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School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom

We investigate artificial neural networks as a parametrization tool for stochastic inputs in

numerical simulations. We address parametrization from the point of view of emulating

the data generating process, instead of explicitly constructing a parametric form to

preserve predefined statistics of the data. This is done by training a neural network to

generate samples from the data distribution using a recent deep learning technique called

generative adversarial networks. By emulating the data generating process, the relevant

statistics of the data are replicated. The method is assessed in subsurface flow problems,

where effective parametrization of underground properties such as permeability is

important due to the high dimensionality and presence of high spatial correlations.

We experiment with realizations of binary channelized subsurface permeability and

perform uncertainty quantification and parameter estimation. Results show that the

parametrization using generative adversarial networks is very effective in preserving

visual realism as well as high order statistics of the flow responses, while achieving a

dimensionality reduction of two orders of magnitude.

Keywords: parameterization, generative model, geomodeling, deep learning, parameter estimation

1. INTRODUCTION

Many problem scenarios such as uncertainty quantification and parameter estimation involve
the solution of partial differential equations with a stochastic input. This is because in many
real applications, some properties of the system are uncertain or simply unknown. The general
approach is to use a probabilistic framework where we represent such uncertainties as random
variables with a predefined distribution. In some cases where both the distribution and the forward
map are trivial, a closed-form solution is possible; however this is very rarely the case. Often in
practice, we can only resort to a brute-force approach where we draw several realizations of the
random variables, e.g., using Markov chain Monte Carlo sampling, and fully solve the partial
differential equations for each realization in an effort to estimate distributions or bounds of the
system’s response. This approach suffers from slow convergence and the need to perform a large
number of forward simulations, which led to the development of several methods to reduce the
computational burden of this task.

https://www.frontiersin.org/journals/water
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://doi.org/10.3389/frwa.2020.00005
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2020.00005&domain=pdf&date_stamp=2020-03-25
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cshing.m@gmail.com
https://doi.org/10.3389/frwa.2020.00005
https://www.frontiersin.org/articles/10.3389/frwa.2020.00005/full
http://loop.frontiersin.org/people/798041/overview
http://loop.frontiersin.org/people/699382/overview


Chan and Elsheikh Parametrization Using Generative Adversarial Networks

A straightforward solution is to reduce the computational
cost of the forward map itself—numerous methods exist in
this direction, including reduced-order models (Lassila et al.,
2014; Jin et al., 2019; Kani and Elsheikh, 2019), surrogate
models (Razavi et al., 2012; Qin et al., 2019; Tarakanov and
Elsheikh, 2019), and upscaling (Christie and Blunt, 2001; Chan
and Elsheikh, 2018a; Vasilyeva and Tyrylgin, 2018). Another
different direction consists of reducing or refining the search
space or distribution of the random variables, for example by
regularization or parametrization, thus reducing the number
of simulations required. Parametrization is specially useful in
problems where the number of random variables is huge but the
variables are highly redundant and correlated. This is generally
the case in subsurface flow problems: Complete prior knowledge
of subsurface properties (e.g., porosity or permeability) is
impossible, yet is very influential in the flow responses. At the
same time, accurate flow modeling often requires the use of
extremely large simulation grids. When the subsurface property
is discretized, the number of free variables is naively associated
with the number of grid cells. The random variables thus
obtained are hardly independent, whose assumption during
the modeling leads to unnecessary computations. The goal of
parametrization is to discover statistical relationships between
the random variables in order to obtain a reduced and more
effective representation.

The importance of parametrization in subsurface simulations
resulted in a variety of methods in the literature including
zonation (Jacquard, 1965; Jahns, 1966) and zonation-based
methods (Bissell, 1994; Chavent and Bissell, 1998; Grimstad et al.,
2001, 2002, 2003; Aanonsen, 2005), PCA-basedmethods (Gavalas
et al., 1976; Oliver et al., 1996; Reynolds et al., 1996; Sarma
et al., 2008; Ma and Zabaras, 2011; Vo and Durlofsky,
2016), SVD-based methods (Tavakoli and Reynolds, 2009, 2011;
Shirangi, 2014; Shirangi and Emerick, 2016), discrete wavelet
transform (Mallat, 1989; Lu and Horne, 2000; Sahni and Horne,
2005), discrete cosine transform (Jafarpour and McLaughlin,
2007, 2009; Jafarpour et al., 2010), level set methods (Moreno and
Aanonsen, 2007; Dorn andVillegas, 2008; Chang et al., 2010), and
dictionary learning (Khaninezhad et al., 2012a,b). Many methods
begin by proposing parametric forms for the random vector to
be modeled which are then explicitly fitted to preserve certain
chosen statistics. In the process, many methods inevitably adopt
some simplifying assumptions, either on the parametric form
to be employed or the statistics to be reproduced, which are
necessary for the method to be actually feasible. In this work, we
consider the use of neural networks for both parametrization of
the random vector and definition of its relevant statistics. This
is motivated by recent advances in the field of machine learning
(Goodfellow et al., 2014; Radford et al., 2015; Arjovsky et al.,
2017) and the high expressive power of neural networks (Hornik
et al., 1989) that makes them one of the most flexible forms
of parametrization.

The idea is to obtain a parametrization by emulating the
data generating process. We seek to construct a function called
the generator—in this case, a neural network—that takes a low-
dimensional vector as input (the reduced representation), and
aims to output a realization of the target random vector. The

low-dimensional vector is assumed to come from an easy-to-
sample distribution, e.g., a multivariate normal or an uniform
distribution, and is what provides the element of stochasticity.
Generating a new realization then only requires sampling the
low-dimensional vector and a forward pass of the generator
network. The neural network is trained using a dataset of
prior realizations that inform the patterns and variability of the
random vector (e.g., geological realizations from a database or
from multipoint geostatistical simulations; Strebelle and Journel,
2001; Mariethoz and Caers, 2014).

The missing component in the description above is the
definition of an objective function to actually train such
generator; in particular, how do we quantify the discrepancy
between generated samples and actual samples? This is resolved
using a recent technique in machine learning called generative
adversarial networks (Goodfellow et al., 2014) (GAN). The idea
in GAN is to let a second classifier neural network, called the
discriminator, define the objective function. The discriminator
takes the role of an adversary against the generator where both
are trained alternately in a minmax game: the discriminator
is trained to maximize a classification performance where it
needs to distinguish between “fake” (from the generator) and
“real” (from the dataset) samples, while the generator is trained
to minimize it. Hence, the generator is iteratively trained to
generate good realizations in order to fool the discriminator,
while the discriminator is in turn iteratively trained to improve
its ability to classify correctly. In the equilibrium of the game,
the generator effectively learns to generate plausible samples, and
the discriminator regards all samples as equally plausible (coin
toss scenario).

The benefit of this approach is that we do not need tomanually
specify which statistics of the data need to be preserved, instead
we let the discriminator network implicitly learn the relevant
statistics. We can see that the high expressive power of neural
networks is leveraged in two aspects: on one hand, the expressive
power of neural networks allows the effective parametrization
(generator) of complex realizations; on the other hand, it allows
the discriminator to learn the complex statistics of the data.

This work is an extension of our preliminary work in Chan
and Elsheikh (2017). There is a growing number of recent
works in geology where GANs have been studied, including
porous media reconstruction (Mosser et al., 2017a,b), seismic
inversion (Mosser et al., 2018a), parameter estimation (Laloy
et al., 2018; Canchumuni et al., 2019; Mosser et al., 2019; Zhang
et al., 2019), conditional geological models (Chan and Elsheikh,
2018b; Dupont et al., 2018; Mosser et al., 2018b), subsurface
plumemodeling (Zhong et al., 2019), carbon storage Graham and
Chen (2020), and 2D-to-3D geological modeling (Coiffier and
Renard, 2019). Other methods similar to GAN include (Laloy
et al., 2017; Liu and Durlofsky, 2019; Liu et al., 2019) where a
neural network parametrization of the subsurface is obtained.
Currently, there is increasing interest in applying machine
learning techniques to address geological problems (Bergen et al.,
2019; Sun and Scanlon, 2019)

In this work, we provide further assessments and focus
mainly on the capabilities of GAN as a parametrization tool
to preserve high order flow statistics and visual realism. We
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FIGURE 1 | Transformation matrix of a fully connected layer (A), and of a

convolutional layer (B). In this example, the convolutional layer has only 2 free

weights, whereas the fully connected layer has 12 free weights.

parametrize binary channelized permeability models based on
the classical Strebelle training image (Strebelle and Journel,
2001), a benchmark problem that is often employed for assessing
parametrization methods due to the difficulties in crisply
preserving the channels. To assess the method, we consider
uncertainty propagation in subsurface flow problems for a large
number of realizations of the permeability and compare the
statistics in their flow responses. We also perform parameter
estimation using natural evolution strategies (Wierstra et al.,
2008, 2014), a general black-box optimization method that is
suitable for the obtained reduced representation. Finally, we
discuss training difficulties of GAN encountered during our
implementation—in particular, limitations in small datasets, and
inherent issues of the standard formulation of GAN (Goodfellow
et al., 2014).

The rest of this chapter is organized as follows: In section
2, we briefly describe convolutional neural networks—a widely
used architecture in modern neural networks—and the method
of generative adversarial networks. Section 3 contains our
numerical results for uncertainty quantification and parameter
estimation experiments. In section 4, we provide a discussion for
practical implementation. We draw our conclusions in section 5.

2. BACKGROUND

2.1. Convolutional Neural Networks
A (feedforward) neural network is a composition of functions
f (x) = f L(f L−1(· · · (f 1(x)))) where each function f l(x), called a
layer, is of the form σl(Wlx+bl), i.e., an affine transform followed
by a component-wise non-linearity. The choice of the number of
layers L, the non-linear functions σl, and the sizes of Wl, bl are

part of the architecture design process, which is largely problem-
dependent and based on heuristics and domain knowledge.
Modern architectures use non-linearities such as rectifier linear
units (ReLU, σ (x) = x+ = max(0, x)), leaky rectifier linear units
(leaky ReLU, σ (x) = x++0.01x−), tanh, sigmoid, and others; and
can have as much as 100 layers (Simonyan and Zisserman, 2014;
He et al., 2016). After an architecture is assumed, the weights of
Wl, bl are obtained by optimization of an objective.

A major architectural choice that led to huge advances in
computer vision is the use of convolutional layers (Fukushima
andMiyake, 1982). An example of a convolution is the following:
Let u = (u1, · · · , um) be an input vector and k = (w1,w2)
be a filter. The output of convolving the filter k on u is
v = (v1, · · · , vp) where vi = w1ui + w2ui+1 (using stride 1).
The operation is illustrated in Figure 1 : In a traditional fully
connected layer, the associated matrix is dense and all its weights
need to be determined in optimization. In a convolutional layer,
the connections are constrained in such a way that each output
component only depends on a neighborhood of the input, and
as a result the associated matrix is a sparse diagonal-constant
matrix, thus obtaining a huge reduction in the number of free
weights. Note that in practice several stacks of convolution layers
are used, so the full connectivity can be recovered if necessary.
On top of the reduction, another benefit comes from the inherent
regularization that this operator imposes that is often useful in
applications where there is a spatial or temporal extent and the
assumption of data locality is valid—informally, closer events in
the spatial/temporal extent tend to be correlated (e.g., in natural
images and speech).

The convolution as described above has a downscaling effect,
i.e., the output size is always smaller or equal to the input size,
which can be controlled by the filter stride. A classifier neural
network typically consists of a series of convolutional layers that
successively downscale an image to a single number (binary
classification) or a vector of numbers (multiclass classification).
In the case of decoders and generative networks, we wish to
achieve the opposite effect to get an output that is larger than
the input (e.g., to reconstruct an image from a compressed code).
This can be achieved by simply transposing the convolutions:
Using the example in Figure 1B, to convert from v to u, we
can consider weight matrices of the form W⊤, i.e., the transpose
of the convolution matrix from u to v. Modern decoders and
generators consist of a series of transposed convolutions that
successively upscale a small vector to a large output array, e.g.,
corresponding to an image or audio.

The operations and properties discussed so far extend
naturally to 2D and 3D arrays. For a 2D or 3D input array, the
filter is also a 2D or 3D array, respectively. Note however that in
the 3D case, the filter array is such that the depth (perpendicular
to the spatial extent) is always equal to the depth of the 3D input
array, therefore the output is always a 2D array, and the striding is
done in the spatial extent (width and height). On the other hand,
we allow the application of multiple filters to the same input,
thereby producing a 3D output array if required, consisting of
the stack of multiple convolution outputs. This way of operating
with convolutions is inherited from image processing: Color
images are 3D arrays consisting of three 2D arrays indicating the
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FIGURE 2 | Illustration of a typical pyramid architecture used in generator

networks.

red, green, and blue intensities (in RGB format). Image filtering
normally operates on all three values, e.g., the grayscale filter is
vij = 0.299 · uij,red + 0.587 · uij,green + 0.114 · uij,blue. The output
of a convolution filter is also called a feature map.

Finally, we show in Figure 2 a popular pyramid architecture
used in generator networks (Radford et al., 2015) for image
synthesis. The blocks shown represent the state shapes (stack of
feature maps) as the input vector is passed through the network.
The input vector z is first treated as a “1-pixel image” (with many
“feature maps”). The blocks are subsequently expanded in the
spatial extent (width and height) while thinned in depth: A series
of transposed convolutions is used to upsample the spatial extent
until reaching the desired size; at the same time, the number of
convolution filters is initially large, but it is subsequently reduced
in the following layers. For classifier networks, usually the
inverted architecture is used where the transposed convolutions
are replaced with normal convolutions. Further notes on modern
convolutional neural networks can be found in Karpathy (2020).

2.2. Generative Adversarial Networks
Let z ∼ pz , y ∼ Py, where pz is a known, easy-to-sample
distribution (e.g., multivariate normal or uniform distribution),
and Py is the unknown distribution of interest (e.g., the
distribution of all possible geomodels in a particular zone).
The distribution Py is only known through realizations
{y1, y2, · · · , yn} (e.g., realizations provided by multipoint
geostatistical simulations). Let Gθ : Z → Y be a neural
network—called the generator—parametrized by weights θ to
be determined. Given pz fixed, this neural network induces a
distribution Gθ (z) ∼ Pθ that depends on θ , and whose explicit
form is complicated or intractable (since neural networks contain
multiple non-linearities). On the other hand, sampling from
this distribution is easy since it only involves sampling z and a
forward evaluation ofGθ . The goal is to find θ such that Pθ = Py.

Generative adversarial networks (GAN) (Goodfellow et al.,
2014) approach this problem by considering a second classifier
neural network—called the discriminator—to classify between
“fake” samples (generated by the generator) and “real” samples
(coming from the dataset of realizations). Let Dψ : Y → [0, 1]

be the discriminator network parametrized by weights ψ to be
determined. The training of the generator and discriminator uses
the following loss function:

L(ψ , θ) := E
y∼Py

logDψ (y)+ E
ỹ∼Pθ

log(1− Dψ (ỹ)) (1)

where ỹ = Gθ (z) ∼ Pθ . In effect, this loss is the classification
score of the discriminator, therefore we trainDψ tomaximize this
function, and Gθ to minimize it:

min
θ

max
ψ

L(ψ , θ) (2)

In practice, optimization of this minmax game is done alternately
using some variant of stochastic gradient descent, where
the gradient can be obtained using automatic differentiation
algorithms. In the infinite capacity setting, this optimization
amounts to minimizing the Jensen-Shannon divergence between
Py and Pθ (Goodfellow et al., 2014). Equilibrium of the game

occurs when Py = Pθ and Dψ =
1
2 in the support of Py (coin

toss scenario).

2.2.1. Wasserstein GAN
In practice, optimization of the minmax game (2) is known to
be very unstable, prompting numerous works to understand and
address this issue (Radford et al., 2015; Salimans et al., 2016;
Arjovsky and Bottou, 2017; Arjovsky et al., 2017; Berthelot et al.,
2017; Gulrajani et al., 2017; Kodali et al., 2017; Qi, 2017). One
recent advance is to use the Wasserstein formulation of GAN
(WGAN) (Arjovsky et al., 2017; Gulrajani et al., 2017). This
formulation proposes the objective function

L(ψ , θ) := E
y∼Py

Dψ (y)− E
ỹ∼Pθ

Dψ (ỹ) (3)

and a constraint in the search space of Dψ ,

min
θ

max
ψ :Dψ∈D

L(ψ , θ) (4)

where nowDψ : Y → R andD is the set of 1-Lipschitz functions.
This constraint can be loosely enforced by constraining the
weights ψ to a compact space, e.g., by clipping the values of the
weights in an interval [−c, c]. In this case,D is a set of k-Lipschitz
functions where the constant k depends on c and is irrelevant for
optimization. Other approaches to enforce the constraint include
penalizing the gradients ofD (Gulrajani et al., 2017;Mroueh et al.,
2017) and normalizing the weights of D (Miyato et al., 2018).

Although the modifications in Equations (3) and (4) over
Equations (1) and (2) seem trivial, the derivation of this
formulation is rather involved and can be found in Arjovsky
et al. (2017). In essence, this formulation aims to minimize the
Wasserstein distance between two distributions, instead of the
Jensen-Shannon divergence. Here we only highlight important
consequences of this formulation:

• Available meaningful loss metric. This is because

W(Py,Pθ ) ≈ max
ψ :Dψ∈D

L(ψ , θ) (5)
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whereW denotes the Wasserstein distance.
• Better stability. In particular, mode collapse is drastically

reduced (see section 4.1).
• Robustness to architectural choices and

optimization parameters.

We experimentally verify these points in section 4.1 and discuss
their implications for our current application.

A pseudo-code of the training process is shown
in Algorithm 1. Note that D is trained multiple times (nD)
per each iteration of G. This is to keep D near optimality so
that the Wasserstein estimate in Equation (5) is accurate before
every update of G. We also note that even though we show
a simple gradient ascent/descent in the update steps (lines 6
and 11), it is more common to use update schemes such as
RMSProp (Tieleman and Hinton, 2012) and Adam (Kingma and
Ba, 2014) that are better suited for neural network optimization.

Algorithm 1: The WGAN algorithm

Require: nD iterations of D per iteration of G, initial guesses
θinit,ψinit, step size η, batch sizem, clipping interval c.

1: while θ has not converged do

⊲ Train D
2: for t = 1, ..., nD do

3: Sample {z1, · · · , zm} ∼ Pz to get {ỹ1, · · · , ỹm}, ỹi =

Gθ (zi)
4: Sample {y1, · · · , ym} ∼ Py (draw a subset of the

dataset)
5: ∇ψL(ψ , θ)← ∇ψ

[

1
m

∑m
i=1 Dψ (yi)−

1
m

∑m
i=1 Dψ (ỹi)

]

6: ψ ← ψ + η∇ψL(ψ , θ)
7: ψ ← clip(ψ ,−c, c)
8: end for

⊲ Train G
9: Sample {z1, · · · , zm} ∼ Pz to get {ỹ1, · · · , ỹm}, ỹi =

Gθ (zi)
10: ∇θL(ψ , θ)←−∇θ

1
m

∑m
i=1 Dψ (ỹi)

11: θ ← θ − η∇θL(ψ , θ)
12: end while

3. NUMERICAL EXPERIMENTS

We perform parametrization of unconditional and conditional
realizations (point conditioning) of size 64 × 64 of a
binary channelized permeability by training GAN using 1,000
prior realizations. The training image is the benchmark
image by Strebelle (Strebelle and Journel, 2001) containing
meandering left-to-right channels. The conditioning is done at
16 locations, summarized in Table 1, containing 13 locations
of high permeability (channel material) and 3 locations of low
permeability (background material). The channel has a log-
permeability of 1 and the background has a log-permeability of
0, however for the purpose of training GAN we shall use −1
to denote the background, and restore the value to 0 for the
flow simulations. The prior realizations are generated using the

TABLE 1 | Point conditioning at 16 locations, indicated by cell indices (i, j),

regularly distributed across the domain.

j = 12 j = 25 j = 38 j = 51

i = 12 1 1 1 1

i = 25 1 1 0 0

i = 38 1 0 1 1

i = 51 1 1 1 1

FIGURE 3 | Unconditional realizations.

SNESIM algorithm (Strebelle and Journel, 2001). Examples of
such realizations are shown in the top rows of Figures 3, 4.

3.1. Implementation
We train separate WGAN models for unconditional and
conditional realizations. The architecture is the pyramid
structure as described in section 2.1 and shown in Figure 2:
For the generator, the input array is initially upscaled to size
4 × 4 in the spatial extent, and the initial number of feature
maps is 512. This “block” is successively upscaled in the spatial
extent and reduced in the number of feature maps both by a
factor of 2, until the spatial extent reaches size 32 × 32. A final
transposed convolution upscales the block to the output size of
64 × 64. The non-linearities are ReLUs for all layers except the
last layer where we use tanh(·) (so that the output is bounded in
[−1, 1]—as noted above, we denote the background with−1 and
the channels with 1). The discriminator architecture is a mirror
version of the generator architecture, where the initial number
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of feature maps is 8. The block is successively downscaled in
the spatial extent and increased in the number of feature maps
by a factor of 2, until the spatial extent reaches size 4 × 4.

FIGURE 4 | Conditional realizations.

A final convolutional filter reduces this block to a single real
value. Note that the size of the discriminator (in terms of total
number of weights) is 1/8 times smaller than the generator,
which is justified below in section 4.2. All layers except the last
use leaky ReLUs. The last layer does not use a non-linearity.
We use z ∼ N (0, I) of dimension 30. This was chosen using
principal component analysis as a rule of thumb: to retain 75%
of the energy, 54 and 94 eigencomponents are required in the
unconditional and conditional cases, respectively. We chose a
smaller number to further challenge the parametrization. The
result is a dimensionality reduction of two orders of magnitude,
from 4, 096 = 64× 64 to 30.

The network is trained using a popular gradient update
scheme called Adam, with β1 = 0.5, β2 = 0.999 (see Kingma and
Ba, 2014).We use a step size of 10−4, batch size of 32, and clipping
interval [−0.01, 0.01]. We perform 5 discriminator iterations
per generator iteration. In our experiments, convergence was
achieved in around 20,000 generator iterations. The total training
time was around 30 min using an Nvidia GeForce GTX
Titan X GPU. During deployment, the model can generate
realizations of 64 × 64 size at the rate of about 5,500 realizations
per second.

In Figures 3, 4 we show unconditional and conditional
realizations generated by our trained models, and realizations
generated by SNESIM (reference). We also show realizations
generated with principal component analysis (PCA), retaining
75% of the energy. We see that our model clearly reproduces
the visual patterns present in the prior realizations. In Figure 5

we show histograms of the permeability at 10 randomly selected
locations, based on sets of 5000 fresh realizations generated by
SNESIM (i.e., not from the prior set) and by WGAN. We find
that our model generates values that are very close to either 0

FIGURE 5 | Histogram of permeability at 10 random locations based on SNESIM (first row) and WGAN (second row) realizations. (A) Unconditional case. (B)

Conditional case.
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FIGURE 6 | Saturation statistics at t = 0.5 PVI for unconditional realizations. From left to right: mean, variance, skewness and kurtosis of the saturation map, and

lastly the saturation histogram at a given point. The point corresponds to the maximum variance in the reference. (A) Uniform flow, unconditional realizations. (B)

Quarter five, unconditional realizations.
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FIGURE 7 | Saturation statistics at t = 0.5 PVI for conditional realizations. From left to right: mean, variance, skewness and kurtosis of the saturation map, and lastly

the saturation histogram at a given point. The point corresponds to the maximum variance in the reference. (A) Uniform flow, conditional realizations. (B) Quarter five,

conditional realizations.
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FIGURE 8 | Production statistics for unconditional realizations. The top of each subfigure shows the mean and variance of the production curve. The bottom shows

the histogram of the water breakthrough time. Times are expressed in pore volume injected. (A) Uniform flow, unconditional realizations. (B) Quarter five, unconditional

realizations.

or 1, and almost no value in between (no thresholding has been

performed at this stage, only shifting and scaling to move the

tanh interval [−1, 1] to [0, 1], i.e., (x+ 1)/2). The histograms are

remarkably close.

3.2. Assessment in Uncertainty
Quantification
In this section, we perform uncertainty quantification and
estimate several flow statistics of interest. We borrow test cases
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FIGURE 9 | Production statistics for conditional realizations. The top half of each subfigure shows the mean and variance of the production curve. The bottom show

the histogram of the water breakthrough time. Times are expressed in pore volume injected. (A) Uniform flow, conditional realizations. (B) Quarter five, conditional

realizations.
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FIGURE 10 | History matching results. Water level curves from the production wells in different test cases. Blue solid lines denote the target responses. Orange

dotted lines are three matching solutions found in the inversion. The black vertical dashed line in each plot marks the end of the observed period. Times are expressed

in pore volume injected.

from Ma and Zabaras (2011), where the authors parametrize the
same type of permeability using Kernel PCA. Thus, we refer the

interested reader to such work for results using Kernel PCA. Note

that here we use a larger grid (64 × 64 vs. 45 × 45) and provide

an additional flow test case.

We propagate 5,000 realizations of the permeability field in
2D single-phase subsurface flow. We consider injection of water

for the purpose of displacing oil inside a reservoir (water and
oil in this case have the same fluid properties since we consider
single-phase flow). The system of equations for this problem is

−∇ · (a∇p) = q (6)

ϕ
∂s

∂t
+ ∇ · (sv) = qw (7)
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FIGURE 11 | History matching results. We experiment with three toy images as well as unconditional and conditional SNESIM realizations. Each case contains one

injection well (black square) and five production wells (red circles). We show three solutions that match the observed production period (see Figure 10). The last

column contains image matching solutions.

where p is the fluid pressure, q = qw + qo denotes (total) fluid
sources, qw and qo are the water and oil sources, respectively, a
is the permeability, ϕ is the porosity, s is the saturation of water,
and v is the Darcy velocity.

Our simulation domain is the unit square with 64 × 64
discretization grid. The reservoir initially contains only oil, i.e.,
s(x, t = 0) = 0, and we simulate from t = 0 until t = 0.4.

We assume an uniform porosity of ϕ = 0.2. We consider two
test cases:

Uniform flow: We impose uniformly distributed inflow and
outflow conditions on the left and right sides of the unit
square, respectively, and no-flow boundary conditions on
the remaining top and bottom sides. The total absolute
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TABLE 2 | Performance in honoring point conditioning.

(A) PERCENTAGE OF MISMATCHES AT EACH CONDITIONING POINT

j = 12 j = 25 j = 38 j = 51

i = 12 0.38 0.48 1.78 1.82

i = 25 0.06 0.34 0.54 0.02

i = 38 4.46 1.3 3.0 0.8

i = 51 2.06 1.16 1.2 0.26

(B) PERCENTAGE OF REALIZATIONS WITH MISMATCHES

One or more Two or more Three

Exact 17.6 1.82 0.12

1 cell away 1.8 0.02 0.0

2 cells away 0.46 0.0 0.0

3 cells away 0.24 0.0 0.0

4 cells away 0.08 0.0 0.0

injection/production rate is 1. For the unit square, this
means v · n̂ = −1 and v · n̂ = 1 on the left and right
sides, respectively, where n̂ denotes the outward-pointing
unit normal to the boundary.

Quarter-five spot: We impose injection and production points
at (0, 0) and (1, 1) of the unit square, respectively. No-flow
boundary conditions are imposed on all sides of the square.
The absolute injection/production rate is 1, i.e., q(0, 0) = 1
and q(1, 1) = −1.

The propagation is done on sets of realizations generated by
WGAN and by SNESIM for comparison. Note that these are fresh
realizations not used to train the WGAN models. We also show
results using PCA for additional comparison.

Statistics of the saturation map based on 5,000 realizations
are summarized in Figures 6, 7. We plot the saturation at time
t = 0.1, which corresponds to 0.5 pore volume injected (PVI).
From left to right, we plot the mean, variance, skewness and
kurtosis of the saturation map. We see that the statistics from
realizations generated by WGAN correspond very well with the
statistics from realizations generated by SNESIM (reference). We
also see that the PCA parametrization performs very well in the
mean and variance, however the discrepancies increase as we
move to higher order moments. The discrepancy becomes clearer
by plotting the histogram of the 5,000 saturations at a fixed point
in the domain, shown on the last columns of Figures 6, 7. We
choose the point in the domain where reference saturation had
the highest variance. We see that the histograms by WGAN
match the reference remarkably well even in multimodal cases.
The reader may compare our results with Ma and Zabaras
(2011). The results suggest that the generator effectively learned
to replicate the data generating process.

Statistics of the production curve are summarized
in Figures 8, 9. On the top half of each subfigure, we show
the mean and variance of the production curve based on 5,000
realizations. These can in general be approximated well enough
by using only the PCA parametrization. We find that the
performance of our models are also comparable for this task. To

further contrast the ability to preserve higher order statistics, we
plot the histogram of the water breakthrough time, for which
an accurate estimation is of importance in practice. Here we
define the water breakthrough time as the time that water level
reaches 1% of production. Results are shown on the bottom half
of each subfigure in Figures 8, 9. In all cases, we find a very
good agreement between WGAN and reference. Unlike PCA,
the responses predicted by WGAN do not have a tendency to be
normally distributed (see e.g., Figure 9A).

3.3. Assessment in Parameter Estimation
We now assess our models for parameter estimation where we
reconstruct the subsurface permeability based on historical data
of the oil production stage, also known as history matching.
Following the general problem setting from before, we aim to find
realizations of the permeability that match the production curves
observed from wells.

3.3.1. Inversion Using Natural Evolution Strategies
Let d = M(a) where M is the forward map, mapping from
permeability a to the output d being monitored (in our case, the
water level curve at the production wells). Given observations
dobs and assuming i.i.d. Gaussian measurement noise (we use
σ = 0.01), and prior z ∼ N (0, I), the objective function to be
maximized is

f (z) = −
1

σ 2
(d− dobs)

T(d− dobs)− zTz (8)

= −
1

σ 2
(M(G(z))− dobs)

T(M(G(z))− dobs)− zTz (9)

To maximize this function, we use natural evolution strategies
(NES) (Wierstra et al., 2008, 2014), a black-box optimization
method suitable for the low-dimensional parametrization
achieved. Another reasonable alternative is to use gradient-
based methods exploiting the differentiability of our generator,
as investigated in Laloy et al. (2019). This would require adjoint
procedures to get the gradient of the forward map M. We
adopted NES due to its generality and easy implementation that
does not involve the gradient of f (nor M). NES maximizes f by
maximizing an average of f instead, J(φ) : = Eπ(z|φ)f (z), where
π(z|φ) is some distribution parametrized by φ (e.g., we used the
family of Gaussian distributions, in which case φ involves the
mean and covariance matrix). This is based on the observation
that maxφ Eπ(z|φ)f (z) ≤ maxz f (z).

Optimizing the expectation Eπ(z|φ)f (z) (instead of optimizing
f directly) has the advantage of not requiring the gradient of f
(and therefore of the simulator) since

∇φJ(φ) = Eπ(z|φ)f (z)∇φ logπ(z|φ)

We can approximate this as

∇φJ(φ) ≈
1

N

N
∑

k=1

f (zk)∇φ logπ(zk|φ)

by drawing realizations z1, · · · , zN ∼ π(z|φ). Optimization
proceeds by simple gradient ascent, φ ← φ + η∇φJ(φ) where
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FIGURE 12 | Realizations where conditioning failed. Orange dots indicate points conditioned to low permeability (0) and blue crosses indicate points conditioned to

high permeability (1). Mismatches are circled in red. (A) Realizations containing 3 mismatches. (B) Realizations with large misplacement (4 cells away).

η is a step size. Note that we optimize the parameter of the search
distribution φ, rather than z. As the optimization converges, the
search distribution collapses to an optimal value of z. In our
implementation, we actually use an improved version of NES
which uses the Fisher matrix and natural coordinates, as detailed
in Wierstra et al. (2014).

3.3.2. History Matching
We consider five target images of the permeability: one
unconditional realization and one conditional realization
(both using SNESIM), and three hand-crafted images (see
first column in Figure 11). The latter were specifically
designed to test the limits of the parametrization. For the
conditional realization, we use the generator trained on
conditional realizations. For the remaining cases, we use the
unconditional generator. Note that this poses a difficulty on the
reconstruction of the hand-crafted toy problems as these are not
plausible realizations with respect to the dataset used to train
the generator.

In each test case, we set one injection well with fixed flow rate
of 1, and five production wells with flow rate of −0.2 (locations
marked on each image, see Figure 11). Our only observed data
are the water level curves at the production wells from t = 0 to
t = 0.5 PVI, induced by the target permeabilities. We do not
include knowledge of the permeability at the “drilled” wells (as
normally done in real applications) in the parameter estimation.
For the experiments, we scaled the log-permeability values of 0
and 1 to 0 and 5, emulating a shale and sand scenario. We have
done this in part to allow for a less underdetermined system (i.e.,

so that different permeability patterns produce more distinctive
flow patterns).

Results for history matching are shown in Figures 10, 11. For
each test case, we find three solutions of the inversion problem
using different seeds (initial guess). For the conditional and
unconditional realizations, we obtain virtually perfect match of
the observed period (Figure 10). Beyond the observed period,
the responses naturally diverge. As is expected, the matching is
more difficult for some of the toy problems, in particular toy
problem E and toy problem Z. Toy problem X, however, does
particularly well.

In Figure 11 we show the reconstructed permeability images
for each test case. We also show, in the last column, image
matching solutions (i.e., we invert conditioning on the whole
image using NES). For the conditional and unconditional
cases, we see a good visual correspondence between target and
solution realizations in the history matching. We also find
good image matching solutions, verifying that the target image
is in the solution space of the generator and therefore the
history matching can be further improved by supplying more
information (e.g., permeability values at wells, longer historical
data, etc.). This applies to toy problem X as well, where the target
seems to be plausible (high probability under the generator’s
distribution). As expected, the reconstruction is more difficult for
toy problems E and Z, where the target images seem to have a
low probability as suggested by the image matching solutions.
For these cases, history matching will cease to improve after
certain point. Note that this is not a failure of the parametrization
method—after all, the generator should be trained using prior
realizations that inform the patterns and variability of the target.
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FIGURE 13 | Convergence curves of a WGAN model (top) and a standard GAN model (bottom). On the right, we show realizations along the training of the

corresponding models. We see that GAN loss is uninformative regarding sample quality. Note that the losses are not comparable between models since the

formulations are different.

That is, the parametrization must be done using samples deemed
representative of the geology under study.

3.4. Honoring Point Conditioning
We assess the ability of the generator trained on conditional
realizations to reproduce the point conditioning. We analyze
5,000 realizations and report in Table 2A the percentage of
mismatches at each of the 16 conditioning points. We find
that mismatches do occur at frequencies of less than 5% at
each conditioning point. Next, we count the overall number
of realizations with at least 1 mismatch, at least 2 mismatches,
and 3 mismatches (there were no realizations with more than 3
mismatches). The result is reported in Table 2B. The first row
shows the percentage of realizations that contain mismatches.
We see that 82.4% of realizations honor all conditioning points.
Of the sizable 17.6% of realizations that do contain mismatches,
most have only 1 mismatch. In particular, we find only 6 (0.12%)
realizations containing three mismatches, shown in Figure 12A.
From the figure, we notice that most mismatches were misplaced

by a few cells. We find that this is generally the case: In Table 2B,
we report the percentage of realizations that contain mismatches
with misplacement of 1, 2, 3, and 4 cells (there were no larger
misplacement). We find that if we allow for a tolerance of 1
cell distance, the percentage of wrong realizations drops to less
than 2%. Specifically, 98.2% of realizations honor all conditioning
points within a 1 cell distance, and 82.4% do so exactly. This could
explain the yet good results in flow experiments. Finally, we show
in Figure 12B the only 4 (0.08%) realizations containing large
misplacement of 4 cells.

Note that mismatches do not occur using PCA
parametrization (assuming an exact method for the
eigendecomposition is used) as it is derived to explicitly preserve
the spatial covariances. The presence of mismatches in our
method reflects the approach that we take to parametrization:
We formulate the parametrization by addressing the data
generating process rather than the spatial statistics of the
data, resulting in a parametrization that extrapolates to new
realizations that, except for a few pixels/cells, are otherwise
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FIGURE 14 | Examples of missing modes in standard GAN. Second and third rows show realizations generated by collapsing GAN models (left) and their responses

(right). First row shows the reference solutions. The standard GAN was trained using the same generator architecture, but a ×4 larger discriminator than the one

used in WGAN. We did not manage to find convergence with smaller discriminator sizes.

indistinguishable from data. In view of the good results from
our flow experiments, the importance of honoring point
conditioning precisely to the cell level could be argued. On the
other hand, we also acknowledge that conditioning points are
normally scarce and obtained from expensive measurements, so
it is desirable that these be well honored in the parametrization.

4. DISCUSSION AND PRACTICAL DETAILS

4.1. Practical Advantages of WGAN
An issue with the standard formulation of GAN is the lack of
a convergence curve or loss function that is informative about
the sample quality. We illustrate this in Figure 13 where we
show the convergence curve of our trained WGAN model, and
a convergence curve of a GAN using the standard formulation.
We also show realizations generated by the models along the
training process. The curve of WGAN follows the ideal behavior
that is expected in an optimization process, whereas the curve
of standard GAN is erratic and shows no correlation with
the quality of the generated samples. We can also see another
well-known issue of standard GAN which is the tendency to
mode collapse, i.e., a lack of sample diversity, manifested as
the repetition of only one or few image modes. We see that
the standard GAN generator jumps from one mode solution
to another. Note that in some cases, however, mode collapse is
more subtle and not easily detectable. This is very problematic
to our application since it can lead to biases in uncertainty
quantification and unsuccessful history matching due to the
absence of some modes in the generator.

Given the lack of an informative convergence metric in
standardGAN, the training process would involve a human judge
serving as the actual loss function to track the visual quality along
the training (in practice, weights are saved at several checkpoints
and assessed after the fact). On top of this, the human operator
would need to look at multiple realizations at once in an attempt
to detect mode collapse. Clearly, this subjective process is error
prone, not to mention labor intensive. In Figure 14 we show
two standard GAN models and their flow responses in the
unconditional uniform flow test case, based again on 5,000
realizations. On the top row, we show again the reference results
(mean saturation and water breakthrough time) for comparison.
We also compute the two-point probability function (Torquato
and Stell, 1982) of the generated realizations (last column; we
show the mean and one standard deviation). We see that in some
cases, mode collapse is very evident and the model can be quickly
discarded (second row). In other cases (last row), mode collapse
is harder to detect and can lead to misleading predictions. We
also see that the two-point probability function is not sufficient to
detectmode collapse as this function does notmeasure the overall
sample diversity.

The Wasserstein formulation solves these issues by allowing
the generator to minimize the Wasserstein distance between its
distribution and the target distribution (Equation 5), therefore
reducing mode collapse. Moreover, the Wasserstein distance
is readily available in-training and can be used to assess
convergence. Therefore, the Wasserstein formulation is better
suited for automated applications, where robustness and a
convergence criteria is essential.
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FIGURE 15 | Performance of models with varying network sizes. (A) Convergence curve for different sizes of D (and fixed G). Solid blue lines indicate the training loss,

and orange dotted lines indicate the validation loss. Note that the losses are not comparable across figures since the Lipschitz constants change with different D.

(B) Left: Convergence curve for different sizes of G (and fixed D). Right: Realizations by generators of different sizes (at 15,000 iterations).

4.2. Network Sizes Under Limited Data
As mentioned earlier, architecture design is largely problem-
dependent and based on domain knowledge and heavy use
of heuristics. The general approach is to start with a baseline
architecture from a similar problem domain and tune it to
accommodate for the present problem. Current computer vision
applications use the pyramid architecture shown in Figure 2.
These applications benefit from very large datasets of images. In
contrast, our application uses a relatively small dataset. Recall
that the discriminator D is trained using this limited dataset,
therefore addressing the possibility of overfitting is important
since the accuracy of D is crucial in the performance of the
method. In particular, an overfitted D creates an issue where the
Wasserstein estimate in section 5 is no longer accurate, making
the gradients to the generator unreliable. We show the effect
of overfitting in Figure 15A by training models with different
discriminator sizes, and fixed generator architecture. We train
discriminators of 2, 4, and 8 times the size of the discriminator
used in our previous experiments. The way we increase themodel
size is by increasing the number of filters in each layer of the
discriminator while keeping everything else constant. Another
possibility is to add extra layers to the architecture. To detect

overfitting, we evaluate the Wasserstein estimate using a separate
validation set of 200 SNESIM realizations. We see that for an
adequate size of the discriminator, the Wasserstein estimate as
evaluated on either training or validation set are similar. However
for larger models, the Wasserstein estimates on the training
and validation sets start to wildly diverge as the optimization
progresses, suggesting that the discriminator is overfitting and
the estimates are no longer reliable. It is therefore necessary
to adjust the size of the discriminator or use regularization
techniques when data is very limited.

Regarding generator architectures, network sizes will in
general be limited by compute and time resources; on the other
hand, we only need just enough network capacity to be able
to model complex structures. We illustrate this in Figure 15B

where we train generators of different sizes (like before, we
vary the number of filters in each layer) and fixed discriminator
architecture. We train generators of 1

32 ,
1
16 ,

1
8 , and 4 times

the size of the generator used in previous experiments. We
also show realizations generated by each generator model after
15,000 training iterations. We see that for a very small network
model ( 1

32 ), convergence is slow (as measured by iterations).
Convergence is faster as the network size increases since it is
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easier to fit a larger network. Note, however, that the training
iterations in larger networks are more expensive, possibly
making convergence actually slower in terms of compute times.

FIGURE 16 | Examples of artificially expanding the input array to obtain a

larger output. (A) Illustration of artificially expanding the input array in the

generator network. Blue blocks represent the original state shapes that a

normal input array follows in the generator. Light red blocks represent the new

state shapes of an expanded input array. (B) 1D example of the artificial

expansion and its associated matrix modification. Weights w∗1,w
∗
2 are already

trained. The expanded matrix can be obtained by appending an additional row

and column.

Therefore, there is diminishing returns in increasing the size of
the generator.

4.3. GAN for Multipoint Geostatistical
Simulations
In the domain of geology, a natural question is whether GANs
can be directly applied as multipoint geostatistical simulators.
This has been studied in a number of recent works (Mosser et al.,
2017a,b; Laloy et al., 2018). The idea here is to use a single large
training image and simply train a GAN model on patches of
this image, instead of generating a dataset of realizations using
an external multipoint geostatistical simulator. The result is a
generator capable of generating patches of the image instead of
the full-size training image. In order to recover the original size
of the training image or to generate larger images, a simple trick
is to feed an artificially expanded input array to the generator.
This is illustrated in Figure 16A: If a generator has been trained
with z of shape (nz , 1, 1), we can feed the generator with expanded
arrays of shape (nz , ny, nx) (sampled from the higher dimensional
analog of the same distribution) to obtain larger outputs. This
is possible since we can still apply a convolving filter regardless
of the input size. This is better illustrated with the 1D example
shown in Figure 16B. In Figure 17, we show generated examples
using this trick on our trained WGANmodel, where we generate
realizations of more than 10 times larger in each dimension
(recall that our generator is trained on realizations of size 64×64).
Whether this trick generalizes to arbitrarily large sizes (in the
sense that the flow statistics are preserved) deserves further study.

An important feature of multipoint geostatistical simulators
is the ability to generate conditional realizations. Performing
conditioning using unconditionally trained generators has been
the focus of recent works. In Dupont et al. (2018) and Mosser
et al. (2018b) conditioning was performed by optimization in
the latent space using an image inpainting technique (Yeh et al.,
2016). In Laloy et al. (2018) conditioning is imposed as an
additional constraint in the inversion process. In our concurrent
work (Chan and Elsheikh, 2018b), we propose a method based on

FIGURE 17 | Artificially upscaled realizations by feeding an expanded input array. Images (evidently) not at scale. (A) 128× 128, nx = 5. (B) 368× 368, nx = 20.

(C) 848× 848, nx = 50.

Frontiers in Water | www.frontiersin.org 18 March 2020 | Volume 2 | Article 5

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Chan and Elsheikh Parametrization Using Generative Adversarial Networks

stacking a second neural network to the generator that performs
the conditioning.

5. CONCLUSIONS

We investigated generative adversarial networks (GAN) as a
sample-based parametrization method of stochastic inputs in
partial differential equations. We focused on parametrization
of geological models which is critical in the performance
of subsurface simulations. We parametrized conditional and
unconditional permeability, and used the parametrization to
perform uncertainty quantification and parameter estimation
(history matching). Overall, the method shows very good results
in reproducing the spatial statistics and flow responses, as well
as preserving visual realism while achieving a dimensionality
reduction of two orders of magnitude, from 64 × 64 to
30. In uncertainty quantification, we found that the method
reproduces the high order statistics of the flow responses as
seen from the estimated distributions of the saturation and
the production. The estimated distributions show very good
agreement and the modality of the distributions are reproduced.
In parameter estimation, we found successful inversion results
in both conditional and unconditional settings, and reasonable

inversion results for challenging hand-crafted images. We also
compared implementations of the standard formulation of GAN
with the Wasserstein formulation, finding the latter to be more
suitable for our applications. We discussed issues regarding
network size under limited data, highlighting the importance of
the choice of discriminator size to prevent overfitting. Finally,
we also discussed using GANs for multipoint geostatistical
simulations. Possible directions to extend this work include
improving current GAN methods for limited data, and further
assessments in other test cases.
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