for m; and s defined in However,
as discussed in the user then would need to carefully prove that no
problems arise from the coincidences where a ZFP set x and a ZFP primitive
ordered pair p would be represented by the same ZF set y.

Observe that the ZFP abbreviations Set and Pair from that act
like unary predicates are interpreted in ZF as follows:

Pair(z)" := (3a: H(a) Na T x) Set(z)* := —(Pair(z)*)
These predicates are clearly meaningful within the model because:
Lemma 4.9. Suppose that H(z), then we have that:
Pair(z)* «» (Ja,b:z = (1,{a,b))) Set(z)* +» (Fy:x = (0,y))

Now we reach our main result, which implies ZFP is consistent if ZF is [4]:
Theorem 4.10. For each ZFP azxiom ¢, the translation ¢* holds in ZF.

The proof of this theorem simply observes the conjunction of a number of
lemmas, each of which shows for a ZFP axiom ¢ that ¢* holds in ZF. Most of

these lemmas are straightforward. Here we show a representative example:

Lemma 4.11. The translation of ZFP’s Power Set axiom holds in ZF.

Proof. First, we find the translation using [definition 4.7] and lemma 4.8}

Vz : H(z) — (Set(z)" — By : H(y) AVz: H(z) = (z €y« ((2 C2)))))

Let x be such that H(x), and suppose Set(z)". By z = (0,2') for

some set 2’. Let y = (0, y’) where y' = {0} x P(2’) be our candidate for the power
set. We must show that y has the property Vz : H(z) — (z € y + (2 C 2)%),
and also that y is indeed a member of W. Fix z and assume #(z), then:

zeyezey by def of y and €
<z € {0} x P(z") by def of ¢/
3 2=(0,2)A Ca by def of x and P
< Set(2)"A(Va:a €z —a€ux) since z = (0,2'),2" C 2

< Set(2)" ASet(z)*A(Va:a€z—a€xz) since H(x), z = (0,z')
(2 Cx)” because H(z)
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It now remains to show that H(y). From H(z), we have that x € W, for some
ordinal a. By z € Wy+, and by lemma 4.3] 2’ C W,,. Then:
' C Wy = P(a) CP(Wy)
— {0} x P(z') C {0} x P(W,)

=y C{0} x P(Wa) by def of 3/
S because {0} x P(W,,) C Wy
—y € Wor+ by def of y = (0,y)
= H(y) by def of H

O

5 Conclusion

5.1 Summary of Contributions

Presenting ZF Set Theory using Definite Descriptions. In
we give a formal presentation of ZF that accounts for the technical details,
whilst also defining notation for widely used operations. Although correct formal
definitions of this notation can be found in computer implementations of set
theory, we have not seen definite descriptions used for this in published articles.
Definite descriptions allow defining terms in a compact and readable way without
needing to add FOL function symbols, extend the model, or otherwise appeal
to the meta-level. We show precisely how Kuratowski pairs and their operations
are defined and highlight issues arising from their set representations.

Axiomatizing ZFP. Motivated by issues with the set representation in pure
ZF set theory of conceptually non-set objects, in[gection 3| we introduce Zermelo-
Fraenkel Set Theory with Ordered Pairs, which extends ZF with predicate sym-
bols 71 and w5 and axioms to implement primitive non-set ordered pairs. ZFP is
akin to some alternative set theories that use urelements as genuine non-set ob-
jects in the domain, with the difference that ZFP’s urelements have meaningful
internal structure endowed by the axiomatisation of 71 and 7. The design of
ZFP is deliberately similar to that of ZF, so that we can better understand the
relationship between the two theories. We axiomatize ZFP, and discuss how the
axioms of ZF were modified to yield the axioms of ZFP. As a result, we gain a set
theory with two types of individuals, both of which have a notion of ‘container’,
which is unusual as urelements are usually structureless. The primitive ordered
pairs of ZFP are unlike those typical of set theory, as they are free from any
notion of representation.

Showing ZFP Consistent. In we construct a transfinite hierarchy
to be the domain of a model for ZFP and we define relations on this domain
to be interpretations for €, w1, and m. We show that the resulting structure
satisfies the axioms of ZFP, i.e., it is a model for ZFP. As a result, we show ZFP
is consistent if ZF is.
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5.2 Future Work

Model Theoretic Status of ZF and ZFP. Axiomatisations of both ZF
and ZFP are given within this paper, and we are aware that the sets of ZFP
behave in a similar fashion to those in ZF. We suggest employing model-theoretic
techniques to give a more detailed formal account of the relationship between
the formulas of both theories, as well as the models.

Implementing ZFP. Preliminary experiments have taken place in implement-
ing ZFP as an object logic for Isabelle. Further work on this will allow comparing
mathematics formalised in ZF and in ZFP, and thus allow comparing the expres-
sivity, and automatability of both theories. Moreover, there is already a large
library of mathematics formalised in Isabelle/ZF. Once the formal relationship
between ZF and ZFP has been established, we will attempt to translate mathe-
matics between both bases.

Towards Abstract Data Types in Set Theory. In this paper we identified
a role performed by some sets in ZF, namely the role of being an ordered pair
for some representation (e.g., Kuratowski), together with the FOL abbreviations
for their relations. We axiomatised a new set theory in which this role can be
performed by non-set objects, yet maintain the same existence conditions and
abstract behaviour of this role. We will attempt to abstract and adapt this
method, to yield set theories in which the members of mathematical structures
can be genuine non-sets dedicated to their role. We believe such a framework
could be helpful when using set theory to formalise mathematics.
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theory ZFP imports ZF

begin
(*The following implements section 4 of the paper and proves Theorem 4.10.
   - A hierarchy of sets W is defined via transfinite recursion and proves
   - Relations on this domain are defined for membership, and projections
   - It is proven that the translations of ZFP's axioms are satisfied by, W satisfies and the relations.
*)

(*Definition 4.2*)
(*We begin by defining the domain
  W(0)   = \<emptyset>  
  W(\<beta>+1) = {0} \<times> \<P>(W(\<beta>)) \<union> {1} \<times> W(\<beta>)^2
  W(\<lambda>)   = \<Union>\<beta><\<lambda>. W(\<beta>)
*)
definition succOrd :: "[i,i] \<Rightarrow> i" where
(*Successor case, just a function which takes a set, and gives all subsets and pairs made from it
  tagged with 0s and 1s respectively  *)
  [simp]:  "succOrd(_, w) == ({0} * Pow(w)) \<union> ({1} * (w*w))"

definition limOrd :: "[i,i]\<Rightarrow>i" where
(*Limit case, union of all W(j) where j\<in>a*)
  [simp]: "limOrd(a, w) == \<Union>j\<in>a. w`j"

definition W :: "i \<Rightarrow> i" where
(*transrec3 belongs to Isabelle/ZF. When given the zero, succ, and lim case, it defines a
  class, indexed by the ordinals. *)
  [simp]: "W(a) == transrec3(a, 0, succOrd, limOrd)"

(*Definition 4.3*)
(* We define a predicate H which specifies class membership of W.*)
abbreviation H where "H(x) == \<exists>a. Ord(a) \<and> x\<in>W(a)"
lemma phiI [simp]: "\<lbrakk>Ord(a) ; x\<in>W(a)\<rbrakk> \<Longrightarrow> H(x)" by blast

(*Part of Theorem 4.4*)
abbreviation well_formed where
  "well_formed(x) == \<exists> x'. x = <0,x'> \<or> x = <1,x'>"

lemma W_well_formed: "\<lbrakk>Ord(a); x\<in>W(a)\<rbrakk> \<Longrightarrow> well_formed(x)"
proof (induct rule: trans_induct3)
  case 0
  then show "?case" by simp
next
  case (succ x)
  then show "?case" by (simp, auto)
next
  case (limit x)
  then show "?case" by (simp add: ZF.transrec3_Limit, auto)
qed

lemma sets_closed: "\<lbrakk>Ord(a); x\<in>W(a); x=<0,x'>\<rbrakk> \<Longrightarrow> \<exists>b. Ord(b) \<and> b < a \<and> x' \<subseteq> W(b)"
proof (induct rule : trans_induct3)
  case 0 then show ?case by simp next
  case (succ a)
    then have "x \<in> {0} \<times> Pow(W(a))" by auto
    then have "x' \<subseteq> W(a)" using `x = <0,x'>` by auto
    show ?case proof
      show "Ord(a) \<and> a < succ(a) \<and> x' \<subseteq> W(a)" using `Ord(a)` `x' \<subseteq> W(a)` by auto qed
  next
    case (limit \<omega>)
    then have "Ord(\<omega>)" using Limit_def by auto
    assume ih: "\<And>a. \<lbrakk>a \<in> \<omega>; x \<in> W(a); x = \<langle>0, x'\<rangle>\<rbrakk> \<Longrightarrow> \<exists>b. Ord(b) \<and> b < a \<and> x' \<subseteq> W(b)"

    obtain a where "a \<in> \<omega>" and "x \<in> W(a)" using `Limit(\<omega>)` `x \<in> W(\<omega>)` transrec3_Limit by auto
    then have "\<exists>b. Ord(b) \<and> b < a \<and> x' \<subseteq> W(b)" using `x = <0,x'>` ih by auto
    then obtain b where b:"Ord(b) \<and> b < a \<and> x' \<subseteq> W(b)" by auto
    then have "b < a" and "a < \<omega>" using `a \<in> \<omega>` `Ord(\<omega>)` lt_def by auto
    then have "b < \<omega>" by (rule lt_trans)
    then show "\<exists>b. Ord(b) \<and> b < \<omega> \<and> x' \<subseteq> W(b)" using b by auto
qed

lemma pairs_closed : "\<lbrakk>Ord(a); x\<in>W(a); x=<1,x'>\<rbrakk> \<Longrightarrow> \<exists>b. Ord(b) \<and> b < a \<and> (\<exists>u v. x' = <u,v> \<and> u \<in> W(b) \<and> v \<in> W(b))"
proof (induct rule : trans_induct3)
  case 0 then show ?case by simp next
  case (succ a) then show ?case
  proof -
    assume 0: "Ord(a)" and 1: "x\<in>W(succ(a))" and 2: "x = <1,x'>"
    from 0 1 2 have "x \<in> {1}*(W(a) * W(a))" by auto
    then have "\<exists>u v. x' = <u,v> \<and> u \<in> W(a) \<and> v \<in> W(a)" using 2 by auto
    then show ?thesis using 0 by auto
  qed
next
    case (limit \<omega>)
    then have "Ord(\<omega>)" using Limit_def by auto
    assume ih:"\<And>a . \<lbrakk>a \<in> \<omega>; x \<in> W(a); x = \<langle>1, x'\<rangle>\<rbrakk> \<Longrightarrow> \<exists>b. Ord(b) \<and> b < a \<and> (\<exists>u v. x' = \<langle>u, v\<rangle> \<and> u \<in> W(b) \<and> v \<in> W(b))"

    obtain a where "a \<in> \<omega>" and "x \<in> W(a)" using `Limit(\<omega>)` `x \<in> W(\<omega>)` transrec3_Limit by auto
    then have "\<exists>b. Ord(b) \<and> b < a \<and>  (\<exists>u v. x' = \<langle>u, v\<rangle> \<and> u \<in> W(b) \<and> v \<in> W(b))" using `x = <1,x'>` ih by auto
    then obtain b where b:"Ord(b) \<and> b < a \<and> (\<exists>u v. x' = \<langle>u, v\<rangle> \<and> u \<in> W(b) \<and> v \<in> W(b))" by auto
    then have "b < a" and "a < \<omega>" using `a \<in> \<omega>` `Ord(\<omega>)` lt_def by auto
    then have "b < \<omega>" by (rule lt_trans)
    then show "\<exists>b. Ord(b) \<and> b < \<omega> \<and> (\<exists>u v. x' = \<langle>u, v\<rangle> \<and> u \<in> W(b) \<and> v \<in> W(b))" using b by auto
qed

(*Lemma 4.3*)
theorem "\<lbrakk>Ord(a); x\<in>W(a)\<rbrakk> \<Longrightarrow> \<exists>b. b < a \<and> ((\<exists>x'. x = <0,x'> \<and> x' \<subseteq> W(b)) \<or>
                                          (\<exists>u v. x = <1, <u,v>> \<and> u \<in> W(b) \<and> v \<in> W(b)))"
proof -
  assume "Ord(a)" "x\<in>W(a)"
  then obtain x' where "x = <0,x'> \<or> x = <1,x'>" using W_well_formed by auto
  then show ?thesis
  proof
    assume "x = <0,x'>"
    then have "\<exists>b. Ord(b) \<and> b < a \<and> x' \<subseteq> W(b)" using `Ord(a)` `x \<in> W(a)` sets_closed by auto
    then show ?thesis using `x = <0,x'>` by blast
  next
    assume "x = <1,x'>"
    then have "\<exists>b. Ord(b) \<and> b < a \<and> (\<exists>u v. x' = <u,v> \<and> u \<in> W(b) \<and> v \<in> W(b))"
      using `Ord(a)` `x \<in> W(a)` pairs_closed by auto
    then have "\<exists>b. Ord(b) \<and> b < a \<and> (\<exists>u v. x = <1,u,v> \<and> u \<in> W(b) \<and> v \<in> W(b))"
      using `x = <1,x'>` by auto
    then show ?thesis by auto
  qed
qed

lemma subset_succ : "Ord(i) \<Longrightarrow> W(i) \<subseteq> W(succ(i))"
proof (induct rule: trans_induct3)
  case 0 then show ?case by simp
next
  case (succ i)
  assume "Ord(i)" "W(i) \<subseteq> W(succ(i))"
  show "W(succ(i)) \<subseteq> W(succ(succ(i)))"
  proof
    fix x assume "x\<in>W(succ(i))"
    from `x\<in>W(succ(i))` have "(\<exists>x' . x = <0,x'>) \<or> (\<exists>a b . x = <1,<a,b>>)" by auto
    then show "x \<in> W(succ(succ(i)))"
    proof
      assume "(\<exists>x' . x = <0,x'>)"
      then obtain x' where x':"x = <0,x'>" by blast
      then have "x' \<in> Pow(W(i))" using `x\<in>W(succ(i))` by simp
      then have "\<forall>a\<in>x'. a \<in> W(i)" by blast
      then have "\<forall>a\<in>x'. a \<in> W(succ(i))" using `W(i) \<subseteq> W(succ(i))` by blast
      then have "x' \<in> Pow(W(succ(i)))" by blast
      then have "<0,x'> \<in> W(succ(succ(i)))" by simp
      then show "x \<in> W(succ(succ(i)))" using x' by blast
    next
      assume "(\<exists>a b. x = <1,<a,b>>)"
      then obtain a b where ab: "x = <1,<a,b>>" by blast
      then have "a \<in> W(i) \<and> b \<in> W(i)" using `x\<in>W(succ(i))` by simp
      then have "a \<in> W(succ(i)) \<and> b \<in> W(succ(i))" using `W(i) \<subseteq> W(succ(i))` by blast
      then have " <1,<a,b>> \<in> W(succ(succ(i)))" by simp
      then show "x \<in> W(succ(succ(i)))" using ab by blast
    qed
  qed
next
  case (limit i)
  assume "Limit(i)" and s:"\<And>x. x\<in>i \<Longrightarrow> W(x) \<subseteq> W(succ(x))"
  show "W(i) \<subseteq> W(succ(i))"
  proof
    fix x assume "x\<in>W(i)"
    from `Limit(i)` `x\<in>W(i)` have "\<exists>j\<in>i. x\<in>W(j)" by (simp add: ZF.transrec3_Limit)
    then have "\<exists>j\<in>i . x\<in>W(succ(j))" using s by blast
    then obtain j where j:"j\<in>i" and jx:"x\<in>W(succ(j))" by auto
    then have "(\<exists>x' . x = <0,x'>) \<or> (\<exists>a b . x = <1,<a,b>>)" by auto
    then show "x\<in>W(succ(i))"
    proof
      assume "\<exists>x'. x = \<langle>0, x'\<rangle>"
      then obtain x' where x:"x = <0,x'>" by blast
      then have "x' \<subseteq> W(j)" using jx by auto
      then have "\<exists>j\<in>i. \<forall>a\<in>x'. a\<in>W(j)" using j by auto
      then have "x' \<subseteq> W(i)" using `Limit(i)` by (simp add: ZF.transrec3_Limit, auto)
      then show "x\<in>W(succ(i))" using x by simp
    next
      assume "\<exists>a b. x = <1,<a,b>>"
      then obtain a b where x:"x = <1,<a,b>>" by blast
      then have ab: "a \<in> W(j) \<and> b \<in> W(j)" using jx by simp
      from ab j have "\<exists>j\<in>i. a\<in>W(j)" by auto
      then have ai:"a \<in> W(i)" using `Limit(i)` by (simp add: ZF.transrec3_Limit)
      from ab j have "\<exists>j\<in>i .b\<in>W(j)" by auto
      then have bi:"b \<in> W(i)" using `Limit(i)` by (simp add: ZF.transrec3_Limit)
      from ai bi x show "x\<in>W(succ(i))" by simp
    qed
  qed
qed

(*Lemma 4.4*)
lemma W_ordered : "Ord(j) \<Longrightarrow> i \<le> j \<Longrightarrow> W(i) \<subseteq> W(j)"
proof (induct j rule: trans_induct3)
  case 0
  then show ?case by simp
next
  case (succ j)
  assume j:"Ord(j)"  and ih:"i \<le> j \<Longrightarrow> W(i) \<subseteq> W(j)" and ih2:"i\<le>succ(j)"
  from ih2 have "i\<le>j \<or> i = succ(j)" using Ordinal.le_succ_iff by blast
  then show "W(i) \<subseteq> W(succ(j))"
  proof
    note subset_succ
    then have succj: "W(j) \<subseteq> W(succ(j))" using j by auto
    assume "i\<le>j"
    then have "W(i) \<subseteq> W(j)" using ih by simp
    then show "W(i) \<subseteq> W(succ(j))" using succj by blast
  next
    assume "i = succ(j)"
    then show "W(i) \<subseteq> W(succ(j))" by simp
  qed
next
  case (limit j)
  assume "i\<le>j"
  then have "i < j | i = j" using `Limit(j)` Ordinal.le_iff by blast
  then show "W(i) \<subseteq> W(j)"
  proof
    assume "i < j"
    then have "i \<in> j" using lt_def by simp
    show "W(i) \<subseteq> W(j)"
    proof
      fix x assume "x\<in>W(i)"
      then have "\<exists>i\<in>j. x\<in>W(i)" using `i \<in> j` by blast
      then show "x\<in>W(j)" using ZF.transrec3_Limit `Limit(j)` by auto
    qed
  next
    assume "i = j"
    then show "W(i) \<subseteq> W(j)" by simp
  qed
qed

lemma max_rank: "\<lbrakk>H(x); H(y)\<rbrakk> \<Longrightarrow> \<exists>z. Ord(z) \<and> x\<in>W(z) \<and> y\<in>W(z)"
proof -
  assume "H(x)" then obtain \<alpha> where \<alpha>:"Ord(\<alpha>) \<and> x\<in>W(\<alpha>)" by blast
  assume "H(y)" then obtain \<beta> where \<beta>:"Ord(\<beta>) \<and> y\<in>W(\<beta>)" by blast
  from \<alpha> \<beta> have "Ord(\<alpha>)" "Ord(\<beta>)" by auto
  then have "\<alpha> \<in> \<beta> | \<alpha> = \<beta> | \<beta> \<in> \<alpha>" using Ord_linear by auto
  then have "\<alpha> < \<beta> | \<alpha> = \<beta> | \<beta> < \<alpha>" using \<alpha> \<beta> lt_def by auto
  then show "\<exists>z. Ord(z) \<and> x\<in>W(z) \<and> y\<in>W(z)"
  proof
    assume "\<alpha> < \<beta>"
    then have "\<alpha> \<le> \<beta>" using le_succ_iff by auto
    then have "W(\<alpha>) \<subseteq> W(\<beta>)" using `Ord(\<beta>)` W_ordered by auto
    then have "x\<in>W(\<beta>)" using \<alpha> by auto
    then show ?thesis using \<beta> by auto
  next
    assume "\<alpha> = \<beta> \<or> \<beta> < \<alpha>"
    then have "\<beta> \<le> \<alpha>" using \<alpha> le_iff by auto
    then have "W(\<beta>) \<subseteq> W(\<alpha>)" using `Ord(\<alpha>)` W_ordered by auto
    then have "y\<in>W(\<alpha>)" using \<beta> by auto
    then show ?thesis using \<alpha> by auto
  qed
qed

(*Definition 4.5*)
definition Zin where [simp]: "Zin(a,x) \<longleftrightarrow> (\<exists>x'. x = <0,x'> \<and> a\<in>x')"
definition Zp1 where [simp]: "Zp1(a,p) \<longleftrightarrow> (\<exists>p'. p = <1,p'> \<and> fst(p') = a)"
definition Zp2 where [simp]: "Zp2(a,p) \<longleftrightarrow> (\<exists>p'. p = <1,p'> \<and> snd(p') = a)"

lemma zin_closed [simp] : "\<lbrakk>H(x); Zin(a,x)\<rbrakk> \<Longrightarrow> H(a)"
proof -
  assume "H(x)" and "Zin(a,x)"
  then obtain b where "Ord(b) \<and> x \<in> W(b)" by auto
  from `Zin(a,x)` have "(\<exists>x'. x = <0,x'> \<and> a\<in>x')" by auto
  then obtain x' where "x = <0,x'>" and "a \<in> x'" by auto
  then have "\<exists>c. Ord(c) \<and> c < b \<and> x' \<subseteq> W(c)" using `Ord(b) \<and> x \<in> W(b)` sets_closed by auto
  then show "\<exists>c. Ord(c) \<and> a \<in> W(c)" using `a \<in> x'` by auto
qed
lemma prev_tier : "\<lbrakk>Ord(a); x\<in>W(succ(a)); Zin(y,x)\<rbrakk> \<Longrightarrow> y \<in> W(a)" by auto

lemma zp1_closed [simp] : "\<lbrakk>H(p); Zp1(a,p)\<rbrakk> \<Longrightarrow> H(a)"
proof -
  assume "H(p)" "Zp1(a,p)"
  then obtain \<beta> where "Ord(\<beta>)" and "p \<in> W(\<beta>)" by auto
  from `Zp1(a,p)` obtain p' where "p = <1,p'>" and "fst(p') = a" by auto
  then have "\<exists>\<gamma>. Ord(\<gamma>) \<and> \<gamma> < \<beta> \<and> (\<exists>u v. p' = \<langle>u, v\<rangle> \<and> u \<in> W(\<gamma>) \<and> v \<in> W(\<gamma>))"
    using pairs_closed `Ord(\<beta>)` `p \<in> W(\<beta>)` by blast
  then obtain \<gamma> where "Ord(\<gamma>)" and " \<gamma> < \<beta> \<and> (\<exists>u v. p' = \<langle>u, v\<rangle> \<and> u \<in> W(\<gamma>) \<and> v \<in> W(\<gamma>))" by auto
  then obtain u where "u \<in> W(\<gamma>) \<and> fst(p') = u" by auto
  then have "a \<in> W(\<gamma>)" using `fst(p') = a` by auto
  then show "\<exists>\<gamma>. Ord(\<gamma>) \<and> a \<in> W(\<gamma>)" using `Ord(\<gamma>)` by auto
qed 

lemma zp2_closed [simp] : "\<lbrakk>H(p); Zp2(a,p)\<rbrakk> \<Longrightarrow> H(a)"
proof -
  assume "H(p)" "Zp2(a,p)"
  then obtain \<beta> where "Ord(\<beta>)" and "p \<in> W(\<beta>)" by auto
  from `Zp2(a,p)` obtain p' where "p = <1,p'>" and "snd(p') = a" by auto
  then have "\<exists>\<gamma>. Ord(\<gamma>) \<and> \<gamma> < \<beta> \<and> (\<exists>u v. p' = \<langle>u, v\<rangle> \<and> u \<in> W(\<gamma>) \<and> v \<in> W(\<gamma>))"
    using pairs_closed `Ord(\<beta>)` `p \<in> W(\<beta>)` by blast
  then obtain \<gamma> where "Ord(\<gamma>)" and "\<gamma> < \<beta> \<and> (\<exists>u v. p' = \<langle>u, v\<rangle> \<and> u \<in> W(\<gamma>) \<and> v \<in> W(\<gamma>))" by auto
  then obtain u where "u \<in> W(\<gamma>) \<and> snd(p') = u" by auto
  then have "a \<in> W(\<gamma>)" using `snd(p') = a` by auto
  then show "\<exists>\<gamma>. Ord(\<gamma>) \<and> a \<in> W(\<gamma>)" using `Ord(\<gamma>)` by auto
qed

lemma prev_tier_pairs :
  "\<lbrakk>Ord(succ(a)); x\<in>W(succ(a)); Zp1(u,x); Zp2(v,x)\<rbrakk> \<Longrightarrow> u\<in>W(a) \<and> v\<in>W(a)" by auto

(*Lemma 4.6*)
lemma "\<lbrakk>H(x); Zin(a,x) | Zp1(a,x) | Zp2(a,x)\<rbrakk> \<Longrightarrow> H(a)"
proof -
  assume "H(x)"
  assume "Zin(a,x) | Zp1(a,x) | Zp2(a,x)" then show ?thesis
  proof
    assume "Zin(a,x)" then show "H(a)" using `H(x)` zin_closed by auto
  next
    assume "Zp1(a,x) | Zp2(a,x)" then show ?thesis
    proof
      assume "Zp1(a,x)" then show "H(a)" using `H(x)` zp1_closed by auto
    next
      assume "Zp2(a,x)" then show "H(a)" using `H(x)` zp2_closed by auto
    qed
  qed
qed

lemma reduce_cases : "\<lbrakk>Ord(a); x\<in>W(a)\<rbrakk> \<Longrightarrow> \<exists>i. (Ord(i) \<and> x\<in>W(succ(i)))"
proof (induct rule: trans_induct3)
  case 0 then show ?case by simp next
  case (succ a) then show ?case by auto next
  case (limit a) then show ?case by (simp add: ZF.transrec3_Limit, auto)
qed
lemma "H(x) \<Longrightarrow> \<exists>i. (Ord(i) \<and> x\<in>W(succ(i)))" using reduce_cases by auto


abbreviation Pair where "Pair(x) == (\<exists>a. H(a) \<and> Zp1(a,x))"
abbreviation Set where "Set(x) == \<not> Pair(x)"

(*The following lemmas give us a semantic interpretation of the identification predicates*)
lemma U_means_pair: assumes "H(x)"
  shows "(Pair(x) \<longleftrightarrow> (\<exists>x'. x = <1,x'>))"
proof
(* \<Longrightarrow> *)
  (*Assume Pair(x), then by definition \<exists>a. H(a) \<and> Zp1(a,x).*)
  assume "Pair(x)"
  (*and by definition of Zp1:  \<exists>x'. x = <1,x'> \<and> a\<in>x'*)
  then show "\<exists>x'. x = \<langle>1, x'\<rangle>" by auto
next
(* <== *)
  (*From H(x) we have x\<in>W(\<alpha>) for some ordinal \<alpha> *)
  from assms obtain \<alpha> where 1: "Ord(\<alpha>)" and 2:"x\<in>W(\<alpha>)" by auto
  (*Suppose that x = <1,x'> for some x' *)
  assume "\<exists>x'. x = <1,x'>"
  (*To show Pair(x), it is sufficient to show H(x) and \<exists>a. H(a) \<and> Zp1(a,x) *)
  then obtain x' where "x = <1,x'>" by auto
  then have "\<exists>b. Ord(b) \<and> b < \<alpha> \<and>(\<exists>u v. x' = <u,v> \<and> u \<in> W(b) \<and> v \<in> W(b))" using 1 2 pairs_closed by auto
  then obtain b where "Ord(b) \<and> (\<exists>u v. x' = <u,v> \<and> u \<in> W(b) \<and> v \<in> W(b))" by auto
  then obtain u v where "x' = <u,v> \<and> u \<in> W(b)" by auto
  then have "Zp1(u,x)" using `x = <1,x'>` by auto
  then have "H(u)" using `H(x)` zp1_closed by auto
  show "Pair(x)" using `H(u)` `Zp1(u,x)` by auto
qed

lemma Set_means_set [simp]:
  assumes "H(x)"
  shows "(Set(x) \<longleftrightarrow> (\<exists>x'. x = <0,x'>))"
proof -
  (*Since we know H(x), Set(x) \<longleftrightarrow> \<not>Pair(x)*)
  from assms have 2:"Set(x) \<longleftrightarrow> \<not>Pair(x)" by simp
  (*We also have that \<not>Pair(x) \<longleftrightarrow> \<not>(\<exists>x'. x = <1,x'>) using the previous theorem.*)
  have 3:"\<not> Pair(x) \<longleftrightarrow> \<not> (\<exists>x'. x = <1,x'>)" using assms U_means_pair by auto
  (*Since H(x), x=<0,x'> or x=<1,p>, so the nonexistence of such a p confirms the existence of x'.*)
  have 4:"\<not>(\<exists>x'. x = <1,x'>) \<longleftrightarrow> (\<exists>x'. x = <0,x'>)"
  proof -
    from assms have "well_formed(x)" using W_well_formed by blast
    then show ?thesis by blast
  qed
  (*From the transitive chain of these equivalences, we prove the thesis.*)
  from 2 3 4 show ?thesis by simp
qed

lemma pair_prop [simp]: "\<lbrakk>H(p);Pair(p)\<rbrakk> \<Longrightarrow> (Zp1(a,p) \<and> Zp2(b,p) \<longleftrightarrow> p = <1,<a,b>>)"
proof
  fix p assume "Pair(p)" "H(p)"
  then obtain i where "Ord(i)" and "p\<in>W(i)" by blast
  then have "\<exists>i. (Ord(i) \<and> p\<in>W(succ(i)))" by (rule reduce_cases)
  then obtain j where 0 :"(Ord(j) \<and> p\<in>W(succ(j)))" by blast

  assume 1: "Zp1(a,p) \<and> Zp2(b,p)"
  then have "\<exists>w. p \<in> {1}*(w*w) \<and> a\<in>w \<and> b\<in>w" using 0 by auto
  then show "p = <1,<a,b>>" using 1 by auto
next
  assume "p = <1,<a,b>>"
  then show "Zp1(a,p) \<and> Zp2(b,p)" by auto
qed

(*In order to prove the axiom of replacement holds in W, we require a notion of rank in W
  The "wrank" of a set x in W, is the least ordinal \<alpha> such that "x\<in>W(\<alpha>)"
  We require that the wrank of a set is unique, and that "x\<in>W(wrank(x))"
*)
definition Zunion where [simp]: "Set(x) \<Longrightarrow> Set(y) \<Longrightarrow> Zunion(x,y) == <0, snd(x) \<union> snd(y)>"

lemma zunion_level : assumes "H(x)" "Set(x)" "H(y)" "Set(y)" shows
 "x\<in>W(succ(a)) \<and> y\<in>W(succ(a)) \<longrightarrow> Zunion(x,y) \<in> W(succ(a))"
proof
  from assms obtain x' where x': "x = <0,x'>" using Set_means_set by auto
  from assms obtain y' where y': "y = <0,y'>" using Set_means_set by auto

  assume "x\<in>W(succ(a)) \<and> y\<in>W(succ(a))"
  then have "x'\<subseteq>W(a) \<and> y'\<subseteq> W(a)" using x' y' by auto
  then have "<0, x' \<union> y'> \<in> W(succ(a))" by auto
  then show "Zunion(x,y) \<in> W(succ(a))" using x' y' assms by auto
qed

lemma zunion_or [simp] : assumes "H(x)" "Set(x)" and "H(y)" "Set(y)" shows
  "Zin(a,Zunion(x,y)) \<longleftrightarrow> (Zin(a,x) \<or> Zin(a,y))" using assms Set_means_set by auto

definition Zingle where [simp]: "Zingle(a) == <0,{a}>"

lemma zingle_set [simp] : "Set(x) \<Longrightarrow> Set(Zingle(x))" using Zingle_def Set_means_set by auto

lemma zingle_lemma [simp] : "\<forall>a. Zin(a,Zingle(x)) \<longleftrightarrow> a=x" by auto

lemma "\<forall>a. \<exists>x. \<forall>b. Zin(b,x) \<longleftrightarrow> b = a"
proof
  fix a
  show "\<exists>x. \<forall>b. Zin(b,x) \<longleftrightarrow> b = a"
  proof -
    let ?x = "Zingle(a)"
    have "\<forall>b. Zin(b,?x) \<longleftrightarrow> b = a" by auto
    then show "\<exists>x. \<forall>b. Zin(b,x) \<longleftrightarrow> b = a" by blast
  qed
qed

lemma zingle_level : "\<lbrakk>Ord(a); x\<in>W(a)\<rbrakk> \<Longrightarrow> Zingle(x) \<in> W(succ(a))" by auto
lemma zingle_closed: "H(x) \<Longrightarrow> H(Zingle(x))" using zingle_level by auto

definition Zucc where [simp] : "Zucc(x) == Zunion(x, Zingle(x))"

lemma Zucc_in_succ : "\<lbrakk>Ord(a); x\<in>W(a); Set(x)\<rbrakk> \<Longrightarrow> Zucc(x) \<in> W(succ(a))"
proof -
  assume a:"Ord(a)" and "x\<in>W(a)" and "Set(x)"
  then have x: "x\<in>W(succ(a))" and zx: "Zingle(x) \<in> W(succ(a))" using subset_succ by auto
  then have "Set(Zingle(x))" and "H(Zingle(x))" using Zingle_def Set_means_set a by auto

  from a `x \<in> W(a)` have "H(x)" by (rule phiI)
  from `H(x)` `Set(x)` `H(Zingle(x))` `Set(Zingle(x))`
  have "x \<in> W(succ(a)) \<and> Zingle(x) \<in> W(succ(a)) \<longrightarrow> Zunion(x, Zingle(x)) \<in> W(succ(a))"by (rule zunion_level)
  then have "Zunion(x, Zingle(x)) \<in> W(succ(a))" using x zx by auto
  then show ?thesis by auto
qed

lemma Zucc_limit : "\<lbrakk>Limit(i); x\<in>W(i); Set(x)\<rbrakk> \<Longrightarrow> Zucc(x) \<in> W(i)"
proof -
  assume i:"Limit(i)" and x:"x\<in>W(i)" and sx: "Set(x)"
  then obtain j where j:"j\<in>i" and x:"x\<in>W(j)" using transrec3_Limit by auto
  from i have "Ord(i)" using Limit_def by auto
  then have "Ord(j)" using j Ord_in_Ord by auto
  then have zx:"Zucc(x)\<in>W(succ(j))" using Zucc_in_succ x sx by auto

  from `Ord(j)` have "Ord(succ(j))" by auto
  then have "succ(j) \<in> i" using Limit_def i
  proof -
    from `Ord(i)` `j\<in>i` have "j < i" using ltI by auto
    then have "succ(j) < i" using i Limit_has_succ by auto
    then show ?thesis using ltD by auto
  qed
  then have "\<exists>j'\<in>i. Zucc(x) \<in> W(j')" using zx by blast
  then show "Zucc(x) \<in> W(i)" using transrec3_Limit i by auto
qed


lemma zin_rank : "Zin(a,x) \<Longrightarrow> a\<in>Vset(rank(x))"
proof -
  assume "Zin(a,x)"
  then obtain x' where x':"x = <0,x'>" by auto
  then have "a\<in>x'" using `Zin(a,x)` by auto

  then have 1:"rank(x') < rank(x)" using x' rank_pair2 by auto
  also have 2:"rank(a) < rank(x')" using `a\<in>x'` rank_lt by auto
  from 2 1 have "rank(a) < rank(x)" by (rule lt_trans)
  then show "a\<in>Vset(rank(x))" using VsetI by auto
qed

lemma pair_struc : "\<lbrakk>H(x); \<exists>x'. x = <1,x'>\<rbrakk> \<Longrightarrow> \<exists>a b . x = <1,<a,b>>"
proof -
  assume "H(x)"
  then obtain a where "Ord(a) \<and> x\<in>W(a)" by auto
  then have x:"x \<in> W(succ(a))" using subset_succ by auto
  assume "\<exists>x' . x = <1,x'>"
  then obtain x' where "x = <1,x'>" by auto
  then have "x' \<in> (W(a) \<times> W(a))" using x by auto
  then have "\<exists>a b. x' = <a,b>" by auto
  then show "\<exists>a b. x = <1, <a,b>>" using `x = <1, x'>` by auto
qed

lemma zp_rank : "\<lbrakk>H(x); Zp1(a,x) \<or> Zp2(a,x)\<rbrakk> \<Longrightarrow> a\<in>Vset(rank(x))"
proof -
  assume a:"Zp1(a,x) \<or> Zp2(a,x)" and x:"H(x)"
  then obtain x' where x':"x = <1,x'>" by auto
  then obtain u v where uv: "x' = <u,v>" using `H(x)` pair_struc by blast
  then have "a = u \<or> a = v" using a x' by auto
  then have 1:"rank(a) < rank(x')" using rank_pair1 rank_pair2 uv by auto
  have 2:"rank(x') < rank(x)" using rank_pair2 x' by auto
  from 1 2 have "rank(a) < rank(x)" by (rule lt_trans)
  then show ?thesis using VsetI by auto
qed

definition wrank_case where
 "wrank_case(a, g) == case(\<lambda>x. \<Union>b\<in>x. succ(g`b),
                           \<lambda>p. \<Union>{succ (g`fst(p)), succ (g`snd(p))},
                           a)"

lemma set_case : "wrank_case(<0,x'>,g) = (\<Union>b\<in>x'. succ(g`b))"
  using wrank_case_def case_def by auto
lemma pair_case: "wrank_case(<1,p'>,g) = (\<Union>{succ (g`fst(p')), succ (g`snd(p'))})"
  using wrank_case_def case_def by auto

definition wrank_rec where
  "wrank_rec(a) == Vrec(a, wrank_case)"

lemma def_wrank :
  "wrank_rec(a) = wrank_case(a, \<lambda>z\<in>Vset(rank(a)). wrank_rec(z))"
proof -
 have "\<And>x. wrank_rec(x) == Vrec(x,wrank_case)" using wrank_rec_def by auto
 then show ?thesis by (rule def_Vrec)
qed

lemma set_wrank : "wrank_rec(<0,x'>) = (\<Union>b\<in>x'. succ(wrank_rec(b)))"
proof -
  let ?x = "<0,x'>"
  have 0:"wrank_rec(?x) = wrank_case(?x, \<lambda>z\<in>Vset(rank(?x)). wrank_rec(z))" by (rule def_wrank)
  let ?g = "\<lambda>z\<in>Vset(rank(?x)). wrank_rec(z)"
  have rec:"wrank_case(?x,?g) = (\<Union>b\<in>x'. succ(?g ` b))" by (rule set_case)
  have "\<forall>a\<in>x'. rank(a) < rank(?x)" using zin_rank by auto
  then have "\<forall>a\<in>x'. ?g ` a = wrank_rec(a)" by auto
  then have "wrank_case(?x,?g) = (\<Union>b\<in>x'. succ(wrank_rec(b)))" using rec by auto
  then show ?thesis using 0 by auto
qed

lemma pair_wrank : "wrank_rec(<1,<a,b>>) = (\<Union>{succ (wrank_rec(a)), succ (wrank_rec(b))})"
proof -
  let ?p = "<1,<a,b>>"
  have rec0: "wrank_rec(?p) = wrank_case(?p, \<lambda>z\<in>Vset(rank(?p)). wrank_rec(z))" by (rule def_wrank)
  let ?g = "\<lambda>z\<in>Vset(rank(?p)). wrank_rec(z)"

  have "wrank_case(?p,?g) = (\<Union>{succ (?g`fst(<a,b>)), succ (?g`snd(<a,b>))})" by (rule pair_case)
  then have rec: "wrank_case(?p,?g) = (\<Union>{succ (?g`a), succ (?g`b)})" by auto

  have 0: "rank(<a,b>) < rank(?p)" using rank_pair2 by auto
  then have 1: "rank(a) < rank(<a,b>) \<and> rank(b) < rank(<a,b>)" using rank_pair1 rank_pair2 by auto
  from 1 0 have ranks:"rank(a) < rank(?p) \<and> rank(b) < rank(?p)" using lt_trans by auto
  then have "?g`a = wrank_rec(a) \<and> ?g`b = wrank_rec(b)" by auto
  then have "wrank_case(?p,?g) = (\<Union>{succ (wrank_rec(a)), succ (wrank_rec(b))})" using rec by auto
  then show ?thesis using rec0 by auto
qed

lemma "wrank_rec(<0,x'>) = 0 \<Longrightarrow> x' = 0" using set_wrank by auto
lemma "wrank_rec(<1,<a,b>>) = 0 \<Longrightarrow> <a,b> = 0" using pair_wrank by auto

lemma obj_disj : "H(x) \<Longrightarrow> (\<exists>a b. x = <1, <a,b>>) | (\<exists>x'. x = <0,x'>)"
proof -
  assume "H(x)"
  then have "Pair(x) | Set(x)" by auto
  then have "(\<exists>x'. x = <1,x'>) | (\<exists>x'. x = <0,x'>)"
  proof
    assume "Pair(x)"
    from `H(x)` `Pair(x)` have "\<exists>x'. x = <1,x'>" using U_means_pair by auto
    then show ?thesis by simp
  next
    assume "Set(x)"
    from `H(x)` `Set(x)` have "\<exists>x'. x = <0,x'>" using Set_means_set by auto
    then show ?thesis by simp
  qed
  then show ?thesis using `H(x)` pair_struc by blast
qed

lemma wrank_ord_bad : "\<lbrakk>Ord(i)\<rbrakk> \<Longrightarrow> (\<And>x. x\<in>W(i) \<Longrightarrow> Ord(wrank_rec(x)))"
proof (induct rule: trans_induct3)
  case 0 then show "Ord(wrank_rec(x))" by auto
next
  case (succ i) then show "Ord(wrank_rec(x))"
  proof -
    assume "Ord(i)" and ih:"\<And>x . x\<in>W(i) \<Longrightarrow> Ord(wrank_rec(x))"
    then have "Ord(succ(i))" by simp
    assume "x\<in>W(succ(i))"
    then have "(\<exists>a b. x = <1, <a,b>>) | (\<exists>x'. x = <0,x'>) " using obj_disj by auto
    then show ?thesis
    proof
      assume "\<exists> a b. x = <1,<a,b>>"
      then obtain a b where ab: "x = <1,<a,b>>" by blast
      then have "Zp1(a,x) \<and> Zp2(b,x)" by simp
      then have "a\<in>W(i) \<and> b\<in>W(i)" using `Ord(succ(i))` `x\<in>W(succ(i))` prev_tier_pairs by blast
      then have "Ord(wrank_rec(a)) \<and> Ord(wrank_rec(b))" using ih by blast
      then have "Ord(\<Union>{succ(wrank_rec(a)), succ(wrank_rec(b))})" using Ord_Union by simp
      then show ?thesis using ab pair_wrank by simp
    next
      assume "\<exists>x'. x = <0,x'>"
      then obtain x' where x': "x = <0,x'>" by blast
      then have "\<forall>a\<in>x'. Zin(a,x)" by auto
      then have "\<forall>a\<in>x'. a\<in>W(i)" using `Ord(succ(i))` `x\<in>W(succ(i))` prev_tier by simp
      then have "\<forall>a\<in>x'. Ord(wrank_rec(a))" using ih by simp
      then have "Ord(\<Union>a\<in>x'. succ(wrank_rec(a)))" by auto
      then show ?thesis using x' set_wrank by simp
    qed
  qed
next
  case (limit i)
  then show ?case proof -
    assume "Limit(i)" and ih: "\<And>j x. j\<in>i \<Longrightarrow> x\<in>W(j) \<Longrightarrow> Ord(wrank_rec(x))" and "x\<in>W(i)"
    then have "\<exists>j\<in>i. x\<in>W(j)" using transrec3_Limit by simp
    then obtain j where "j\<in>i \<and> x\<in>W(j)" by blast
    then show "Ord(wrank_rec(x))" using ih by blast
  qed
qed


lemma ord_wrank : "H(x) \<Longrightarrow> Ord(wrank_rec(x))" using wrank_ord_bad by auto

lemma in_wrank : "Ord(i) \<Longrightarrow> (\<And>x. H(x) \<Longrightarrow>  wrank_rec(x) < i \<Longrightarrow> x\<in>W(i))"
proof (induct rule: trans_induct3)
    case 0
    then show ?case by simp
  next
    case (succ i)
    then show ?case
    proof -
      assume "Ord(i)" and ih:"(\<And>x. H(x) \<Longrightarrow> wrank_rec(x) < i \<Longrightarrow> x\<in>W(i))"
      assume "H(x)" "wrank_rec(x) \<le> i"
      then have "wrank_rec(x) < i | wrank_rec(x) = i" using le_iff by auto
      then show "x\<in>W(succ(i))"
      proof
        assume "wrank_rec(x) < i"
        then have "x\<in>W(i)" using `H(x)` ih by simp
        then show "x\<in>W(succ(i))" using subset_succ `Ord(i)` by auto
      next
        assume "wrank_rec(x) = i"
        from `H(x)` have "(\<exists>x'. x = <0,x'>) | (\<exists>a b. x = <1, <a,b>>)" using obj_disj by blast
        then show ?thesis
        proof
          assume "\<exists>x'. x = <0,x'>"
          then obtain x' where x':"x = <0,x'>" by auto
          then have "\<forall>a\<in>x'. Zin(a,x)" by simp
          then have phi:"\<forall>a\<in>x'. H(a)" using zin_closed `H(x)` by blast
          then have ord:"\<forall>a\<in>x'. Ord(wrank_rec(a))" using ord_wrank by simp

          from x' have "(\<Union>a\<in>x'. succ(wrank_rec(a))) = i" using set_wrank `wrank_rec(x) = i` by auto
          then have "\<forall>a\<in>x'. succ(wrank_rec(a)) \<subseteq> i" by auto
          then have "\<forall>a\<in>x'. succ(wrank_rec(a)) \<le> i" using le_subset_iff `Ord(i)` ord by auto
          then have "\<forall>a\<in>x'. a\<in>W(i)" using phi ih by blast
          then have "x' \<in> Pow(W(i))" by blast
          then show "x \<in> W(succ(i))" using x' by simp
        next
          from `H(x)` obtain j where j1:"Ord(j)" and j2:"x\<in>W(j)" by auto
          assume "\<exists>a b. x = <1,<a,b>>"
          then obtain a b where ab:"x = <1,<a,b>>" by auto
          then have "Zp1(a,x)" and "Zp2(b,x)" by auto
          then have phi:"H(a)" using `H(x)` zp1_closed by auto
          then have "H(b)" using `H(x)` `Zp2(b,x)` zp2_closed by auto
          then have ord:"Ord(wrank_rec(a)) \<and> Ord(wrank_rec(b))" using `H(a)` ord_wrank by auto

          have "wrank_rec(x) = i" using `wrank_rec(x) = i` by simp
          then have "\<Union> {succ(wrank_rec(a)), succ(wrank_rec(b))} = i" using pair_wrank ab by simp
          then have "succ(wrank_rec(a)) \<subseteq> i" and "succ(wrank_rec(b)) \<subseteq> i" using `Ord(i)` by auto
          then have "succ(wrank_rec(a)) \<le> i" and "succ(wrank_rec(b)) \<le> i" using le_subset_iff ord `Ord(i)` by auto
          then have "wrank_rec(a) < i" and "wrank_rec(b) < i" using succ_leE by simp_all
          then have "a\<in>W(i)" and "b\<in>W(i)" using `H(a)` `H(b)` ih by auto
          then have "<a,b> \<in> W(i) \<times> W(i)" by simp
          then show "x\<in>W(succ(i))" using ab by auto
        qed
      qed
    qed
  next
    case (limit i)
    then show ?case
    proof -
      assume 2:"H(x)" and "Limit(i)" and ih: "\<And>j x . j \<in> i \<Longrightarrow> H(x) \<Longrightarrow> wrank_rec(x) < j \<Longrightarrow> x \<in> W(j)"
      assume "wrank_rec(x) < i"
      then have "succ(wrank_rec(x)) < i" using `Limit(i)` by simp
      then have 1:"succ(wrank_rec(x)) \<in> i" by (rule ltD)

      have o1:"Ord(wrank_rec(x))" using `H(x)` ord_wrank by simp
      then have o2:"Ord(succ(wrank_rec(x)))" by (rule Ord_succ)
      from o1 o2 have 3:"wrank_rec(x) < succ(wrank_rec(x))" by simp

      from 1 2 3 have "x\<in>W(succ(wrank_rec(x)))" by (rule ih)
      then have "\<exists>j\<in>i. x\<in>W(j)" using 1 by blast
      then show "x\<in>W(i)" using `Limit(i)` transrec3_Limit by auto
    qed
qed




lemma "a\<in>A \<Longrightarrow> \<Inter> A \<subseteq> a" by auto

lemma "A \<or> B \<Longrightarrow> \<not>A \<Longrightarrow> B" by auto

lemma int_in_A :"\<lbrakk>A \<noteq> 0; \<forall>x\<in>A. Ord(x)\<rbrakk> \<Longrightarrow> \<Inter>A \<in> A"
proof -
  assume non_empty: "A \<noteq> 0"
  let ?m = "succ(\<Inter> A)"
  assume A:"\<forall>x\<in>A. Ord(x)"
  have m:"Ord(?m)" and "Ord(\<Inter> A)" using A by auto

  have "\<forall>a\<in>A. a\<in>?m | ?m \<subseteq> a"
  proof
    fix a assume "a\<in>A"
    then have a:"Ord(a)" using A by simp
    then have "a\<in>?m | a = ?m | ?m\<in>a" using m by (rule Ord_linear)
    then show "a\<in>?m | ?m \<subseteq> a"
    proof
      assume "a\<in>?m" then show ?thesis by simp
    next
      assume "a=?m | ?m\<in>a"
      then have "?m < a | a = ?m" using ltI a by blast
      then have "?m \<le> a" using le_iff a by blast
      then have "?m \<subseteq> a" by (rule le_imp_subset)
      then show ?thesis by simp
    qed
  qed
  then have disj:"(\<forall>a\<in>A. ?m \<subseteq> a) | (\<exists>a\<in>A. a\<in>?m)" by auto

  have notA:"\<not> (\<forall>a\<in>A. ?m \<subseteq> a)"
  proof
    have 0:"\<forall>a\<in>A. \<Inter>A \<subseteq> a" by auto
    assume 1:"\<forall>a\<in>A. ?m \<subseteq> a"

    from 0 1 non_empty have "?m \<subseteq> \<Inter>A" by auto
    then have "?m \<le> \<Inter>A" using `Ord(\<Inter>A)` `Ord(?m)` by (rule subset_imp_le)
    then show "False" by auto
  qed

  from disj notA have "\<exists>a\<in>A. a\<in>?m" by simp
  then obtain a where a:"a \<in> A \<and> a\<in>?m" by blast
  then have "a \<in> succ(\<Inter>A)" using `Ord(?m)` ltI by simp
  then have "a \<in> \<Inter> A | a = \<Inter> A" by auto

  have "a \<notin> \<Inter> A"
  proof
    have "Ord(a)" using a A by simp
    assume "a\<in>\<Inter>A"
    then have "a < \<Inter>A" using ltI `Ord(\<Inter>A)` by auto
    have "\<Inter>A \<subseteq> a" using a by auto
    then have "\<Inter>A \<le> a" using le_subset_iff `Ord(\<Inter>A)` `Ord(a)` by auto
    then have "\<not> (a < \<Inter> A)" using not_lt_iff_le `Ord(\<Inter>A)` `Ord(a)` by blast
    then show False using `a< \<Inter>A` by auto
  qed

  from `a \<in> \<Inter> A | a = \<Inter> A` `a\<notin>\<Inter>A` have "a = \<Inter> A" by simp
  then show "\<Inter>A \<in> A" using a by simp
qed

lemma zin_wrank : "\<lbrakk>H(x); Zin(a,x)\<rbrakk> \<Longrightarrow> wrank_rec(a) < wrank_rec(x)"
proof -
  assume "H(x)" "Zin(a,x)"
  then have "H(a)" using zin_closed by simp
  then have oa:"Ord(wrank_rec(a))" and ox:"Ord(wrank_rec(x))" using `H(x)` ord_wrank by auto

  obtain x' where x': "x = <0,x'>" using `Zin(a,x)` by auto
  then have "wrank_rec(x) = (\<Union>a\<in>x'. succ(wrank_rec(a)))" using set_wrank  by auto
  then have "succ(wrank_rec(a)) \<subseteq> wrank_rec(x)" using x' `Zin(a,x)` by auto
  then have "succ(wrank_rec(a)) \<le> wrank_rec(x)" using le_subset_iff oa ox by auto
  then show "wrank_rec(a) < wrank_rec(x)" by auto
qed


lemma zp_wrank : "\<lbrakk>H(x); Zp1(a,x) | Zp2(a,x)\<rbrakk> \<Longrightarrow> wrank_rec(a) < wrank_rec(x)"
proof -
  assume "H(x)" "Zp1(a,x) | Zp2(a,x)"
  then have x':"\<exists>x'. x = <1,x'>" by auto
  then obtain u v where ab:"x = <1,<u,v>>" using `H(x)` pair_struc by blast
  then have "Zp1(u,x)" and "Zp2(v,x)" by auto
  then have phi:"H(u)" using `H(x)` zp1_closed by auto
  then have "H(v)" using `H(x)` `Zp2(v,x)` zp2_closed by auto
  then have phi:"H(u) \<and> H(v)" using `H(u)` `H(v)` by simp
  then have ord:"Ord(wrank_rec(u)) \<and> Ord(wrank_rec(v))" using ord_wrank by simp

  obtain i where "wrank_rec(x) = i" by auto
  then have "Ord(i)" using `H(x)` ord_wrank by auto

  from `wrank_rec(x) = i`
    have "succ(wrank_rec(u)) \<union> succ(wrank_rec(v)) = i" using pair_wrank ab by simp
    then have "succ(wrank_rec(u)) \<subseteq> i" and "succ(wrank_rec(v)) \<subseteq> i" by auto
    then have "succ(wrank_rec(u)) \<le> i" and "succ(wrank_rec(v)) \<le> i"
      using le_subset_iff ord `Ord(i)` by auto
    then have u:"wrank_rec(u) < i" and v:"wrank_rec(v) < i" using succ_leE by auto

    from `Zp1(a,x) | Zp2(a,x)` ab
    have "a = u | a = v" by auto
    then show ?thesis using u v `wrank_rec(x) = i` by auto
qed

lemma "H(x) \<Longrightarrow> Pair(x) \<or> Set(x)" by auto




(* Theorem 4.10*)
(* For each ZFP axiom \<phi>, the translation \<phi>^* holds in ZF.*)

lemma set_extensionality:
  assumes "H(x)" and "Set(x)" and "H(y)" and "Set(y)"
  shows "(\<forall>a. H(a) \<longrightarrow> (Zin(a,x) \<longleftrightarrow> Zin(a,y))) \<longrightarrow> x = y"
proof
  from assms(1) obtain i where "Ord(i)" and "x\<in>W(i)" by auto
  from assms(1) have 0: "Set(x) \<longleftrightarrow> (\<exists>x'. x = <0,x'>)" by (rule Set_means_set)
  from assms(3) obtain j where "Ord(j)" and "y\<in>W(j)" by auto
  from assms(3) have 1: "Set(y) \<longleftrightarrow> (\<exists>y'. y = <0,y'>)" by (rule Set_means_set)

  from 0 1 obtain x' y' where
    2: "(x = <0,x'>) \<and> (y = <0,y'>)" using assms(2,4) by auto
  assume "\<forall>a. H(a) \<longrightarrow> (Zin(a,x) \<longleftrightarrow> Zin(a,y))"
  then have 3: "\<forall>a. H(a) \<longrightarrow> (a\<in>x' \<longleftrightarrow> a\<in>y')" using 2 by auto
  have "x' = y'"
  proof
    show "x' \<subseteq> y'"
    proof
      fix a assume "a\<in>x'"
      then have "Zin(a,x)" using 2 by simp
      from `H(x)` `Zin(a,x)` have "H(a)" by (rule zin_closed)
      then have "a\<in>x' \<longleftrightarrow> a\<in>y'" using 3 by simp
      then show "a\<in>y'" using `a\<in>x'` by simp
    qed
  next
    show "y' \<subseteq> x'"
    proof
      fix a assume "a\<in>y'"
      then have "Zin(a,y)" using 2 by simp
      from `H(y)` `Zin(a,y)` have "H(a)" by (rule zin_closed)
      then have "a\<in>x' \<longleftrightarrow> a\<in>y'" using 3 by simp
      then show "a\<in>x'" using `a\<in>y'` by simp
    qed
  qed
  then have "<0,x'> = <0,y'>" by simp
  then show "x=y" using 2 by simp
qed

lemma set_pairing :
  assumes "H(a)" "H(b)"
  shows "\<exists>x. H(x) \<and> Set(x) \<and> (\<forall>c. Zin(c,x) \<longleftrightarrow> (c = a \<or> c = b))"
(*Let a,b\<in>W:
  then they are in W(\<alpha>) for some successor ordinal a.
  The set {a,b} is thus in Pow(W(\<alpha>)) and so <0,{a,b}> is in W(\<alpha>+1).
  And we can then show that Zin(c,x) \<longrightarrow> (c = a \<or> c = b) and vice versa
  qed
*)
proof
  let ?x = "<0,{a,b}>"
  from assms obtain z where z:"Ord(z) \<and> a\<in>W(z) \<and> b\<in>W(z)" using max_rank by auto
  then have "{a,b} \<in> Pow(W(z))" by simp
  then have x:"?x \<in> W(succ(z))" by simp
  then have "Ord(succ(z)) \<and> ?x\<in>W(succ(z))" using z by simp
  then have "\<exists>z'. Ord(z') \<and> ?x\<in>W(z')" by blast
  then have w:"H(?x)" by simp
  then have set:"Set(?x)" by simp
  from x w set show "H(?x) \<and> Set(?x) \<and> (\<forall>c. Zin(c,?x) \<longleftrightarrow> (c=a \<or> c=b))" by simp
qed


lemma set_union :
  assumes "H(x)" "Set(x)"
  shows "\<exists>y. H(y) \<and> (\<forall>a. Zin(a,y) \<longleftrightarrow> (\<exists>z. H(z) \<and> Zin(z,x) \<and> Zin(a,z)))"
proof -
  from assms(1) obtain a where a:"Ord(a) \<and> x\<in>W(a)" by blast
  then have xa:"Ord(succ(succ(a))) \<and> x\<in>W(succ(succ(a)))" using subset_succ by blast

  let ?y' = "{u \<in> W(a) . (\<exists>z. Zin(z,x) \<and> Zin(u,z))}"
  let ?y = "<0,?y'>"

  have 1: "H(?y)"
  proof
    let ?b = "succ(a)"
    have "?y' \<subseteq> W(a)" by auto
    then have "?y' \<in> Pow(W(a))" by auto
    then show "Ord(?b) \<and> ?y \<in> W(?b)" using a by auto
  qed

  have 0: "\<forall>a. Zin(a,?y) \<longleftrightarrow> (\<exists>z. H(z) \<and> Zin(z,x) \<and> Zin(a,z))"
  proof
    fix b
    show "Zin(b, ?y) \<longleftrightarrow> (\<exists>z. H(z) \<and> Zin(z,x) \<and> Zin(b,z))"
    proof
      assume "Zin(b,?y)"
      then have z:"\<exists>z. Zin(z,x) \<and> Zin(b,z)" by simp
      then obtain z where z:"Zin(z,x) \<and> Zin(b,z)" by auto
      then have "H(z)" using `H(x)` zin_closed by auto
      then show "(\<exists>z. H(z) \<and> Zin(z,x) \<and> Zin(b,z))" using z by auto
    next
      assume z:"(\<exists>z. H(z) \<and> Zin(z,x) \<and> Zin(b,z))"
      then obtain z where b:"Zin(z,x) \<and> Zin(b,z)" by auto
      then have "Ord(succ(a)) \<and> z\<in>W(succ(a))" using xa prev_tier by auto
      then have "b \<in> W(a)" using prev_tier b by auto
      then show "Zin(b,?y)" using b by auto
    qed
  qed

  from 0 1 have "H(?y) \<and> (\<forall>a. Zin(a, ?y) \<longleftrightarrow> (\<exists>z. H(z) \<and> Zin(z, x) \<and> Zin(a, z)))" by auto
  then show ?thesis by blast
qed

definition Zubset where [simp]: "Zubset(a,b) == Set(a) \<and> Set(b) \<and> (\<forall>c. H(c) \<longrightarrow> (Zin(c,a) \<longrightarrow> Zin(c,b)))"

lemma power_set :
  assumes "H(x)" "Set(x)"
  shows "\<exists>y. H(y) \<and> (\<forall>z. H(z) \<longrightarrow> (Zin(z,y) \<longleftrightarrow> Zubset(z,x)))"
proof -
  from assms(1) obtain a where a:"Ord(a) \<and> x\<in>W(a)" by blast
  then have a:"Ord(succ(a))" and xa:"x\<in>W(succ(a))" using subset_succ by auto
  then have "(\<exists>x'. x = <0,x'>)" using `H(x)` `Set(x)` Set_means_set by auto
  then obtain x' where x:"x = <0,x'>" using assms(2) by blast
  then have x':"x' \<subseteq> W(a)" using xa by simp

  let ?y' = "{0} \<times> Pow(x')"
  let ?y  = "<0,?y'>"

  from x' have "Pow(x') \<subseteq> Pow(W(a))" by blast
  then have "{0} \<times> Pow(x') \<subseteq> {0} \<times> Pow(W(a))" by blast
  then have "?y' \<subseteq> W(succ(a))" by auto
  then have "?y' \<in> Pow(W(succ(a)))" by simp
  then have "Ord(succ(succ(a)))" and "?y \<in> W(succ(succ(a)))" using a by auto
  then have "\<exists>i. Ord(i) \<and> ?y \<in> W(i)" by (rule phiI)
  then have y:"H(?y)" by simp

  have 0: "\<forall>z. H(z) \<longrightarrow> (Zin(z,?y) \<longleftrightarrow> Zubset(z,x))"
  proof
    fix z show "H(z) \<longrightarrow> Zin(z,?y) \<longleftrightarrow> Zubset(z,x)"
    proof
      assume "H(z)" show "Zin(z,?y) \<longleftrightarrow> Zubset(z,x)"
      proof
        assume "Zin(z,?y)" then have "H(z)" using `H(?y)` zin_closed by simp
        from `Zin(z,?y)` have "z \<in> {0} \<times> Pow(x')" by simp
        then obtain z' where z':"z = <0,z'> \<and> z' \<subseteq> x'" by blast
        then have "Set(z)" using `H(z)` by simp
        from z' have 2:"\<forall>a. Zin(a,z) \<longrightarrow> Zin(a,x)" using x by auto
        then show "Zubset(z,x)" using `Set(x)` `Set(z)` by simp
    next
      assume "Zubset(z,x)"
      then have "Set(z)" and "Set(x)" and sub:"(\<forall>a. H(a) \<longrightarrow> (Zin(a,z) \<longrightarrow> Zin(a,x)))" by simp_all
      from `Set(z)` obtain z' where z:"z = <0,z'>" using `H(z)` Set_means_set by auto
      have "z' \<subseteq> x'"
      proof
        fix u assume "u \<in> z'"
        then have "Zin(u,z)" using z by simp
        then have "H(u)" using `H(z)` `Set(z)` zin_closed by blast
        then have "Zin(u,z) \<longrightarrow> Zin(u,x)" using sub by simp
        then have "Zin(u,x)" using `Zin(u,z)` by simp
        then show "u \<in> x'" using x by simp
      qed
        then have "z \<in> {0} \<times> Pow(x')" using z by simp
        then show "Zin(z,?y)" by simp
      qed
    qed
  qed
  then have "H(?y) \<and> (\<forall>z. H(z) \<longrightarrow> (Zin(z,?y) \<longleftrightarrow> Zubset(z,x)))" using `H(?y)` by simp
  then show ?thesis by blast
qed

lemma specification_schema :
  assumes "H(x)" "Set(x)"
  shows "\<exists>y. Set(y) \<and> (\<forall>a. H(a) \<longrightarrow> (Zin(a,y) \<longleftrightarrow> Zin(a,x) \<and> \<phi>(a)))"
proof -
  from assms obtain a where a:"Ord(a) \<and> x\<in>W(a)" by auto
  then have sa:"x \<in> W(succ(a))" using subset_succ by blast
  from assms obtain x' where x:"x = <0,x'>" using Set_means_set by auto
  then have x': "x' \<subseteq> W(a)" using sa by auto

  let ?y' = "{a \<in> x'. \<phi>(a)}"
  let ?y = "<0,?y'>"
  have "?y' \<subseteq> x'" by blast
  then have "?y' \<subseteq> W(a)" using x' by blast
  then have "?y \<in> {0} \<times> Pow(W(a))" by simp
  then have "?y \<in> W(succ(a))" by simp
  then have "H(?y)" using a by blast
  then have y:"Set(?y)" by simp

  have "(\<forall>a. H(a) \<longrightarrow> (Zin(a,?y) \<longleftrightarrow> Zin(a,x) \<and> \<phi>(a)))"
  proof
    fix u show "H(u) \<longrightarrow> (Zin(u, ?y) \<longleftrightarrow> Zin(u, x) \<and> \<phi>(u))"
    proof
      have 0:"Zin(u,?y) \<longleftrightarrow> u \<in> ?y'" by simp
      then have 1:"u \<in> ?y' \<longleftrightarrow> u \<in> x' \<and> \<phi>(u)" by simp
      then have 2:"u \<in> x' \<and> \<phi>(u) \<longleftrightarrow> Zin(u,x) \<and> \<phi>(u)" using x by simp
      from 0 1 2 show "Zin(u, ?y) \<longleftrightarrow> Zin(u, x) \<and> \<phi>(u)" by simp
    qed
  qed
  then have "Set(?y) \<and> (\<forall>a. H(a) \<longrightarrow> (Zin(a,?y) \<longleftrightarrow> Zin(a,x) \<and> \<phi>(a)))" using y by simp
  then show "\<exists>y. Set(y) \<and> (\<forall>a. H(a) \<longrightarrow> (Zin(a,y) \<longleftrightarrow> Zin(a,x) \<and> \<phi>(a)))" by blast
qed

abbreviation emp where "emp == <0,0>"

definition zordinal where [simp] :
  "zordinal(a) = transrec3(a, emp, \<lambda>i b. Zucc(b), \<lambda>i z. <0,\<Union>j\<in>i. snd(z`j)>)"

lemma zord_set_w : "Ord(a) \<Longrightarrow> Set(zordinal(a)) \<and> zordinal(a) \<in> W(succ(a))"
proof (induct a rule: trans_induct3)
  case 0 show ?case proof
    have 1:"Ord(1)" by auto
    have "emp = zordinal(0)" by auto
    then show z:"zordinal(0) \<in> W(1)" by auto
    then have "Ord(1)" and "zordinal(0) \<in> W(1)" by auto
    then have "H(zordinal(0))" by (rule phiI)
    then show "Set(zordinal(0))" by auto
  qed
  case (succ a)
   assume a:"Ord(a)" and ih:"Set(zordinal(a)) \<and> zordinal(a) \<in> W(succ(a))"
   from ih have set:"Set(zordinal(a))" and w:"zordinal(a) \<in> W(succ(a))" by auto
   have sa:"Ord(succ(a))" using a by simp
   then have "Zucc(zordinal(a)) \<in> W(succ(succ(a)))" using w set by (rule Zucc_in_succ)
   then have 1:"zordinal(succ(a)) \<in> W(succ(succ(a)))" by auto
   then have "Ord(succ(succ(a)))" and "zordinal(succ(a)) \<in> W(succ(succ(a)))" using sa by auto
   then have "H(zordinal(succ(a)))" by (rule phiI)
   then have 2:"Set(zordinal(succ(a)))" using `Set(zordinal(a))` zingle_set Zunion_def by auto
   show ?case using 1 2 by simp
 next
   case (limit i)
   assume i:"Limit(i)" and ih:"\<And>b. b\<in>i\<Longrightarrow>Set(zordinal(b)) \<and> zordinal(b) \<in> W(succ(b))"
   then have "Ord(i)" using Limit_def by auto
   obtain z' where z:"zordinal(i) = <0,z'>" using i transrec3_Limit by auto
   then have z':"z' = (\<Union> b\<in>i. snd(zordinal(b)))" using i transrec3_Limit by auto

   have "z' \<subseteq> W(i)" proof
     fix x assume "x \<in> z'"
     then have "\<exists>b. b < i \<and> x \<in> snd(zordinal(b))" using z' `Ord(i)` lt_def by auto
     then obtain b where b:"b<i \<and> Ord(b) \<and> x \<in> snd(zordinal(b))" using lt_Ord by auto
     then have "b < i" and "b\<in>i" and "Ord(succ(b))" using lt_def by auto
     then have "Set(zordinal(b))" and "zordinal(b) \<in> W(succ(b))" using ih by auto
     then have "H(zordinal(b))" using `Ord(succ(b))` phiI by auto
     then obtain x' where x':"zordinal(b) = <0,x'>" using `Set(zordinal(b))` Set_means_set by auto
     then have "x' \<subseteq> W(b)" using `Ord(succ(b))` `zordinal(b) \<in> W(succ(b))` by auto

     have "b \<le> i" using `b < i` lt_def by auto
     then have "W(b) \<subseteq> W(i)" using `Ord(i)` W_ordered by auto
     then have "x \<in> x'" using b x' by auto
     then have "x \<in> W(b)" using `x' \<subseteq> W(b)` by auto
     then show "x\<in>W(i)" using `W(b) \<subseteq> W(i)` by auto
   qed
   then have 1:"zordinal(i) \<in> W(succ(i))" using z by auto
   from `Limit(i)` have "Ord(succ(i))" using Limit_def by auto
   then have "H(zordinal(i))" using 1 by (rule phiI)
   then have 2:"Set(zordinal(i))" using Set_means_set z by auto
   from 1 2 show ?case by auto
 qed

lemma infinity :
  "\<exists>z. H(z) \<and> Zin(emp,z) \<and> (\<forall>x. Set(x) \<longrightarrow> (Zin(x,z) \<longrightarrow> Zin(Zucc(x), z)))"
proof -
  obtain i where i:"Limit(i)" by auto
  then have "Ord(i)" using Limit_def by auto
  then have si: "Ord(succ(i))" by auto
  let ?z = "<0,W(i)>"
  have behv:"Zin(emp,?z) \<and> (\<forall>x. Set(x) \<longrightarrow> (Zin(x,?z) \<longrightarrow> Zin(Zucc(x), ?z)))"
  proof
    show "Zin(emp, ?z)"
    proof -
      from i have 1:"1 \<in> i" using Limit_has_1 ltD by auto
      have "emp \<in> W(1)" by auto
      then have "\<exists>j\<in>i. emp \<in> W(j)" using 1 by blast
      then show "Zin(emp,?z)" using i transrec3_Limit by auto
    qed
  next
    show "\<forall>x. Set(x) \<longrightarrow> (Zin(x,?z) \<longrightarrow> Zin(Zucc(x), ?z))"
      using i Zucc_limit by auto
  qed

  have z:"?z \<in> W(succ(i))" and "Ord(succ(i))" using si by auto
  then have "H(?z)"  using phiI by auto
  then show ?thesis using behv by blast
qed

lemma emp_ugly :
   assumes "H(y)" shows "Zin(emp,y) \<longrightarrow>  (\<exists>z. H(z) \<and> Set(z) \<and> Zin(z,y) \<and> (\<forall>b. \<not> Zin(b,z)))"
proof
  assume y:"Zin(emp,y)"
  show "(\<exists>z. H(z) \<and> Set(z) \<and> Zin(z,y) \<and> (\<forall>b. \<not> Zin(b,z)))"
  proof
    have 1:"H(emp)" using y zin_closed by auto
    then have 2:"Set(emp)" by simp
    have 3:"Zin(emp,y)" using y by simp
    have 4:"\<forall>b. \<not> Zin(b,emp)" by auto
    show "(H(emp) \<and> Set(emp) \<and> Zin(emp,y) \<and> (\<forall>b. \<not> Zin(b,emp)))" using 1 2 3 4 by simp
  qed
qed

lemma zucc_ugly: assumes "H(x)" "Set(x)" "H(y)" "Zin(Zucc(x), y)" shows
 "(\<exists>s. H(s) \<and> Zin(s,y) \<and> (\<forall>c. Zin(c,s) \<longleftrightarrow> (Zin(c,x) \<or> c = x)))"
proof
  obtain a where a:"Ord(a) \<and> x\<in>W(a)" using assms(1) by auto
  then have "Zucc(x)\<in>W(succ(a))"using Zucc_in_succ assms(2) by auto
  then have "Ord(succ(a))" and "Zucc(x) \<in> W(succ(a))" using a by auto
  then have 1:"H(Zucc(x))" by (rule phiI)
  have 2:"Zin(Zucc(x), y)" using assms(4) by simp
  have 3:"(\<forall>c. Zin(c,Zucc(x)) \<longleftrightarrow> (Zin(c,x) \<or> c = x))"
  proof fix c
    have z:"Set(Zingle(x))" and "H(Zingle(x))"
      using zingle_set zingle_closed `Set(x)` `H(x)` by auto
    then have "Zin(c, Zunion(x,Zingle(x))) \<longleftrightarrow> (Zin(c,x) \<or> Zin(c,Zingle(x)))"
      using `H(x)` `Set(x)` zunion_or by blast
    then have "Zin(c,Zucc(x)) \<longleftrightarrow> (Zin(c,x) \<or> Zin(c,Zingle(x)))" using Zucc_def by simp
    then show "Zin(c,Zucc(x)) \<longleftrightarrow> (Zin(c,x) \<or> c = x)" using zingle_lemma by auto
  qed
  from 1 2 3 show "H(Zucc(x)) \<and> Zin(Zucc(x),y) \<and> (\<forall>c. Zin(c,Zucc(x)) \<longleftrightarrow> (Zin(c,x) \<or> c = x))" by simp
qed

lemma infinity_ugly :
 "\<exists>y. H(y) \<and> (\<exists>z. H(z) \<and> Set(z) \<and> Zin(z,y) \<and> (\<forall>b. \<not> Zin(b,z)))
           \<and> (\<forall>x. Zin(x,y) \<longrightarrow> (\<exists>s. H(s) \<and> Zin(s,y) \<and> (\<forall>c. Zin(c,s) \<longleftrightarrow> (Zin(c,x) \<or> c = x))))"
proof -
  obtain i where i:"Limit(i)" by auto
  then have i_ord:"Ord(i)" using Limit_def by auto
  obtain I' where I':"I' = {zordinal(b) . b\<in>i}" by auto
  then have zi:"\<And>b . Ord(b) \<Longrightarrow> b\<in>i \<Longrightarrow> zordinal(b) \<in> I'" by auto
  let ?I = "<0,I'>"

  from i have "0 < i" using Limit_def by auto
  then have "Ord(0)" and "0 \<in> i"  using lt_def by auto
  then have "zordinal(0) \<in> I'" by (rule zi)
  then have "emp \<in> I'" by auto
  then have "Zin(emp, ?I)" by auto

  have zucc:"\<forall>x. Zin(x,?I) \<longrightarrow> Set(x) \<and> Zin(Zucc(x),?I)" proof
    fix x show "Zin(x, \<langle>0, I'\<rangle>) \<longrightarrow> Set(x) \<and> Zin(Zucc(x), \<langle>0, I'\<rangle>)" proof
      assume "Zin(x,?I)"
      then obtain b where x:"x = zordinal(b)" and b:"b \<in> i" using I' by auto
      from b i_ord have "Ord(b)" using lt_def lt_Ord by auto
      then have osb:"Ord(succ(b))" by auto
      then have sb:"succ(b) \<in> i" using i Limit_def b lt_def by auto

      have "zordinal(succ(b)) \<in> I'" using osb sb by (rule zi)
      then have "Set(x)" and "Zucc(x) \<in> I'" using zord_set_w x `Ord(b)` by auto
      then show "Set(x) \<and> Zin(Zucc(x),?I)" by simp
    qed
  qed

  have "H(?I)" proof -
    have "I' \<subseteq> W(i)" proof
    fix x assume "x\<in>I'"
     then obtain b where x:"x = zordinal(b)" and b:"b\<in>i" using I' by auto
     then have bi:"b < i" and "Ord(b)" using lt_Ord lt_def i_ord by auto
     then have "succ(b) < i" using bi i by auto
     then have "succ(b) \<in> i" using lt_def by auto
     from `Ord(b)` have "zordinal(b) \<in> W(succ(b))" using zord_set_w by auto
     then have "\<exists>j\<in>i. zordinal(b) \<in> W(j)" using `succ(b)\<in>i` by blast
     then have "zordinal(b) \<in> W(i)" using transrec3_Limit i by auto
     then show "x \<in> W(i)" using x by auto
   qed
  then have "Ord(succ(i))" and "?I \<in> W(succ(i))" using i_ord by auto
  then show "H(?I)" by (rule phiI)
  qed

  from `H(?I)` `Zin(emp,?I)` have 1:"(\<exists>z. H(z) \<and> Set(z) \<and> Zin(z,?I) \<and> (\<forall>b. \<not> Zin(b,z)))"
    using emp_ugly by blast
  have 2:"(\<forall>x. Zin(x,?I) \<longrightarrow> (\<exists>s. H(s) \<and> Zin(s,?I) \<and> (\<forall>c. Zin(c,s) \<longleftrightarrow> (Zin(c,x) \<or> c = x))))"
  proof (rule allI, rule impI)
    fix x assume "Zin(x,?I)"
    then have "Set(x)" and "H(x)" and "Zin(Zucc(x), ?I)" using `H(?I)` zin_closed zucc by auto
    then show "(\<exists>s. H(s) \<and> Zin(s,?I) \<and> (\<forall>c. Zin(c,s) \<longleftrightarrow> (Zin(c,x) \<or> c = x)))"
      using `H(?I)` zucc_ugly by blast
  qed
  from `H(?I)` 1 2 have "H(?I) \<and> (\<exists>z. H(z) \<and> Set(z) \<and> Zin(z,?I) \<and> (\<forall>b. \<not> Zin(b,z)))
           \<and> (\<forall>x. Zin(x,?I) \<longrightarrow> (\<exists>s. H(s) \<and> Zin(s,?I) \<and> (\<forall>c. Zin(c,s) \<longleftrightarrow> (Zin(c,x) \<or> c = x))))" by auto
  then show ?thesis by blast
qed



lemma replacement :
  assumes "Set(x)" "H(x)" "\<forall>a. Zin(a,x) \<longrightarrow> (\<exists>!b. H(b) \<and> \<phi>(a,b))"
  shows "\<exists>y. Set(y) \<and> (\<forall>b. H(b) \<longrightarrow> (Zin(b,y) \<longleftrightarrow> (\<exists>a. Zin(a,x) \<and> \<phi>(a,b))))"
proof -
  from assms(1) obtain x' where x':"x = <0,x'>" using `H(x)` Set_means_set by blast
  then have func:"\<forall>a\<in>x'. \<forall>y z. (H(y) \<and> \<phi>(a,y)) \<and> (H(z) \<and> \<phi>(a,z)) \<longrightarrow> y = z" using assms(3) by auto
  let ?y' = "{b . a\<in>x', H(b) \<and> \<phi>(a,b)}"
  let ?y = "<0,?y'>"


  have behaviour:"(\<forall>b. H(b) \<longrightarrow> Zin(b,?y) \<longleftrightarrow> (\<exists>a. Zin(a,x) \<and> \<phi>(a,b)))"
  proof
    fix b
    show "H(b) \<longrightarrow> Zin(b,?y) \<longleftrightarrow> (\<exists>a. Zin(a,x) \<and> \<phi>(a,b))"
    proof
      assume "H(b)"
      show "Zin(b,?y) \<longleftrightarrow> (\<exists>a. Zin(a,x) \<and> \<phi>(a,b))"
      proof
        assume "Zin(b,?y)"
        then have "b\<in>?y'" by simp
        then have "\<exists>a. a\<in>x' \<and> \<phi>(a,b)" by blast
        then show "\<exists>a. Zin(a,x) \<and> \<phi>(a,b)" using x' by simp
      next
        assume "\<exists>a. Zin(a,x) \<and> \<phi>(a,b)"
        then have "\<exists>a. a\<in>x'\<and> H(b) \<and> \<phi>(a,b)" using `H(b)` x' by simp
        then have "b\<in>?y'" using func by blast
        then show "Zin(b,?y)" by auto
      qed
    qed
  qed

  have "H(?y)"
  proof -
    obtain y' where y': "y' = ?y'" by blast
    then have phib:"\<forall>b\<in>y'. H(b)" by auto
    obtain i where i:"(\<Union>m\<in>y'. wrank_rec(m)) = i " by auto
    have ord_b:"\<forall>b\<in>y'. Ord(wrank_rec(b))" using y' ord_wrank by auto
    then have ord_i:"Ord(i)" using i by auto
    then have "Ord(succ(i))" by auto
    then have ss:"Ord(succ(succ(i)))" by auto

    have "\<forall>b\<in>y'. b\<in>W(succ(i))"
    proof
      fix b assume b:"b\<in>y'"
      then have ob:"Ord(wrank_rec(b))" using ord_b by auto
      have "H(b)" using phib b by auto
      from b have "wrank_rec(b) \<subseteq> i" using ord_i i by auto
      then have "wrank_rec(b) \<le> i" using le_subset_iff ob ord_i by auto
      then have s:"wrank_rec(b) <  succ(i)" by blast
      from `Ord(succ(i))` `H(b)` s show "b\<in>W(succ(i))" by (rule in_wrank)
    qed
    then have "y' \<subseteq> W(succ(i))" by auto
        then have "?y' \<subseteq> W(succ(i))" using y' by auto
        then have "?y \<in> W(succ(succ(i)))" by auto
        then have "Ord(succ(succ(i)))" and "?y \<in> W(succ(succ(i)))" using ss by auto
        then show "H(?y)" by (rule phiI)
      qed
      then have "Set(?y)" by auto
      then have "Set(?y) \<and>  (\<forall>b. H(b) \<longrightarrow> (Zin(b,?y) \<longleftrightarrow> (\<exists>a. Zin(a,x) \<and> \<phi>(a,b))))"
        using behaviour by auto
      then show ?thesis by blast
    qed

lemma foundation :
  assumes "Set(x)" "H(x)" "x \<noteq> emp"
  shows "\<exists>a. H(a) \<and> Zin(a,x) \<and>
        (\<forall>b. H(b) \<and> Zin(b,x) \<longrightarrow> \<not>(Zin(b,a) \<or> Zp1(b,a) \<or> Zp2(b,a)))"
proof -
  from assms(1-2) Set_means_set obtain x' where x:"x = <0,x'>" by auto
  let ?A = "{wrank_rec(y) . y\<in>x'}"
  from assms(3) x have "?A \<noteq> 0" by auto
  let ?\<mu> = "\<Inter> ?A"
  have "\<forall>y\<in>x'. H(y)" using `H(x)` zin_closed x by auto
  then have i_ords:"\<forall>i\<in>?A. Ord(i)" using ord_wrank by blast
  then have "Ord(?\<mu>)" by auto

  have "\<forall>i\<in>?A. ?\<mu> \<subseteq> i" by auto
  then have "\<forall>i\<in>?A. ?\<mu> \<le> i" using i_ords `Ord(?\<mu>)` le_subset_iff by auto
  then have 1:"\<forall>b\<in>x'. ?\<mu> \<le> wrank_rec(b)" by auto

  have "?\<mu> \<in> ?A" using int_in_A i_ords `?A \<noteq> 0` by blast
  then have "\<exists>a\<in>x'. wrank_rec(a) = ?\<mu>" by auto
  then obtain a where "a\<in>x'" and "wrank_rec(a) = ?\<mu>" by blast
  then have "H(a)" using `\<forall>y\<in>x'. H(y)` by auto
  from `a\<in>x'` x have "Zin(a,x)" by auto

  have "(\<forall>b. H(b) \<and> Zin(b,x) \<longrightarrow> \<not>(Zin(b,a) \<or> Zp1(b,a) \<or> Zp2(b,a)))"
  proof
    fix b show "H(b) \<and> Zin(b,x) \<longrightarrow> \<not>(Zin(b,a) \<or> Zp1(b,a) \<or> Zp2(b,a)) "
    proof
      assume a:"H(b) \<and> Zin(b,x)"
      then have "b\<in>x'" using x by auto
      from a have "Ord(wrank_rec(b))" using ord_wrank by auto

      show "\<not>(Zin(b,a) \<or> Zp1(b,a) \<or> Zp2(b,a))"
      proof
        assume "Zin(b,a) | Zp1(b,a) | Zp2(b,a)"
        then have "wrank_rec(b) < wrank_rec(a)"
        proof
          assume "Zin(b,a)"
          then show "wrank_rec(b) < wrank_rec(a)" using `H(a)` zin_wrank by simp
        next
          assume "Zp1(b,a) | Zp2(b,a)"
          then show "wrank_rec(b) < wrank_rec(a)" using `H(a)` zp_wrank by simp
        qed
        then have 2:"wrank_rec(b) < ?\<mu>" using `wrank_rec(a) = ?\<mu>` by simp
        from 1 have "?\<mu> \<le> wrank_rec(b)" using `b\<in>x'` by auto
        then have 3:"\<not> (wrank_rec(b) < ?\<mu>)" using not_lt_iff_le `Ord(?\<mu>)` `Ord(wrank_rec(b))` by auto

        from 2 3 show False by simp
      qed
    qed
  qed
  then have "H(a) \<and> Zin(a,x) \<and> (\<forall>b. H(b) \<and> Zin(b,x) \<longrightarrow> \<not>(Zin(b,a) \<or> Zp1(b,a) \<or> Zp2(b,a)))"
    using `H(a)` `Zin(a,x)` by simp
  then show ?thesis by blast
qed

lemma cart_prod :
  assumes "H(x)" "Set(x)" "H(y)" "Set(y)"
  shows "\<exists>z. Set(z) \<and>
      (\<forall>u. H(u) \<longrightarrow> (Zin(u,z) \<longleftrightarrow> (\<exists>a b. Zin(a,x) \<and> Zp1(a,u) \<and> Zin(b,y) \<and> Zp2(b,u))))"
proof -
  from assms(1) assms(3) max_rank obtain a where a:"Ord(a) \<and> x\<in>W(a) \<and> y\<in>W(a)" by blast
  then have xy:"x\<in>W(succ(a)) \<and> y\<in>W(succ(a))" using subset_succ by auto
  let ?z' = "{p \<in> W(succ(a)) . (\<exists>a b. Zin(a,x) \<and> Zp1(a,p) \<and> Zin(b,y) \<and> Zp2(b,p))}"
  let ?z = "<0,?z'>"
  have "H(?z)"
  proof -
    have "?z' \<subseteq> W(succ(a))" by blast
    then have "?z \<in> W(succ(succ(a)))" by auto
    then have "Ord(succ(succ(a)))" and "?z \<in> W(succ(succ(a)))" using a by auto
    then show "H(?z)" by (rule phiI)
  qed
  then have "Set(?z)" by simp

  let ?\<psi> = "(\<forall>u. H(u) \<longrightarrow> Zin(u,?z) \<longleftrightarrow> (\<exists>a b. Zin(a,x) \<and> Zp1(a,u) \<and> Zin(b,y) \<and> Zp2(b,u)))"
  have ?\<psi>
  proof
    fix u
    show "H(u) \<longrightarrow> Zin(u,?z) \<longleftrightarrow> (\<exists>a b. Zin(a,x) \<and> Zp1(a,u) \<and> Zin(b,y) \<and> Zp2(b,u))"
    proof
      assume "H(u)"
      show "Zin(u,?z) \<longleftrightarrow> (\<exists>a b. Zin(a,x) \<and> Zp1(a,u) \<and> Zin(b,y) \<and> Zp2(b,u))"
      proof
        assume "Zin(u,?z)"
        then have "u \<in> ?z'" by simp
        then show "(\<exists>a b. Zin(a,x) \<and> Zp1(a,u) \<and> Zin(b,y) \<and> Zp2(b,u))" by blast
      next
        assume hyp:"(\<exists>a b. Zin(a,x) \<and> Zp1(a,u) \<and> Zin(b,y) \<and> Zp2(b,u))"
        then obtain i j where ij:"Zin(i,x) \<and> Zp1(i,u) \<and> Zin(j,y) \<and> Zp2(j,u)" by blast
        then have "i \<in> W(a)" and "j \<in> W(a)" using prev_tier a xy by auto
        then have "H(i)" and "H(j)" using a by auto
        then have "Pair(u)" using ij `H(u)` by auto
        then have "u = <1,<i,j>>" using `H(u)` pair_prop ij by blast
        then have "u \<in> {1} \<times> (W(a) \<times> W(a))" using `i\<in>W(a)` `j\<in>W(a)` by auto
        then have "u \<in> W(succ(a))" by auto
        then have "u \<in> ?z'" using hyp by auto
        then show "Zin(u,?z)" by auto
      qed
    qed
  qed
  then have "Set(?z) \<and> ?\<psi>" using `Set(?z)` by blast
  then show ?thesis by blast
qed


lemma pair_empty [simp] : "Pair(p) \<Longrightarrow> (\<forall>a. \<not> Zin(a,p))"
proof -
  (* Suppose that Pair(p), then p = <1,p'> for some p'.*)
  assume "Pair(p)"
  then have 0:"fst(p) = 1" by auto
  (*Next we show the thesis by contradiction.*)
  show "\<forall>a. \<not> Zin(a,p)"
  proof (rule ccontr)
    (*Suppose the contrary*)
    assume "\<not> (\<forall>a. \<not> Zin(a, p))"
    (*Then by DeMorgan, we have \<exists>a. Zin(a,p)*)
    then have "\<exists>a. Zin(a,p)" by simp
    (*Then p = <0,x'> for some x'.*)
    then have 1:"fst(p) = 0" by auto
    (*Since fst(p) = 0 = 1, contradiction. *)
    from 0 1 show False by auto
  qed
qed

lemma pair_formation :
  assumes "H(a)" "H(b)"
  shows "\<exists>p. H(p) \<and> Zp1(a,p) \<and> Zp2(b,p)"
proof
  let ?p = "<1,<a,b>>"
  have op:"Zp1(a,?p) \<and> Zp2(b,?p)" by simp
  from assms obtain z where z:"Ord(z)" and ab: "a\<in>W(z) \<and> b\<in>W(z)" using max_rank by blast
  then have "<a,b> \<in> W(z)*W(z)" by auto
  then have "Ord(succ(z)) \<and> <1,<a,b>> \<in> W(succ(z))" using z by simp
  then have "H(?p)" by blast
  then show "H(?p) \<and> Zp1(a,?p) \<and> Zp2(b,?p)" by simp
qed

lemma both_or_neither [simp] :
  assumes "H(x)"
  shows "(\<exists>a. H(a) \<and> Zp1(a,x)) \<longleftrightarrow> (\<exists>b. H(b) \<and> Zp2(b,x))"
proof
  obtain i where 0: "Ord(i)" and 1: "x\<in>W(i)" using assms by auto
  (*Suppose that Zp1(a,x) for some a\<in>W(\<alpha>)*)
  assume "\<exists>a. H(a) \<and> Zp1(a,x)"
  (*Then x = <1,p> for some p*)
  then obtain p where p: "x = <1,p>" by auto
  let ?b = "snd(p)"
  from p have "Zp2(?b,x)" by auto
  then have "H(?b)" using `H(x)` zp2_closed by auto
  then have "H(?b) \<and> Zp2(?b, x)" using `Zp2(?b,x)` by simp
  then show "\<exists>b. H(b) \<and> Zp2(b,x)" by blast
next
  (*Similarly for the converse.*)
  obtain i where 0: "Ord(i)" and 1: "x\<in>W(i)" using assms by auto
  assume "\<exists>b. H(b) \<and> Zp2(b,x)"
  then obtain p where p: "x = <1,p>" by auto
  let ?a = "fst(p)"
  from p have "Zp1(?a,x)" by auto
  then have "H(?a)" using `H(x)` zp1_closed by auto
  then have "H(?a) \<and> Zp1(?a, x)" using `Zp1(?a,x)` by simp
  then show "\<exists>a. H(a) \<and> Zp1(a,x)" by blast
qed

lemma proj_uniqueness [simp] : "\<lbrakk>H(p); Pair(p)\<rbrakk> \<Longrightarrow> (\<exists>! a. H(a) \<and> Zp1(a,p)) \<and> (\<exists>! b. H(b) \<and> Zp2(b,p))"
proof -
  (*Suppose that Pair(p)*)
  assume "H(p)" "Pair(p)"
  then have a:"H(p) \<and> (\<exists>a. H(a) \<and> Zp1(a,p))" by simp
  then have b:"(\<exists>b. H(b) \<and> Zp2(b,p))" using both_or_neither by auto
  (*We then have that p = <1,q> where q = <a,b>*)
  then have "(\<exists>q a b. p = <1,q> \<and> fst(q) = a \<and> H(a) \<and> snd(q) = b \<and> H(b))" using a b by auto
  (*Due to the uniqueness of Kuratowski projections, we have that a, b, and therefore q are unique\<sqdot>*)
  then have "(\<exists>!q a b. p = <1,q> \<and>fst(q) = a \<and> H(a) \<and> snd(q) = b \<and> H(b))" by auto
  (*These are the unique a and b such that Zp1(a,p) and Zp2(b,p)*)
  then show "(\<exists>!a. H(a) \<and> Zp1(a,p)) \<and> (\<exists>!b. H(b) \<and> Zp2(b,p))" by auto
qed

lemma pair_extensionality :
  assumes "H(p)" "Pair(p)" "H(q)" "Pair(q)"
   "(\<forall>a b. H(a)\<and>H(b) \<longrightarrow> (Zp1(a,p) \<longleftrightarrow> Zp1(a,q)) \<and> (Zp2(b,p) \<longleftrightarrow> Zp2(b,q)))"
  shows "p = q"
proof -
  from assms(1-2) have "(\<exists>!a. H(a) \<and>  Zp1(a,p)) \<and> (\<exists>! b. H(b) \<and> Zp2(b,p))" by (rule proj_uniqueness)
  then obtain u v where up:  "Zp1(u,p)" and vp:"Zp2(v,p)" by blast
  from `H(p)` `Zp1(u,p)` have "H(u)" by (rule zp1_closed)
  from `H(p)` `Zp2(v,p)` have "H(v)" by (rule zp2_closed)
  from assms(5) `H(u)` `H(v)`
  have "(Zp1(u,p) \<longleftrightarrow> Zp1(u,q)) \<and> (Zp2(v,p) \<longleftrightarrow> Zp2(v,q))" by simp
  then have q: "Zp1(u,q) \<and> Zp2(v,q)" using up vp by simp

  from `H(p)` `Pair(p)` have "(Zp1(u,p) \<and> Zp2(v,p) \<longleftrightarrow> p = <1,<u,v>>)" by (rule pair_prop)
  then have peq : "p = <1,<u,v>>" using up vp by simp
  from `H(q)` `Pair(q)` have "(Zp1(u,q) \<and> Zp2(v,q) \<longleftrightarrow> q = <1,<u,v>>)" by (rule pair_prop)
  then have qeq: "q = <1,<u,v>>" using q by simp
  from peq qeq show "p = q" by simp
qed

end
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theory ZFP imports ZF

begin
(*The following implements section 4 of the paper and proves Theorem 4.10.
   - A hierarchy of sets W is defined via transfinite recursion and proves
   - Relations on this domain are defined for membership, and projections
   - It is proven that the translations of ZFP's axioms are satisfied by, W satisfies and the relations.
*)

(*Definition 4.2*)
(*We begin by defining the domain
  W(0)   = ∅  
  W(β+1) = {0} × 𝒫(W(β)) ∪ {1} × W(β)^2
  W(λ)   = ⋃β<λ. W(β)
*)
definition succOrd :: "[i,i] ⇒ i" where
(*Successor case, just a function which takes a set, and gives all subsets and pairs made from it
  tagged with 0s and 1s respectively  *)
  [simp]:  "succOrd(_, w) == ({0} * Pow(w)) ∪ ({1} * (w*w))"

definition limOrd :: "[i,i]⇒i" where
(*Limit case, union of all W(j) where j∈a*)
  [simp]: "limOrd(a, w) == ⋃j∈a. w`j"

definition W :: "i ⇒ i" where
(*transrec3 belongs to Isabelle/ZF. When given the zero, succ, and lim case, it defines a
  class, indexed by the ordinals. *)
  [simp]: "W(a) == transrec3(a, 0, succOrd, limOrd)"

(*Definition 4.3*)
(* We define a predicate H which specifies class membership of W.*)
abbreviation H where "H(x) == ∃a. Ord(a) ∧ x∈W(a)"
lemma phiI [simp]: "⟦Ord(a) ; x∈W(a)⟧ ⟹ H(x)" by blast

(*Part of Theorem 4.4*)
abbreviation well_formed where
  "well_formed(x) == ∃ x'. x = <0,x'> ∨ x = <1,x'>"

lemma W_well_formed: "⟦Ord(a); x∈W(a)⟧ ⟹ well_formed(x)"
proof (induct rule: trans_induct3)
  case 0
  then show "?case" by simp
next
  case (succ x)
  then show "?case" by (simp, auto)
next
  case (limit x)
  then show "?case" by (simp add: ZF.transrec3_Limit, auto)
qed

lemma sets_closed: "⟦Ord(a); x∈W(a); x=<0,x'>⟧ ⟹ ∃b. Ord(b) ∧ b < a ∧ x' ⊆ W(b)"
proof (induct rule : trans_induct3)
  case 0 then show ?case by simp next
  case (succ a)
    then have "x ∈ {0} × Pow(W(a))" by auto
    then have "x' ⊆ W(a)" using `x = <0,x'>` by auto
    show ?case proof
      show "Ord(a) ∧ a < succ(a) ∧ x' ⊆ W(a)" using `Ord(a)` `x' ⊆ W(a)` by auto qed
  next
    case (limit ω)
    then have "Ord(ω)" using Limit_def by auto
    assume ih: "⋀a. ⟦a ∈ ω; x ∈ W(a); x = ⟨0, x'⟩⟧ ⟹ ∃b. Ord(b) ∧ b < a ∧ x' ⊆ W(b)"

    obtain a where "a ∈ ω" and "x ∈ W(a)" using `Limit(ω)` `x ∈ W(ω)` transrec3_Limit by auto
    then have "∃b. Ord(b) ∧ b < a ∧ x' ⊆ W(b)" using `x = <0,x'>` ih by auto
    then obtain b where b:"Ord(b) ∧ b < a ∧ x' ⊆ W(b)" by auto
    then have "b < a" and "a < ω" using `a ∈ ω` `Ord(ω)` lt_def by auto
    then have "b < ω" by (rule lt_trans)
    then show "∃b. Ord(b) ∧ b < ω ∧ x' ⊆ W(b)" using b by auto
qed

lemma pairs_closed : "⟦Ord(a); x∈W(a); x=<1,x'>⟧ ⟹ ∃b. Ord(b) ∧ b < a ∧ (∃u v. x' = <u,v> ∧ u ∈ W(b) ∧ v ∈ W(b))"
proof (induct rule : trans_induct3)
  case 0 then show ?case by simp next
  case (succ a) then show ?case
  proof -
    assume 0: "Ord(a)" and 1: "x∈W(succ(a))" and 2: "x = <1,x'>"
    from 0 1 2 have "x ∈ {1}*(W(a) * W(a))" by auto
    then have "∃u v. x' = <u,v> ∧ u ∈ W(a) ∧ v ∈ W(a)" using 2 by auto
    then show ?thesis using 0 by auto
  qed
next
    case (limit ω)
    then have "Ord(ω)" using Limit_def by auto
    assume ih:"⋀a . ⟦a ∈ ω; x ∈ W(a); x = ⟨1, x'⟩⟧ ⟹ ∃b. Ord(b) ∧ b < a ∧ (∃u v. x' = ⟨u, v⟩ ∧ u ∈ W(b) ∧ v ∈ W(b))"

    obtain a where "a ∈ ω" and "x ∈ W(a)" using `Limit(ω)` `x ∈ W(ω)` transrec3_Limit by auto
    then have "∃b. Ord(b) ∧ b < a ∧  (∃u v. x' = ⟨u, v⟩ ∧ u ∈ W(b) ∧ v ∈ W(b))" using `x = <1,x'>` ih by auto
    then obtain b where b:"Ord(b) ∧ b < a ∧ (∃u v. x' = ⟨u, v⟩ ∧ u ∈ W(b) ∧ v ∈ W(b))" by auto
    then have "b < a" and "a < ω" using `a ∈ ω` `Ord(ω)` lt_def by auto
    then have "b < ω" by (rule lt_trans)
    then show "∃b. Ord(b) ∧ b < ω ∧ (∃u v. x' = ⟨u, v⟩ ∧ u ∈ W(b) ∧ v ∈ W(b))" using b by auto
qed

(*Lemma 4.3*)
theorem "⟦Ord(a); x∈W(a)⟧ ⟹ ∃b. b < a ∧ ((∃x'. x = <0,x'> ∧ x' ⊆ W(b)) ∨
                                          (∃u v. x = <1, <u,v>> ∧ u ∈ W(b) ∧ v ∈ W(b)))"
proof -
  assume "Ord(a)" "x∈W(a)"
  then obtain x' where "x = <0,x'> ∨ x = <1,x'>" using W_well_formed by auto
  then show ?thesis
  proof
    assume "x = <0,x'>"
    then have "∃b. Ord(b) ∧ b < a ∧ x' ⊆ W(b)" using `Ord(a)` `x ∈ W(a)` sets_closed by auto
    then show ?thesis using `x = <0,x'>` by blast
  next
    assume "x = <1,x'>"
    then have "∃b. Ord(b) ∧ b < a ∧ (∃u v. x' = <u,v> ∧ u ∈ W(b) ∧ v ∈ W(b))"
      using `Ord(a)` `x ∈ W(a)` pairs_closed by auto
    then have "∃b. Ord(b) ∧ b < a ∧ (∃u v. x = <1,u,v> ∧ u ∈ W(b) ∧ v ∈ W(b))"
      using `x = <1,x'>` by auto
    then show ?thesis by auto
  qed
qed

lemma subset_succ : "Ord(i) ⟹ W(i) ⊆ W(succ(i))"
proof (induct rule: trans_induct3)
  case 0 then show ?case by simp
next
  case (succ i)
  assume "Ord(i)" "W(i) ⊆ W(succ(i))"
  show "W(succ(i)) ⊆ W(succ(succ(i)))"
  proof
    fix x assume "x∈W(succ(i))"
    from `x∈W(succ(i))` have "(∃x' . x = <0,x'>) ∨ (∃a b . x = <1,<a,b>>)" by auto
    then show "x ∈ W(succ(succ(i)))"
    proof
      assume "(∃x' . x = <0,x'>)"
      then obtain x' where x':"x = <0,x'>" by blast
      then have "x' ∈ Pow(W(i))" using `x∈W(succ(i))` by simp
      then have "∀a∈x'. a ∈ W(i)" by blast
      then have "∀a∈x'. a ∈ W(succ(i))" using `W(i) ⊆ W(succ(i))` by blast
      then have "x' ∈ Pow(W(succ(i)))" by blast
      then have "<0,x'> ∈ W(succ(succ(i)))" by simp
      then show "x ∈ W(succ(succ(i)))" using x' by blast
    next
      assume "(∃a b. x = <1,<a,b>>)"
      then obtain a b where ab: "x = <1,<a,b>>" by blast
      then have "a ∈ W(i) ∧ b ∈ W(i)" using `x∈W(succ(i))` by simp
      then have "a ∈ W(succ(i)) ∧ b ∈ W(succ(i))" using `W(i) ⊆ W(succ(i))` by blast
      then have " <1,<a,b>> ∈ W(succ(succ(i)))" by simp
      then show "x ∈ W(succ(succ(i)))" using ab by blast
    qed
  qed
next
  case (limit i)
  assume "Limit(i)" and s:"⋀x. x∈i ⟹ W(x) ⊆ W(succ(x))"
  show "W(i) ⊆ W(succ(i))"
  proof
    fix x assume "x∈W(i)"
    from `Limit(i)` `x∈W(i)` have "∃j∈i. x∈W(j)" by (simp add: ZF.transrec3_Limit)
    then have "∃j∈i . x∈W(succ(j))" using s by blast
    then obtain j where j:"j∈i" and jx:"x∈W(succ(j))" by auto
    then have "(∃x' . x = <0,x'>) ∨ (∃a b . x = <1,<a,b>>)" by auto
    then show "x∈W(succ(i))"
    proof
      assume "∃x'. x = ⟨0, x'⟩"
      then obtain x' where x:"x = <0,x'>" by blast
      then have "x' ⊆ W(j)" using jx by auto
      then have "∃j∈i. ∀a∈x'. a∈W(j)" using j by auto
      then have "x' ⊆ W(i)" using `Limit(i)` by (simp add: ZF.transrec3_Limit, auto)
      then show "x∈W(succ(i))" using x by simp
    next
      assume "∃a b. x = <1,<a,b>>"
      then obtain a b where x:"x = <1,<a,b>>" by blast
      then have ab: "a ∈ W(j) ∧ b ∈ W(j)" using jx by simp
      from ab j have "∃j∈i. a∈W(j)" by auto
      then have ai:"a ∈ W(i)" using `Limit(i)` by (simp add: ZF.transrec3_Limit)
      from ab j have "∃j∈i .b∈W(j)" by auto
      then have bi:"b ∈ W(i)" using `Limit(i)` by (simp add: ZF.transrec3_Limit)
      from ai bi x show "x∈W(succ(i))" by simp
    qed
  qed
qed

(*Lemma 4.4*)
lemma W_ordered : "Ord(j) ⟹ i ≤ j ⟹ W(i) ⊆ W(j)"
proof (induct j rule: trans_induct3)
  case 0
  then show ?case by simp
next
  case (succ j)
  assume j:"Ord(j)"  and ih:"i ≤ j ⟹ W(i) ⊆ W(j)" and ih2:"i≤succ(j)"
  from ih2 have "i≤j ∨ i = succ(j)" using Ordinal.le_succ_iff by blast
  then show "W(i) ⊆ W(succ(j))"
  proof
    note subset_succ
    then have succj: "W(j) ⊆ W(succ(j))" using j by auto
    assume "i≤j"
    then have "W(i) ⊆ W(j)" using ih by simp
    then show "W(i) ⊆ W(succ(j))" using succj by blast
  next
    assume "i = succ(j)"
    then show "W(i) ⊆ W(succ(j))" by simp
  qed
next
  case (limit j)
  assume "i≤j"
  then have "i < j | i = j" using `Limit(j)` Ordinal.le_iff by blast
  then show "W(i) ⊆ W(j)"
  proof
    assume "i < j"
    then have "i ∈ j" using lt_def by simp
    show "W(i) ⊆ W(j)"
    proof
      fix x assume "x∈W(i)"
      then have "∃i∈j. x∈W(i)" using `i ∈ j` by blast
      then show "x∈W(j)" using ZF.transrec3_Limit `Limit(j)` by auto
    qed
  next
    assume "i = j"
    then show "W(i) ⊆ W(j)" by simp
  qed
qed

lemma max_rank: "⟦H(x); H(y)⟧ ⟹ ∃z. Ord(z) ∧ x∈W(z) ∧ y∈W(z)"
proof -
  assume "H(x)" then obtain α where α:"Ord(α) ∧ x∈W(α)" by blast
  assume "H(y)" then obtain β where β:"Ord(β) ∧ y∈W(β)" by blast
  from α β have "Ord(α)" "Ord(β)" by auto
  then have "α ∈ β | α = β | β ∈ α" using Ord_linear by auto
  then have "α < β | α = β | β < α" using α β lt_def by auto
  then show "∃z. Ord(z) ∧ x∈W(z) ∧ y∈W(z)"
  proof
    assume "α < β"
    then have "α ≤ β" using le_succ_iff by auto
    then have "W(α) ⊆ W(β)" using `Ord(β)` W_ordered by auto
    then have "x∈W(β)" using α by auto
    then show ?thesis using β by auto
  next
    assume "α = β ∨ β < α"
    then have "β ≤ α" using α le_iff by auto
    then have "W(β) ⊆ W(α)" using `Ord(α)` W_ordered by auto
    then have "y∈W(α)" using β by auto
    then show ?thesis using α by auto
  qed
qed

(*Definition 4.5*)
definition Zin where [simp]: "Zin(a,x) ⟷ (∃x'. x = <0,x'> ∧ a∈x')"
definition Zp1 where [simp]: "Zp1(a,p) ⟷ (∃p'. p = <1,p'> ∧ fst(p') = a)"
definition Zp2 where [simp]: "Zp2(a,p) ⟷ (∃p'. p = <1,p'> ∧ snd(p') = a)"

lemma zin_closed [simp] : "⟦H(x); Zin(a,x)⟧ ⟹ H(a)"
proof -
  assume "H(x)" and "Zin(a,x)"
  then obtain b where "Ord(b) ∧ x ∈ W(b)" by auto
  from `Zin(a,x)` have "(∃x'. x = <0,x'> ∧ a∈x')" by auto
  then obtain x' where "x = <0,x'>" and "a ∈ x'" by auto
  then have "∃c. Ord(c) ∧ c < b ∧ x' ⊆ W(c)" using `Ord(b) ∧ x ∈ W(b)` sets_closed by auto
  then show "∃c. Ord(c) ∧ a ∈ W(c)" using `a ∈ x'` by auto
qed
lemma prev_tier : "⟦Ord(a); x∈W(succ(a)); Zin(y,x)⟧ ⟹ y ∈ W(a)" by auto

lemma zp1_closed [simp] : "⟦H(p); Zp1(a,p)⟧ ⟹ H(a)"
proof -
  assume "H(p)" "Zp1(a,p)"
  then obtain β where "Ord(β)" and "p ∈ W(β)" by auto
  from `Zp1(a,p)` obtain p' where "p = <1,p'>" and "fst(p') = a" by auto
  then have "∃γ. Ord(γ) ∧ γ < β ∧ (∃u v. p' = ⟨u, v⟩ ∧ u ∈ W(γ) ∧ v ∈ W(γ))"
    using pairs_closed `Ord(β)` `p ∈ W(β)` by blast
  then obtain γ where "Ord(γ)" and " γ < β ∧ (∃u v. p' = ⟨u, v⟩ ∧ u ∈ W(γ) ∧ v ∈ W(γ))" by auto
  then obtain u where "u ∈ W(γ) ∧ fst(p') = u" by auto
  then have "a ∈ W(γ)" using `fst(p') = a` by auto
  then show "∃γ. Ord(γ) ∧ a ∈ W(γ)" using `Ord(γ)` by auto
qed 

lemma zp2_closed [simp] : "⟦H(p); Zp2(a,p)⟧ ⟹ H(a)"
proof -
  assume "H(p)" "Zp2(a,p)"
  then obtain β where "Ord(β)" and "p ∈ W(β)" by auto
  from `Zp2(a,p)` obtain p' where "p = <1,p'>" and "snd(p') = a" by auto
  then have "∃γ. Ord(γ) ∧ γ < β ∧ (∃u v. p' = ⟨u, v⟩ ∧ u ∈ W(γ) ∧ v ∈ W(γ))"
    using pairs_closed `Ord(β)` `p ∈ W(β)` by blast
  then obtain γ where "Ord(γ)" and "γ < β ∧ (∃u v. p' = ⟨u, v⟩ ∧ u ∈ W(γ) ∧ v ∈ W(γ))" by auto
  then obtain u where "u ∈ W(γ) ∧ snd(p') = u" by auto
  then have "a ∈ W(γ)" using `snd(p') = a` by auto
  then show "∃γ. Ord(γ) ∧ a ∈ W(γ)" using `Ord(γ)` by auto
qed

lemma prev_tier_pairs :
  "⟦Ord(succ(a)); x∈W(succ(a)); Zp1(u,x); Zp2(v,x)⟧ ⟹ u∈W(a) ∧ v∈W(a)" by auto

(*Lemma 4.6*)
lemma "⟦H(x); Zin(a,x) | Zp1(a,x) | Zp2(a,x)⟧ ⟹ H(a)"
proof -
  assume "H(x)"
  assume "Zin(a,x) | Zp1(a,x) | Zp2(a,x)" then show ?thesis
  proof
    assume "Zin(a,x)" then show "H(a)" using `H(x)` zin_closed by auto
  next
    assume "Zp1(a,x) | Zp2(a,x)" then show ?thesis
    proof
      assume "Zp1(a,x)" then show "H(a)" using `H(x)` zp1_closed by auto
    next
      assume "Zp2(a,x)" then show "H(a)" using `H(x)` zp2_closed by auto
    qed
  qed
qed

lemma reduce_cases : "⟦Ord(a); x∈W(a)⟧ ⟹ ∃i. (Ord(i) ∧ x∈W(succ(i)))"
proof (induct rule: trans_induct3)
  case 0 then show ?case by simp next
  case (succ a) then show ?case by auto next
  case (limit a) then show ?case by (simp add: ZF.transrec3_Limit, auto)
qed
lemma "H(x) ⟹ ∃i. (Ord(i) ∧ x∈W(succ(i)))" using reduce_cases by auto


abbreviation Pair where "Pair(x) == (∃a. H(a) ∧ Zp1(a,x))"
abbreviation Set where "Set(x) == ¬ Pair(x)"

(*The following lemmas give us a semantic interpretation of the identification predicates*)
lemma U_means_pair: assumes "H(x)"
  shows "(Pair(x) ⟷ (∃x'. x = <1,x'>))"
proof
(* ⟹ *)
  (*Assume Pair(x), then by definition ∃a. H(a) ∧ Zp1(a,x).*)
  assume "Pair(x)"
  (*and by definition of Zp1:  ∃x'. x = <1,x'> ∧ a∈x'*)
  then show "∃x'. x = ⟨1, x'⟩" by auto
next
(* <== *)
  (*From H(x) we have x∈W(α) for some ordinal α *)
  from assms obtain α where 1: "Ord(α)" and 2:"x∈W(α)" by auto
  (*Suppose that x = <1,x'> for some x' *)
  assume "∃x'. x = <1,x'>"
  (*To show Pair(x), it is sufficient to show H(x) and ∃a. H(a) ∧ Zp1(a,x) *)
  then obtain x' where "x = <1,x'>" by auto
  then have "∃b. Ord(b) ∧ b < α ∧(∃u v. x' = <u,v> ∧ u ∈ W(b) ∧ v ∈ W(b))" using 1 2 pairs_closed by auto
  then obtain b where "Ord(b) ∧ (∃u v. x' = <u,v> ∧ u ∈ W(b) ∧ v ∈ W(b))" by auto
  then obtain u v where "x' = <u,v> ∧ u ∈ W(b)" by auto
  then have "Zp1(u,x)" using `x = <1,x'>` by auto
  then have "H(u)" using `H(x)` zp1_closed by auto
  show "Pair(x)" using `H(u)` `Zp1(u,x)` by auto
qed

lemma Set_means_set [simp]:
  assumes "H(x)"
  shows "(Set(x) ⟷ (∃x'. x = <0,x'>))"
proof -
  (*Since we know H(x), Set(x) ⟷ ¬Pair(x)*)
  from assms have 2:"Set(x) ⟷ ¬Pair(x)" by simp
  (*We also have that ¬Pair(x) ⟷ ¬(∃x'. x = <1,x'>) using the previous theorem.*)
  have 3:"¬ Pair(x) ⟷ ¬ (∃x'. x = <1,x'>)" using assms U_means_pair by auto
  (*Since H(x), x=<0,x'> or x=<1,p>, so the nonexistence of such a p confirms the existence of x'.*)
  have 4:"¬(∃x'. x = <1,x'>) ⟷ (∃x'. x = <0,x'>)"
  proof -
    from assms have "well_formed(x)" using W_well_formed by blast
    then show ?thesis by blast
  qed
  (*From the transitive chain of these equivalences, we prove the thesis.*)
  from 2 3 4 show ?thesis by simp
qed

lemma pair_prop [simp]: "⟦H(p);Pair(p)⟧ ⟹ (Zp1(a,p) ∧ Zp2(b,p) ⟷ p = <1,<a,b>>)"
proof
  fix p assume "Pair(p)" "H(p)"
  then obtain i where "Ord(i)" and "p∈W(i)" by blast
  then have "∃i. (Ord(i) ∧ p∈W(succ(i)))" by (rule reduce_cases)
  then obtain j where 0 :"(Ord(j) ∧ p∈W(succ(j)))" by blast

  assume 1: "Zp1(a,p) ∧ Zp2(b,p)"
  then have "∃w. p ∈ {1}*(w*w) ∧ a∈w ∧ b∈w" using 0 by auto
  then show "p = <1,<a,b>>" using 1 by auto
next
  assume "p = <1,<a,b>>"
  then show "Zp1(a,p) ∧ Zp2(b,p)" by auto
qed

(*In order to prove the axiom of replacement holds in W, we require a notion of rank in W
  The "wrank" of a set x in W, is the least ordinal α such that "x∈W(α)"
  We require that the wrank of a set is unique, and that "x∈W(wrank(x))"
*)
definition Zunion where [simp]: "Set(x) ⟹ Set(y) ⟹ Zunion(x,y) == <0, snd(x) ∪ snd(y)>"

lemma zunion_level : assumes "H(x)" "Set(x)" "H(y)" "Set(y)" shows
 "x∈W(succ(a)) ∧ y∈W(succ(a)) ⟶ Zunion(x,y) ∈ W(succ(a))"
proof
  from assms obtain x' where x': "x = <0,x'>" using Set_means_set by auto
  from assms obtain y' where y': "y = <0,y'>" using Set_means_set by auto

  assume "x∈W(succ(a)) ∧ y∈W(succ(a))"
  then have "x'⊆W(a) ∧ y'⊆ W(a)" using x' y' by auto
  then have "<0, x' ∪ y'> ∈ W(succ(a))" by auto
  then show "Zunion(x,y) ∈ W(succ(a))" using x' y' assms by auto
qed

lemma zunion_or [simp] : assumes "H(x)" "Set(x)" and "H(y)" "Set(y)" shows
  "Zin(a,Zunion(x,y)) ⟷ (Zin(a,x) ∨ Zin(a,y))" using assms Set_means_set by auto

definition Zingle where [simp]: "Zingle(a) == <0,{a}>"

lemma zingle_set [simp] : "Set(x) ⟹ Set(Zingle(x))" using Zingle_def Set_means_set by auto

lemma zingle_lemma [simp] : "∀a. Zin(a,Zingle(x)) ⟷ a=x" by auto

lemma "∀a. ∃x. ∀b. Zin(b,x) ⟷ b = a"
proof
  fix a
  show "∃x. ∀b. Zin(b,x) ⟷ b = a"
  proof -
    let ?x = "Zingle(a)"
    have "∀b. Zin(b,?x) ⟷ b = a" by auto
    then show "∃x. ∀b. Zin(b,x) ⟷ b = a" by blast
  qed
qed

lemma zingle_level : "⟦Ord(a); x∈W(a)⟧ ⟹ Zingle(x) ∈ W(succ(a))" by auto
lemma zingle_closed: "H(x) ⟹ H(Zingle(x))" using zingle_level by auto

definition Zucc where [simp] : "Zucc(x) == Zunion(x, Zingle(x))"

lemma Zucc_in_succ : "⟦Ord(a); x∈W(a); Set(x)⟧ ⟹ Zucc(x) ∈ W(succ(a))"
proof -
  assume a:"Ord(a)" and "x∈W(a)" and "Set(x)"
  then have x: "x∈W(succ(a))" and zx: "Zingle(x) ∈ W(succ(a))" using subset_succ by auto
  then have "Set(Zingle(x))" and "H(Zingle(x))" using Zingle_def Set_means_set a by auto

  from a `x ∈ W(a)` have "H(x)" by (rule phiI)
  from `H(x)` `Set(x)` `H(Zingle(x))` `Set(Zingle(x))`
  have "x ∈ W(succ(a)) ∧ Zingle(x) ∈ W(succ(a)) ⟶ Zunion(x, Zingle(x)) ∈ W(succ(a))"by (rule zunion_level)
  then have "Zunion(x, Zingle(x)) ∈ W(succ(a))" using x zx by auto
  then show ?thesis by auto
qed

lemma Zucc_limit : "⟦Limit(i); x∈W(i); Set(x)⟧ ⟹ Zucc(x) ∈ W(i)"
proof -
  assume i:"Limit(i)" and x:"x∈W(i)" and sx: "Set(x)"
  then obtain j where j:"j∈i" and x:"x∈W(j)" using transrec3_Limit by auto
  from i have "Ord(i)" using Limit_def by auto
  then have "Ord(j)" using j Ord_in_Ord by auto
  then have zx:"Zucc(x)∈W(succ(j))" using Zucc_in_succ x sx by auto

  from `Ord(j)` have "Ord(succ(j))" by auto
  then have "succ(j) ∈ i" using Limit_def i
  proof -
    from `Ord(i)` `j∈i` have "j < i" using ltI by auto
    then have "succ(j) < i" using i Limit_has_succ by auto
    then show ?thesis using ltD by auto
  qed
  then have "∃j'∈i. Zucc(x) ∈ W(j')" using zx by blast
  then show "Zucc(x) ∈ W(i)" using transrec3_Limit i by auto
qed


lemma zin_rank : "Zin(a,x) ⟹ a∈Vset(rank(x))"
proof -
  assume "Zin(a,x)"
  then obtain x' where x':"x = <0,x'>" by auto
  then have "a∈x'" using `Zin(a,x)` by auto

  then have 1:"rank(x') < rank(x)" using x' rank_pair2 by auto
  also have 2:"rank(a) < rank(x')" using `a∈x'` rank_lt by auto
  from 2 1 have "rank(a) < rank(x)" by (rule lt_trans)
  then show "a∈Vset(rank(x))" using VsetI by auto
qed

lemma pair_struc : "⟦H(x); ∃x'. x = <1,x'>⟧ ⟹ ∃a b . x = <1,<a,b>>"
proof -
  assume "H(x)"
  then obtain a where "Ord(a) ∧ x∈W(a)" by auto
  then have x:"x ∈ W(succ(a))" using subset_succ by auto
  assume "∃x' . x = <1,x'>"
  then obtain x' where "x = <1,x'>" by auto
  then have "x' ∈ (W(a) × W(a))" using x by auto
  then have "∃a b. x' = <a,b>" by auto
  then show "∃a b. x = <1, <a,b>>" using `x = <1, x'>` by auto
qed

lemma zp_rank : "⟦H(x); Zp1(a,x) ∨ Zp2(a,x)⟧ ⟹ a∈Vset(rank(x))"
proof -
  assume a:"Zp1(a,x) ∨ Zp2(a,x)" and x:"H(x)"
  then obtain x' where x':"x = <1,x'>" by auto
  then obtain u v where uv: "x' = <u,v>" using `H(x)` pair_struc by blast
  then have "a = u ∨ a = v" using a x' by auto
  then have 1:"rank(a) < rank(x')" using rank_pair1 rank_pair2 uv by auto
  have 2:"rank(x') < rank(x)" using rank_pair2 x' by auto
  from 1 2 have "rank(a) < rank(x)" by (rule lt_trans)
  then show ?thesis using VsetI by auto
qed

definition wrank_case where
 "wrank_case(a, g) == case(λx. ⋃b∈x. succ(g`b),
                           λp. ⋃{succ (g`fst(p)), succ (g`snd(p))},
                           a)"

lemma set_case : "wrank_case(<0,x'>,g) = (⋃b∈x'. succ(g`b))"
  using wrank_case_def case_def by auto
lemma pair_case: "wrank_case(<1,p'>,g) = (⋃{succ (g`fst(p')), succ (g`snd(p'))})"
  using wrank_case_def case_def by auto

definition wrank_rec where
  "wrank_rec(a) == Vrec(a, wrank_case)"

lemma def_wrank :
  "wrank_rec(a) = wrank_case(a, λz∈Vset(rank(a)). wrank_rec(z))"
proof -
 have "⋀x. wrank_rec(x) == Vrec(x,wrank_case)" using wrank_rec_def by auto
 then show ?thesis by (rule def_Vrec)
qed

lemma set_wrank : "wrank_rec(<0,x'>) = (⋃b∈x'. succ(wrank_rec(b)))"
proof -
  let ?x = "<0,x'>"
  have 0:"wrank_rec(?x) = wrank_case(?x, λz∈Vset(rank(?x)). wrank_rec(z))" by (rule def_wrank)
  let ?g = "λz∈Vset(rank(?x)). wrank_rec(z)"
  have rec:"wrank_case(?x,?g) = (⋃b∈x'. succ(?g ` b))" by (rule set_case)
  have "∀a∈x'. rank(a) < rank(?x)" using zin_rank by auto
  then have "∀a∈x'. ?g ` a = wrank_rec(a)" by auto
  then have "wrank_case(?x,?g) = (⋃b∈x'. succ(wrank_rec(b)))" using rec by auto
  then show ?thesis using 0 by auto
qed

lemma pair_wrank : "wrank_rec(<1,<a,b>>) = (⋃{succ (wrank_rec(a)), succ (wrank_rec(b))})"
proof -
  let ?p = "<1,<a,b>>"
  have rec0: "wrank_rec(?p) = wrank_case(?p, λz∈Vset(rank(?p)). wrank_rec(z))" by (rule def_wrank)
  let ?g = "λz∈Vset(rank(?p)). wrank_rec(z)"

  have "wrank_case(?p,?g) = (⋃{succ (?g`fst(<a,b>)), succ (?g`snd(<a,b>))})" by (rule pair_case)
  then have rec: "wrank_case(?p,?g) = (⋃{succ (?g`a), succ (?g`b)})" by auto

  have 0: "rank(<a,b>) < rank(?p)" using rank_pair2 by auto
  then have 1: "rank(a) < rank(<a,b>) ∧ rank(b) < rank(<a,b>)" using rank_pair1 rank_pair2 by auto
  from 1 0 have ranks:"rank(a) < rank(?p) ∧ rank(b) < rank(?p)" using lt_trans by auto
  then have "?g`a = wrank_rec(a) ∧ ?g`b = wrank_rec(b)" by auto
  then have "wrank_case(?p,?g) = (⋃{succ (wrank_rec(a)), succ (wrank_rec(b))})" using rec by auto
  then show ?thesis using rec0 by auto
qed

lemma "wrank_rec(<0,x'>) = 0 ⟹ x' = 0" using set_wrank by auto
lemma "wrank_rec(<1,<a,b>>) = 0 ⟹ <a,b> = 0" using pair_wrank by auto

lemma obj_disj : "H(x) ⟹ (∃a b. x = <1, <a,b>>) | (∃x'. x = <0,x'>)"
proof -
  assume "H(x)"
  then have "Pair(x) | Set(x)" by auto
  then have "(∃x'. x = <1,x'>) | (∃x'. x = <0,x'>)"
  proof
    assume "Pair(x)"
    from `H(x)` `Pair(x)` have "∃x'. x = <1,x'>" using U_means_pair by auto
    then show ?thesis by simp
  next
    assume "Set(x)"
    from `H(x)` `Set(x)` have "∃x'. x = <0,x'>" using Set_means_set by auto
    then show ?thesis by simp
  qed
  then show ?thesis using `H(x)` pair_struc by blast
qed

lemma wrank_ord_bad : "⟦Ord(i)⟧ ⟹ (⋀x. x∈W(i) ⟹ Ord(wrank_rec(x)))"
proof (induct rule: trans_induct3)
  case 0 then show "Ord(wrank_rec(x))" by auto
next
  case (succ i) then show "Ord(wrank_rec(x))"
  proof -
    assume "Ord(i)" and ih:"⋀x . x∈W(i) ⟹ Ord(wrank_rec(x))"
    then have "Ord(succ(i))" by simp
    assume "x∈W(succ(i))"
    then have "(∃a b. x = <1, <a,b>>) | (∃x'. x = <0,x'>) " using obj_disj by auto
    then show ?thesis
    proof
      assume "∃ a b. x = <1,<a,b>>"
      then obtain a b where ab: "x = <1,<a,b>>" by blast
      then have "Zp1(a,x) ∧ Zp2(b,x)" by simp
      then have "a∈W(i) ∧ b∈W(i)" using `Ord(succ(i))` `x∈W(succ(i))` prev_tier_pairs by blast
      then have "Ord(wrank_rec(a)) ∧ Ord(wrank_rec(b))" using ih by blast
      then have "Ord(⋃{succ(wrank_rec(a)), succ(wrank_rec(b))})" using Ord_Union by simp
      then show ?thesis using ab pair_wrank by simp
    next
      assume "∃x'. x = <0,x'>"
      then obtain x' where x': "x = <0,x'>" by blast
      then have "∀a∈x'. Zin(a,x)" by auto
      then have "∀a∈x'. a∈W(i)" using `Ord(succ(i))` `x∈W(succ(i))` prev_tier by simp
      then have "∀a∈x'. Ord(wrank_rec(a))" using ih by simp
      then have "Ord(⋃a∈x'. succ(wrank_rec(a)))" by auto
      then show ?thesis using x' set_wrank by simp
    qed
  qed
next
  case (limit i)
  then show ?case proof -
    assume "Limit(i)" and ih: "⋀j x. j∈i ⟹ x∈W(j) ⟹ Ord(wrank_rec(x))" and "x∈W(i)"
    then have "∃j∈i. x∈W(j)" using transrec3_Limit by simp
    then obtain j where "j∈i ∧ x∈W(j)" by blast
    then show "Ord(wrank_rec(x))" using ih by blast
  qed
qed


lemma ord_wrank : "H(x) ⟹ Ord(wrank_rec(x))" using wrank_ord_bad by auto

lemma in_wrank : "Ord(i) ⟹ (⋀x. H(x) ⟹  wrank_rec(x) < i ⟹ x∈W(i))"
proof (induct rule: trans_induct3)
    case 0
    then show ?case by simp
  next
    case (succ i)
    then show ?case
    proof -
      assume "Ord(i)" and ih:"(⋀x. H(x) ⟹ wrank_rec(x) < i ⟹ x∈W(i))"
      assume "H(x)" "wrank_rec(x) ≤ i"
      then have "wrank_rec(x) < i | wrank_rec(x) = i" using le_iff by auto
      then show "x∈W(succ(i))"
      proof
        assume "wrank_rec(x) < i"
        then have "x∈W(i)" using `H(x)` ih by simp
        then show "x∈W(succ(i))" using subset_succ `Ord(i)` by auto
      next
        assume "wrank_rec(x) = i"
        from `H(x)` have "(∃x'. x = <0,x'>) | (∃a b. x = <1, <a,b>>)" using obj_disj by blast
        then show ?thesis
        proof
          assume "∃x'. x = <0,x'>"
          then obtain x' where x':"x = <0,x'>" by auto
          then have "∀a∈x'. Zin(a,x)" by simp
          then have phi:"∀a∈x'. H(a)" using zin_closed `H(x)` by blast
          then have ord:"∀a∈x'. Ord(wrank_rec(a))" using ord_wrank by simp

          from x' have "(⋃a∈x'. succ(wrank_rec(a))) = i" using set_wrank `wrank_rec(x) = i` by auto
          then have "∀a∈x'. succ(wrank_rec(a)) ⊆ i" by auto
          then have "∀a∈x'. succ(wrank_rec(a)) ≤ i" using le_subset_iff `Ord(i)` ord by auto
          then have "∀a∈x'. a∈W(i)" using phi ih by blast
          then have "x' ∈ Pow(W(i))" by blast
          then show "x ∈ W(succ(i))" using x' by simp
        next
          from `H(x)` obtain j where j1:"Ord(j)" and j2:"x∈W(j)" by auto
          assume "∃a b. x = <1,<a,b>>"
          then obtain a b where ab:"x = <1,<a,b>>" by auto
          then have "Zp1(a,x)" and "Zp2(b,x)" by auto
          then have phi:"H(a)" using `H(x)` zp1_closed by auto
          then have "H(b)" using `H(x)` `Zp2(b,x)` zp2_closed by auto
          then have ord:"Ord(wrank_rec(a)) ∧ Ord(wrank_rec(b))" using `H(a)` ord_wrank by auto

          have "wrank_rec(x) = i" using `wrank_rec(x) = i` by simp
          then have "⋃ {succ(wrank_rec(a)), succ(wrank_rec(b))} = i" using pair_wrank ab by simp
          then have "succ(wrank_rec(a)) ⊆ i" and "succ(wrank_rec(b)) ⊆ i" using `Ord(i)` by auto
          then have "succ(wrank_rec(a)) ≤ i" and "succ(wrank_rec(b)) ≤ i" using le_subset_iff ord `Ord(i)` by auto
          then have "wrank_rec(a) < i" and "wrank_rec(b) < i" using succ_leE by simp_all
          then have "a∈W(i)" and "b∈W(i)" using `H(a)` `H(b)` ih by auto
          then have "<a,b> ∈ W(i) × W(i)" by simp
          then show "x∈W(succ(i))" using ab by auto
        qed
      qed
    qed
  next
    case (limit i)
    then show ?case
    proof -
      assume 2:"H(x)" and "Limit(i)" and ih: "⋀j x . j ∈ i ⟹ H(x) ⟹ wrank_rec(x) < j ⟹ x ∈ W(j)"
      assume "wrank_rec(x) < i"
      then have "succ(wrank_rec(x)) < i" using `Limit(i)` by simp
      then have 1:"succ(wrank_rec(x)) ∈ i" by (rule ltD)

      have o1:"Ord(wrank_rec(x))" using `H(x)` ord_wrank by simp
      then have o2:"Ord(succ(wrank_rec(x)))" by (rule Ord_succ)
      from o1 o2 have 3:"wrank_rec(x) < succ(wrank_rec(x))" by simp

      from 1 2 3 have "x∈W(succ(wrank_rec(x)))" by (rule ih)
      then have "∃j∈i. x∈W(j)" using 1 by blast
      then show "x∈W(i)" using `Limit(i)` transrec3_Limit by auto
    qed
qed




lemma "a∈A ⟹ ⋂ A ⊆ a" by auto

lemma "A ∨ B ⟹ ¬A ⟹ B" by auto

lemma int_in_A :"⟦A ≠ 0; ∀x∈A. Ord(x)⟧ ⟹ ⋂A ∈ A"
proof -
  assume non_empty: "A ≠ 0"
  let ?m = "succ(⋂ A)"
  assume A:"∀x∈A. Ord(x)"
  have m:"Ord(?m)" and "Ord(⋂ A)" using A by auto

  have "∀a∈A. a∈?m | ?m ⊆ a"
  proof
    fix a assume "a∈A"
    then have a:"Ord(a)" using A by simp
    then have "a∈?m | a = ?m | ?m∈a" using m by (rule Ord_linear)
    then show "a∈?m | ?m ⊆ a"
    proof
      assume "a∈?m" then show ?thesis by simp
    next
      assume "a=?m | ?m∈a"
      then have "?m < a | a = ?m" using ltI a by blast
      then have "?m ≤ a" using le_iff a by blast
      then have "?m ⊆ a" by (rule le_imp_subset)
      then show ?thesis by simp
    qed
  qed
  then have disj:"(∀a∈A. ?m ⊆ a) | (∃a∈A. a∈?m)" by auto

  have notA:"¬ (∀a∈A. ?m ⊆ a)"
  proof
    have 0:"∀a∈A. ⋂A ⊆ a" by auto
    assume 1:"∀a∈A. ?m ⊆ a"

    from 0 1 non_empty have "?m ⊆ ⋂A" by auto
    then have "?m ≤ ⋂A" using `Ord(⋂A)` `Ord(?m)` by (rule subset_imp_le)
    then show "False" by auto
  qed

  from disj notA have "∃a∈A. a∈?m" by simp
  then obtain a where a:"a ∈ A ∧ a∈?m" by blast
  then have "a ∈ succ(⋂A)" using `Ord(?m)` ltI by simp
  then have "a ∈ ⋂ A | a = ⋂ A" by auto

  have "a ∉ ⋂ A"
  proof
    have "Ord(a)" using a A by simp
    assume "a∈⋂A"
    then have "a < ⋂A" using ltI `Ord(⋂A)` by auto
    have "⋂A ⊆ a" using a by auto
    then have "⋂A ≤ a" using le_subset_iff `Ord(⋂A)` `Ord(a)` by auto
    then have "¬ (a < ⋂ A)" using not_lt_iff_le `Ord(⋂A)` `Ord(a)` by blast
    then show False using `a< ⋂A` by auto
  qed

  from `a ∈ ⋂ A | a = ⋂ A` `a∉⋂A` have "a = ⋂ A" by simp
  then show "⋂A ∈ A" using a by simp
qed

lemma zin_wrank : "⟦H(x); Zin(a,x)⟧ ⟹ wrank_rec(a) < wrank_rec(x)"
proof -
  assume "H(x)" "Zin(a,x)"
  then have "H(a)" using zin_closed by simp
  then have oa:"Ord(wrank_rec(a))" and ox:"Ord(wrank_rec(x))" using `H(x)` ord_wrank by auto

  obtain x' where x': "x = <0,x'>" using `Zin(a,x)` by auto
  then have "wrank_rec(x) = (⋃a∈x'. succ(wrank_rec(a)))" using set_wrank  by auto
  then have "succ(wrank_rec(a)) ⊆ wrank_rec(x)" using x' `Zin(a,x)` by auto
  then have "succ(wrank_rec(a)) ≤ wrank_rec(x)" using le_subset_iff oa ox by auto
  then show "wrank_rec(a) < wrank_rec(x)" by auto
qed


lemma zp_wrank : "⟦H(x); Zp1(a,x) | Zp2(a,x)⟧ ⟹ wrank_rec(a) < wrank_rec(x)"
proof -
  assume "H(x)" "Zp1(a,x) | Zp2(a,x)"
  then have x':"∃x'. x = <1,x'>" by auto
  then obtain u v where ab:"x = <1,<u,v>>" using `H(x)` pair_struc by blast
  then have "Zp1(u,x)" and "Zp2(v,x)" by auto
  then have phi:"H(u)" using `H(x)` zp1_closed by auto
  then have "H(v)" using `H(x)` `Zp2(v,x)` zp2_closed by auto
  then have phi:"H(u) ∧ H(v)" using `H(u)` `H(v)` by simp
  then have ord:"Ord(wrank_rec(u)) ∧ Ord(wrank_rec(v))" using ord_wrank by simp

  obtain i where "wrank_rec(x) = i" by auto
  then have "Ord(i)" using `H(x)` ord_wrank by auto

  from `wrank_rec(x) = i`
    have "succ(wrank_rec(u)) ∪ succ(wrank_rec(v)) = i" using pair_wrank ab by simp
    then have "succ(wrank_rec(u)) ⊆ i" and "succ(wrank_rec(v)) ⊆ i" by auto
    then have "succ(wrank_rec(u)) ≤ i" and "succ(wrank_rec(v)) ≤ i"
      using le_subset_iff ord `Ord(i)` by auto
    then have u:"wrank_rec(u) < i" and v:"wrank_rec(v) < i" using succ_leE by auto

    from `Zp1(a,x) | Zp2(a,x)` ab
    have "a = u | a = v" by auto
    then show ?thesis using u v `wrank_rec(x) = i` by auto
qed

lemma "H(x) ⟹ Pair(x) ∨ Set(x)" by auto




(* Theorem 4.10*)
(* For each ZFP axiom φ, the translation φ^* holds in ZF.*)

lemma set_extensionality:
  assumes "H(x)" and "Set(x)" and "H(y)" and "Set(y)"
  shows "(∀a. H(a) ⟶ (Zin(a,x) ⟷ Zin(a,y))) ⟶ x = y"
proof
  from assms(1) obtain i where "Ord(i)" and "x∈W(i)" by auto
  from assms(1) have 0: "Set(x) ⟷ (∃x'. x = <0,x'>)" by (rule Set_means_set)
  from assms(3) obtain j where "Ord(j)" and "y∈W(j)" by auto
  from assms(3) have 1: "Set(y) ⟷ (∃y'. y = <0,y'>)" by (rule Set_means_set)

  from 0 1 obtain x' y' where
    2: "(x = <0,x'>) ∧ (y = <0,y'>)" using assms(2,4) by auto
  assume "∀a. H(a) ⟶ (Zin(a,x) ⟷ Zin(a,y))"
  then have 3: "∀a. H(a) ⟶ (a∈x' ⟷ a∈y')" using 2 by auto
  have "x' = y'"
  proof
    show "x' ⊆ y'"
    proof
      fix a assume "a∈x'"
      then have "Zin(a,x)" using 2 by simp
      from `H(x)` `Zin(a,x)` have "H(a)" by (rule zin_closed)
      then have "a∈x' ⟷ a∈y'" using 3 by simp
      then show "a∈y'" using `a∈x'` by simp
    qed
  next
    show "y' ⊆ x'"
    proof
      fix a assume "a∈y'"
      then have "Zin(a,y)" using 2 by simp
      from `H(y)` `Zin(a,y)` have "H(a)" by (rule zin_closed)
      then have "a∈x' ⟷ a∈y'" using 3 by simp
      then show "a∈x'" using `a∈y'` by simp
    qed
  qed
  then have "<0,x'> = <0,y'>" by simp
  then show "x=y" using 2 by simp
qed

lemma set_pairing :
  assumes "H(a)" "H(b)"
  shows "∃x. H(x) ∧ Set(x) ∧ (∀c. Zin(c,x) ⟷ (c = a ∨ c = b))"
(*Let a,b∈W:
  then they are in W(α) for some successor ordinal a.
  The set {a,b} is thus in Pow(W(α)) and so <0,{a,b}> is in W(α+1).
  And we can then show that Zin(c,x) ⟶ (c = a ∨ c = b) and vice versa
  qed
*)
proof
  let ?x = "<0,{a,b}>"
  from assms obtain z where z:"Ord(z) ∧ a∈W(z) ∧ b∈W(z)" using max_rank by auto
  then have "{a,b} ∈ Pow(W(z))" by simp
  then have x:"?x ∈ W(succ(z))" by simp
  then have "Ord(succ(z)) ∧ ?x∈W(succ(z))" using z by simp
  then have "∃z'. Ord(z') ∧ ?x∈W(z')" by blast
  then have w:"H(?x)" by simp
  then have set:"Set(?x)" by simp
  from x w set show "H(?x) ∧ Set(?x) ∧ (∀c. Zin(c,?x) ⟷ (c=a ∨ c=b))" by simp
qed


lemma set_union :
  assumes "H(x)" "Set(x)"
  shows "∃y. H(y) ∧ (∀a. Zin(a,y) ⟷ (∃z. H(z) ∧ Zin(z,x) ∧ Zin(a,z)))"
proof -
  from assms(1) obtain a where a:"Ord(a) ∧ x∈W(a)" by blast
  then have xa:"Ord(succ(succ(a))) ∧ x∈W(succ(succ(a)))" using subset_succ by blast

  let ?y' = "{u ∈ W(a) . (∃z. Zin(z,x) ∧ Zin(u,z))}"
  let ?y = "<0,?y'>"

  have 1: "H(?y)"
  proof
    let ?b = "succ(a)"
    have "?y' ⊆ W(a)" by auto
    then have "?y' ∈ Pow(W(a))" by auto
    then show "Ord(?b) ∧ ?y ∈ W(?b)" using a by auto
  qed

  have 0: "∀a. Zin(a,?y) ⟷ (∃z. H(z) ∧ Zin(z,x) ∧ Zin(a,z))"
  proof
    fix b
    show "Zin(b, ?y) ⟷ (∃z. H(z) ∧ Zin(z,x) ∧ Zin(b,z))"
    proof
      assume "Zin(b,?y)"
      then have z:"∃z. Zin(z,x) ∧ Zin(b,z)" by simp
      then obtain z where z:"Zin(z,x) ∧ Zin(b,z)" by auto
      then have "H(z)" using `H(x)` zin_closed by auto
      then show "(∃z. H(z) ∧ Zin(z,x) ∧ Zin(b,z))" using z by auto
    next
      assume z:"(∃z. H(z) ∧ Zin(z,x) ∧ Zin(b,z))"
      then obtain z where b:"Zin(z,x) ∧ Zin(b,z)" by auto
      then have "Ord(succ(a)) ∧ z∈W(succ(a))" using xa prev_tier by auto
      then have "b ∈ W(a)" using prev_tier b by auto
      then show "Zin(b,?y)" using b by auto
    qed
  qed

  from 0 1 have "H(?y) ∧ (∀a. Zin(a, ?y) ⟷ (∃z. H(z) ∧ Zin(z, x) ∧ Zin(a, z)))" by auto
  then show ?thesis by blast
qed

definition Zubset where [simp]: "Zubset(a,b) == Set(a) ∧ Set(b) ∧ (∀c. H(c) ⟶ (Zin(c,a) ⟶ Zin(c,b)))"

lemma power_set :
  assumes "H(x)" "Set(x)"
  shows "∃y. H(y) ∧ (∀z. H(z) ⟶ (Zin(z,y) ⟷ Zubset(z,x)))"
proof -
  from assms(1) obtain a where a:"Ord(a) ∧ x∈W(a)" by blast
  then have a:"Ord(succ(a))" and xa:"x∈W(succ(a))" using subset_succ by auto
  then have "(∃x'. x = <0,x'>)" using `H(x)` `Set(x)` Set_means_set by auto
  then obtain x' where x:"x = <0,x'>" using assms(2) by blast
  then have x':"x' ⊆ W(a)" using xa by simp

  let ?y' = "{0} × Pow(x')"
  let ?y  = "<0,?y'>"

  from x' have "Pow(x') ⊆ Pow(W(a))" by blast
  then have "{0} × Pow(x') ⊆ {0} × Pow(W(a))" by blast
  then have "?y' ⊆ W(succ(a))" by auto
  then have "?y' ∈ Pow(W(succ(a)))" by simp
  then have "Ord(succ(succ(a)))" and "?y ∈ W(succ(succ(a)))" using a by auto
  then have "∃i. Ord(i) ∧ ?y ∈ W(i)" by (rule phiI)
  then have y:"H(?y)" by simp

  have 0: "∀z. H(z) ⟶ (Zin(z,?y) ⟷ Zubset(z,x))"
  proof
    fix z show "H(z) ⟶ Zin(z,?y) ⟷ Zubset(z,x)"
    proof
      assume "H(z)" show "Zin(z,?y) ⟷ Zubset(z,x)"
      proof
        assume "Zin(z,?y)" then have "H(z)" using `H(?y)` zin_closed by simp
        from `Zin(z,?y)` have "z ∈ {0} × Pow(x')" by simp
        then obtain z' where z':"z = <0,z'> ∧ z' ⊆ x'" by blast
        then have "Set(z)" using `H(z)` by simp
        from z' have 2:"∀a. Zin(a,z) ⟶ Zin(a,x)" using x by auto
        then show "Zubset(z,x)" using `Set(x)` `Set(z)` by simp
    next
      assume "Zubset(z,x)"
      then have "Set(z)" and "Set(x)" and sub:"(∀a. H(a) ⟶ (Zin(a,z) ⟶ Zin(a,x)))" by simp_all
      from `Set(z)` obtain z' where z:"z = <0,z'>" using `H(z)` Set_means_set by auto
      have "z' ⊆ x'"
      proof
        fix u assume "u ∈ z'"
        then have "Zin(u,z)" using z by simp
        then have "H(u)" using `H(z)` `Set(z)` zin_closed by blast
        then have "Zin(u,z) ⟶ Zin(u,x)" using sub by simp
        then have "Zin(u,x)" using `Zin(u,z)` by simp
        then show "u ∈ x'" using x by simp
      qed
        then have "z ∈ {0} × Pow(x')" using z by simp
        then show "Zin(z,?y)" by simp
      qed
    qed
  qed
  then have "H(?y) ∧ (∀z. H(z) ⟶ (Zin(z,?y) ⟷ Zubset(z,x)))" using `H(?y)` by simp
  then show ?thesis by blast
qed

lemma specification_schema :
  assumes "H(x)" "Set(x)"
  shows "∃y. Set(y) ∧ (∀a. H(a) ⟶ (Zin(a,y) ⟷ Zin(a,x) ∧ φ(a)))"
proof -
  from assms obtain a where a:"Ord(a) ∧ x∈W(a)" by auto
  then have sa:"x ∈ W(succ(a))" using subset_succ by blast
  from assms obtain x' where x:"x = <0,x'>" using Set_means_set by auto
  then have x': "x' ⊆ W(a)" using sa by auto

  let ?y' = "{a ∈ x'. φ(a)}"
  let ?y = "<0,?y'>"
  have "?y' ⊆ x'" by blast
  then have "?y' ⊆ W(a)" using x' by blast
  then have "?y ∈ {0} × Pow(W(a))" by simp
  then have "?y ∈ W(succ(a))" by simp
  then have "H(?y)" using a by blast
  then have y:"Set(?y)" by simp

  have "(∀a. H(a) ⟶ (Zin(a,?y) ⟷ Zin(a,x) ∧ φ(a)))"
  proof
    fix u show "H(u) ⟶ (Zin(u, ?y) ⟷ Zin(u, x) ∧ φ(u))"
    proof
      have 0:"Zin(u,?y) ⟷ u ∈ ?y'" by simp
      then have 1:"u ∈ ?y' ⟷ u ∈ x' ∧ φ(u)" by simp
      then have 2:"u ∈ x' ∧ φ(u) ⟷ Zin(u,x) ∧ φ(u)" using x by simp
      from 0 1 2 show "Zin(u, ?y) ⟷ Zin(u, x) ∧ φ(u)" by simp
    qed
  qed
  then have "Set(?y) ∧ (∀a. H(a) ⟶ (Zin(a,?y) ⟷ Zin(a,x) ∧ φ(a)))" using y by simp
  then show "∃y. Set(y) ∧ (∀a. H(a) ⟶ (Zin(a,y) ⟷ Zin(a,x) ∧ φ(a)))" by blast
qed

abbreviation emp where "emp == <0,0>"

definition zordinal where [simp] :
  "zordinal(a) = transrec3(a, emp, λi b. Zucc(b), λi z. <0,⋃j∈i. snd(z`j)>)"

lemma zord_set_w : "Ord(a) ⟹ Set(zordinal(a)) ∧ zordinal(a) ∈ W(succ(a))"
proof (induct a rule: trans_induct3)
  case 0 show ?case proof
    have 1:"Ord(1)" by auto
    have "emp = zordinal(0)" by auto
    then show z:"zordinal(0) ∈ W(1)" by auto
    then have "Ord(1)" and "zordinal(0) ∈ W(1)" by auto
    then have "H(zordinal(0))" by (rule phiI)
    then show "Set(zordinal(0))" by auto
  qed
  case (succ a)
   assume a:"Ord(a)" and ih:"Set(zordinal(a)) ∧ zordinal(a) ∈ W(succ(a))"
   from ih have set:"Set(zordinal(a))" and w:"zordinal(a) ∈ W(succ(a))" by auto
   have sa:"Ord(succ(a))" using a by simp
   then have "Zucc(zordinal(a)) ∈ W(succ(succ(a)))" using w set by (rule Zucc_in_succ)
   then have 1:"zordinal(succ(a)) ∈ W(succ(succ(a)))" by auto
   then have "Ord(succ(succ(a)))" and "zordinal(succ(a)) ∈ W(succ(succ(a)))" using sa by auto
   then have "H(zordinal(succ(a)))" by (rule phiI)
   then have 2:"Set(zordinal(succ(a)))" using `Set(zordinal(a))` zingle_set Zunion_def by auto
   show ?case using 1 2 by simp
 next
   case (limit i)
   assume i:"Limit(i)" and ih:"⋀b. b∈i⟹Set(zordinal(b)) ∧ zordinal(b) ∈ W(succ(b))"
   then have "Ord(i)" using Limit_def by auto
   obtain z' where z:"zordinal(i) = <0,z'>" using i transrec3_Limit by auto
   then have z':"z' = (⋃ b∈i. snd(zordinal(b)))" using i transrec3_Limit by auto

   have "z' ⊆ W(i)" proof
     fix x assume "x ∈ z'"
     then have "∃b. b < i ∧ x ∈ snd(zordinal(b))" using z' `Ord(i)` lt_def by auto
     then obtain b where b:"b<i ∧ Ord(b) ∧ x ∈ snd(zordinal(b))" using lt_Ord by auto
     then have "b < i" and "b∈i" and "Ord(succ(b))" using lt_def by auto
     then have "Set(zordinal(b))" and "zordinal(b) ∈ W(succ(b))" using ih by auto
     then have "H(zordinal(b))" using `Ord(succ(b))` phiI by auto
     then obtain x' where x':"zordinal(b) = <0,x'>" using `Set(zordinal(b))` Set_means_set by auto
     then have "x' ⊆ W(b)" using `Ord(succ(b))` `zordinal(b) ∈ W(succ(b))` by auto

     have "b ≤ i" using `b < i` lt_def by auto
     then have "W(b) ⊆ W(i)" using `Ord(i)` W_ordered by auto
     then have "x ∈ x'" using b x' by auto
     then have "x ∈ W(b)" using `x' ⊆ W(b)` by auto
     then show "x∈W(i)" using `W(b) ⊆ W(i)` by auto
   qed
   then have 1:"zordinal(i) ∈ W(succ(i))" using z by auto
   from `Limit(i)` have "Ord(succ(i))" using Limit_def by auto
   then have "H(zordinal(i))" using 1 by (rule phiI)
   then have 2:"Set(zordinal(i))" using Set_means_set z by auto
   from 1 2 show ?case by auto
 qed

lemma infinity :
  "∃z. H(z) ∧ Zin(emp,z) ∧ (∀x. Set(x) ⟶ (Zin(x,z) ⟶ Zin(Zucc(x), z)))"
proof -
  obtain i where i:"Limit(i)" by auto
  then have "Ord(i)" using Limit_def by auto
  then have si: "Ord(succ(i))" by auto
  let ?z = "<0,W(i)>"
  have behv:"Zin(emp,?z) ∧ (∀x. Set(x) ⟶ (Zin(x,?z) ⟶ Zin(Zucc(x), ?z)))"
  proof
    show "Zin(emp, ?z)"
    proof -
      from i have 1:"1 ∈ i" using Limit_has_1 ltD by auto
      have "emp ∈ W(1)" by auto
      then have "∃j∈i. emp ∈ W(j)" using 1 by blast
      then show "Zin(emp,?z)" using i transrec3_Limit by auto
    qed
  next
    show "∀x. Set(x) ⟶ (Zin(x,?z) ⟶ Zin(Zucc(x), ?z))"
      using i Zucc_limit by auto
  qed

  have z:"?z ∈ W(succ(i))" and "Ord(succ(i))" using si by auto
  then have "H(?z)"  using phiI by auto
  then show ?thesis using behv by blast
qed

lemma emp_ugly :
   assumes "H(y)" shows "Zin(emp,y) ⟶  (∃z. H(z) ∧ Set(z) ∧ Zin(z,y) ∧ (∀b. ¬ Zin(b,z)))"
proof
  assume y:"Zin(emp,y)"
  show "(∃z. H(z) ∧ Set(z) ∧ Zin(z,y) ∧ (∀b. ¬ Zin(b,z)))"
  proof
    have 1:"H(emp)" using y zin_closed by auto
    then have 2:"Set(emp)" by simp
    have 3:"Zin(emp,y)" using y by simp
    have 4:"∀b. ¬ Zin(b,emp)" by auto
    show "(H(emp) ∧ Set(emp) ∧ Zin(emp,y) ∧ (∀b. ¬ Zin(b,emp)))" using 1 2 3 4 by simp
  qed
qed

lemma zucc_ugly: assumes "H(x)" "Set(x)" "H(y)" "Zin(Zucc(x), y)" shows
 "(∃s. H(s) ∧ Zin(s,y) ∧ (∀c. Zin(c,s) ⟷ (Zin(c,x) ∨ c = x)))"
proof
  obtain a where a:"Ord(a) ∧ x∈W(a)" using assms(1) by auto
  then have "Zucc(x)∈W(succ(a))"using Zucc_in_succ assms(2) by auto
  then have "Ord(succ(a))" and "Zucc(x) ∈ W(succ(a))" using a by auto
  then have 1:"H(Zucc(x))" by (rule phiI)
  have 2:"Zin(Zucc(x), y)" using assms(4) by simp
  have 3:"(∀c. Zin(c,Zucc(x)) ⟷ (Zin(c,x) ∨ c = x))"
  proof fix c
    have z:"Set(Zingle(x))" and "H(Zingle(x))"
      using zingle_set zingle_closed `Set(x)` `H(x)` by auto
    then have "Zin(c, Zunion(x,Zingle(x))) ⟷ (Zin(c,x) ∨ Zin(c,Zingle(x)))"
      using `H(x)` `Set(x)` zunion_or by blast
    then have "Zin(c,Zucc(x)) ⟷ (Zin(c,x) ∨ Zin(c,Zingle(x)))" using Zucc_def by simp
    then show "Zin(c,Zucc(x)) ⟷ (Zin(c,x) ∨ c = x)" using zingle_lemma by auto
  qed
  from 1 2 3 show "H(Zucc(x)) ∧ Zin(Zucc(x),y) ∧ (∀c. Zin(c,Zucc(x)) ⟷ (Zin(c,x) ∨ c = x))" by simp
qed

lemma infinity_ugly :
 "∃y. H(y) ∧ (∃z. H(z) ∧ Set(z) ∧ Zin(z,y) ∧ (∀b. ¬ Zin(b,z)))
           ∧ (∀x. Zin(x,y) ⟶ (∃s. H(s) ∧ Zin(s,y) ∧ (∀c. Zin(c,s) ⟷ (Zin(c,x) ∨ c = x))))"
proof -
  obtain i where i:"Limit(i)" by auto
  then have i_ord:"Ord(i)" using Limit_def by auto
  obtain I' where I':"I' = {zordinal(b) . b∈i}" by auto
  then have zi:"⋀b . Ord(b) ⟹ b∈i ⟹ zordinal(b) ∈ I'" by auto
  let ?I = "<0,I'>"

  from i have "0 < i" using Limit_def by auto
  then have "Ord(0)" and "0 ∈ i"  using lt_def by auto
  then have "zordinal(0) ∈ I'" by (rule zi)
  then have "emp ∈ I'" by auto
  then have "Zin(emp, ?I)" by auto

  have zucc:"∀x. Zin(x,?I) ⟶ Set(x) ∧ Zin(Zucc(x),?I)" proof
    fix x show "Zin(x, ⟨0, I'⟩) ⟶ Set(x) ∧ Zin(Zucc(x), ⟨0, I'⟩)" proof
      assume "Zin(x,?I)"
      then obtain b where x:"x = zordinal(b)" and b:"b ∈ i" using I' by auto
      from b i_ord have "Ord(b)" using lt_def lt_Ord by auto
      then have osb:"Ord(succ(b))" by auto
      then have sb:"succ(b) ∈ i" using i Limit_def b lt_def by auto

      have "zordinal(succ(b)) ∈ I'" using osb sb by (rule zi)
      then have "Set(x)" and "Zucc(x) ∈ I'" using zord_set_w x `Ord(b)` by auto
      then show "Set(x) ∧ Zin(Zucc(x),?I)" by simp
    qed
  qed

  have "H(?I)" proof -
    have "I' ⊆ W(i)" proof
    fix x assume "x∈I'"
     then obtain b where x:"x = zordinal(b)" and b:"b∈i" using I' by auto
     then have bi:"b < i" and "Ord(b)" using lt_Ord lt_def i_ord by auto
     then have "succ(b) < i" using bi i by auto
     then have "succ(b) ∈ i" using lt_def by auto
     from `Ord(b)` have "zordinal(b) ∈ W(succ(b))" using zord_set_w by auto
     then have "∃j∈i. zordinal(b) ∈ W(j)" using `succ(b)∈i` by blast
     then have "zordinal(b) ∈ W(i)" using transrec3_Limit i by auto
     then show "x ∈ W(i)" using x by auto
   qed
  then have "Ord(succ(i))" and "?I ∈ W(succ(i))" using i_ord by auto
  then show "H(?I)" by (rule phiI)
  qed

  from `H(?I)` `Zin(emp,?I)` have 1:"(∃z. H(z) ∧ Set(z) ∧ Zin(z,?I) ∧ (∀b. ¬ Zin(b,z)))"
    using emp_ugly by blast
  have 2:"(∀x. Zin(x,?I) ⟶ (∃s. H(s) ∧ Zin(s,?I) ∧ (∀c. Zin(c,s) ⟷ (Zin(c,x) ∨ c = x))))"
  proof (rule allI, rule impI)
    fix x assume "Zin(x,?I)"
    then have "Set(x)" and "H(x)" and "Zin(Zucc(x), ?I)" using `H(?I)` zin_closed zucc by auto
    then show "(∃s. H(s) ∧ Zin(s,?I) ∧ (∀c. Zin(c,s) ⟷ (Zin(c,x) ∨ c = x)))"
      using `H(?I)` zucc_ugly by blast
  qed
  from `H(?I)` 1 2 have "H(?I) ∧ (∃z. H(z) ∧ Set(z) ∧ Zin(z,?I) ∧ (∀b. ¬ Zin(b,z)))
           ∧ (∀x. Zin(x,?I) ⟶ (∃s. H(s) ∧ Zin(s,?I) ∧ (∀c. Zin(c,s) ⟷ (Zin(c,x) ∨ c = x))))" by auto
  then show ?thesis by blast
qed



lemma replacement :
  assumes "Set(x)" "H(x)" "∀a. Zin(a,x) ⟶ (∃!b. H(b) ∧ φ(a,b))"
  shows "∃y. Set(y) ∧ (∀b. H(b) ⟶ (Zin(b,y) ⟷ (∃a. Zin(a,x) ∧ φ(a,b))))"
proof -
  from assms(1) obtain x' where x':"x = <0,x'>" using `H(x)` Set_means_set by blast
  then have func:"∀a∈x'. ∀y z. (H(y) ∧ φ(a,y)) ∧ (H(z) ∧ φ(a,z)) ⟶ y = z" using assms(3) by auto
  let ?y' = "{b . a∈x', H(b) ∧ φ(a,b)}"
  let ?y = "<0,?y'>"


  have behaviour:"(∀b. H(b) ⟶ Zin(b,?y) ⟷ (∃a. Zin(a,x) ∧ φ(a,b)))"
  proof
    fix b
    show "H(b) ⟶ Zin(b,?y) ⟷ (∃a. Zin(a,x) ∧ φ(a,b))"
    proof
      assume "H(b)"
      show "Zin(b,?y) ⟷ (∃a. Zin(a,x) ∧ φ(a,b))"
      proof
        assume "Zin(b,?y)"
        then have "b∈?y'" by simp
        then have "∃a. a∈x' ∧ φ(a,b)" by blast
        then show "∃a. Zin(a,x) ∧ φ(a,b)" using x' by simp
      next
        assume "∃a. Zin(a,x) ∧ φ(a,b)"
        then have "∃a. a∈x'∧ H(b) ∧ φ(a,b)" using `H(b)` x' by simp
        then have "b∈?y'" using func by blast
        then show "Zin(b,?y)" by auto
      qed
    qed
  qed

  have "H(?y)"
  proof -
    obtain y' where y': "y' = ?y'" by blast
    then have phib:"∀b∈y'. H(b)" by auto
    obtain i where i:"(⋃m∈y'. wrank_rec(m)) = i " by auto
    have ord_b:"∀b∈y'. Ord(wrank_rec(b))" using y' ord_wrank by auto
    then have ord_i:"Ord(i)" using i by auto
    then have "Ord(succ(i))" by auto
    then have ss:"Ord(succ(succ(i)))" by auto

    have "∀b∈y'. b∈W(succ(i))"
    proof
      fix b assume b:"b∈y'"
      then have ob:"Ord(wrank_rec(b))" using ord_b by auto
      have "H(b)" using phib b by auto
      from b have "wrank_rec(b) ⊆ i" using ord_i i by auto
      then have "wrank_rec(b) ≤ i" using le_subset_iff ob ord_i by auto
      then have s:"wrank_rec(b) <  succ(i)" by blast
      from `Ord(succ(i))` `H(b)` s show "b∈W(succ(i))" by (rule in_wrank)
    qed
    then have "y' ⊆ W(succ(i))" by auto
        then have "?y' ⊆ W(succ(i))" using y' by auto
        then have "?y ∈ W(succ(succ(i)))" by auto
        then have "Ord(succ(succ(i)))" and "?y ∈ W(succ(succ(i)))" using ss by auto
        then show "H(?y)" by (rule phiI)
      qed
      then have "Set(?y)" by auto
      then have "Set(?y) ∧  (∀b. H(b) ⟶ (Zin(b,?y) ⟷ (∃a. Zin(a,x) ∧ φ(a,b))))"
        using behaviour by auto
      then show ?thesis by blast
    qed

lemma foundation :
  assumes "Set(x)" "H(x)" "x ≠ emp"
  shows "∃a. H(a) ∧ Zin(a,x) ∧
        (∀b. H(b) ∧ Zin(b,x) ⟶ ¬(Zin(b,a) ∨ Zp1(b,a) ∨ Zp2(b,a)))"
proof -
  from assms(1-2) Set_means_set obtain x' where x:"x = <0,x'>" by auto
  let ?A = "{wrank_rec(y) . y∈x'}"
  from assms(3) x have "?A ≠ 0" by auto
  let ?μ = "⋂ ?A"
  have "∀y∈x'. H(y)" using `H(x)` zin_closed x by auto
  then have i_ords:"∀i∈?A. Ord(i)" using ord_wrank by blast
  then have "Ord(?μ)" by auto

  have "∀i∈?A. ?μ ⊆ i" by auto
  then have "∀i∈?A. ?μ ≤ i" using i_ords `Ord(?μ)` le_subset_iff by auto
  then have 1:"∀b∈x'. ?μ ≤ wrank_rec(b)" by auto

  have "?μ ∈ ?A" using int_in_A i_ords `?A ≠ 0` by blast
  then have "∃a∈x'. wrank_rec(a) = ?μ" by auto
  then obtain a where "a∈x'" and "wrank_rec(a) = ?μ" by blast
  then have "H(a)" using `∀y∈x'. H(y)` by auto
  from `a∈x'` x have "Zin(a,x)" by auto

  have "(∀b. H(b) ∧ Zin(b,x) ⟶ ¬(Zin(b,a) ∨ Zp1(b,a) ∨ Zp2(b,a)))"
  proof
    fix b show "H(b) ∧ Zin(b,x) ⟶ ¬(Zin(b,a) ∨ Zp1(b,a) ∨ Zp2(b,a)) "
    proof
      assume a:"H(b) ∧ Zin(b,x)"
      then have "b∈x'" using x by auto
      from a have "Ord(wrank_rec(b))" using ord_wrank by auto

      show "¬(Zin(b,a) ∨ Zp1(b,a) ∨ Zp2(b,a))"
      proof
        assume "Zin(b,a) | Zp1(b,a) | Zp2(b,a)"
        then have "wrank_rec(b) < wrank_rec(a)"
        proof
          assume "Zin(b,a)"
          then show "wrank_rec(b) < wrank_rec(a)" using `H(a)` zin_wrank by simp
        next
          assume "Zp1(b,a) | Zp2(b,a)"
          then show "wrank_rec(b) < wrank_rec(a)" using `H(a)` zp_wrank by simp
        qed
        then have 2:"wrank_rec(b) < ?μ" using `wrank_rec(a) = ?μ` by simp
        from 1 have "?μ ≤ wrank_rec(b)" using `b∈x'` by auto
        then have 3:"¬ (wrank_rec(b) < ?μ)" using not_lt_iff_le `Ord(?μ)` `Ord(wrank_rec(b))` by auto

        from 2 3 show False by simp
      qed
    qed
  qed
  then have "H(a) ∧ Zin(a,x) ∧ (∀b. H(b) ∧ Zin(b,x) ⟶ ¬(Zin(b,a) ∨ Zp1(b,a) ∨ Zp2(b,a)))"
    using `H(a)` `Zin(a,x)` by simp
  then show ?thesis by blast
qed

lemma cart_prod :
  assumes "H(x)" "Set(x)" "H(y)" "Set(y)"
  shows "∃z. Set(z) ∧
      (∀u. H(u) ⟶ (Zin(u,z) ⟷ (∃a b. Zin(a,x) ∧ Zp1(a,u) ∧ Zin(b,y) ∧ Zp2(b,u))))"
proof -
  from assms(1) assms(3) max_rank obtain a where a:"Ord(a) ∧ x∈W(a) ∧ y∈W(a)" by blast
  then have xy:"x∈W(succ(a)) ∧ y∈W(succ(a))" using subset_succ by auto
  let ?z' = "{p ∈ W(succ(a)) . (∃a b. Zin(a,x) ∧ Zp1(a,p) ∧ Zin(b,y) ∧ Zp2(b,p))}"
  let ?z = "<0,?z'>"
  have "H(?z)"
  proof -
    have "?z' ⊆ W(succ(a))" by blast
    then have "?z ∈ W(succ(succ(a)))" by auto
    then have "Ord(succ(succ(a)))" and "?z ∈ W(succ(succ(a)))" using a by auto
    then show "H(?z)" by (rule phiI)
  qed
  then have "Set(?z)" by simp

  let ?ψ = "(∀u. H(u) ⟶ Zin(u,?z) ⟷ (∃a b. Zin(a,x) ∧ Zp1(a,u) ∧ Zin(b,y) ∧ Zp2(b,u)))"
  have ?ψ
  proof
    fix u
    show "H(u) ⟶ Zin(u,?z) ⟷ (∃a b. Zin(a,x) ∧ Zp1(a,u) ∧ Zin(b,y) ∧ Zp2(b,u))"
    proof
      assume "H(u)"
      show "Zin(u,?z) ⟷ (∃a b. Zin(a,x) ∧ Zp1(a,u) ∧ Zin(b,y) ∧ Zp2(b,u))"
      proof
        assume "Zin(u,?z)"
        then have "u ∈ ?z'" by simp
        then show "(∃a b. Zin(a,x) ∧ Zp1(a,u) ∧ Zin(b,y) ∧ Zp2(b,u))" by blast
      next
        assume hyp:"(∃a b. Zin(a,x) ∧ Zp1(a,u) ∧ Zin(b,y) ∧ Zp2(b,u))"
        then obtain i j where ij:"Zin(i,x) ∧ Zp1(i,u) ∧ Zin(j,y) ∧ Zp2(j,u)" by blast
        then have "i ∈ W(a)" and "j ∈ W(a)" using prev_tier a xy by auto
        then have "H(i)" and "H(j)" using a by auto
        then have "Pair(u)" using ij `H(u)` by auto
        then have "u = <1,<i,j>>" using `H(u)` pair_prop ij by blast
        then have "u ∈ {1} × (W(a) × W(a))" using `i∈W(a)` `j∈W(a)` by auto
        then have "u ∈ W(succ(a))" by auto
        then have "u ∈ ?z'" using hyp by auto
        then show "Zin(u,?z)" by auto
      qed
    qed
  qed
  then have "Set(?z) ∧ ?ψ" using `Set(?z)` by blast
  then show ?thesis by blast
qed


lemma pair_empty [simp] : "Pair(p) ⟹ (∀a. ¬ Zin(a,p))"
proof -
  (* Suppose that Pair(p), then p = <1,p'> for some p'.*)
  assume "Pair(p)"
  then have 0:"fst(p) = 1" by auto
  (*Next we show the thesis by contradiction.*)
  show "∀a. ¬ Zin(a,p)"
  proof (rule ccontr)
    (*Suppose the contrary*)
    assume "¬ (∀a. ¬ Zin(a, p))"
    (*Then by DeMorgan, we have ∃a. Zin(a,p)*)
    then have "∃a. Zin(a,p)" by simp
    (*Then p = <0,x'> for some x'.*)
    then have 1:"fst(p) = 0" by auto
    (*Since fst(p) = 0 = 1, contradiction. *)
    from 0 1 show False by auto
  qed
qed

lemma pair_formation :
  assumes "H(a)" "H(b)"
  shows "∃p. H(p) ∧ Zp1(a,p) ∧ Zp2(b,p)"
proof
  let ?p = "<1,<a,b>>"
  have op:"Zp1(a,?p) ∧ Zp2(b,?p)" by simp
  from assms obtain z where z:"Ord(z)" and ab: "a∈W(z) ∧ b∈W(z)" using max_rank by blast
  then have "<a,b> ∈ W(z)*W(z)" by auto
  then have "Ord(succ(z)) ∧ <1,<a,b>> ∈ W(succ(z))" using z by simp
  then have "H(?p)" by blast
  then show "H(?p) ∧ Zp1(a,?p) ∧ Zp2(b,?p)" by simp
qed

lemma both_or_neither [simp] :
  assumes "H(x)"
  shows "(∃a. H(a) ∧ Zp1(a,x)) ⟷ (∃b. H(b) ∧ Zp2(b,x))"
proof
  obtain i where 0: "Ord(i)" and 1: "x∈W(i)" using assms by auto
  (*Suppose that Zp1(a,x) for some a∈W(α)*)
  assume "∃a. H(a) ∧ Zp1(a,x)"
  (*Then x = <1,p> for some p*)
  then obtain p where p: "x = <1,p>" by auto
  let ?b = "snd(p)"
  from p have "Zp2(?b,x)" by auto
  then have "H(?b)" using `H(x)` zp2_closed by auto
  then have "H(?b) ∧ Zp2(?b, x)" using `Zp2(?b,x)` by simp
  then show "∃b. H(b) ∧ Zp2(b,x)" by blast
next
  (*Similarly for the converse.*)
  obtain i where 0: "Ord(i)" and 1: "x∈W(i)" using assms by auto
  assume "∃b. H(b) ∧ Zp2(b,x)"
  then obtain p where p: "x = <1,p>" by auto
  let ?a = "fst(p)"
  from p have "Zp1(?a,x)" by auto
  then have "H(?a)" using `H(x)` zp1_closed by auto
  then have "H(?a) ∧ Zp1(?a, x)" using `Zp1(?a,x)` by simp
  then show "∃a. H(a) ∧ Zp1(a,x)" by blast
qed

lemma proj_uniqueness [simp] : "⟦H(p); Pair(p)⟧ ⟹ (∃! a. H(a) ∧ Zp1(a,p)) ∧ (∃! b. H(b) ∧ Zp2(b,p))"
proof -
  (*Suppose that Pair(p)*)
  assume "H(p)" "Pair(p)"
  then have a:"H(p) ∧ (∃a. H(a) ∧ Zp1(a,p))" by simp
  then have b:"(∃b. H(b) ∧ Zp2(b,p))" using both_or_neither by auto
  (*We then have that p = <1,q> where q = <a,b>*)
  then have "(∃q a b. p = <1,q> ∧ fst(q) = a ∧ H(a) ∧ snd(q) = b ∧ H(b))" using a b by auto
  (*Due to the uniqueness of Kuratowski projections, we have that a, b, and therefore q are unique·*)
  then have "(∃!q a b. p = <1,q> ∧fst(q) = a ∧ H(a) ∧ snd(q) = b ∧ H(b))" by auto
  (*These are the unique a and b such that Zp1(a,p) and Zp2(b,p)*)
  then show "(∃!a. H(a) ∧ Zp1(a,p)) ∧ (∃!b. H(b) ∧ Zp2(b,p))" by auto
qed

lemma pair_extensionality :
  assumes "H(p)" "Pair(p)" "H(q)" "Pair(q)"
   "(∀a b. H(a)∧H(b) ⟶ (Zp1(a,p) ⟷ Zp1(a,q)) ∧ (Zp2(b,p) ⟷ Zp2(b,q)))"
  shows "p = q"
proof -
  from assms(1-2) have "(∃!a. H(a) ∧  Zp1(a,p)) ∧ (∃! b. H(b) ∧ Zp2(b,p))" by (rule proj_uniqueness)
  then obtain u v where up:  "Zp1(u,p)" and vp:"Zp2(v,p)" by blast
  from `H(p)` `Zp1(u,p)` have "H(u)" by (rule zp1_closed)
  from `H(p)` `Zp2(v,p)` have "H(v)" by (rule zp2_closed)
  from assms(5) `H(u)` `H(v)`
  have "(Zp1(u,p) ⟷ Zp1(u,q)) ∧ (Zp2(v,p) ⟷ Zp2(v,q))" by simp
  then have q: "Zp1(u,q) ∧ Zp2(v,q)" using up vp by simp

  from `H(p)` `Pair(p)` have "(Zp1(u,p) ∧ Zp2(v,p) ⟷ p = <1,<u,v>>)" by (rule pair_prop)
  then have peq : "p = <1,<u,v>>" using up vp by simp
  from `H(q)` `Pair(q)` have "(Zp1(u,q) ∧ Zp2(v,q) ⟷ q = <1,<u,v>>)" by (rule pair_prop)
  then have qeq: "q = <1,<u,v>>" using q by simp
  from peq qeq show "p = q" by simp
qed

end
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