View metadata, citation and similar papers at core.ac.uk

FEATURES

CARBON CAPTURE AND STORAGE:

MAKING FOSSIL FUELS GREAT AGAIN?

Berend Smit¹ and Susana Garcia² – DOI: https://doi.org/10.1051/epn/2020203

¹ Laboratory of molecular simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland

² Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK

At present, Carbon Capture and Storage, in which CO_2 is captured from flue gasses and stored in geological formations, is one of the technologies to reduce CO_2 emissions associated with the use of fossil fuels. Are there some good arguments to continue to invest in fossil fuels, a technology of yesterday?

▲ The world's ever-expanding CO₂ emissions (credit: Luke Robus and Emmet Norris)

he best way to sequester carbon is to leave all fossil fuels in the ground. A simple solution, and as the price of renewables has dropped significantly, a solution that seems to be almost within reach. However, globally, last year more CO₂ was emitted in the atmosphere than ever before (Fig. 1), which suggests that we have many years to go before our energy production is completely renewable. In the meantime, storage of CO₂ in geological formations seems attractive. The technology of Carbon Capture and Storage (CCS) involves three steps: the capture of CO₂ from flue gasses, the compression and transport of CO₂, and the injection in geological formations [1][2]. The different technologies that are used in each of those steps are not new, as in a different context they are routinely used in our current economy.

Carbon Capture

Carbon capture technology is based on the natural gas sweetening process and uses amine solutions to capture the $CO_2[3]$. This technology can be easily adopted to separate CO₂ from flue gasses. However, the amine-based capture technology is not cheap. Given the volumes of flue gasses, capture plants must be enormous and require a capital investment of about the same amount as the one for the original power plant. In addition, once the CO2 is captured in the amine solution, the solution must be regenerated by removing the CO₂, which requires the redirecting of steam from the power plant. This steam loss together with the work required for the subsequent CO₂ compression can give a loss of efficiency of a power plant of about 30%. Therefore, reducing the costs of the capture process is the main driver for the research in that field. Hence, research has been mainly focused on finding better amine solutions and improvements in the process. However, because of the oxygen content in the flue gas by which amines tend to oxidise and thermal degradation, the amines must be replaced over time and clean-up of the waste stream is necessary. Therefore, there are considerable research efforts to develop alternative technologies to amine-based ones [4]. These include different separation technologies such as membranes, solid adsorbents, or chemical looping.

CO₂ transport and injection in geological formations

Transport and injection of CO₂ in geological formations is routinely carried out for enhanced oil recovery. The fact that the major oil companies know how to transport and inject CO2 in geological formations makes CCS ready to be employed on a very short timescale. The idea to use geologically sequestered CO2 to even produce more fossil fuels does not sound like a sensible solution to reduce CO₂ emissions. At present there are some projects that use the more expensive, anthropogenic CO₂ in which CO₂ is injected in such a way that a maximum amount of CO₂ remains in the oil production field. In such projects the CO₂ emissions per unit oil is (slightly) less than oil production without enhanced oil recovery [5]. But more importantly, this is one of the few CCS-related technologies that are economically viable without a carbon tax or other regulation to limit CO2 emissions. Therefore, the fact that the use of CO₂ in enhanced oil recovery offsets the costs makes the process one of the few large-scale demonstration projects to further develop the technology. Alternatively, research is also being carried out into the feasibility to sequester CO_2 in the oceans [6].

Pilot projects for CO₂ injection

In addition to enhanced oil recovery, there are a few pilot and demonstration projects in which CO₂ is injected in geological formations for the sole purpose of permanently sequester the CO₂. The projects have been successful from a technical perspective, yet the public perception of CO_2 storage in geologic formations is focused on the perceived risks. Therefore, most of the research related to geological storage focusses on obtaining such a high level of understanding of the behaviour of CO₂ injected in these geological formations that we can guarantee that the CO₂ is permanently sequestered. Elementary thermodynamics tells us that CO₂ is not the most stable form of carbon; over time the carbon in CO2 ends up in carbonate minerals such as limestone (CaCO₃). Therefore, eventually the injected CO2 will be converted to different carbonate forms, but this takes place over time scales of more than tens of thousands of years [7]. These pilot and demonstration projects provide essential data to validate the predictions of the longterm behaviour of the injected CO₂. Unfortunately, most of the large-scale injection field projects, which were so essential to further build the confidence of the public in the long-term CO₂ storage, have been put on hold or delayed.

CO₂ utilisation

One can often hear the argument, why do we sequester the CO₂ in geological formations? Would it not make much more sense to recycle the CO₂? Here, we have a problem of scale. The amount of CO₂ we produce by power generation is gigantic. If we would compare it with the top 50 of all chemicals produced by the chemical industry, CO₂ would be number one, with a production 10 times larger than this top 50 combined! [8]. We simply produce too much CO2 that if we would convert it into the most beautiful and used product one could imagine, it would simply saturate any conceivable market. One can envision to convert the CO2 back into a fuel. Indeed, there are days in which there is an excess of solar energy and converting CO₂ into a fuel is one of the many ways to store energy. However, if the source of the CO₂ is the burning of fossil fuels one has to be careful. One can recycle CO₂ as many times as one likes, but eventually this CO2 molecule needs to be sequestered; for every fossil fuel carbon atom we take out of the ground we need to put one CO₂ molecule back, otherwise it will eventually end up in the atmosphere.

Direct Air Capture of CO₂

As 40% of the emitted CO_2 will stay 500-1000 years in the atmosphere, CO_2 emissions have much more in common with nuclear waste than we might think; once generated we have to live with the consequences for a very long time. This long lifetime of CO_2 in the atmosphere combined with our inaction to address CO_2 emissions makes it most likely that we will overshoot the CO_2 levels associated with the 1.5 and 2 °C increase in global temperatures. If this happens, the only option we have is to reduce CO_2 levels by capturing CO_2 directly from the air [9]. Basic thermodynamics tells us that the lower the CO_2 concentration the more energy is required for the capture process. Hence, if CCS already looks expensive, allowing CO_2 molecules to escape in the atmosphere and worrying about it later, can be an even more expensive solution.

Outlook

We will have to accept the fact that there will be a price on carbon which will be so high that we need to find solutions for any source of carbon. Even if power generation

<FIG 1: Global
CO2 emissions per
country (Source:
IEA World Energy
Balances 2019,
https://www.iea.org/
data-and-statistics)</pre>

is completely decarbonised, there are still many sources of CO₂. This implies that we will have to replace fossil fuels as the source of carbon by CO₂ for the chemical industry [10]. This can be done by capturing CO_2 from, for example, waste incineration or the production of biogas. We also need to capture the CO₂ from many industrial sources, including the production of cement and steel. We need to ensure that fossil fuels are replaced by synthetic fuels by capturing CO_2 from the air or any other source [11] (Fig. 2), and converting it to fuels. All these require a complete rethinking of the chemical industry. In such a world, there are many small and large local sources of CO2 and many routes to convert CO₂. The research we are carrying out in this vision towards achieving zero anthropogenic CO₂ emissions, is to find novel materials that are tailor-made for all possible different types of CO₂ emitting processes. Our research [12] combines state of the art computational methods in which we screen millions of possible materials for which we predict the performance before a material is even synthesized [13]. The ranking of these materials will depend on a performance metric, which is related to an optimal process design for a given source and target of CO₂.

Conclusions

We can all agree that the best way to permanently sequester carbon is to leave all fossil fuels in the ground, but we also have to face the fact that there are large uncertainties when or even if this will happen. The urgency to reduce CO_2 emissions now cannot not be stressed enough. One may need to be pragmatic, energy is a too important factor in our economy to be ignored. The fossil fuel industry is still the major player. Large-scale carbon capture combined with geological storage is a viable technology that allows us to significantly reduce CO_2 levels. From a scientific point of view, providing a solution that does not remove the root cause of the problem is not great. That will be difficult to accept for those who feel one should not invest in technologies we should be moving away from. One does need to keep in mind that reducing CO_2 levels

► FIG 2: A sustainable way to replace fossil fuels is to capture CO₂ from the air and by using renewable energy to convert it into synthetic fuels using an efficient catalyst (figure adopted from Tan and Maroto-Valer).

is the most important challenge of our generation, and making the fossil fuel industry part of the solution goes against all logic. However, the argument is not about logic but about the urgent need to do something now, and for that we need all the help we can get.

About the Authors

Berend Smit (berend.smit@epfl) is Professor of Chemical Engineering at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland and Adjunct Professor at UC Berkeley. His research focusses on the computational

discovery of materials for energy related applications.

Susana Garcia (S.Garcia@hw.ac.uk) is Associate Professor of Chemical Engineering and Associate Director in Carbon Capture and Storage at the Research Centre for Carbon Solutions (RCCS) at Heriot-Watt University. Her

interests include the development of sorbents-based processes for CO_2 capture; CO_2 storage by different trapping mechanisms; and CO_2 utilization.

Acknowledgements

The authors are supported by the PrISMa project (No 299659) that is funded through the ACT Programme (Accelerating CCS Technologies, Horizon 2020 Project No 294766), and it receives financial contributions from BEIS, NERC and EPSRC (UK), RCN (Norway), SFOE (Switzerland) and US-DOE (USA).

References

- BP, BP Statistical Review of World Energy Statistical Review of World, 2019. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
- [2] B. Smit *et al.*, Introduction to Carbon Capture and Sequestration. (Imperial College Press, London, 2014).
- [3] D.Y.C. Leung et al., Renew Sust Energ Rev 39, 426 (2014).
- [4] G. T. Rochelle, Science 325, 1652 (2009).
- [5] J. D. Figueroa et al., Int. J. Greenhouse Gas Control 2, 9 (2008).
- [6] V. Núñez-López and E. Moskal, Frontiers in Climate 1 (2019).
- [7] P. Renforth and G. Henderson, *Reviews of Geophysics* 55, 636 (2017).
- [8] S. M. Benson and D. R. Cole, *Elements* 4, 325 (2008).
- [9] A. S. Bhown and B. C. Freeman, Environ Sci Technol 45, 8624 (2011).
- [10] C. B. Field and K. J. Mach, Science 356, 706 (2017).
- [11] B. Smit et al., Frontiers in Energy Research 2, 55 (2014).
- [12] J. Z. Y. Tan et al., ChemSusChem 12, 5246 (2019).
- [13] Process-Informed design of tailor-made Sorbent Materials for energy efficient carbon capture (PrISMa) (2020) <u>https://</u> prisma.hw.ac.uk/
- [14] P. G. Boyd et al., Nature 576, 253 (2019).