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In this work, in the first instance, the multipseudopotential interaction (MPI) model’s capabilities are extended
for hydrodynamic simulations. This is achieved by combining MPI with the multiple-relaxation-time collision
operator and with surface tension modification methods. A method of approaching thermodynamic consistency
is also proposed, which consists of splitting the ε j term into separate terms. One of these terms is used in
the calculation of the interparticle force, and the second one is used in the forcing scheme. Secondly, MPI is
combined with thermal models in order to simulate droplet evaporation and bubble nucleation in pool boiling.
Thermal coupling is implemented using a double distribution function thermal model and a hybrid thermal
model. It is found that MPI thermal models obey the D2-law closely for droplet evaporation. MPI is also
found to correctly simulate bubble nucleation and departure from the heating element during nucleate pool
boiling. It can be suggested that MPI thermal models are comparatively better suited to thermal simulations
at low reduced temperatures than single pseudopotential interaction models, although such cases remain very
challenging. Droplet evaporation simulations are carried out at a reduced temperature (Tr ) of 0.6 by setting the
parameters in the Peng-Robinson equation of state to a = 1/6272 and b = 1/168.

DOI: 10.1103/PhysRevE.102.013311

I. INTRODUCTION

The lattice Boltzmann method (LBM) [1] is a rapidly
evolving method for simulation of fluid dynamics. It shows
promise for applications involving multiphase and thermal
simulations. Numerical simulation methods are powerful
tools for studying boiling phenomena due to the multiple
thermophysical properties and other factors that influence
heat-transfer processes [2]. On the other hand, difficulties in
numerical studies of the boiling process emerge due to the
multiple scales involved and phase interface movement [2].
These factors suggest that mesoscopic methods, such as the
LBM, are promising tools for studying boiling phenomena.
The purpose of this work is to develop the multipseudopo-
tential interaction (MPI) [3,4] model into a simulation tool
capable of investigation of thermal phenomena. MPI belongs
to the pseudopotential family of multiphase LBM simulation
tools originating in the Shan-Chen model [5,6].

A number of groups of thermal models for the lattice
Boltzmann method exist in the literature. Thermal models
for the lattice Boltzmann method can be divided into the
following categories [7]: multispeed [8], double-distribution
function (DDF) [9], and hybrid [10].

The DDF and hybrid thermal models are often used with
pseudopotential and phase-field multiphase LBMs [7]. In
DDF models, two distribution functions need to be solved.
One set of calculations is performed to solve the hydrody-
namic distribution function, and another is performed to solve
the thermal distribution function. The thermal distribution
functions are solved within the framework of the LBM. The
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DDF models can be further subdivided into internal-energy-
based [11], total-energy-based [12], and temperature-based
[9] models [7]. The hybrid [10,13] models work similarly
to the DDF models in the sense that the solution of the
hydrodynamic equations is performed separately from the
solution of the thermal equations [7]. Unlike in the case of
DDF models, hybrid methods solve the temperature equations
using conventional numerical methods, i.e., the finite-volume
or finite-difference methods [7]. In his book, Patankar outlined
numerical discretization methods used in traditional computa-
tional fluid dynamics (CFD) codes [14]. As an example, the
fourth-order Runge-Kutta method can be used to calculate
temperature evolution [15].

Li et al. [16] used the Gong-Cheng [17] model to illustrate
numerical errors in thermal simulations, including the failure
to obey the D2-law [18] for droplet evaporation. The D2-law
[18] states that the square of the droplet diameter should
change linearly over time [16,18]. It is the simplest possible
description of droplet vaporization and combustion, and it
contains the following assumptions: spherical symmetry, no
spray effects, diffusion being rate-controlling, isobaric pro-
cess, flame-sheet combustion, constant gas-phase transport
properties, and gas-phase quasisteadiness [18]. Later, Li et al.
[19] pointed out inconsistencies in Gong et al.’s [20] deriva-
tion of the temperature equation.

Recently, a number of popular thermal models for the LBM
were analyzed by Hu et al. [21] and ranked according to
their qualities. One of the main observations was that the
temperature-based models are superior to the internal-energy-
based models in terms of accuracy and thermodynamic con-
sistency [21]. The tested models were ranked from best to
worst in the following order [21]: the hybrid finite-difference
scheme by Li et al. [15]; the modified internal-energy-based
model by Li et al. [16]; the temperature-based model by Hazi
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and Markus [22]; the simplified temperature-based model by
Peng et al. [23]; and the internal-energy-based model by
Zhang and Chen [24].

Hu et al. [21] also carried out simulations to investigate
heat transition through a static phase interface by combin-
ing thermal models with the piecewise-linear equation of
state (EOS) [25]. Combining the piecewise-linear EOS with
thermal models allowed the authors to uncouple the effect
of temperature on density and to prevent phase change. Si-
multaneously, Hu and Liu [26] developed the idea of using
the piecewise-linear EOS for thermal modeling with phase
change. The effects of temperature were replaced by the
degree of superheat, due to the assumption that the degree
of superheat has little influence on the liquid properties [26].
Phase change effects were introduced into the pressure calcu-
lations [26].

The subsequent sections of the paper are organized as
follows: In Sec. II the MPI model is combined with the MRT
collision operator, Sec. III introduces the thermal MRT-MPI
model, Sec. IV presents the results of numerical simulations,
and Sec. V concludes this work.

II. MRT-MPI MODEL

This section outlines the details of the MPI model com-
bined with the MRT collision operator [27]. The combi-
nation of MPI with MRT allows the model to simulate
more challenging cases than are achievable with the single-
relaxation-time (SRT) Bhatnagar-Gross-Krook (BGK) [28]
collision operator. Multiple pseudopotentials can be described
using the following equations [4]:

F = F (1) + F (2) + . . . + F (n), (1)

F =
n∑

j=1

−Gj (x)ψ j (x)c2
s

N∑
α=1

w(|eα|2)ψ j (x + eα )eα, (2)

ψ j (ρ) =
(

ρ

λ jε j + Cjρ

)1/ε j

. (3)

Equation (2) is suitable for isothermal cases. In this work,
the following intermolecular force expression is proposed for
thermal phenomena:

FMPI =
n∑

j=1

−√|Gj (x)|Gsign, jψ j (x)c2
s

×
N∑

α=1

w(|eα|2)
√|Gj (x + eα )|ψ j (x + eα )eα. (4)

A. Achievement of thermodynamic consistency

Thermodynamic inconsistency is a prominent shortcoming
of pseudopotential models. The MPI-obtained coexistence
densities at low reduced temperatures deviate from the ther-
modynamically consistent values. This behavior is observed
for both the SRT and MRT collision operators. The deviation
becomes significant at high density ratios, and this can be seen
in Fig. 1.

FIG. 1. Deviation of MPI from the thermodynamic coexistence
densities when the SRT and MRT collision operators are used and
the performance of the modification for a broad temperature range.

Thermodynamic consistency can be approached by split-
ting the epsilon into two separate values, i.e., one for use in
the EOS and a second one for use in the forcing scheme. Thus,
the multipseudopotential changes its form from

ψ j =
(

ρ

λ jε j + Cjρ

)1/ε j

(5)

to the following expression:

ψ j =
(

ρ

λ jεEOS, j + Cjρ

)1/εEOS, j

. (6)

This modification allows the user to set the ε to a different
value in the forcing scheme than in the pseudopotential cal-
culation in order to adjust the density ratio without affecting
the equation of state introduced by the MPI model. Intro-
duction of unnecessary modifications to the equation of state
is not desired. For example, good results were obtained by
setting the value of εForcing, j to 0.89 times the value of εEOS, j :
εForcing, j = 0.89εEOS, j .

The Li-Luo method [29] for achievement of thermody-
namic consistency for the MRT collision operator can then
be modified to the following for use with MPI:

6(uxFx + uyFy) +
∑

j

12 εForcing, j

−16Gj
|F j |2

ψ j
2�t (τe − 0.5)

. (7)

Figure 1 above shows that the MPI modification splitting
ε into two separate values allows to approach thermody-
namic consistency closely across the entire range of reduced
temperature.

B. Spurious velocities

Spurious velocities are investigated in this subsection.
Both Yuan-Schaefer [30] (a popular single pseudopotential
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FIG. 2. Interparticle force generated by MPI and YS methods at
the same density ratio. Carnahan-Starling a parameter was set to
0.01, b was set to 0.2, and R was set to 1. The value of εForcing, j

in MPI was set to 0.89εEOS, j and the values of k1 and k2 in the
Huang-Wu forcing scheme for the SPI model were set to 0.0 and
−0.2188, respectively.

interaction method of including cubic equations of state) and
MPI [3,4] models give practically the same spurious velocities
when corresponding values of EOS parameters are used in
both models. This is caused by the fact that both models
generate almost identical intermolecular interaction force. A
comparison of the intermolecular forces generated by both
methods at the same conditions is presented in Fig. 2. The
results were obtained by setting Carnahan-Starling a to 0.01,
b to 0.2, and R to 1 for both methods. MPI was implemented
using the adapted Li-Luo forcing method, given by Eq. (7),
with εForcing, j = 0.89εEOS, j as discussed in the previous sub-
section. The YS method was implemented using the Huang-
Wu method with k1 set to 0.0 and k2 set to −0.2188. The
resultant spurious velocity magnitude for the MPI and YS
simulations depicted in Fig. 2 is presented in Fig. 3.

III. HYDRODYNAMIC MRT-MPI COMBINED
WITH THERMAL LBM MODELS

In this section, the MRT-MPI model is combined with two
thermal models in order to extend its capability to the study
of thermal effects. Based on the recommendations of Hu et al.
[21] and Li et al. [16], the models used in this work belong to
the DDF and hybrid thermal LBM categories. The equations
that need to be solved in the fourth-order Runge-Kutta scheme
used in the hybrid thermal LBM model [15] are listed below:

T t+δt = T t + δt

6
(h1 + 2h2 + 2h3 + h4), (8)

h1 = K (T t ), (9)

FIG. 3. Spurious velocity magnitude generated by the MPI and
YS methods at Tr = 0.42 (τv = 1 and 
 = 1/12).

h2 = K

(
T t + δt

2
h1

)
, (10)

h3 = K

(
T t + δt

2
h2

)
, (11)

h4 = K (T t + δt h3). (12)

The Runge-Kutta method is an iterative method for tempo-
ral discretization. The form of the function K with temperature
as the argument or independent variable depends on the
temperature equation to be solved. The equation that needs
to be solved for Li et al.’s [15] hybrid thermal model is the
following:

K (T t )=−u · ∇T + λ

ρcV
∇ · (λ∇T )− T

ρcV

(
∂ pEOS

∂T

)
ρ

∇ · u.

(13)
The equations constituting the DDF model by Li et al. [16]

take the following forms:

gα (x + eαδt , t + δt ) = g∗
α (x, t ), (14)

g∗ = M−1m∗, (15)

m∗ = m − �(m − meq ) + δt S. (16)

The thermal model is implemented using the MRT colli-
sion operator with [16]

� = diag(s0, s1, s2, s3, s4, s5, s6, s7, s8), (17)

meq = T (1,−2, 2, ux,−ux, uy,−uy, 0, 0)T , (18)

S = (S0, 0, 0, 0, 0, 0, 0, 0, 0)T , (19)

S0 = φ + 0.5δt∂tφ, (20)
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where

φ = 1

ρcV
∇ · (λ∇T ) − ∇ · (k∇T )

+ T

[
1 − 1

ρcV

(
∂ pEOS

∂T

)
ρ

]
∇ · u, (21)

k = ηc2
s δt , (22)

η =
(

1

s3
− 1

2

)
=

(
1

s5
− 1

2

)
. (23)

In addition, the third and fourth temperature distribution
functions in the moment space are modified in order to remove
the ∂t0(T u) error according to [16]

m∗
3,New = m∗

3 + δt

(
1 − s3

2

)
s4

(
m4 − meq

4

)
, (24)

m∗
5,New = m∗

5 + δt

(
1 − s5

2

)
s6

(
m6 − meq

6

)
. (25)

The partial derivative responsible for phase-change was
taken to be the following for the Peng-Robinson and
Carnahan-Starling equations of state, respectively:(

∂ pPR

∂T

)
ρ

= ρR

1 − bρ
, (26)

(
∂ pCS

∂T

)
ρ

= ρR
1 + bρ

4 + ( bρ
4

)2 − ( bρ
4

)3

(
1 − bρ

4

)3 . (27)

Gradient terms were calculated using the second-order
isotropic difference scheme [7]:

∂iT (x) ≈ 1

c2
s δt

∑
α

ωαT (x + eαδt )eαi. (28)

Laplacian terms were calculated using the second-order
isotropic difference scheme [7,31] and using the isotropic
discrete Laplacian operators [32]. The second-order isotropic
difference scheme takes the following form [7]:

∇2T (x) ≈ 2

c2
s δ

2
t

∑
α

ωα[T (x + eαδt ) − T (x)]. (29)

The isotropic discrete Laplacian operator takes the follow-
ing form [32]:

L(x)D2Q9 ≡ ∇2T (x) = 1

6

[
4

4∑
i=1

T (1)
i +

4∑
i=1

T (2)
i − 20T (0)

]
.

(30)

Both of the above methods for calculating the Laplacian of
temperature provided the same results as illustrated in Fig. 4

However, for the sake of consistency, the second-order
isotropic difference scheme was used exclusively to obtain the
data discussed in this paper.

The simplest way of including thermal effects in the MPI
model is to combine the hydrodynamic model with one of the
thermal models and to make the temperature terms in MPI
location-dependent with temperature updated by the imple-
mented thermal model. In isothermal models, the temperature

FIG. 4. Spatial distribution of the Laplacian operator of temper-
ature calculated using the second-order isotropic difference scheme
and the isotropic discrete scheme for the case of droplet evaporation
at time steps equal to 13 000, 25 000, and 38 000.

term is constant throughout the computational domain and
it is prescribed for the entire simulation duration during ini-
tialization. The intermolecular force in multipseudopotential
interaction models is calculated according to

F =
n∑

j=1

−Gj (x)ψ j (x)c2
s

N∑
α=1

w(|eα|2)ψ j (x + eα )eα. (31)

It is clear that the ψ j term does not contain temperature-
related parameters as evident in Eqs. (5) and (6). Please refer
to Ref. [4] for details of the MPI parameters for a number
of cubic equations of state. Temperature in MPI models is
contained in the G terms. Hence, thermal MPI implemented in
this way incorporates thermal effects only at the local site x in
the calculation of the intermolecular force F. This formulation
of the intermolecular force is suitable for isothermal cases,
where the temperature is constant throughout the computa-
tional domain.

In reality, intermolecular forces reflect the effect of tem-
peratures of the interacting particles. This effect is naturally
present in thermal models using the square-root form of the
pseudopotential including the thermal YS models. In these
models, temperature effects are equally weighted at x and x +
eα . Temperature-containing terms in pseudopotential models
employing the square-root form of ψ are highlighted in the
following equation:

F = −Gψ (x)c2
s

N∑
α=1

w(|eα|2)ψ (x + eα )eα. (32)

Unmodified thermal MPI without temperature being in-
cluded at x + eα sites can simulate droplet evaporation, but
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FIG. 5. Density field on the left-hand side, temperature field in
the middle, and pressure field on the right-hand side to illustrate the
results of unmodified thermal MPI in bubble nucleation simulations.
The black tube in the liquid phase is used as the heating element.

it cannot simulate bubble nucleation during pool boiling.
Instead of vapor being generated, a high-pressure zone is
created adjacent to the heating element without phase change
occurring, as illustrated in Fig. 5. Eventually, the accumula-
tion of energy in the liquid without phase change leads to
generation of turbulence at the liquid-vapor interface.

To accurately incorporate thermal effects, the thermal MPI
model needs to be modified. The intermolecular force can be
rewritten in the following manner in order to allow inclusion
of thermal effects at x and x + eα:

F =
n∑

j=1

−√|Gj (x)|Gsign, jψ j (x)c2
s

×
N∑

α=1

w(|eα|2)
√|Gj (x + eα )|ψ j (x + eα )eα. (33)

A second G term is introduced to allow incorporation of
thermal effects at x + eα sites. To take account of the fact that
a second G term has been introduced, it is necessary to take
the square root of the G terms. This treatment of the G terms
means that both terms are equally weighted in the calculation
of the intermolecular forces. A sign function is also necessary
in order to take the negative signs outside of the square-root
terms to prevent generation of complex numbers. Absolute
values of the G terms are used in the square roots.

IV. NUMERICAL SIMULATIONS

This section provides the results of numerical simulations
carried out using the thermal models discussed in this paper.
The thermal MPI model implemented in the way detailed in
Sec. III can correctly simulate droplet evaporation and bubble
nucleation during pool boiling.

FIG. 6. Verification of the D2-law during droplet evaporation
for the unmodified and corrected thermal MPI. The initial droplet
diameter (D0) was 60 lattice units. Reduced temperature was set to
0.86 and the superheat with respect to the saturation temperature was
set to 0.14 times the critical temperature. Thermal conductivity was
set to 2/3 and heat capacity at constant volume was set to 5. Acentric
factor was set to 0.344, PR EOS a to 3/49, b to 2/21. Comparison to
data in Ref. [33].

A. Droplet evaporation

The ability to correctly simulate droplet evaporation is a
basic requirement of thermal simulation tools. Figure 6 illus-
trates the fact that thermal MPI correctly simulates droplet
evaporation. Droplet evaporation can be tested using the D2-
law [18]. To validate conformity to the D2-law [18], simu-
lations were carried out in a 200 × 200 gravity-free domain
with periodic boundary conditions at all four sides. The vapor
surrounding the liquid droplet was initialized at a superheated
temperature that was higher than the saturation temperature
of the liquid by 0.14 times the critical temperature (i.e., by
0.14Tc). The superheat was enforced at the periodic bound-
aries during the simulation. Heat capacity at constant volume
(cV ) was equal to 5. The value of thermal conductivity (λ)
was constant in the computational domain at 2/3, leading
to the following simplification in the temperature equations:
∇ · (λ∇T ) = λ∇2T .

Bulk viscosity was set to be equal to kinematic viscosity.
The magic parameter was set to 1/12 in the hydrodynamic
MRT collision operator. All of the relaxation rates in the
thermal diagonal matrix (�) were set to 1.0, resulting in the
k parameter in the temperature equation being equal to 1/6.
In the double distribution function (DDF) model of Li et al.,
k is simply a constant without physical meaning [16]. The
simulations using both MPI and YS methods were carried
out at a reduced temperature of 0.86 with the acentric factor
equal to 0.344, and the Peng-Robinson equation of state a =
3/49, b = 2/21, and R = 1. MPI was implemented using the
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FIG. 7. Comparison of droplet evaporation rates of YS and MPI
thermal models. Reference [33] data plotted for validation purposes.
The initial droplet diameter (D0) was 60 lattice units. Tr = 0.86,
initial droplet diameter = 60, superheat = 0.14Tc, cv = 5, thermal
conductivity = 2/3, acentric factor = 0.344, PR a = 3/49, and PR
b = 2/21.

adapted Li-Luo forcing method with εForcing, j set to 0.89 times
the value of εEOS, j . The YS method was implemented using
the Huang-Wu forcing method with k1 set to 0.0 and k2 set to
−0.2188.

Figure 7 compares droplet evaporation rates obtained using
the YS and MPI thermal models. The rate of evaporation
obtained using the MPI hybrid model is the same as the rate
of evaporation for a fourth-order Runge-Kutta hybrid model
detailed in Ref. [33]. The simulation parameters were chosen
to be the same as those in Ref. [33]. MPI thermal models
provide straight lines in simulations of droplet evaporation
that fulfill the D2-law. Therefore, it can be stated that MPI
is comparatively well suited to thermal simulations. In com-
parison, YS thermal models provide lines that are slightly less
straight, with a steeper drop in droplet diameter in the first
13 000 time steps. The rates of evaporation obtained using
the MPI models are lower than those obtained using the YS
models.

B. Bubble nucleation

Figure 8 illustrates that both YS DDF and MPI DDF
models can simulate bubble nucleation and departure from
a heating element. The black circle submerged in the liquid
phase is meant to represent a heating element, which could be
a tube in a heat exchanger supplying heat to the liquid phase.
Thus, simulation of complex heat exchanger geometries is
possible using the models. The domain size was 150 nodes
in the x direction by 400 nodes in the y direction. Top and
bottom boundaries were set to bounce back, and the left- and
right-hand-side boundaries were periodic. Liquid was located

FIG. 8. Comparison of bubble nucleation and departure from
a heating element. The image on the left-hand side was obtained
using the YS DDF model, and the image on the right-hand side was
obtained using the MPI DDF model.

in the bottom of the computational domain up to a thickness of
150 lattice units with the space above it filled with vapor. The
diameter of the heating element was set to 30 lattice units,
and its center was located 40 lattice units above the bottom
boundary in the middle of the x-axis. Heat was supplied to the
liquid phase along the entire length of the circumference of
the heating element. The temperature of the heating element
was set to 1.25 times the critical temperature (1.25Tc). Heat
capacity at constant volume (cv ) was set to 5.0, and kinematic
viscosity was set to 0.1 (τv = 0.8). The value of gravity was
set to −2.5 × 10−5 in the y direction, and the gravity force was
implemented using the difference between the local density
and the average density within the fluid domain: Fgravity,y =
−2.5 × 10−5(ρ − ρaverage).

This method of introducing gravity prevents injection of
net momentum into the simulation domain [34]. In the hy-
drodynamic relaxation matrix, the value of bulk viscosity
was set to the same value as the kinematic viscosity. The
hydrodynamic MRT magic parameter was set to 1/12. All of
the relaxation rates in the thermal diagonal matrix (�) were
set to 1.0. Hence, k in the temperature equation was equal
to 1/6. Thermal diffusivity (χ ) was set to 0.06. This value
of thermal diffusivity was used in the calculation of thermal
conductivity. Thermal conductivity (λ) was set to be variable,
and it was obtained from the following equation: λ = ρcV χ.

Opting for a location-dependent value of thermal conduc-
tivity necessitates the following treatment of ∇ · (λ∇T ) in the
temperature equation ∇ · (λ∇T ) = λ∇2T + ∇λ · ∇T .

A cubic equation of state was employed in the simulations.
The chosen equation of state was the Peng-Robinson EOS,
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TABLE I. Investigation of the effects of changing the G weight-
ings on bubble nucleation.

χ Relative weighting and observations

2 (100% and 0%) original thermal MPI—no nucleation
and generation of turbulence at liquid-vapor interface

1.5 (75% and 25%) no nucleation—generation of
two-phase mixture

1.1 (55% and 45%) bubble nucleation no departure
1 Equal weighting—correct bubble nucleation
0.9 (45% and 55%) bubble nucleation
0.75 (37.5% and 62.5%) unstable after 100 time steps
0.5 (25% and 75%) unstable
0 (0% and 100%) immediately unstable

because it offers good stability [30] and is widely used in
the literature, allowing comparison to published results. The
models are compared at a reduced temperature of 0.86 with
parameters in the Peng-Robinson equation of state set to
a = 3/49, b = 2/21, R = 1, and the acentric parameter equal
to 0.344 (the acentric parameter value for water). MPI was
implemented using the adapted Li-Luo forcing method with
εForcing, j set to 0.89 times the value of εEOS, j . The YS method
was implemented using the Huang-Wu forcing method with
k1 set to 0.0 and k2 set to −0.2188. Neither forcing scheme
is set to modify surface tension, which means that both MPI
and YS methods generate the same surface tension values,
equal to 0.0701, in this case. Both models generate a bubble
that departs the heating element at the 9700 time step. As
mentioned above, MPI results in a lower rate of evaporation
than the YS model. Hence, the bubble generated by the MPI
model is slightly smaller than the bubble generated by the YS
model.

C. Modification of the G weightings

The intermolecular force expression in the thermal MPI
model can be modified to allow different weightings of Gj (x)
and Gj (x + eα ). The weightings can be modified by setting
powers of the G terms to the following:

F =
n∑

j=1

−|Gj (x)| χ

2 Gsign, jψ j (x)c2
s

×
N∑

α=1

w(|eα|2)|Gj (x + eα )| 2−χ

2 ψ j (x + eα )eα. (34)

Lower-case Greek letter chi (χ ) was introduced into the
above expression to allow modification of the G weightings.
Table I lists the effects of changing the G weightings on
bubble nucleation. Based on the findings, equal weighting of
the G terms in thermal MPI is the appropriate choice. This
weighting coincides with the treatment of thermal effects in
thermal YS models.

D. Surface tension adjustment in thermal MPI

Thermal MPI can be combined with either the Li-Luo
method [35] or the Huang-Wu method [36] for surface tension

FIG. 9. Effect of reducing surface tension on the departure of
a nucleated bubble from the heating element. Surface tension de-
creases from the right-hand side coefficient value of 1.0, through 0.6
and 0.2, down to 0.1 on the left-hand side.

modification. In this subsection, the effects of decreasing and
increasing surface tension are examined in bubble nucleation
simulations using the thermal MPI DDF model. The Li-Luo
[35] method has to be adapted for use with the MPI model
into the following expression:

Q =
n∑

j=1

κ
Gj (x)

2
ψ j (x)

×
8∑

α=1

w(|eα|2)[ψ j (x + eα ) − ψ j (x)]eαeα, (35)

and the Huang-Wu [36] method should take the following
form in order to allow surface tension modification in MPI
models:

Qm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

3
∑n

j=1

(
k1 + 2

( ε j

−8 − k1
)) |F j|2

Gjψ j
2

−3
∑n

j=1

(
k1 + 2

( ε j

−8 − k1
)) |F j|2

Gjψ j
2

0
0
0
0

k1
∑n

j=1
F 2

x, j−F 2
y, j

G jψ j
2

k1
∑n

j=1
Fx, j Fy, j

G jψ j
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

The Li-Luo [35] method is better for reducing surface
tension, and the Huang-Wu [36] method is more suitable for
increasing surface tension. Consequently, the Li-Luo method
was employed to reduce surface tension, and the Huang-Wu
method was used to increase surface tension. Simulations
were carried out using the same parameters as those described
in Sec. IV B. Figure 9 illustrates bubble departure from the
heating element as surface tension is reduced from the un-
modified value of surface tension, i.e., from surface tension
coefficient = 1.0.

Surface tension was reduced using the κ (kappa) parameter
in the MPI-adapted Li-Luo method [35]. For example, in order
to set the surface tension coefficient to 0.1, κ was set to
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FIG. 10. Effect of increasing surface tension on the departure of
a nucleated bubble. Surface tension coefficient increases from 1.0 on
the left-hand side, though 1.4 and 1.8, up to 1.9 on the right-hand
side.

0.9. Surface tension coefficient equal to 0.1 results in surface
tension that is 10 times lower than the unmodified surface
tension. Clearly, as surface tension is reduced, the shape of
the bubble changes from a teardrop shape to a domelike shape.
According to Fig. 10, higher values of surface tension require
generation of larger bubbles in order for departure from the
heating element to take place.

Surface tension was increased using the MPI-adapted
Huang-Wu method. k1 was adjusted to increase surface ten-
sion according to surface tension coefficient = 1–6k1, while ε

was kept constant by adjusting k2 as required. An observation
can be made that the higher the value of surface tension, the
longer it takes for the bubble to depart the heating element.
The amount of time steps taken to departure versus the surface
tension coefficient is plotted in Fig. 11. The trend exhibits
an observable departure from linearity. Detailed parameters
at bubble departure are listed in Table II.

Surface tension was calculated using the usual method of
measuring the pressure difference inside and outside of liquid

FIG. 11. Amount of time steps taken for the nucleated bubble to
break free from the heating element at different values of surface
tension.

droplets of varying diameters and applying Laplace’s law
to obtain surface tension. In this method, surface tension is
the slope of a line with 1/radius on the x-axis and pressure
difference on the y-axis. The values of bubble diameter, ve-
locity, and density were calculated across the widest point of
the departing bubble. They were used to calculate the Weber
number (We) for the departing bubbles.

The Weber number can be expressed as follows [37]:

We = ρu2d

σ
. (37)

It relates the inertial forces to the surface tension generated
forces [37,38]. The Weber number is commonly used in the
study of droplet and bubble breakup. For example, Unnikr-
ishnan et al. [39] studied droplet splashing on chemically
modified metallic surfaces at high Weber numbers (greater
than 200). Montessori et al. [40] used the entropic LBM
model to simulate droplet collisions at high Weber numbers.
Different Weber number expressions also exist for use in
various correlations, which are used in, for example, entrain-
ment studies [41]. At very high values of the Weber number,
surface tension considerations can be neglected [38]. We = 1
means that inertial and surface tension forces are equally
important. The Weber number can also be used to predict the
degree of surface turbulence, with a Weber number less than
2.0 indicting a lack of surface turbulence [42]. At very high
values of the Weber number, the concept of surface turbulence
becomes obsolete as the flow becomes jetting, spraying, or
atomizing in nature [42]. According to Campbell, the Weber
number has not been used to its full potential in some fields of
research, including casting research [42].

The trend of Weber number versus surface tension coeffi-
cient is plotted in Fig. 12. Higher values of surface tension
result in lower values of the Weber number of the departing
bubble. Around We ≈ 2, bubble deformation from a teardrop
shape is obvious and resembles a dome rather than a teardrop.
At this stage, bubble shape becomes significantly more de-
formable during its buoyancy-driven ascent to the surface than
at lower Weber numbers.

E. Achievement of lower reduced temperatures

In this subsection, the methods of achieving lower reduced
temperatures are investigated using the pseudopotential ther-
mal models. First, a method of carrying out thermal simula-
tions using the piecewise-linear EOS is described. Secondly,
the stable envelopes of reduced temperatures are presented.

1. Thermal piecewise-linear EOS model

A method of carrying out thermal simulations using the
piecewise-linear EOS is presented here. It is clear that there
are no temperature terms in the original piecewise-linear EOS
[25]:

pEOS =
⎧⎨
⎩

ρθV if ρ � ρ1,

ρ1θV + (ρ − ρ1)θM if ρ1 < ρ �ρ2,

ρ1θV + (ρ2 − ρ1)θM + (ρ − ρ2)θL if ρ > ρ2.

(38)
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TABLE II. Data at bubble departure used to calculate the Weber number (We).

Surface tension coefficient Surface tension Departure time Departure diameter Velocity Density We

0.1 0.00701 4700 60.54 0.0207 0.4817 1.7833
0.2 0.01402 5900 60.93 0.0079 0.5017 0.136
0.6 0.04206 6800 48.73 0.017 0.5369 0.179
1 0.0701 9800 42.81 0.0144 0.5708 0.0724
1.4 0.09814 16500 49.61 0.0107 0.5162 0.0299
1.8 0.12618 22000 59.6 0.0089 0.5142 0.0192
1.9 0.13319 23100 61.65 0.0087 0.5135 0.0178

Temperature was introduced into the model by making the spinodal points temperature-dependent:

pEOS =
⎧⎨
⎩

ρθV , if ρ � ρ1(T ),
ρ1(T )θV + (ρ − ρ1(T ))θM, if ρ1(T ) < ρ � ρ2(T ),
ρ1(T )θV + (ρ2(T ) − ρ1(T ))θM + (ρ − ρ2(T ))θL if ρ > ρ2(T ).

(39)

The spinodal points were calculated at a number of reduced
temperatures for the Peng-Robinson EOS with the piecewise-
linear EOS prescribing pressure slopes in each phase. The
parameters were chosen in order to allow comparison with the
YS and MPI thermal models which use the Peng-Robinson
EOS directly. The spinodal points obtained are listed in
Table III.

The spinodal points were plotted, and polynomial equa-
tions were used to estimate the trends in a number of sections
of the reduced temperature range. The polynomial equations
were then used in the thermal model to calculate the spinodal
points at temperatures within the temperature range under
investigation:

ρ1(Tr = 1.0 − 0.9) = 19849T 2 − 3935.9T + 195.7, (40)

ρ1(Tr = 0.9 − 0.8) = 1571.4T 2 − 256.91T + 10.652,

(41)

ρ1(Tr = 0.8 − 0.6)

= 10138T 3 − 1921.1T 2 + 123.48T − 2.6842, (42)

FIG. 12. Semi-log trend of the Weber number of the departing
bubbles at different values of the surface tension coefficient.

ρ2(Tr = 1.0 − 0.9) = −21441T 2 + 4162.8T − 196.16,

(43)

ρ2(Tr = 0.9 − 0.8) = −2465T 2 + 341.82T − 3.8995,

(44)

ρ2(Tr = 0.8 − 0.6)

= −16225T 3 + 2771.6T 2 − 205.9T + 14.802. (45)

Table IV compares the values of spinodal points obtained
using the polynomial equations with the values calculated
using the mechanical and chemical equilibrium equations.

Droplet evaporation simulations were carried out in order
to compare the performance of our piecewise-linear thermal
model with the YS and MPI thermal models. The parameters
in the Peng-Robinson equation of state were set to a = 3/49,
b = 2/21, R = 1, and the acentric parameter was equal to
0.344 (the acentric parameter value for water). MPI was
implemented using the adapted Li-Luo forcing method with
εForcing, j set to 0.89 times the value of εEOS, j . The YS method
was implemented using the Huang-Wu forcing method with k1

set to 0.0 and k2 set to −0.2188. The piecewise-linear method

TABLE III. Spinodal points calculated at a number of reduced
temperatures for the Peng-Robinson EOS with a = 3/49, b = 2/21,
R = 1, and acentric factor equal to 0.344. In the piecewise-linear
EOS, �v was set to 0.213 33, θL to 0.333 33, and θM to −0.003 33.

Tr T ρ1 ρ2

1 0.109378 2.657309 2.657309
0.95 0.103909 1.03 4.9009
0.9 0.09844 0.59 5.861942
0.85 0.092972 0.35 6.572979
0.8 0.087503 0.204 7.136564
0.75 0.082034 0.114 7.60679
0.7 0.076565 0.059 8.002541
0.65 0.071096 0.0275 8.343035
0.6 0.065627 0.0111 8.640901
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TABLE IV. Comparison of the spinodal points obtained from the polynomial equations with the spinodal points calculated using the
mechanical and chemical equilibrium equations.

Tr ρ1 polynomial ρ1 polynomial/ ρ1 ρ2 polynomial ρ2 polynomial/ ρ2

1 2.6637 1.0024 2.6482 0.9966
0.95 1.0359 1.0057 4.8921 0.9982
0.9 0.5894 0.9989 5.8623 1.0001
0.85 0.3494 0.9983 6.5733 1.0000
0.8 0.2036 0.9980 7.1369 1.0000
0.75 0.1139 0.9990 7.6058 0.9999
0.7 0.0585 0.9916 8.0025 1.0000
0.65 0.0275 1.0001 8.3421 0.9999
0.6 0.0109 0.9844 8.6404 0.9999

was implemented using the Huang-Wu forcing method with
k1 set to 0.0 and k2 set to −0.2288 at a reduced temperature
equal to 0.86. The value of k2 parameter was changed to −0.15
for simulations with the thermal piecewise-linear method at a
reduced temperature of 0.8. Figure 13 shows the evaporation
rates for the different hybrid models at a reduced temper-
ature equal to 0.86, and Fig. 14 illustrates the evaporation
rates of the different DDF models at a reduced temperature
set to 0.8. It is clear that the piecewise-linear models with
temperature-dependent spinodal points produce the highest
rates of evaporation. The evaporation lines obtained using the
piecewise-linear models are also the least straight, which is a
negative factor for the model.

2. Envelope of stable reduced temperatures

Now that a piecewise-linear thermal model has been
presented, it is possible to investigate reduced temperature

FIG. 13. Comparison of the evaporation rates of different models
at a reduced temperature of 0.86. Reference [33] data included for
comparison. D0 was set to 60 lattice units.

simulation capabilities of the three pseudopotential-based
thermal models. First of all, in order to facilitate discussion of
the temperature-lowering capabilities of the pseudopotential-
based models, any differences between the hybrid and modi-
fied temperature DDF models should be highlighted. Accord-
ing to Table V, DDF models are more stable than hybrid mod-
els. The simulations were carried out as droplet evaporation
cases with the superheat applied being greater than the liquid
saturation temperature by 0.14 times the critical temperature
(i.e., superheat = Tsat + 0.14Tc). Hence, it can be suggested
that DDF models are more suitable for the investigation of the
lowest achievable reduced temperatures.

Table VI compares the reduced temperature-lowering ca-
pabilities of the YS thermal DDF model, the MPI thermal
DDF model, and the piecewise-linear thermal DDF model.
Again, the simulations were carried out for droplet evapora-
tion with the superheat greater than the saturation temperature

FIG. 14. Comparison of the evaporation rates of different mod-
els. The reduced temperature was equal to 0.8, and D0 was equal to
60 lattice units.
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TABLE V. Temperature reduction stability results obtained using
hybrid and DDF models. Simulations were carried out using the
Peng-Robinson EOS with a = 3/49, b = 2/21, R = 1, and acentric
factor = 0.344.

YS thermal YS thermal MPI thermal MPI thermal
Tr DDF hybrid DDF hybrid

0.86 Stable Stable Stable Stable
0.8 Stable Unstable Stable Unstable

by 0.14Tc. YS and piecewise-linear models achieved the same
reduced temperature of 0.8, while the MPI thermal model was
able to achieve a reduced temperature of 0.78. This suggests
that MPI thermal models are more suitable for carrying out
simulations whose purpose is to investigate thermal effects at
low reduced temperatures.

Clearly, thermal models have problems in carrying out
simulations at low reduced temperatures. The simulations
discussed above were carried out using the Peng-Robinson
equation of state with a set to 3/49, b to 2/21, R to 1, and
the acentric factor set to the value for water, i.e., 0.344. The
usual strategy for improving the stability of simulations is to
increase interfacial thickness. In Fig. 15 , it can be observed
that the simulation carried out at a reduced temperature of
0.78 with a = 3/49 and b = 2/21 is on the verge of the stable
simulation envelope. The sign that the simulation is close to
instability manifests itself in the fluctuations of droplet diam-
eter around 13 000 and 50 000 time steps. Therefore, in order
to improve stability and achieve lower reduced temperatures,
an attempt can be made to increase the interfacial thickness.
This can be achieved by lowering the value of the a parameter
in the cubic EOS, as originally demonstrated by Li et al.
[29]. However, this strategy offers only limited success in

TABLE VI. Temperature reduction stability results for the three
different pseudopotential-based thermal models combined with
DDF. Simulations were carried out using the Peng-Robinson EOS
with a = 3/49, b = 2/21, R = 1, and acentric factor = 0.344.

Reduced temperature YS thermal MPI thermal Piecewise thermal

0.86 Stable Stable Stable
0.8 Stable Stable Stable
0.78 Unstable Stable Unstable
0.76 Unstable Unstable Unstable

achieving lower reduced temperatures in thermal simulations.
In Fig. 15 it can be seen that increasing interfacial thickness
allows us to lower the achievable reduced temperature down
to 0.76. To achieve even lower reduced temperatures, the
b parameter in the cubic EOS also has to be decreased.
Coexistence densities are not dependent on the a parameter
in the Peng-Robinson and Carnahan-Starling equations of
state. However, they are dependent on the b parameter, which
means that the coexistence densities have to be recalculated
each time the b parameter is adjusted. Adjusting the values
of both parameters in the Peng-Robinson EOS allows us to
achieve stable droplet evaporation simulations at Tr = 0.6.
As depicted in Fig. 15, the rate of evaporation decreases at
a constant superheat applied to the droplet, as the reduced
temperature is lowered. Even as the superheat is increased,
the rate of evaporation is not a straight line at high den-
sity ratios. In the early stages of evaporation simulations
at Tr = 0.6, the droplet diameter even exceeds the initial
diameter. This indicates that it is difficult to achieve good ac-
curacy at lower reduced temperatures, even if the simulations
are stable.

Figure 16 examines the effects of changing the a and b
parameters in the Peng-Robinson equation of state on the

FIG. 15. Results of droplet evaporation simulations at a range of reduced temperatures. Simulations at lower reduced temperatures were
made possible by lowering of the a and b parameters in the Peng-Robinson EOS. As in the previous cases, D0 = 60.
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FIG. 16. Details of the effect of adjusting the Peng-Robinson EOS parameters on droplet evaporation at Tr = 0.6 with D0 = 60.

rate of evaporation of a droplet when the thermal MPI DDF
model is applied at Tr = 0.6. The main problem encountered
involves the rate of evaporation not conforming to the D2-law.
Increasing interfacial thickness can have beneficial effects on
the rate of evaporation. For example, at a constant value of
b equal to 1/168, the rate of evaporation improved as a was
decreased from 1/1568 to 1/3136 and then again as it was
decreased further to 1/6272. The best results were achieved
when a was equal to 1/6272 and b was equal to 1/168.
Lowering the value of b to 1/336 while keeping a at 1/6272
did not improve the results obtained. Lowering both a and b
parameters even further from those identified as optimal (i.e.,
from a = 1/6272, b = 1/168) again did not improve the rate
of evaporation.

FIG. 17. The effect of increasing bulk viscosity as a multiple of
kinematic viscosity on the rate of droplet evaporation. Comparison
to data in Ref. [33]. The initial droplet diameter (D0) was 60 lattice
units.

F. Effects of MRT and forcing scheme parameters
on droplet evaporation

In discussions of thermal models in the literature, some
material parameters are not mentioned. For example, Li et al.
[16] and Li et al. [33] employed the MRT collision operator
with methods of adjusting thermodynamic consistency, but
they did not mention the settings of the MRT relaxation
rates or of the ε parameter for adjusting thermodynamic
consistency in the forcing scheme. These parameters have
an effect on the rate of evaporation and could affect the

FIG. 18. The influence of modifying ε in the Huang-Wu scheme
[36] for the adjustment of thermodynamic consistency. k1 was set to
0 in order to avoid modifying surface tension, and k2 was varied in
order to change the value of ε. Evaporation rates are compared to
data in Ref. [33] using the same initial droplet diameter of 60 lattice
units.
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slope and any deviation from linearity of the D2 plots. They
are briefly explored in Figs. 17 and 18. It can be seen in
Fig. 17 that increasing the value of bulk viscosity decreases
the rate of evaporation. Decreasing ε has an effect on the
coexistence densities, and it slows down the reduction in the
droplet’s diameter, as depicted in Fig. 18. The effects of these
parameters should be kept in mind when comparing different
models.

V. CONCLUSIONS

The task set out in this work of developing MPI [3,4]
into a simulation tool capable of thermal simulations was
achieved. MPI’s characteristics, which make it an interesting
model, include an increased number of tuneable parame-
ters compared to other pseudopotential models. The higher
number of tuneable parameters can grant modelers greater
control over simulations. MPI was combined with the MRT
[27] collision operator using an adapted version of Li-Luo’s
[29] forcing scheme. A combination of multiphase models
with collision operators more advanced than the BGK [28]
collision operator is advisable for challenging applications.
A method of approaching thermodynamic consistency using
MPI was proposed here. Where required, MPI models can be
tuned to approach thermodynamic consistency by splitting the
ε j parameter into two parts, i.e., εEOS, j for use in enforcing
the equation of state in the calculations of interparticle inter-
actions, and εForcing, j for use in the forcing scheme adjustment
of thermodynamic consistency.

The MPI interparticle force expression was modified from
the isothermal expression to an expression that includes
thermal effects at the local and neighboring sites and is

suitable for thermal cases. The MPI model was successfully
combined with Li et.al.’s DDF thermal model [16] and Li
et al.’s hybrid thermal model [15]. MPI thermal models
correctly simulate droplet evaporation and obey the D2-law
[18] well. The droplet evaporation rates obtained using MPI
compare favorably compared to droplet evaporation rates
produced using YS-based [30] or piecewise linear-based [25]
pseudopotential thermal models. MPI was also combined
with Huang-Wu’s [36] and Li-Luo’s [35] methods of surface
tension adjustment. Surface tension was successfully modified
in bubble nucleation simulations during nucleate pool boiling.
Bubble shape varied from teardrop to dome or mushroom
shapes.

It was also found in this work that MPI thermal models
are comparatively better-suited to thermal simulations at low
reduced temperatures. Thermal simulations at high density
ratios are challenging for thermal models. Simulations of
droplet evaporation were carried out at a reduced temperature
of 0.6 by lowering the a and b parameters in the Peng-
Robinson equation of state. The best results were obtained
with a = 1/6272 and b = 1/168. During nucleate pool boil-
ing simulations, bubble departure from the heating element
has not been achieved at Tr = 0.6.
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