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Abstract

Spatial regression of random fields based on potentially biased sensing information is proposed

in this paper. One major concern in such applications is that since it is not known a-priori

what the accuracy of the collected data from each sensor is, the performance can be negatively

affected if the collected information is not fused appropriately. For example, the data collector

may measure the phenomenon inappropriately, or alternatively, the sensors could be out of

calibration, thus introducing random gain and bias to the measurement process. Such readings

would be systematically distorted, leading to incorrect estimation of the spatial field. To combat

this detrimental effect, we develop a robust version of the spatial field model based on a mixture

of Gaussian process experts. We then develop two different approaches for Bayesian spatial field

reconstruction: the first algorithm is the Spatial Best Linear Unbiased Estimator (S-BLUE), in

which one considers the quadratic loss function and restricts the estimator to the linear family

of transformations; the second algorithm is based on empirical Bayes, which utilises a two-stage

estimation procedure to produce accurate predictive inference in the presence of “misbehaving”

sensors. In addition, we develop the distributed version of these two approaches to drastically

improve the computational efficiency in large-scale settings. We present extensive simulation

results using both synthetic datasets and semi-synthetic datasets with real temperature mea-

surements and simulated distortions to draw useful conclusions regarding the performance of

each of the algorithms.

Keywords: Sensor Networks, Gaussian Process, Spatial Linear Unbiased Estimator (S-
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I. INTRODUCTION

In recent years, Wireless Sensor Networks (WSNs) have attracted considerable attention due

to their applications in environment monitoring [1], [2], forecasting [3], surveillance [4], event

detection [5] and tracking [6]. For example, the United States Environmental Protection Agency

(EPA) proposed to promote the use of sensor networks for air quality monitoring [7]. In this pa-

per, we focus on environmental monitoring applications in which a WSN consists of a collection

of spatially distributed sensor nodes with limited energy and communication bandwidth. The

sensors make observations of spatial physical phenomena (e.g. the concentration of air pollutants

such as carbon monoxide and ozone, temperature, humidity, etc. [8], [2]) and communicate the

observations to a Fusion Center (FC) [9]. The FC then reconstructs the spatial phenomena from

these observations at any spatial location of interest, based on which decisions can be made

and actions can be performed.

In many cases, the sensor nodes used to collect the spatial information are unreliable and

distort the spatial information. These distortions should be accounted for in spatial field recon-

struction. It is therefore crucial to assess and guarantee the veracity, quality and reliability of

collected data [10], [11]. There are multiple reasons for such a behaviour and here we list three

common reasons:

1) Uncalibrated sensors: uncalibrated sensors, if ignored, can lead to severe degradation of

the quality of the fields estimation [12]. Traditionally, sensors are calibrated in a controlled

environment where the physical input is known and then their performance in a given

calibration range is tested and verified over certain operating ranges of the environment,

before such WSNs are deployed. This is infeasible for large-scale WSNs due to the prohibitive

cost as well as inhomogeneity in deployment schedules. Thus, the calibration has to be done

through the so-called blind or self-calibration techniques [13]. In addition, the reliability of

sensor can deteriorate over time [8], making it very challenging to guarantee the quality of

information even for an a priori calibrated network. Among the classical calibration models,

the gain-offset response model is widely-used [14], [15]. We consider the problem of jointly

estimating the calibration parameters of individual sensors as well as the spatial field values

[16], [17].

2) Compromised sensors due to malicious intent: the sensors may be physically compromised

such that the sensor observations are maliciously altered to disrupt the operation of the

WSN [18]. One common type of attacks is the Byzantine attack in which a hostile attacker
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compromises a part of the sensor network in such a manner that the Fusion Center has

imperfect knowledge about whether a sensor node has been compromised [19], [20]. In

such a case, there may be erroneous information incorporated into the observations from

compromised sensors.

3) Unintentional misuse of sensors: in many cases data collection is done via crowd-sourcing

in which private individuals install sensing stations in order to collect and share their data

[21]. Since this type of data collection is not performed by professionals, in many cases, the

sensors are not placed or used properly, thus introducing distortion into the measurements.

Applications of crowd-sensing are becoming common recently due to the ubiquity of the

Internet of Things (IoT) [22]. Those sensors could be stationary [2], [23], [24], [1], [25] or

mobile [26], [27], depending on the application.

Many recent works such as [2], [28], [23], [24], [1], [25], [26] utilise the spatial-temporal

correlation to reconstruct spatial physical phenomena at all locations. For example, [2] studies

the placement of multi-type sensors in Gaussian spatial field to achieve optimal spatial field

monitoring. To circumvent the threat to data reliability in environment monitoring systems,

an estimation procedure was proposed in [28] to detect and exclude malicious sensing agents,

while accurately performing spatial field reconstruction.

The main goal of this paper is to develop statistical procedures that reconstruct spatial

fields using observations from sensors with possibly unknown distortions. We refer to such

observations as distorted observations. We use Gaussian processes as the probabilistic model for

spatial phenomena, and the sensors are assumed to follow the gain-offset distortion model with

multi-modal priors to capture distortion characteristics resulted from different processes, such

as natural deterioration, mis-calibration, malicious tampering, and unintentional misplacement

or misuse.

The main contributions are as follows:

1) We develop a two-stage Bayesian inference algorithm that jointly infers the distortions of

sensors and reconstructs the spatial field at all locations of interest. The algorithm estimates

the distortion parameters in an empirical Bayes manner.

2) We derive the posterior distribution and the posterior predictive distribution of the model,

and show that the exact computation of Bayes estimators is intractable.

3) We develop the Spatial Best Linear Unbiased Estimator (S-BLUE) for the model, which is

highly computationally efficient.
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4) We solve the optimization problem resulted from empirical Bayes estimation via two effi-

cient methods, the Cross-Entropy method (CEM) and the Iterated Conditional Mode (ICM)

method.

5) We analyse the computational time complexity of the proposed approaches and develop

simple distributed versions of these approaches that are computationally more efficient and

suitable for large-scale applications.

6) We perform synthetic data experiments as well as an experiment with real-world scenarios

to validate our model and estimation procedures. The study with real-world scenarios uses

a real temperature dataset from US EPA with synthetically generated distortions to show the

real-world applicability of the model.

The remainder of the paper is organized as follows. We present our Bayesian sensor network

model in Section II, which includes the prior distribution of the distortion parameters. In

Section III, we derive the posterior distribution of the parameters as well as the posterior

predictive distribution. Section IV introduces the S-BLUE and its properties. Section V introduces

the approximation of the Bayes estimators via empirical Bayes, and shows that the maximization

of the posterior distribution can be done through CEM and ICM. Section VI introduces the

distributed approaches. In Section VII and Section VIII, we perform experiments using synthetic

and real datasets. Finally, Section IX concludes the paper.

II. SENSOR NETWORK MODEL AND ASSUMPTIONS

We begin by presenting the statistical model for the spatial physical phenomena, followed by

the system model. The following notational convention is used throughout this paper. Boldface

upper case symbols denote matrices, boldface lower case symbols denote column vectors,

and standard lower case symbols denote scalars or scalar-valued functions, unless otherwise

specified. All vectors are column vectors unless otherwise stated.

A. Spatial Gaussian Random Fields Background

We model the physical phenomenon as spatially dependent continuous process with a spatial

correlation structure. Such models have recently become popular due to their mathematical

tractability and accuracy [1], [25], [29], [28], [3], [2]. The degree of the spatial correlation in the

process increases with the decrease of the separation between two observing locations and can be

accurately modeled as a Gaussian random field1. A Gaussian process (GP) defines a distribution

1We use Gaussian Process and Gaussian random field interchangeably.
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over a space of functions and it is completely specified by the equivalent of sufficient statistics

for such a process, and is formally defined as follows.

Definition 1. (Gaussian process [30]): Let X ⊂ R
d be some bounded domain of a d-dimensional real-

valued vector space. Denote by f(x) : X 7→ R a stochastic process parametrized by x ∈ X . Then, the

random function f(x) is a Gaussian process if all its finite dimensional distributions are Gaussian, where

for any m ∈ N, the random vectors (f (x1) , . . . , f (xm)) has multivariate normal distribution.

We can therefore interpret a GP as formally defined by the following class of random func-

tions:

F := {f (·) : X 7→ R s.t. f (·) ∼ GP (µ (·) , C (·, ·)) ,

with µ (x) := E [f (x)] : X 7→ R,

C
(
x,x′) := E

[
(f (x)− µ (x))

(
f
(
x
′)− µ

(
x
′))] : X × X 7→ R},

where at each point the mean of the function is µ(·), and the spatial dependence between any

two points is given by the covariance function (Mercer kernel) C (·, ·) (see detailed discussion

in [30]).

B. Sensor Network System Model

We begin by presenting the system model followed by the prior distribution specifications.

A1. Consider a random real-valued spatial phenomenon f : X 7→ R defined on the d-dimensional

domain X ⊂ R
d.

A2. Consider a sensor network with N sensors that sense and transmit data to a Fusion Center

(FC) over perfect communication channels. The spatial locations of the sensors, denoted

(xn)n=1:N (xn ∈ X , n = 1, . . . , N ), are known at the FC.

A3. The sensor n transmits Mn ∈ N observations to the FC. The observations (yn,m)m=1:Mn
are

generated according to the following acquisition + distortion mechanism:

ỹn,m = f (xn) + ǫn,m (acquisition)

yn,m = T (ỹn,m;ψn) (distortion)
(1)

for m = 1, . . . ,Mn, where f (xn) is the realisation of the random field at location xn, ǫn,m

represents the additive random noise at the n-th sensor, and T : R 7→ R is the distortion

transformation function, parametrized by ψn.
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A4. The distortion transformation T has the following generic gain-offset form:

T
(
u ;ψn = (an, bn)

T
)
:= anu+ bn, (2)

where an ∈ R+ and bn ∈ R represent the gain and offset of the n-th sensor, respectively. This

gain-offset model has been widely used to describe sensor characteristics [31], [14], [15].

A5. We assume there are K+1 “categories” of possible distortion transformations. The auxiliary

indicator random variable Zn indicates the category to which each sensor’s parameters ψn

belong. We denote by Zn = 0, the default distortion transformation category,ψn = ψ0 := (1, 0)T

i.e. no distortion (T (u,ψ0) = u), whereas Zn = k, k ∈ {1, . . . ,K} indicates that the sensor n

belongs to the k-th non-default distortion transformation.

C. Prior Distribution Specifications

P1. The spatial random field, f , is modelled as a Gaussian process (GP) F with a known mean

function µ : X 7→ R and a known covariance function C : X × X 7→ R, that is,

F ∼ GP(µ( · ), C( · , · )). (3)

P2. The additive random noise, ǫn,m, follows a normal distribution with mean zero and a fixed

known variance ς2,

ǫn,m
i.i.d.
∼ N (0, ς2). (4)

P3. We place a prior distribution on Zn, denoted π(Zn), which is a categorical distribution

given by

π(Zn = k) = q
(n)
k , k = 0, . . . ,K, (5)

where q
(n)
k ≥ 0 for k = 0, . . . ,K, and

∑K
k=0 q

(n)
k = 1.

P4. Each category of distortion characteristics has a distinct sub-population distribution, de-

noted πk, which translates to the following. For k = 0, . . . ,K,

(ψn|Zn = k) ∼ πk, (6)

where π0 is a degenerate distribution (or atom) at ψ0,

π0(ψn) = δψ0 . (7)
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For k = 1, . . . ,K, assume that πk has density (and we slightly abuse the notation πk to also

denote the density function). Thus, the prior density of ψn (marginalized over Zn), denoted

by π(ψn) is a mixture with an atom at ψ0, given by

π (ψn) =q
(n)
0 δψ0 +

K∑

k=1

q
(n)
k πk(ψn). (8)

P5. We assume the independence among (ψn)1:N , and denote them collectively as ψ. Let π(ψ)

denote the prior density function of ψ, which factorizes due to independence,

π(ψ) =

N∏

n=1

π (ψn) . (9)

The graphical structure of the proposed Bayesian model is shown in Figure 1 as a directed-

acyclic-graph (DAG) using plate notations. This graphical illustration is helpful for visualizing

the dependencies and conditional independence relations between parameters and random

variables.

Our objective is to find an estimator h(y) for f∗ := f(x∗), the spatial field at location x∗, based

on observations y := (yn,m)n=1:N,m=1:Mn
.

III. POSTERIOR OF THE BAYESIAN MODEL

In this section we derive the following quantities of interest, based on which the Bayesian

estimators will be developed in Sections IV and V:

1) The posterior distribution of the model parameters ψ, given by p(ψ|y) (Theorem 1).

2) The posterior predictive distribution p(f∗|y) (Theorem 2).

The following theorem gives the posterior density function of ψ.

Theorem 1. Let µ := (µ (xn))1:N ∈ R
N be the expected values of the F process at locations (xn)1:N ,

and let C ∈ R
N×N be the covariance matrix, where (C)ij = C (xi,xj). For n = 1, . . . , N , define

gn :=
∑Mn

m=1 yn,m, sn :=
∑Mn

m=1 y
2
n,m. Let M := diag[(Mn)1:N ], a := (an)1:N , A := diag[a], b :=

(bn)1:N , g := (gn)1:N , s := (sn)1:N . Let g̃n := a−1
n (M−1

n gn − bn), g̃ := (g̃n)1:N = A
−1(M−1g − b),

Υ := C + ς2M−1. Then, the log posterior density function of ψ is given by

log p(ψ|y)

=−
1

2

[
tr(M) log 2π + tr(M log(ς2A2))− log |ς2M−1|

+ log |Υ|+ ς−2
1
T
A

−2s− ς−2gTM−1
A

−2g

+(g̃ − µ)TΥ−1(g̃ − µ)
]
+ log π(ψ)− log p(y).

(10)
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Fig. 1: Directed acyclic graph (DAG) of the model using the plate notation. Shaded rectangles

represent constants and observed covariates. White circles represent unobserved random

variables. The shaded circle represents observed random variable. Arrows represent conditional

dependence between two quantities.

p(y) is a normalizing constant that is analytically intractable.

Proof. See Appendix A-A.

Remark 1. As shown in the proof of Theorem 1, the statistics gn and sn are sufficient for ψ. In fact,

as we show later, the estimators depend on y only through (Mn, gn, sn)n=1:N . Thus, from now on we

take y := (Mn, gn, sn)n=1:N as the summary of observations from all sensors.

The following theorem gives the posterior predictive distribution of the model.

Theorem 2. The posterior predictive density is given by

p(f∗|y) =
∫

p(f∗|y,ψ)p(ψ|y)dψ. (11)
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Let µ∗ := µ(x∗), C∗ := C(x∗,x∗), let k∗ := (C (xn,x∗))n=1:N ∈ R
N be a column vector, and we have

p (f∗|y,ψ) =
1√
2πσ2∗

exp

(
−
(f∗ − f̄∗)2

2σ2∗

)
, (12)

f̄∗ =µ∗ + k
T
∗ Υ

−1 (g̃ − µ) , (13)

σ2
∗ =C∗ − k

T
∗ Υ

−1k∗. (14)

Proof. See Appendix A-B.

IV. SPATIAL BEST LINEAR UNBIASED ESTIMATOR (S-BLUE)

We now derive the Spatial Best Linear Unbiased Estimator (S-BLUE). Let l(h(y), f∗) denote

the loss function, i.e. the loss incurred when using estimator h when in fact the target quantity

is f∗. Let R[Π, h] denote the Bayes risk of h associated with the prior distribution Π, which is

defined as the expected value of loss taken over Π, i.e.

R[Π, h] = E[l(h(y), f∗)].

To derive the S-BLUE, we restrict the estimator to be a member of the family of linear estimators,

that is H := {h(y) = wTy+ b}, where w is a weight vector and b is an intercept, both of which

do not depend on y or any unknown variables. Hence, the S-BLUE is defined as the optimal

linear estimator under quadratic loss, l(h(y), f∗) = (h(y)− f∗)
2, and is given by

ĥS-BLUE =argmin
h∈H

R[Π, h] = argmin
h∈H

E

[
(h(y)− f∗)

2
]
, (15)

where the expectation is taken over the joint distribution of r.v.’s (f∗,y,ψ). The next theorem

shows that ĥS-BLUE can be expressed in closed-form.

Theorem 3. ĥS-BLUE is given by

ĥS-BLUE(y) =µ∗ +Cov[ḡ, f∗]
TCov[ḡ]−1(ḡ − E[ḡ]), (16)
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where ḡ = M
−1g. E[ḡ],Cov[ḡ, f∗],Cov[ḡ] can all be expressed in closed-form (let ⊙ denote matrix

entry-wise multiplication),

E[ḡ] =diag (E[a])µ+ E[b], (17)

Cov[ḡ, f∗] =diag (E[a])k∗, (18)

Cov[ḡ] =E[aaT ]⊙
(
C + ς2M−1 + µµT

)

+ diag(µ)
(
E[abT ] + E[abT ]T

)

+ E[bbT ]− E[ḡ]E[ḡ]T .

(19)

The various terms in the above equations can all be computed in closed-form, and the details are given

in the proof.

Proof. See Appendix A-C.

The next corollary shows the unbiasedness property of ĥS-BLUE.

Corollary 1. ĥS-BLUE is unbiased, that is, E[ĥS-BLUE(y)] = E[f∗].

Proof. It is shown via the linearity of expectation.

The following corollary gives the closed-form expression of R[Π, ĥS-BLUE] (under quadratic

loss).

Corollary 2. Under quadratic loss, the Bayes risk associated with ĥS-BLUE is given by

R[Π, ĥS-BLUE] =C∗ −Cov[ḡ, f∗]
TCov[ḡ]−1Cov[ḡ, f∗]. (20)

Proof. Substituting (16) into R[Π, h] = E[l(h(y), f∗)] gives the proof.

The complete S-BLUE algorithm is shown in Algorithm 1. Notice that much of the compu-

tation in S-BLUE does not require y, and thus can be performed in an “offline phase”, e.g.

when the sensor network is deployed. In Algorithm 1, only Line 6 needs to be computed when

the sensor measurements are taken. Below is a line-by-line analysis of the computational time

complexity of Algorithm 1.

• Offline phase:

– Line 1: Evaluating E[a],E[b] takes O(KN); evaluating E[aaT ],E[bbT ],E[abT ] takes O(KN2).

– Line 2: Evaluating µ∗, C∗ takes O(1); evaluating µ,k∗ takes O(N); evaluating C takes O(N2).

– Line 3: Evaluating E[ḡ],Cov[ḡ, f∗] takes O(N); evaluating Cov[ḡ] takes O(N2).
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Algorithm 1: Spatial-Best Linear Unbiased Estimator (S-BLUE)

Input: x∗, (xn)n=1:N , y,
(
q
(n)
k

)
n=1:N,k=0:K

, (πk)k=1:K

Output: Estimator ĥS-BLUE(y), Bayes risk R[Π, ĥS-BLUE]

Offline phase

1 Compute E[a],E[b],E[aaT ],E[bbT ],E[abT ] (see Appendix A-C).

2 Compute µ∗,µ,k∗,C, C∗ by their respective definitions.

3 Compute E[ḡ],Cov[ḡ, f∗],Cov[ḡ] by Equations (17) - (19).

4 Compute ŵ = Cov[ḡ]−1Cov[ḡ, f∗], b̂ = µ∗ − ŵT
E[ḡ].

5 Compute R[Π, ĥS-BLUE] by (20).

Online phase

6 After collecting sensor measurements y, compute ĥS-BLUE(y) = ŵ
T ḡ + b̂.

7 return ĥS-BLUE(y), R[Π, ĥS-BLUE].

– Line 4: Evaluating ŵ takes O(N3), since it involves solving a linear system; evaluating b̂

takes O(N).

– Line 5: Evaluating R[Π, ĥS-BLUE] takes O(N), since Cov[ḡ]−1Cov[ḡ, f∗] has been computed in

Line 4.

• Online phase:

– Line 6: Evaluating ĥS-BLUE(y) takes O(N).

Overall, the offline phase of Algorithm 1 takes O(N3) (assuming that K ≤ N ), and its online

phase takes O(N). It is worth noting that there are techniques to further reduce the computa-

tional complexity of the matrix inversion, e.g. through low-rank approximation (see [30]).

V. EMPIRICAL BAYES ESTIMATORS

We now derive an algorithm in which we do not restrict the estimator to be linear. The idea of

empirical Bayes is to plug in a point estimate ψ̂ into (12) to approximate the posterior predictive

distribution, i.e. p(ψ|y) ≈ δ
ψ̂

. This gives us the corresponding empirical Bayes estimators, which

minimize the expected posterior loss, conditional on ψ̂:

ĥEB(y, ψ̂) = argmin
h(y)

E[l(h(y), f∗)|y, ψ̂]. (21)

To complete the specification of the estimator we are required to define appropriate loss func-

tions. We present a few widely used loss functions and their corresponding approximate Bayes

estimators.
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1) Quadratic loss function: lquad(h(y), f∗) = (h(y) − f∗)2.

The corresponding Bayes estimator is the conditional expectation (minimum mean squared

error estimator, or MMSE estimator),

ĥMMSE(y) =E[f∗|y] =
∫

R

f∗p(f∗|y)df∗,

where p(f∗|y) is given in Theorem 2. The empirical Bayes version of ĥMMSE(y) is given by

ĥEB-MMSE(y, ψ̂) =E[f∗|y, ψ̂] =

∫

R

f∗p(f∗|y, ψ̂)df∗

≈ĥMMSE(y),

where p(f∗|y, ψ̂) is given in (12).

2) Absolute loss function: labs(h(y), f∗) = |h(y)− f∗|.

The corresponding Bayes estimator is the conditional median (least absolute deviation esti-

mator, or LAD estimator),

ĥLAD(y) =median(f∗|y).

The empirical Bayes version of ĥLAD(y) is given by

ĥEB-LAD(y, ψ̂) =median(f∗|y, ψ̂) ≈ ĥLAD(y).

3) 0− 1 loss function: l0-1(h(y), f∗) = 1{f∗<h(y)≤f∗+df∗}.

The corresponding Bayes estimator is the conditional mode (maximum a posteriori estimator,

or MAP estimator),

ĥMAP(y) =argmax
f∗

p(f∗|y).

The empirical Bayes version of ĥMAP(y) is given by

ĥEB-MAP(y, ψ̂) = argmax
f∗

p(f∗|y, ψ̂) ≈ ĥMAP(y).

For all the aforementioned Bayes estimators, we first need to find a point estimator for ψ. To

achieve this, we find the MAP estimator of ψ, which aims at maximizing the posterior density
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p(ψ|y) given in Theorem 1. The MAP estimator is then given by

ψ̂ =argmax
ψ

p (ψ|y)

=argmax
ψ

[
−
1

2

{
tr(M) log 2π + tr(M log(ς2A2))

− log |ς2M−1|+ log |Υ|+ ς−2
1
T
A

−2s

−ς−2gTM−1
A

−2g + (g̃ − µ)TΥ−1(g̃ − µ)
}

+ log π(ψ)

]
.

(22)

Note that the optimization objective does not involve p(y), since it is a constant. Thus, the

empirical Bayes estimators could be computed in the following two-stage algorithm:

1) Compute ψ̂ by solving the optimization problem argmaxψ p (ψ|y).

2) Plug in ψ̂ to compute ĥEB(y, ψ̂).

In order to solve the optimization problem in Step I, we develop two algorithms. The first

approach is a stochastic optimization method named Cross-Entropy method (CEM), and the

second approach is the Iterated Conditional Modes (ICM) which is based on iterative greedy

search.

A. Cross-Entropy Method (CEM)

The Cross-Entropy method (CEM) is an stochastic algorithm that is suitable for solving

combinatoric or continuous optimization problems. Suppose we have a maximization problem

with a unique optimizer,

ϕ̂ = argmax
ϕ∈Φ

J(ϕ),

where J(·) is the objective function, Φ is the domain, and ϕ is the parameter vector. We solve

the optimization problem by considering the level sets of the objective function {ϕ : J(ϕ) ≥ γ},

for γ ∈ R. When γ = Ĵ = maxϕ∈Φ J(ϕ), we have {ϕ : J(ϕ) ≥ γ} = {ϕ̂}. Next, let us define

a family of probability measures {Pθ : θ ∈ Θ} on Φ with densities {wθ : θ ∈ Θ} that are

parameterized by θ ∈ Θ. Let Eθ denote the expectation taken with respect to Pθ. Let us fix θ

and γ, and define a rare event probability problem,

Pθ[J(ϕ) ≥ γ] = Eθ[1{J(ϕ)≥γ}] =
∫

Φ
1{J(ϕ)≥γ}wθ(ϕ)dϕ.
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Instead of approximating this probability naively by sampling from wθ, the importance sampling

method is used. Let w
θ̃

denote the importance sampler, where θ̃ ∈ Θ. Importance sampling

approximates the rare event probability by,

Pθ[J(ϕ) ≥ γ] =

∫

Φ
1{J(ϕ)≥γ}wθ(ϕ)dϕ

=E
θ̃

[
1{J(ϕ)≥γ}

wθ(ϕ)

w
θ̃
(ϕ)

]

≈
1

S

S∑

s=1

1{J(ϕ̃[s])≥γ}
wθ(ϕ̃

[s])

w
θ̃
(ϕ̃[s])

,

(23)

where ϕ̃[1], . . . , ϕ̃[S] are S independent samples generated from w
θ̃

. The optimal importance

sampler w
θ̂

is selected through the cross-entropy criterion,

θ̂ =argmin
θ̃∈Θ

∫

Φ
1{J(ϕ)≥γ}wθ(ϕ) log

wθ(ϕ)

w
θ̃
(ϕ)

dϕ

≈ argmax
θ̃∈Θ

1

S

S∑

s=1

1{J(ϕ[s])≥γ} logwθ̃(ϕ
[s]),

(24)

where ϕ[1], . . . ,ϕ[S] are S independent samples generated from wθ. Notice that the last line

of (24) corresponds to the maximum likelihood estimation (MLE) of θ̃ when the samples are

{ϕ[s] : J(ϕ[s]) ≥ γ}. The CEM starts from an initial sampling distribution w
θ̂0

and iteratively

updates the threshold γ̂ and the sampling distribution w
θ̂

. For a detailed introduction of CEM,

see [32]. The complete procedure is detailed in Algorithm 2.

We can now link CEM to the MAP estimation problem in (22). We define the objective function

as the (un-normalized) log-posterior conditional density,

J(ψ) = log p (ψ|y) + log π (ψ) .

For the purpose of demonstrating the CEM, let us assume here that under prior distribution

πk, (log an, bn) have a bivariate normal distribution,

(
log an

bn

)
∼ N (νk,Ξk).

Note that this can be easily adapted for other prior distributions. We choose the family of

sampling distributions such that,

wθ(ψ) =

N∏

n=1

wθ(n)(ψn),

wθ(n)(ψn) =r
(n)
0 δψ0 +

K∑

k=1

r
(n)
k N ((log an, bn)

T ; ν̃
(n)
k , Ξ̃

(n)
k ).
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Algorithm 2: Cross-Entropy Method (CEM)-Based Optimizer

Input: number of importance samples S, ρ ∈ (0, 1) (typically 0.001 ≤ ρ ≤ 0.01), initial

sampler parameter θ̂0, objective function J

Output: ϕ̂ = argmaxϕ∈Φ J(ϕ)

1 γ̂0 ← −∞, t← 1.

2 repeat

3 Generate S independent samples ϕ[1], . . . ,ϕ[S] from w
θ̂t−1

.

4 Compute J
(
ϕ[1]

)
, . . . , J

(
ϕ[S]

)
.

5 γ̂t ← the (1− ρ)-sample quantile of J
(
ϕ[1]

)
, . . . , J

(
ϕ[S]

)
.

6 θ̂t ← argmaxθ∈Θ
1
S

∑S
s=1 1{J(ϕ[s])≥γ̂t} logwθ

(
ϕ[s]
)
.

7 t← t+ 1.

until termination condition is triggered;

8 Set ϕ̂ to be the sample with the largest J(ϕ̂) so far.

9 return ϕ̂.

Here, we have θ = (θ(n))n=1:N = ((r
(n)
k )0:K , (ν̃

(n)
k )1:K , (Ξ̃

(n)
k )1:K)n=1:N . Before running the CEM

algorithm, we set θ̂0 such that w
θ̂0

coincides with the prior distribution π. Under this setting,

the optimization in Line 6 of Algorithm 2 corresponds to the MLE of θ, given independent

samples {ψ[s] : J(ψ[s]) ≥ γ̂t}. This decomposes into sub-problems

θ̂(n) = argmax
θ(n)

S∑

s=1

1{J(ψ[s])≥γ̂t} logwθ(n)(ψ[s]
n ).

Since wθ(n) is a mixture distribution, the MLE does not admit a closed-form solution and we

use the expectation-maximization (EM) algorithm. The EM algorithm is an iterative procedure

that computes a local optimum of the likelihood function. For notational simplicity, we drop

the superscripts and subscripts with n for now, and denote the samples used to obtain the MLE

as ψ[1], . . . ,ψ[S]. To apply the EM algorithm, let us first introduce the auxiliary variables. Let

z[s] ∈ {0, . . . ,K} for s = 1, . . . , S be the discrete auxiliary variables, such that

p(ψ[s]|z[s] = 0;θ) =δψ0

p(ψ[s]|z[s] = k;θ) =N ((log a, b)T ; ν̃k, Ξ̃k),

for k = 1, . . . ,K,

p(z[s] = k;θ) =rk, for k = 0, . . . ,K.



16

Algorithm 3: Expectation-Maximization (EM) Algorithm

Input: S samples ψ[1], . . . ,ψ[S], initial estimate θ̂0

Output: Estimated parameter θ̂

1 p̂← −∞, t← 0.

2 repeat

3 for s = 1 . . . S do

4 Compute p
[s]
k := p(z[s] = k|ψ[s]; θ̂t), for k = 0, . . . ,K.

5 (E-step) Construct Q(θ; θ̂t) =
∑S

s=1

∑K
k=0 p

[s]
k p(ψ[s]|z[s] = k;θ).

6 (M-step) θ̂t+1 ← argmaxθ∈Θ Q(θ; θ̂t). This decomposes into K + 1 weighted MLE

problems.

7 t← t+ 1.

until termination condition is triggered;

8 θ̂ ← θ̂t.

9 return θ̂.

This gives the marginal distributions wθ(ψ
[s]) above. The EM algorithm starts with an initial

estimate θ̂0, and iteratively updates the estimated parameter through two steps. In the expecta-

tion step (E-step), a lower bound of the log-likelihood function is constructed by first computing

the conditional distributions of the auxiliary variables given the estimate of the parameters in

the t-th iteration

p(z[s] = k|ψ[s]; θ̂t) =
p(ψ[s]|z[s] = k; θ̂t)p(z

[s] = k; θ̂t)∑K
k′=0 p(ψ

[s]|z[s] = k′; θ̂t)p(z[s] = k′; θ̂t)
,

for k = 0, . . . ,K, and then computing the expected value of the log-likelihood function with

respect to this conditional distribution, given by

Q(θ; θ̂t) =

S∑

s=1

E(z[s]|ψ[s];θ̂t)
[logwθ(ψ

[s], z[s])].

In the maximization step (M-step), the estimated parameters in the (t + 1)-th iteration are

computed by maximizing the lower bound Q(θ; θ̂t), that is,

θ̂t+1 = argmax
θ∈Θ

Q(θ; θ̂t).

The algorithm is summarized in Algorithm 3. For details about the EM algorithm, see [33].

To analyse the computational time complexity of CEM, let us first assume that each weighted

MLE problem in Line 6 of the EM algorithm (Algorithm 3) takes O(S). For example, this is the
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case when the sampling distribution is a mixture of normal distributions. The computational

time complexity of Algorithm 3 is analysed as follows:

• Line 3-4: Each iteration takes O(K), the complexity is O(SK).

• Line 5: No actual computation is performed.

• Line 6: Computation of K + 1 weighted MLE takes O(SK).

Thus, the total complexity of the EM algorithm is TEM = O(JEMSK), where JEM is the number

of iterations, which is usually quite small in practice. With this, we analyse the computational

time complexity of the CEM estimator as follows:

• Preparation:

– Evaluation of log |Υ| and Υ
−1 takes O(N3).

• Algorithm 2:

– Line 3: Generation of S samples takes O(SK) due to w
θ̂t−1

being a (K + 1)-mixture.

– Line 4: Evaluation of the objective function (22) S times takes O(SN2).

– Line 5: Computation of the sample quantile takes O(S).

– Line 6: Computation of the maximizer using Algorithm 3 takes TEM.

• Inference:

– Evaluation of ĥEB(y, ψ̂) by (13), (14) takes O(N2).

The total complexity of the CEM estimator is O(N3 + JCEM(SN2 + TEM)), where JCEM is the

number of iterations in Algorithm 2. Since the EM algorithm converges rather quickly in

practice, the complexity of CEM estimator is O(N3 + JCEMSN2). It is worth noting that the

preparation phase of the CEM estimation procedure can be run “offline”, i.e. before having

access to sensor measurements. Hence, the CEM estimator has complexity O(N3) in the offline

phase, and O(JCEMSN2) in the online phase. The same remark on the computational complexity

of matrix inversion applies here as above.

B. Iterated Conditional Modes (ICM)

We propose a second optimization method to find the MAP estimator ψ̂ which is based on

iterative greedy search. Since ψ̂ ∈ R
2N , the dimensionality of the optimization problem is high

if N is large. In addition, for n = 1, . . . , N , the distribution of ψn contains an atom. Hence, to

improve the computational efficiency in these settings, we seek to reduce the complexity of the

MAP estimation by reducing the global search problem to a sequence of iterative local search

problems of iterated conditional modes (ICM) [34]. Let ψ(−n) := (ψm)m6=n. In each iteration
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of ICM, we fix ψ(−n) and compute the mode of the conditional posterior distribution ψ̂n =

argmaxψn
p
(
ψn|y,ψ(−n)

)
through the conjugate gradient algorithm. ICM converges to a local

maximum of the objective function in the sense that ψ̂n is the mode of the conditional posterior

distribution for n = 1, . . . , N .

To optimize the conditional posterior distributions, we decomposed them (up to a normalizing

constant) as follows, for n = 1, . . . , N ,

p
(
ψn|y,ψ(−n)

)
∝p (y|ψ) π (ψn)

∝p
(
yn|y(−n),ψ

)
π (ψn) ,

where yn = (yn,m)m=1:Mn
, y(−n) = (yi,m)i 6=n,m=1:Mi

. Let µn := µ (xn), µ(−n) := (µi)i 6=n. Let

Cn := C(xn,xn). Let Υ(−n,n) ∈ R
(N−1) denote the sub-matrix of Υ involving the cross-terms

between sensor n and the rest of sensors. Let Υ(−n) ∈ R
(N−1)×(N−1) denote the sub-matrix of

Υ related to sensors other than n. Let g̃(−n) := (g̃i)i 6=n. Completely analogous to Theorem 2, we

have that,

(
F (xn)|y(−n),ψ

)
∼ N (νn, ζn) ,

where

νn =µn +Υ(−n,n)
T
Υ(−n)

−1
(
g̃(−n) − µ(−n)

)
, (25)

ζn =Cn + ς2 −Υ(−n,n)
T
Υ(−n)

−1
Υ(−n,n). (26)

One verifies that νn and ζn do not depend on ψn. Therefore, following a derivation similar to

that in Theorem 1, we have,

log p
(
yn|y(−n),ψ

)

=log

[∫
p(yn|f(xn),ψ)p(f(xn)|y(−n),ψ)df(xn)

]

=−
1

2

[
Mn log 2π + (Mn − 1) log(ς2a2n)

+ log(a2nMnζn + ς2a2n) + ς−2a−2
n (sn −M−1

n g2n)

+(ζn + ς2M−1
n )−1(g̃n − νn)

2
]
.

(27)

Thus, the log-conditional likelihood as well as its partial derivatives can be efficiently evaluated.

The ICM algorithm then separately treats the continuous and discrete parts of the parameter

space, that is, comparing supψn 6=ψ0 log p
(
ψn|y,ψ(−n)

)
and log p

(
ψ0|y,ψ(−n)

)
.

The details of the ICM algorithm are shown in Algorithm 4. The computational time com-

plexity of the ICM estimator is analysed as follows:
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• Preparation:

– Evaluation of Υ−1 takes O(N3).

• Algorithm 4:

– Line 2-3: Evaluation of νn, ζn for n = 1, . . . , N takes O(N3). Notice that the computation

of Υ(−n)
−1

Υ(−n,n) can be simplified to O(N2) via block-wise inversion once Υ
−1 has been

computed.

– Line 6: Assume that the 2-dimensional optimization takes O(TCG).

– Line 7-9: The complexity is O(1).

• Inference:

– Evaluation of ĥEB(y, ψ̂) by (13), (14) takes O(N2).

The total complexity of the ICM estimator is thus O(N3+JICMNTCG), where JICM is the number

of iterations in Algorithm 4. Similar to CEM, the preparation phase of ICM and Line 2-3 of

Algorithm 4 can also be run offline. Hence, the ICM estimator has complexity O(N3) in the

offline phase, andO(N2+JICMNTCG) in the online phase. The same remark on the computational

complexity of matrix inversion applies here as above.

To account for the multi-modality of the posterior distribution, we adopt a standard multiple

start initialization strategy, that is to run ICM from a number of random initial estimates. This

corresponds to running Algorithm 4 multiple times with different initial values.

VI. DISTRIBUTED APPROACHES

Now, let us consider a large scale sensor network with I ≥ 2 clusters of sensors, where each

cluster has a cluster head that locally aggregates data to be sent to the global Fusion Center.

The clusters are assumed to be disjoint. We reconstruct the spatial field in a distributed manner.

For a spatial location x∗ ∈ X , the estimation of f(x∗) is done in two steps:

1) Sensors within a cluster transmit the measurements to the cluster head (CH), and the CH

performs a local estimation of f(x∗).

2) The I CHs transmit their local estimations to the FC, where local estimations are fused into

the global estimation.

In this section, we develop fusion algorithms based on local S-BLUE and local empirical Bayes

estimators.
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Algorithm 4: Iterative Conditional Modes (ICM) Algorithm

Input: (xn)n=1:N , y,
(
q
(n)
k

)
n=1:N,k=0:K

, (πk)k=1:K

Output: Estimation of posterior mode ψ̂

1 Randomly initialize ψ̂.

2 for n = 1 . . . N do

3 Compute νn, ζn from (25) and (26).

4 repeat

5 for n = 1 . . . N do

6 ψ̃n ← argmaxψn∈R+×R,ψn 6=ψ0 log p
(
ψn|y, ψ̂(−n)

)
, by running the conjugate gradient

algorithm disregarding the atom at ψ0.

7 if log p
(
ψ0|y, ψ̂(−n)

)
< log p

(
ψ̃n|y, ψ̂(−n)

)
then

8 ψ̂n ← ψ̃n.

else

9 ψ̂n ← ψ0.

until termination condition is triggered;

10 return ψ̂.

A. Distributed S-BLUE

Suppose that each cluster head i produces the local S-BLUE ĥ
(i)
S-BLUE(y

(i)) and its Bayes risk

R[Π, ĥ
(i)
S-BLUE], where y(i) denotes the sensor measurements collected from cluster i. The goal is

to derive a rule to fuse {ĥ
(i)
S-BLUE(y

(i))}i=1:I into a single estimator ĥDS-BLUE(y), where the “D” in

DS-BLUE stands for “distributed”. We restrict ourselves by considering ĥDS-BLUE(y) as a convex

combination of {ĥ
(i)
S-BLUE(y

(i))}i=1:I , that is, ĥDS-BLUE(y) :=
∑I

i=1 ciĥ
(i)
S-BLUE(y

(i)), where ci ≥ 0

for i = 1, . . . , I , and
∑I

i=1 ci = 1 are the constraints required to preserve the unbiasedness of
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DS-BLUE. The Bayes risk of ĥDS-BLUE is given by,

R[Π, ĥDS-BLUE]

=

I∑

i=1

I∑

j=1

cicjE
[(

ĥ
(i)
S-BLUE(y

(i))− f∗
)(

ĥ
(j)
S-BLUE(y

(j))− f∗
)]

≤
I∑

i=1

I∑

j=1

cicj

√
R[Π, ĥ

(i)
S-BLUE]

√
R[Π, ĥ

(j)
S-BLUE]

=

(
I∑

i=1

ci

√
R[Π, ĥ

(i)
S-BLUE]

)2

:= R[Π, ĥDS-BLUE],

where the inequality in the third line above is by the Cauchy-Schwarz inequality. The coefficients

(ci)1:I are chosen to minimize the upper bound R[Π, ĥDS-BLUE], which gives the following optimal

values,

c⋆i =




1 if i = argmin1≤j≤I R[Π, ĥ

(j)
S-BLUE],

0 otherwise.

(28)

It is assumed above that there is no tie among (R[Π, ĥ
(j)
S-BLUE])j=1:I . If there is one, the tie can be

broken arbitrarily. The DS-BLUE is defined via the optimal coefficients in (28), ĥDS-BLUE(y) :=
∑I

i=1 c
⋆
i ĥ

(i)
S-BLUE(y

(i)).

The complete DS-BLUE algorithm is shown in Algorithm 5. To analyse the computational

complexity of Algorithm 5, assume for now that each cluster contains at most Nc sensor nodes.

The line-by-line analysis of its computational time complexity is as follows:

• Offline phase:

– Cluster head:

∗ Line 2: The complexity is O(N3
c ), same as the offline phase of Algorithm 1.

– Fusion center:

∗ Line 3: Evaluation of (c⋆i )1:I takes O(I).

• Online phase:

– Cluster head:

∗ Line 6: Evaluating ĥ
(i)
S-BLUE(y

(i)) takes O(Nc).

– Fusion center:

∗ Line 7: Evaluating ĥDS-BLUE(y) takes O(I).

Overall, for cluster heads, the offline phase takes O(N3
c ), and the online phase takes O(Nc). For

the fusion center, both the offline phase and the online phase take O(I).
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Algorithm 5: Distributed Spatial-Best Linear Unbiased Estimator (DS-BLUE)

Input: x∗, (xn)n=1:N , y,
(
q
(n)
k

)
n=1:N,k=0:K

, (πk)k=1:K

Output: Estimator ĥDS-BLUE(y), upper bound on the Bayes risk R[Π, ĥDS-BLUE]

Offline phase

1 for each cluster head i in parallel do

2 Compute ŵ(i), b̂(i), R[Π, ĥ
(i)
S-BLUE] as in Algorithm 1 and transmit R[Π, ĥ

(i)
S-BLUE] to the

fusion center.

3 The fusion center computes the optimal coefficients (c⋆i )1:I by (28) and the upper bound on

the Bayes risk R[Π, ĥDS-BLUE].

Online phase

4 for each cluster head i in parallel do

5 Collect measurements y(i) from sensors within the cluster i.

6 Compute local S-BLUE ĥ
(i)
S-BLUE(y

(i)) = ŵ(i)T ḡ(i) + b̂(i) and transmit to the fusion center.

7 The fusion center computes ĥDS-BLUE(y) =
∑I

i=1 c
⋆
i ĥ

(i)
S-BLUE(y

(i)).

8 return ĥDS-BLUE(y), R[Π, ĥDS-BLUE].

B. Distributed Empirical Bayes Estimator

Similar to DS-BLUE, suppose that each cluster head i computes an approximate posterior

distribution p(f∗|y(i), ψ̂(i)), where y(i) denotes the sensor measurements collected from cluster

i and ψ̂(i) is a point estimate of the distortion parameters of sensors in cluster i. Let ĥ
(i)
EB-MMSE

denote the empirical Bayes MMSE estimator produced by cluster head i. Same as DS-BLUE, let

ĥDEB-MMSE(y) :=
∑I

i=1 ciĥ
(i)
EB-MMSE(y

(i)) be a convex combination of the local estimators, where

ci ≥ 0 for i = 1, . . . , I , and
∑I

i=1 ci = 1. We choose the fusion rule to be similar to ĥDS-BLUE, that

is,

c⋆i =




1 if i = argmin1≤j≤I Var[f∗|y

(j), ψ̂(j)],

0 otherwise,

(29)

where ties are broken arbitrarily.

The complete distributed empirical Bayes algorithm is shown in Algorithm 6. For the cluster

heads, the computational time complexity of this algorithm is the same as in the non-distributed

version, with N replaced by Nc. For the fusion center, the complexity is O(I).
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Algorithm 6: Distributed Empirical Bayes MMSE Estimator (DEB-MMSE)

Input: x∗, (xn)n=1:N , y,
(
q
(n)
k

)
n=1:N,k=0:K

, (πk)k=1:K

Output: Estimator ĥDEB-MMSE(y)

1 for each cluster head i in parallel do

2 Compute p(f∗|y(i), ψ̂(i)) via either CEM or ICM.

3 Compute ĥ
(i)
EB-MMSE(y

(i)),Var
[
f∗|y(i), ψ̂(i)

]
and transmit to the fusion center.

4 The fusion center computes the optimal coefficients (c⋆i )1:I by (29).

5 The fusion center computes ĥDEB-MMSE(y) =
∑I

i=1 c
⋆
i ĥ

(i)
EB-MMSE(y

(i)).

6 return ĥDEB-MMSE(y).

Remark 2. One downside of ĥDS-BLUE(y) and ĥDEB-MMSE(y) is that the reconstructed spatial field

is discontinuous in space. There exists various techniques to avoid discontinuities by smoothing the

reconstruction around the discontinuous boundary. However, these are left to future work.

VII. EXPERIMENTS WITH SYNTHETIC DATA

We conduct two experiments with synthetically generated data to study the performance

of the methods we proposed including S-BLUE, CEM, and ICM. In Section VII-A, we study

the sensitivity of the proposed methods to the strength of distortions. In Section VII-B, we

perform a realistic simulation and analyse the overall performance of the proposed methods.

In the studies, the two empirical Bayes-based estimators (CEM and ICM) use the quadratic

loss function and hence correspond to ĥEB-MMSE. The proposed methods are compared to two

baselines, the “oracle” case in which the distortions ψ are known exactly, and the ”naive” case

in which distortions are disregarded in the prediction, i.e. ψ̂n = ψ0, for n = 1, . . . , N .

A. Synthetic Experiment 1: Homogeneous Distortion Characteristics

In this experiment, we study an ideal scenario where the signal-to-noise ratio (SNR) is high

and observations are plentiful. We fix the number of observations per sensor to be 50, and the

SNR to be 15dB. Notice that for the ease of comparison, all SNRs are measured at the sensor

level, that is, the SNRs of aggregated observations. Under the i.i.d. noise assumption, we define

SNR = 10 log10

(
MVar(F )

ς2

)
, where Var(F ) denotes the signal variance, ς2 denotes observation

noise variance, and M denotes the number of observations per sensor.
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We simulate a spatial field defined on the two-dimensional square X = [0, 1]2 with mean 10,

i.e. ∀x ∈ X , µ(x) = 10, and a Matérn covariance function with ν = 3/2, Var(F ) = 100, and

length scale=0.3, i.e. ∀x,x′ ∈ X , C(x,x′) = 100
(
1 +

√
3‖x−x

′‖
0.3

)
exp

(
−

√
3‖x−x

′‖
0.3

)
. Here ‖x − x

′‖

corresponds to the Euclidean distance. The contour plot of the simulated spatial field is shown

in Figure 2a.

Subsequently, 100 sensors are randomly placed in the square. 50 out of the 100 sensors

are fixed to have identical distortion parameters, and the rest are set to have the default

transformation parameters ψ0, that is, non-distorting. For the sensors with distortions, we first

fix the offset parameter bn at 5, and vary the gain parameter an from 1 to 1.6. Then we fix the

gain parameter at 1.2, and vary the offset parameter from 0 to 12. With each setting of distortion

parameters, 100 sets of noisy observations are randomly simulated. For each set of observations,

the three proposed methods: S-BLUE, CEM, and ICM, along with the two baselines oracle and

naive, are used to reconstruct the spatial field. Here, weakly informative prior for the distortion

parameters is used, which has a single category (K = 1) given by q
(n)
1 = 0.5 for all n, where

under π1, an ∼ logN (0.25, 0.12), bn ∼ N (6, 32). The reconstruction accuracy is evaluated by the

mean-squared-errors (MSE) at a 100 × 100 grid on [0, 1]2.

Figure 3 shows the reconstruction accuracy averaged over 100 realizations. For better in-

terpretability, the ratio between the MSE and the prior variance, referred to as the relative

MSE, is shown. Error bars in Figure 3 indicate the 95% Student’s t-confidence interval of the

relative MSE estimated from the 100 realizations. Error bars in all subsequent figures indicate

the 95% Student’s t-confidence interval of the respective underlying quantity. From Figure 3,

one observes that the MSE of the oracle stayed constant, as expected, while the MSE of the

naive baseline increased rapidly when the distortion parameters increased. The MSE of S-BLUE

first decreased and then increased slightly. This is due to the way the prior distribution of

distortions were set up. The prior mean of an and bn were 1.29 and 6.0, respectively. Since S-

BLUE makes predictions based purely on the prior information, its performance is best when the

actual distortion is closest to the prior mean. The two empirical Bayes-based methods showed

decreasing MSE when the gain parameter increased and slightly increasing MSE when the offset

parameter increased. The reason is that since the gain parameter affects both the location and

the spread of the observations, while the offset parameter only affects the location, the gain in

the distortion was more noticeable and thus easier to detect. The MSEs of CEM and ICM were

almost identical. Figure 4 shows the average false positive rate (FPR) and false negative rate
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Fig. 2: Contour plots of simulated spatial fields used in the two synthetic experiments with

sensor locations.

(FNR) of CEM and ICM. The FPR is defined as the proportion of non-distorting sensors that

were estimated to be distorting, and the FNR is defined as the proportion of distorting sensors

that were estimated to be non-distorting. The FPR and FNR of the two methods were almost

identical. Notice in addition that the FNR was high when the gain was 1 and the offset was 5.

This was caused by the short length scale (0.3), which made detection of the offset hard due to

the low spatial correlation. Finally, all error bars are narrow, indicating that difference between

the performance of different methods are statistically significant. To further confirm this, we

show the maximum absolute deviation from the relative MSE of the five methods in the second

column of Table I. One checks that the deviations are small, indicating that the performance is

stable across realizations.

B. Synthetic Experiment 2: Inhomogeneous Distortion Characteristics

In the second synthetic experiment, we study a realistic scenario where each sensor has

different distortion parameters, and vary the SNR as well as the number of observations.

We again simulate a spatial field defined on the two-dimensional square [0, 1]2. This time,

however, the length scale is set to be 0.5, and the spatial correlation decays at a slower rate.

The contour plot of the simulated spatial field is shown in Figure 2b. The 100 sensors are

placed at the same locations as in the synthetic experiment 1. 50 out of the 100 sensors are
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95% confidence interval against varying strengths of distortion.

randomly selected to have the different distortion parameters generated from the following

prior with three categories (K = 3), given by q
(n)
1 = q

(n)
2 = q

(n)
3 = 1

6 for all n, where under π1,

an ∼ logN (−0.4, 0.052), bn ∼ N (0, 0.22), under π2, an ∼ logN (0.2, 0.052), bn ∼ N (0, 0.22), under

π3, an ∼ logN (0, 0.052), bn ∼ N (10, 22), and the rest of the sensors are set to be non-distorting.

The distortion parameters are generated and fixed in this experiment. After that, we randomly

simulate 100 sets of noisy observations. For each set of observations, we test the proposed
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TABLE I: Synthetic experiment 1 & 2 – maximum absolute deviation from the average relative

MSE of the five methods.

Method Experiment 1 Experiment 2

oracle 0.0278 0.1615

naive 0.1566 0.2064

S-BLUE 0.0410 0.1800

ICM 0.0937 0.1935

CEM 0.0908 0.1928

methods along with the baselines as in the synthetic experiment 1.

Figure 5 shows the relative MSE averaged over 100 realizations, with different number of

observations per sensor and different SNR. Figure 6 shows the FPR and FNR of CEM and

ICM averaged over 100 realizations. Observe that the MSE of the baselines and S-BLUE did

not change with different number of observations per sensor because they depend only on the

mean of observations from each sensor. CEM and ICM, on the other hand, benefited from having

access to more observations. The naive baseline showed a peculiar trend that first decreased and

then increased when SNR increased. The reason is that the naive estimator is a linear combina-

tion of the prior mean and the observations, where the weights depend on the SNR. With high

SNR, the naive estimator placed a high weight on the distorted observations, thus making the

MSE high. The MSE of S-BLUE decreased steadily when SNR increased, and eventually flattened

out. The MSE of CEM and ICM depended highly on the number of observations. CEM had the

best reconstruction quality among the proposed methods when observations were plentiful or

when the SNR was high. In comparison, ICM performed considerably worse than CEM when

the number of observations was 5 and 20. This was due to the higher spatial correlation, which

made the dependency between distortion parameters higher in the posterior and reduced the

effectiveness of iterative greedy search. Notice that the FPR of CEM and ICM was close to 1 when

the SNR was low and the observations were scarce. This indicates that CEM and ICM estimated

all of the sensors as distorting. The reason was that with high noise variance, the likelihood

had a flat shape, and thus the posterior mode did not contain non-distorting sensors. It can also

be observed that the FPR and FNR were low when the number of observations was 100 and

the SNR was high. Same as in the synthetic experiment 1, the error bars are narrow, indicating

the statistical significance of the differences. The third column of Table I shows the maximum

absolute deviation from the relative MSE in the synthetic experiment 2. The deviations are
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Fig. 5: Synthetic experiment 2 – relative MSE against varying number of observations and SNR.

larger compared to the synthetic experiment 1 due to the case with small number of samples

and low SNR. Nonetheless, this shows that the performance of the methods is stable across

realizations. To further demonstrate the performance of the proposed methods under different

distortion parameters, we repeat the above experiment. This time, instead of fixing the distortion

parameters across realizations, the distortion parameters are independently randomly generated

in each of the 100 realizations. The result is shown in Figure 7. Since Figure 5 and Figure 7 look

very similar, we confirm that the performance is stable across a range of distortion parameters.

Finally, to show the effect of the proportion of distorting sensors, an additional experiment is

performed. Figure 8 shows the relative MSE of S-BLUE, CEM, ICM and the baselines when the

number of observations is fixed at 100, the SNR is fixed at 20dB, and the proportion of distorting

sensors varies from 0 to 1. These results were averaged across 100 independent realizations of

distortion parameters and random noises. From Figure 8, it can be observed that when no

sensor was distorting, the relative MSE of all methods coincided. However, as the proportion

of distorting sensors increased, the relative MSE of the naive baseline increased rapidly, the

relative MSE of S-BLUE increased slowly, the relative MSE of CEM and ICM increased only

slightly and flattened out eventually, and the oracle, as expected, was unaffected by the change

of proportion. The reason is that increasing the proportion of distorting sensors resulted in an

increase in prior model uncertainty that negatively affected S-BLUE, while CEM and ICM used

the information from the observations to estimate the distortion parameters and thus were only

slightly affected.
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Fig. 6: Synthetic experiment 2 – FPR, FNR of CEM and ICM against varying number of

observations and SNR.
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Fig. 7: Synthetic experiment 2 – relative MSE against varying number of observations. Distortion

parameters were randomly generated in each of the 100 realizations.

VIII. EXPERIMENTS WITH REAL DATA

We study the 2017 US temperature dataset from the US EPA2. The dataset contains 309,226

rows, with the following fields:

• State.Code: the numerical code of the state.

• County.Code: the numerical code of the county.

2https://aqs.epa.gov/aqsweb/airdata/download files.html, retrieved on 5 June 2018.

https://aqs.epa.gov/aqsweb/airdata/download_files.html
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Fig. 8: Synthetic experiment 2 – relative MSE against varying proportion of distorting sensors.

The number of observations is fixed at 100 and the SNR is fixed at 20dB.

• Site.Num: the numerical code of the monitoring site.

• Longitude: the longitude of the site.

• Latitude: the latitude of the site.

• Date.Local: the local date on which the temperature measurement was taken.

• X1st.Max.Value: the maximum hourly temperature measurement of a day.

A. Preprocessing

The first step of preprocessing is to remove the irrelevant fields from the dataset. For tempera-

ture measurements, we take the maximum hourly measurement of every day. The measurements

are converted from Fahrenheit into Celsius. We noticed that there is an obvious outlier which

corresponds to 125◦C (the next highest measurement is 55◦C) with state code 6, county code 79,

site number 5 on day 161. We also noticed another potential outlier corresponding to −17.89◦C

(0◦F) in June, while the next lowest temperature from May to July is 1.1◦C. This measurement has

state code 38, county code 93, site number 101 on day 181. Therefore, these two measurements

are removed from the dataset.

In the dataset, there are 830 monitoring sites in total. Figure 9 is a scatter plot showing the

spatial locations of these monitoring sites. Not all monitoring sites have taken measurements

on all 365 days. We refer to these as missing measurements. Out of the 830 monitoring sites, 55
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Fig. 9: Spatial locations of temperature monitoring sites. Colors of the points indicate the 8

spatial clusters used to evaluate the distributed version of the proposed methods.
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Fig. 10: Histogram and normal Q-Q plot of the temperature measurements.

contain more than 30% of missing measurements. Overall, 16,980 measurements are missing,

which is 5.6% of the 302,950 measurement (365×830).

Remark 3. We have noticed that some monitoring sites have reported temperature measurements by

different types of instrument, which explains why we have slightly fewer measurements after we sort

measurements into the site & date format. However, measurements on the same day at the same mon-

itoring site with different instruments tend to be close hence we choose an arbitrary set whenever a

monitoring site reports multiple sets of measurements.

Figure 10 shows the histogram and the normal quantile-quantile (Q-Q) plot of the mea-
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TABLE II: Summary statistics of the temperature measurements.

mean variance skewness kurtosis

19.7930 119.9365 -0.5429 2.9377

min 1st-quartile median 3rd-quartile max

-31.6667 12.7778 21.1111 28.3333 55.0000

TABLE III: Estimated GP hyperparameters

signal mean (◦C) signal std. dev. (◦C)

30.5034 4.6587

noise std. dev. (◦C) length-scale (km)

1.6340 174.3699

surements. From Figure 10a, one can see that the measurements contain quantization artifacts.

Nonetheless, the measurements are treated as continuous. From Figure 10b, one sees that the

dataset does not contain abnormally large or small values, and is slightly left-skewed compared

to a normal distribution. Overall, the normality assumption holds approximately, as we have

not yet considered the seasonal shift of temperature. Table II shows the summary statistics of

these measurements.

B. Smoothing of Spatial Field

The first step of the spatial analysis is to model the daily observations as noisy samples

from a Gaussian process without distortions and estimate its hyperparameters. For subsequent

analyses, we take only data from the 20 days between day 181 to day 200 from the dataset,

and restrict ourselves to the contiguous United States (that is, excluding Hawaii and Alaska)

since Hawaii and Alaska are far away from the rest of the Unites States. As for the covariance

function, we again choose to use the Matérn covariance function with ν = 3/2 to allow for

high flexibility while keeping the spatial field mean-square differentiable. For each calendar

day, we estimate the signal mean, signal variance, noise variance and length-scale via maximum

marginal likelihood estimation (see Chapter 5 of [30] for details) using all available observations

on that day. Then, the median of the estimated values on 20 days are taken as the estimated

hyperparameters of the GP. The estimated hyperparameters are shown in Table III.

Using the estimated hyperparameters, we reconstruct the spatial field for each calendar day

at both a 100 × 100 grid of locations and the 824 sensor locations by computing the posterior
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mean and the posterior covariance matrix, conditional on all the available observations on

that day. Since the posterior mean is usually much smoother compared to the actual spatial

field, a sample spatial field is generated from the posterior distribution to make it realistic. The

generated spatial field at a grid of locations is treated as the ground truth of the spatial field,

and the generated field intensities at the 824 sensor locations are treated as as the noise-free

sensor reading from which noisy and distorted observations are generated.

C. Experimental Settings

In this experiment, in addition to the five methods tested in the synthetic experiments, we

evaluate the performance of the distributed version of S-BLUE, CEM, and ICM introduced

in Section VI. To do so, we first divide the 824 sensor locations into 8 disjoint clusters via

hierarchical clustering with great-circle distance and complete linkage (see e.g. Section 14.3.12

of [35]). The 8 resulting clusters are indicated in Figure 9 using 8 different colors. Subsequently,

we apply the distributed approaches to this partitioned sensor network.

In order to evaluate the reconstruction accuracy of the proposed methods, 25% of the sensor

locations are left out as the test set. For the 618 remaining locations, we randomly generate

the distortion parameters from three different settings. In the three settings, each sensor has a

respective probability of 0.3, 0.5 and 0.7 to introduce distortion. Under all three settings, the

distorting sensors have one of the three following categories, with equal probabilities. Under π1,

a ∼ logN (−0.4, 0.052), b ∼ N (0, 0.22), under π2, a ∼ logN (0.2, 0.052), b ∼ N (0, 0.22), under π3,

a ∼ logN (0, 0.052), b ∼ N (10, 22). For each of the three settings, we first randomly generate the

distortion parameters for each sensor. Then we randomly simulate noisy observations at each

sensor location and subsequently apply the corresponding distortions. In addition, we examine

the effect of the number of observations and effective SNR. Specifically, we examine the four

following cases:

1) 10 observations per sensor, SNR=5dB;

2) 10 observations per sensor, SNR=15dB;

3) 50 observations per sensor, SNR=5dB;

4) 50 observations per sensor, SNR=15dB.

D. Results and Discussion

Figure 11 shows the relative MSE averaged over 20 days, and Figure 12 shows the FPR and

FNR of CEM and ICM, under each setting. Similar to the synthetic experiment 2, we observe that
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the MSE of the baselines and S-BLUE did not change with different number of observations per

sensor. CEM and ICM, on the other hand, benefited from having access to more observations.

The naive baseline showed worse MSE when SNR was high. The reason was the same as in

the synthetic experiment 2. In addition, the MSE of naive baseline is clearly affected by a higher

proportion of distorting sensors.

S-BLUE showed stable accuracies across all settings. Since S-BLUE does not estimate the

distortion parameters, the error mainly resulted from smoothing. This can be seen clearly from

the reconstructed spatial fields in Figure 13, which will be discussed later.

Compared to the simple method S-BLUE, the more sophisticated methods CEM and ICM

have the additional benefit of being able to estimate the distortion parameters. CEM consistently

outperformed ICM, which is consistent with what we observed in Section VII-B. This possibly

indicates the ineffectiveness of the iterative greedy search method with high-dimensional mixed

discrete-continuous optimization problems. While CEM benefited slightly from higher SNR, the

performance of ICM deteriorated with higher SNR when there were 10 observations per sensor,

though they both benefited from more plentiful observations. Looking at Figure 12, it can be

observed that ICM had significantly higher FPR and slightly lower FNR compared to CEM.

More observations and higher SNR have the effect of decreasing the FPR of both CEM and

ICM.

Remark 4. We noticed that if the SNR is set to be higher than 20dB, the performance of both CEM

and ICM deteriorates greatly. With a high SNR (hence low noise variance), the posterior density of the

model tends to be highly irregular. Thus the optimization problem might be highly ill-posed. In general,

there is no universal solution to this. Some form of relaxation might help to improve the performance,

but that is not examined in this work.

In the low SNR settings, the distributed approaches performed slightly worse compared to

their centralized counterparts. In the high SNR settings, the distributed S-BLUE performed

slightly worse compared to the centralized S-BLUE. However, the distributed CEM and ICM

performed better compared to their centralized version. This indicates that both CEM and

ICM suffered from convergence issues when dealing with the high-dimensional optimization

problem. In the distributed version, the problem is decomposed into sub-problems of lower

dimensionality, which are easier to solve. This experiment shows that the distributed approaches

we proposed are the ideal candidates for solving such spatial field reconstruction problem in

large-scale settings.
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Table IV shows the maximum absolute deviation from the relative MSE in this experiment. It

shows that S-BLUE and the distributed CEM had stable performance throughout the 20 days.

ICM and the centralized CEM are less stable, presumably due to the difficulty in the optimization

procedures.

TABLE IV: Experiment with real data – maximum absolute deviation from the average relative

MSE of the eight methods.

Method Centralized Distributed

oracle 0.0728 -

naive 0.2015 -

S-BLUE 0.1132 0.1128

ICM 0.2676 0.3188

CEM 0.1838 0.1104

Finally, let us examine the reconstructed spatial fields. Figure 13 shows the heat maps of

spatial fields reconstructed by centralized and distributed versions of S-BLUE, CEM, ICM, and

the two baselines with the settings: proportion of distorting sensors is 0.7, 10 observations per

sensor, SNR=15dB. The ground truth spatial field is also included for reference. First, notice

that the ground truth contained much more details compared to the reconstructions, because

all of the estimators here have the smoothing effect. Overall, the reconstruction of S-BLUE is

much smoother and contains fewer details. This is due to nature of S-BLUE, as it does not

estimate the distortion parameters. CEM and ICM, on the other hand, preserved many of the

details, and their reconstructions were overall close to the one produced by the oracle. The naive

method, however, produced a noticeably inaccurate reconstruction. As previously mentioned,

the reconstructions of the distributed approaches are discontinuous and the discontinuity can be

observed at the boundary of the clusters. Nonetheless, they produced accurate reconstructions

of the spatial field.

Notice that the above analysis used only 20 consecutive days of data. When a longer time

period is considered, the seasonal variation of the underlying spatial field must be taken into

consideration. To demonstrate this, we use the data from each of the twelve months to estimate

the GP hyperparameters by the same approach as above. Subsequently, the spatial field on

the last day of each month is reconstructed by centralized CEM, using noisy and distorted

sensor readings at the 618 locations generated in the same way as in the above experiment.

These reconstructions along with the ground truths are shown in Figure 14. It can be seen
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Fig. 11: Experiment with real data – relative MSE against varying proportion of distorting

sensors, number of observations and SNR.
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Fig. 13: Experiment with real data – Reconstructed spatial fields on day 181. Settings: proportion

of distorting sensors is 0.7, 10 observations per sensor, SNR=15dB.

that there is an obvious seasonal effect on the temperature throughout the year. Notice that

the reconstructions closely resemble the ground truths, which indicates that CEM worked well

when the characteristics of the underlying spatial field varied throughout the year.

IX. CONCLUSION

This paper addressed the problem of spatial field reconstruction based on distorted sensor

readings. A new spatial field model based on a mixture of Gaussian process experts was devel-

oped. We developed two approaches to solve the inference problem. The first approach uses a

linear Bayes estimator named the Spatial Best Linear Unbiased Estimator (S-BLUE), which is a

low-complexity algorithm relying only on prior information. The second approach is a two-stage

algorithm based on empirical Bayes, in which the unknown distortion parameters of the sensors

are estimated based on distorted observations. We developed two optimization procedures for
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Fig. 14: Experiment with real data – Reconstructed spatial fields on the last day of each month.

The two top rows show the reconstructions by CEM, and the two bottom rows show the ground

truths. Settings: proportion of distorting sensors is 0.7, 10 observations per sensor, SNR=15dB.

the two-stage algorithm, the first one is based on the Cross-Entropy method (CEM) and the

second one is based on the Iterated Conditional Mode (ICM) which is an iterative greedy search

procedure. In addition, the distributed versions of S-BLUE and empirical Bayes estimators were

developed to improve the computational efficiency in large-scale applications. We preformed

two synthetic experiments as well as an experiment based on real temperature data from US EPA

with synthetically generated distortions to assess the spatial field reconstruction accuracy of the

proposed approaches. The results showed significant improvement compared to the estimation

approach that neglects sensor distortions.
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APPENDIX A

PROOF OF THEOREMS

A. Proof of Theorem 1

Proof. For n = 1, . . . , N , the log model likelihood given f := (f(xn))n=1:N is given by

log p(yn,1:Mn
|f ,ψ)

=−
Mn

2
log 2π −

Mn

2
log a2nς

2 −
sn

2a2nς
2

+
(anfn + bn)gn

a2nς
2

−
Mn(anfn + bn)

2

2a2nς
2

,

which depends on yn,1:Mn
only through the statistics gn and sn. Therefore, (g, s) are sufficient

for (f ,ψ). The joint density of (y,f) conditional on ψ is given by

log p(y,f |ψ)

= log p(y|f) + log p(f |ψ)

=−
1

2

[
(N + tr(M)) log 2π + tr(M log(ς2A2)) + log |C|

+ ς−2
1
T
A

−2s+ µT
C
−1µ+ ς−2bTMA

−2b− γT
Z
−1γ

− 2ς−2gTA−2b+
(
f − Z

−1γ
)T

Z
(
f − Z

−1γ
) ]

,

(30)

where γ = ς−2
Mg̃ + C

−1µ,Z = ς−2
M+ C

−1. Integrating over f , we deduce that,

log p(y|ψ) = log

[∫
p(y,f |ψ)df

]

=−
1

2

[
tr(M) log 2π + tr(M log(ς2A2))

+ log |C|+ log |Z|+ ς−2
1
T
A

−2s+ µT
C
−1µ

+ς−2bTMA
−2b− 2ς−2gTA−2b− γT

Z
−1γ

]
.

(31)

We have by Woodbury’s formula that,

Z
−1 =ς2M−1 − ς4M−1(C + ς2M−1)−1

M
−1 (32)

=C − C(C + ς2M−1)−1
C, (33)

log |Z| = log |ς−2
M| − log |C|+ log |C + ς2M−1|. (34)

We also have by γ = ς−2
Mg̃ + C

−1µ that,

γT
Z
−1γ =ς−4g̃TMZ

−1
Mg̃ + 2ς−2g̃TMZ

−1
C
−1µ

+ µT
C
−1

Z
−1

C
−1µ.

(35)
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Substituting (32) into the first term on the right-hand side of (35), using the fact that MZ
−1

C
−1 =

(CZM−1)−1 = (ς−2
C +M

−1)−1 = ς2Υ−1 for the second term of (35), substituting (33) into the

third term of (35), and finally substituting the resulting formula as well as (34) into (31), one

gets the following after simplification (recall that g̃ := A
−1(M−1g − b), Υ := C + ς2M−1),

log p(y|ψ) =−
1

2

[
tr(M) log 2π + tr(M log(ς2A2))

− log |ς2M−1|+ log |Υ|+ ς−2
1
T
A

−2s

−ς−2gTM−1
A

−2g + (g̃ − µ)TΥ−1(g̃ − µ)
]
.

Notice that after integrating out f , (g, s) are still sufficient for ψ.

By Bayes’ rule, p(ψ|y) = p(y|ψ)π(ψ)
p(y) , where p(y) =

∫
p(y|ψ)π(ψ)dψ is the normalizing constant

that is analytically intractable. The proof is now complete.

B. Proof of Theorem 2

From (30) we see that log p(y,f |ψ) has the following form,

log p(y,f |ψ) = q1(ψ) + q2(s,ψ) + q3(g,f ,ψ),

where q1, q2, q3 are some functions of the corresponding parameters. Similarly, we can deduce

that log p(y,f , f∗|ψ) has the following form,

log p(y,f , f∗|ψ) = q1(ψ) + q2(s,ψ) + q3(g, [f , f∗],ψ).

Therefore,

p(f∗|y,ψ) =
p(y, f∗|ψ)
p(y|ψ)

=

∫
p(y,f , f∗|ψ)df∫
p(y,f |ψ)df

=

∫
exp(q3(g, [f , f∗],ψ))df∫
exp(q3(g,f ,ψ))df

.

(36)

Thus, we have deduced that p(f∗|y,ψ) depends on y only through g (or equivalently, g̃), i.e.

p(f∗|y,ψ) = p(f∗|g,ψ) = p(f∗|g̃,ψ). We also have that conditional on ψ, (g̃, f∗) are jointly Gaus-

sian, with E[f∗|ψ] = µ∗, E[g̃|ψ] = µ, Cov[f∗|ψ] = C∗, Cov[g̃, f∗|ψ] = k∗, Cov[g̃|ψ] = Υ, which can

be easily verified. Thus, we have that (f∗|y,ψ) ∼ N (f̄∗, σ2
∗), where f̄∗ = µ∗ + kT∗ Υ

−1 (g̃ − µ),

σ2
∗ = C∗ − kT∗ Υ

−1k∗. The distribution of (f∗,ψ|y) is given by p(f∗,ψ|y) = p(f∗|y,ψ)p(ψ|y),

and the posterior predictive distribution (f∗|y) is obtained by marginalizing over ψ, p(f∗|y) =
∫
p(f∗|y,ψ)p(ψ|y)dψ. The proof is now complete.
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C. Proof of Theorem 3

Proof. First, we claim that any linear estimator must have the form h(y) = wT ḡ + b, where

w ∈ R
N , b ∈ R. Due to the linearity of h in observations (yn,m)n=1:N,m=1:Mn

, s is not involved.

For n = 1, . . . , N , the weights of (yn,m)m=1:Mn
must be the same due to symmetry. This proves

the claim.

Under quadratic loss, for h ∈ H, R[Π, h] is given by

R[Π, h] =E

[(
wT ḡ + b− f∗

)2]

=wT
E[ḡḡT ]w + b2 + E[f2

∗ ] + 2bwT
E[ḡ]

− 2wT
E[f∗ḡ]− 2bE[f∗].

Differentiating R[Π, h] with respect to w and b, we get

∂R[Π, h]

∂w
=2E

[
ḡḡT

]
w + 2bE[ḡ]− 2E[f∗ḡ],

∂R[Π, h]

∂b
=2b+ 2wT

E[ḡ]− 2E[f∗].

Setting the partial derivatives to 0 and solving the equations gives the optimal weight vector

and intercept,

b̂ =E[f∗]− ŵ
T
E[ḡ], (37)

ŵ =
(
E[ḡḡT ]− E[ḡ]E[ḡ]T

)−1
(E[f∗ḡ]− E[f∗]E[ḡ])

=Cov[ḡ]−1Cov[ḡ, f∗].
(38)

One can verify that (ŵ, b̂) is indeed minimizing the Bayes risk. Hence,

ĥS-BLUE(y) =ŵ
T ḡ + b̂

=E[f∗] + Cov[ḡ, f∗]
TCov[ḡ]−1(ḡ − E[ḡ]).

(39)

The terms E[f∗],E[ḡ],Cov[ḡ, f∗],Cov[ḡ] can all be expressed in closed-form. The closed-form

expressions and the details of the computation are given below. Let ⊙ denote matrix entry-wise
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product.

E[f∗] =µ∗, (40)

E[ḡ] =E[E[ḡ|ψ]] = diag (E[a])µ+ E[b], (41)

Cov[ḡ, f∗] =E[Cov[ḡ, f∗|ψ]] + Cov[E[ḡ|ψ], µ∗]

=diag (E[a])k∗,
(42)

Cov[ḡ] =E[Cov[ḡ|ψ]] + Cov[E[ḡ|ψ]]

=E[ACA+ ς2M−1
A

2] + Cov[Aµ+ b]

=E[aaT ]⊙
(
C + ς2M−1 + µµT

)

+ diag(µ)
(
E[abT ] + E[abT ]T

)

+ E[bbT ]− E[ḡ]E[ḡ]T ,

(43)

In the terms E[a], E[b], E[aaT ], E[bbT ], E[abT ], the expectations are evaluated entry-wise. For

example, entries of E[a] are given by

E [an] =q
(n)
0 +

K∑

k=1

q
(n)
k E [an|Zn = k] . (44)

Entries of E[aaT ] are given by

E [aiaj ] =





K∑
k=0

q
(i)
k E

[
ai

2|Zi = k
]

if i = j,

K∑
k=0

K∑
k′=0

q
(i)
k q

(j)
k′ E [ai|Zi = k] if i 6= j.

×E [aj |Zj = k′]

(45)

Entries of E[b], E[bbT ] and E[abT ] can be evaluated similarly. With the above equations, we are

able to evaluate ĥS-BLUE efficiently.
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