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Diffusion in crowded fluids, e.g. in the cytoplasm of living cells, has

frequently been reported to show anomalous characteristics (so-

called ‘subdiffusion’). Several random walk models have been

proposed to explain these observations, yet so far an experimentally

supported decision in favor of one of these models has been lacking.

Here, we show that experimentally obtained trajectories in a proto-

typical crowded fluid show an asphericity that is most consistent

with the predictions of fractional Brownian motion, i.e. an anti-

correlated, anti-persistent generalization of normal Brownian

motion that is related to the fluid’s viscoelasticity.
Macromolecular crowding, i.e. a total concentration of a variety of

macromolecules up to 400 mg ml�1, is a common phenomenon in

intracellular fluids.1 Crowding can have a considerable impact on

(bio)chemical reactions,2 hence challenging insights derived from

biochemical assays in dilute aqueous solutions. The phosphorylation

pattern of the mitogen-activated protein kinase (MAPK), for

example, has been shown to vary greatly with the degree of cyto-

plasmic crowding:3 In dilute solutions, MAPK was twice phosphor-

ylated by its kinase in a distributive manner, whereas adding artificial

crowding agents resulted in a processive phosphorylation and hence

a more efficient activation of MAPK. Recently, a theoretical expla-

nation of these results has been given in terms of crowding-induced

anomalous diffusion.4 Indeed, crowding is known to strongly alter

the diffusional mobility of macromolecules.5 Apart from a mere

reduction of the diffusion coefficient, i.e. an increased viscosity of the

fluid, anomalous diffusion has also been frequently observed in

crowded fluids in vivo6–10 and in vitro.11–15 Here, the mean square

displacement (MSD) of a diffusing particle was shown to scale over

several decades as hr(t)2i � ta with a < 1 (‘subdiffusion’).

In spite of the frequent observation of subdiffusion, even in fairly

unstructured fluids in vitro, an experimentally supported and unam-

biguous explanation of the effect in terms of a random walk model

has remained elusive. So far, three types of random walks have been

considered as an explanation of crowding-induced subdiffusion: (1)

Obstructed diffusion (OD), i.e. the motion of a tracer particle in
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a maze of immobile obstacles,16 (2) fractional Brownian motion

(FBM) due to the viscoelasticity of the crowded fluid,15 and (3)

a continuous time random walk (CTRW) in which the diffusing

tracer takes power-law distributed rests between periods of free

diffusion. The CTRWmodel is special since it shows weak ergodicity

breaking17,18 whereas OD and FBM are ergodic random processes

with stationary increments. Recent experimental data have indicated

that CTRW may be less well suited to explain crowding-induced

subdiffusion15,19 at least on short and intermediate time scales.20

The main problem in relating experimental data to the above

models is a lack of detailed information on the diffusion process:

several techniques, e.g. fluorescence correlation spectroscopy, only

report the MSD and leave all higher moments of the diffusion

propagator undetermined. Single-particle tracking (SPT) techniques

allow one to record individual trajectories and hence can overcome

this limitation.21,22 However, precise position determination in SPT

requires the collection of many photons of the moving tracer which

sets limitations to the temporal resolution and the overall length of

the recorded trajectory (due to bleaching of the dye). Yet, an

unambiguous deciphering of the random walk model from fairly

short SPT trajectories, often accompanied by an unfavorable spatial

and temporal resolution, is challenging.

Here, we have utilized a fast and precise single-particle tracking

technique to record particle trajectories with a length of 105 positions

and a spatio-temporal resolution of 10nm and 4ms. From trajectories

in prototypical crowded and purely viscous fluids, we have deter-

mined the time- and ensemble-averagedMSDof the diffusing particle

as well as the random walk’s asphericity. As a result, we have found

that a transient, yet long-lasting subdiffusion emerged in a crowded

but not in a purely viscous fluid. The anomaly was associated with an

ergodic mode of motion as evidenced by a recently introduced

ergodicty breaking parameter. Comparing the random walks’

asphericity with those predicted by computer simulations of normal

Brownian motion, FBM, CTRW, and OD, we have found that our

experimental data in crowded fluids are best described by the FBM

model. Since FBM is closely related to viscoelasticity, we put forward

the hypothesis that macromolecular crowding equips fluids with

viscoelastic properties that enforce a fractional Brownian motion of

diffusing tracer particles.

Single-particle tracking (SPT) is frequently limited by a poor

temporal and/or spatial resolution as well as fairly short trajectories.

These limitations can be overcome using a tracking technique that

has been developed within the last few years:23–26 A Gaussian focus

circles at high speed around a fluorescent particle with the particle
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 (a) Representative time-averagedMSD, shown asD(t)¼ hr(t)2iT/t
to highlight the asymptotic scaling. Data for sucrose solutions (blue

circles) follows the anticipated scaling for normal diffusion (D(t) ¼
const.). In contrast, data for dextran solutions (red squares) shows

a transient subdiffusion (dashed line,D(t)� 1/t0.2). For t > 1 s a crossover

to the asymptotic scaling (a¼ 1,D(t)¼ const.) is visible. The grey shaded

region indicates the temporal window in which the curves were fitted to

extract the anomaly a. (b) Anomaly values a for each trajectory as

obtained from fitting the time-averaged MSD in the indicated time

window. A clear separation between a sucrose solution (blue circles,

hai ¼ 0.98) and a crowded dextran solution (red squares, hai ¼ 0.82) is

evident. (c) The ergodicity breaking parameter hEi [eqn (2)] of all

trajectories was very small, indicating ergodicity.
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located at the position of the steepest gradient of the excitation

intensity. Taking a diffusion step to escape this position is compen-

sated by moving the sample stage via a negative feedback loop.

Hence, the two-dimensional center-of-mass motion can be tracked

with a high spatial and temporal resolution.

Using this approach (see the ESI† for the schematic setup and

technical details), we were able to track fluorescent beads (diameter

50nm) for up to ten minutes with a temporal resolution of Dt¼ 4 ms

and a spatial accuracy of Dr ¼ 10 nm. We have tracked particles in

two prototypical fluids: (i) in a purely viscous solution obtained by

mixing 60% sucrose (per weight) into water, and (ii) in a crowded

fluid, where 30% dextran (500 kDa) was dissolved in water. For the

latter, anomalous diffusion has already been reported previously.6,12

From a slightly higher number of acquired trajectories, we have

retained for each fluid only those 21 SPT trajectories for further

analysis that contained 4.5� 104–1.5� 105 positions without blanks,

i.e. we discarded those few trajectories in which a weak emission

signal lead to a transient loss of the tracked bead. The chosen

trajectories did not show any signs of drift. Representative trajectories

for both fluids are shown in the ESI.†

As a first step in the analysis, we calculated for each of the selected

time traces ri h r(t ¼ iDt) the time-averaged MSD,

D
rðtÞ2

E
T
¼ 1

N � k

XN�k

i¼1

ðri � riþkÞ2: (1)

Representative time-averaged MSDs for sucrose and dextran

solutions are shown in Fig. 1a. To highlight the emergence of

a diffusion anomaly, we have divided out the leading order of the

MSD, i.e. we have plotted D(t) ¼ hr(t)2iT/t as a function of t. While

the purely viscous sucrose solution yielded a horizontal line, D(t) ¼
const., a transient power-law decay emerged for the crowded fluid.

From the transient scaling D(t) � 1/t0.2 (obtained within the grey

shaded region), we inferred hr(t)2iT � t0.8 for small and intermediate

time scales. This observation is in quantitative agreement with

previous reports15 on similar probes. Beyond t z 1 s a crossover

towards normal diffusion emerges, i.e. D(t) tends towards a hori-

zontal line. Indeed, this behavior is expected for all of the above

mentioned randomwalkmodels for subdiffusion since adapting them

to a physical sample requires specification of a minimum and

maximum length/time scale.

To determine the anomaly for each trajectory, we restricted the

fitting process to the temporal range 50ms# t# 500ms which is not

affected by some remaining inertia traces of the setup (t < 50 ms; see

discussion in the ESI†) but also does not suffer from the emerging

crossover to normal diffusion at large time scales. The resulting

anomaly values, a, for all trajectories are summarized in Fig. 1b. A

clear separation of the data for the purely viscous sucrose solution

(average: hai ¼ 0.98) and the results for a crowded dextran solution

(average: hai ¼ 0.82) can be seen.

From the observation hr(t)2iT � ta we can already infer that the

CTRW model with its distinct weak ergodicity breaking cannot

describe the experimental data since it predicts17,18 hr(t)2iT� t. Indeed,

even for a truncated CTRWmodel with only a transient scaling p(s)
� s �(1 + a) of the distribution of waiting times one observes hr(t)2iT� t

(cf. ESI†). Hence, even a more realistic adaptation of the CTRW

model appears incompatible with our experimental data.

Next, we calculated for all trajectories an ergodicity parameter17

that vanishes if ergodicity is preserved:
This journal is ª The Royal Society of Chemistry 2012
EðtÞ ¼

D
rðtÞ2

E2

T

� �
E

�
�D

rðtÞ2
E
T

�2

E�D
rðtÞ2

E
T

�2

E

(2)

To this end, we have cut each trajectory into segments ofN¼ 3000

time steps and used these segments for the ensemble averaging h.iE.
As a result, we observed that for all trajectories hEi # 0.03 (Fig. 1c).

Here, the average of E(t) was taken in the same temporal window in

which awas also determined. This result strongly supports the notion

that all trajectories were ergodic. In particular, our data separates well

from the predictions of a non-truncated CTRW model that yields

a lower bound E(a # 0.9) $ 0.1.17 However, for the truncated

CTRW model (cf. ESI†) we also obtained E z 0.03 on the experi-

mentally relevant time scale.We attribute this effect to the truncation

of p(s) which narrows the distribution of apparent diffusion constants
in hr(t)2iT.17,18 Hence, based only on E, a clear-cut decision that our

experimental data is inconsistent with a truncated CTRW model is

not possible.

We next inspected the trajectories’ shape to gain deeper insights

into the underlying type of random walk. The asphericity provides

a simple yet powerful parameter to quantify the shape of fractal

objects like random walks.27 Diagonalizing the random walk’s

gyration tensor Tij (cf. ESI†) yields the principal axes of gyration and
Soft Matter, 2012, 8, 4886–4889 | 4887
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Fig. 2 (a) Asphericity A as a function of the anomaly a (data for sucrose

and dextran shown as blue circles and red squares, respectively). Mean

values (� standard deviation) are indicated by cross hairs. Dashed lines

indicate simulation results for OD and FBM. Data for sucrose solutions

are in very good agreement with the asymptotic value A ¼ 4/7 for a ¼ 1

(dash-dotted mark), whereas data for dextran compare favorably to the

predictions of FBM. (b) Elastic (red) and viscous (grey) moduli, G0 and
G0 0, as obtained from the ensemble of trajectories in a crowded dextran

solution. Shown are the minimum and maximum values for G0 and G0 0 at
each frequency u, i.e. all trajectories lie within the indicated bands. For

low frequencies the fluid is almost completely viscous whereas for u >

100 s�1, a clear viscoelastic behavior emerges.
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the corresponding eigenvalues, i.e. the squared principal radii of

gyration, R2
i. Restricting ourselves to two dimensions (the experi-

mental trajectories are two-dimensional objects), the asphericity is

defined as

A ¼ h(R2
1 � R2

2)
2i/h(R2

1 + R2
2)

2i. (3)

We note that A involves an averaging over the ensemble of walks

(indicated by h.i). The limiting cases A ¼ 0 and A ¼ 1 resemble

a perfect sphere and a simple rod, respectively. For Brownianmotion

in two dimensions an exact value is available:27 A¼ 4/7. Hence, even

an individual trajectory of a two-dimensional Brownian random

walk differs drastically from a circular shape at each instant of time.

The time-averaged orientation of the longest principal axis of gyra-

tion, however, is isotropic. Moreover, the isotropy of diffusion is also

recovered in an ensemble of particles due to the uncorrelated random

orientations of the gyration axes.

We have determined via simulations the values ofA for FBM,OD,

and a truncated CTRW at varying anomaly values a (see ESI† for

details). Our simulation results revealed that for 0.5# a# 1, which is

the experimentally relevant regime, the asphericity changes almost

linearly with a, i.e. A ¼ m1a + b1. For OD we found m1 ¼ 0.120 �
0.006, b1 ¼ 0.458 � 0.004 whereas for FBM we obtained m1 ¼
0.638� 0.009,b1¼�0.057� 0.006. For the truncated CTRWmodel

we found A z 4/7 irrespective of a (cf. ESI†). This result can be

rationalized by bearing in mind that a CTRW trajectory at any

instance of time looks similar to the pathof normalBrownianmotion.

To compare our experimental trajectories to these predictions, we

assigned the previously determined anomaly a to each trajectory (cf.

Fig. 1b). Then, we calculated the accompanying asphericity: Since the

anomaly reflects a scaling for short and intermediate times, a consis-

tent estimate of the randomwalk’s asphericitymust relate to the same

time scale. Therefore, each trajectory was cut into sequences of N ¼
3000 time steps of length Dt, and the average over these sub-trajec-

tories yielded the (mean) asphericity [eqn (3)] of the entire trajectory

on the length and time scales during which anomalous diffusion was

observed. As can be seen from Fig. 2a, the cloud of data points for

sucrose solutions overlaps well with the anticipated result for normal

Brownian motion, i.e. the mean of all 21 data points (hai ¼ 0.98 and

hAi ¼ 0.58) agrees quantitatively with the expectation a¼ 1 andA¼
4/7z 0.57.Hence, sucrose solutions indeed feature normal Brownian

trajectories also from the geometric perspective. In dextran solutions,

however, we obtained hai ¼ 0.82 and hAi ¼ 0.46 which is most

consistent with the simulation results for the FBM model that

predicts locally a more spherical shape of the trajectory due to the

anti-persistence of the random walk.

Given that FBM is closely related to the viscoelasticity of non-

Newtonian and crowded fluids,13,28 the emergence of subdiffusion

may be traced back to transient restoring forces on short length and

time scales. It is hence meaningful to translate the SPT trajectories

into the fluid’s complex shear modulus,28 G(u) ¼ G0(u) + iG0 0(u).
Here, the real (imaginary) part ofG(u) represents the elastic (viscous)

modulus of the fluid. Employing a semi-analytical approach, we have

fitted the time-averaged MSD of each trajectory by an empirical

expression w(t)¼ a0t
a + a1t to capture the transient anomaly and the

asymptotic normal diffusion. The resulting fit parameters were then

used to determine the complex shear modulus as described earlier.13

From the ensemble of complex shear moduli for each fluid, we have

determined the minimum and maximum values of G0 and G0 0. As
4888 | Soft Matter, 2012, 8, 4886–4889
expected, sucrose showed a vanishing elastic contributionwhereas the

crowded dextran solution showed a significant viscoelasticity for large

frequencies (Fig. 2b). Since high frequencies are related to small times,

this viscoelastic behavior is intimately linked to the transient sub-

diffusion observed for small and intermediate times. A similar

viscoelastic behavior (related to subdiffusion) has been observed for

the cytoplasm and nucleoplasm of living cells.13,29

In conclusion, we have shown with an advanced SPT approach

that a purely viscous sucrose solution features normal Brownian

motion of tracer particles with an asphericity of the randomwalk that

agrees very well with analytical predictions. In contrast, diffusion in

a crowded dextran solution was anomalous (‘subdiffusion’). Trajec-

tories showed no signs of ergodicity breaking and their asphericity

was in quantitative agreement with predictions of the FBMmodel. In

contrast, obstructed diffusion (i.e., a standard random site percola-

tion model) and CTRW were incompatible with the experimental

data. This result is corroborated by the associated complex shear

modulus: A strong viscoelastic behavior of the crowded dextran

solution was seen at high frequencies as expected due to the relation

of FBM with viscoelastic media.

It is tempting to speculate about the reasons and consequences of

our finding in the context of living matter. Since the degree of
This journal is ª The Royal Society of Chemistry 2012
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cytoplasmic crowding appears to be conserved,29 cells might have

adapted to highly crowded conditions and aim at maintaining this

state (cf. also discussion in ref. 2 and 29). Indeed, a potential benefit of

FBM-like subdiffusion in cells is the increased return probability to

a position in three-dimensional space. In particular, FBMwith a< 2/

3 yields a bulk-filling random walk that can massively increase the

capture probability to a target as compared to normal diffusion.30

Moreover, an enhanced rebinding due to FBM most likely is the

explanation for the recently observed phosphorylation enhancement

ofMAPKunder crowded conditions.3,4As an enhanced recurrence is

a generic feature of FBM-like subdiffusion, we expect that the

behavior of a multitude of biochemical pathways in cells will have to

be revisited and interpreted in light of our findings.
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