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Zusammenfassung 
 
Die flexible Anwendung von Wissen in neuen Situationen im Alltag ist eine notwendige kognitive 
Fähigkeit. Bisherige Studien betonen die zentrale Rolle des Hippocampus beim Lernen und Ver-
knüpfen neuer Informationen mit bereits vorhandenem Wissen. Die funktionelle Integrität des 
Hippocampus ändert sich jedoch im Laufe des Lebens bzw. wird durch neuropsychiatrische   
Erkrankungen häufig beeinflusst. Die betroffenen Personen müssen deswegen adaptive Strate-
gien entwickeln, um behaviorale Ziele weiter zu erreichen. 
Vor diesem Hintergrund befasst sich meine Doktorarbeit mit Adaptationsprozessen im sich entwi-
ckelnden Gehirn und im vollständig entwickelten Gehirn mit einer hippocampalen Dysfunktion. 
Diese Synopsis umfasst dazu drei Studien: (1) zu behavioralen Strategien im sich entwickelnden 
Gehirn, (2) zu behavioralen Strategien im vollständig entwickelten Gehirn nach einer Läsion und 
(3) zu strukturellen Veränderungen im vollständig entwickelten Gehirn nach einer Läsion.  
In Studie 1 lösten die in drei Altersgruppen zusammengestellten Teilnehmer eine Aufgabe, für 
deren Bewältigung Interferenzen (AC) zwischen überlappenden Paaren (AB, BC) gebildet wer-
den mussten. Nach jedem der vier Durchgänge wurden jeweils die inferentiellen Paare (indirek-
ten Trials) und die direkten assoziativen Paare (direkten Trials) in einem Test abgefragt.        
Junge Erwachsene (19-25 Jahre) erzielten bessere Ergebnisse als Teenager (12-13 Jahre) und 
Teenager wiederum erzielten eine signifikant bessere Leistung als Kinder (9-10 Jahre) in beiden 
Trial-Typen. Bezüglich der Reaktionszeiten wurden bei den Kindern größere Unterschiede zwi-
schen indirekten und direkten Trials beobachtet als bei Teenagern und jungen Erwachsenen. 
Weitere Analysen ergaben, dass junge Erwachsene höhere Korrelationen zwischen den korrek-
ten Antworten in direkten und indirekten Trials als Kinder aufwiesen. Dies lässt auf einen alters-
gebundenen Wechsel bei der Integration von Informationen schließen: Kinder führen die inferen-
tiellen Prozesse in der Abrufphase durch, wohingegen junge Erwachsene integrative Repräsenta-
tionen während verschiedener Gedächtnisverarbeitungsstufen formen.  
In Studie 2 untersuchten wir mit derselben assoziativen Aufgabe wie in Studie 1 Patienten mit 
hippocampalen Läsionen und gesunde Kontrollprobanden. Während die Kontrollprobanden bei 
der experimentellen Aufgabe ihre Leistung steigern konnten, sank die Gedächtnisleistung von 
Patienten auf Zufallsniveau. Die Datenanalyse deutete darauf hin, dass die Defizite nicht allein 
Folge eines beeinträchtigten assoziativen Gedächtnisses waren, sondern auf einen zusätzlichen 
hippocampalen Beitrag zur Gedächtnisintegration zurückzuführen waren. Zusätzlich wiesen   
unsere Daten auf kontextuelle Faktoren hin, die diesen Mechanismus modulieren. Die Patienten 
waren in der Lage, ihre behavioralen Ziele zu erreichen, solange sie eine erfolgreiche behaviora-
le Strategie zur Kompensation der hippocampalen Defizite anwendeten.  
In Studie 3 wurden frühe Volumenveränderungen nach einer Resektion des medialen Temporal-
lappens analysiert. Die strukturelle Datenanalyse zeigte einen signifikanten Zuwachs im rechten 
Hippocampus sowie einen Zuwachs der grauen Substanz im medialen präfrontalen Kortex nach 
linksseitiger Resektion. Die Ergebnisse legen nahe, dass eine signifikante plastische Verände-
rung des kontralateralen Hippocampus stattfand – sogar bei Patienten mit einer länger bestehen-
den unilateralen hippocampalen Dysfunktion. Diese Reorganisationsprozesse wurden in weit 
entfernt gelegenen, aber funktionell verbundenen Gehirnarealen beobachtet.  
Zusammenfassend zeigen die Ergebnisse der drei Studien, dass eine hippocampale Dysfunktion 
Adaptationsprozesse sowohl auf der behavioralen als auch auf der strukturellen Ebene auslöst. 
Aus diesem Grund sollten zukünftige Lern- und Rehabilitationsprogramme auf die Förderung 
dieser Prozesse ausgerichtet werden. 
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Abstract  
 
Applying knowledge flexibly to new situations is a cognitive faculty that is necessary in every-
day life. Previous findings emphasise the crucial role the hippocampus plays in learning and    
linking new information with pre-existing knowledge. However, the functional integrity of the    
hippocampus changes over the lifespan and is frequently affected by neuropsychiatric disorders. 
The affected subjects must, therefore, develop adaptive strategies to achieve behavioural goals. 
Against that background, my doctoral thesis deals with adaptation processes in the developing 
brain and in adult brains with a hippocampal dysfunction. This synopsis encompasses three   
studies on: (1) behavioural strategies in the developing brain, (2) behavioural strategies in the 
lesioned fully developed brain, and (3) structural changes in the lesioned fully developed brain.  
In Study 1, participants of three different age groups solved a task for which inferences (AC)  
between overlapping pairs (AB, BC) had to be formed. After each of the four cycles the inferential 
pairs (indirect trials) and the direct associative pairs (direct trials) were assessed in a test.   
Young adults (19-25 years) outperformed teenagers (12-13 years), who for their part outper-
formed children (9-10 years) in both trial types. Additionally, children showed a greater difference 
in the reaction time between indirect and direct trials compared to teenagers and young adults. 
Further analyses revealed that young adults showed a higher correlation between accuracy in 
direct and indirect trials than children. These findings suggest an age-related shift in information 
integration: While children may rely more on making inferences at retrieval, young adults may 
form integrated representations at different memory processing stages.  
In Study 2, patients with hippocampal lesions and healthy control subjects completed the same 
associative task that was used in Study 1. However, across the experimental tasks, the partici-
pants in the control group increased their performance in indirect trials, while the performance of 
patients decreased to the chance level. Analysis suggests that this deficit was not merely a con-
sequence of an impaired associative memory but rather resulted from an additional hippocampal 
contribution to the memory integration. Furthermore, our data indicate that contextual factors alter 
this contribution and that patients may still achieve behavioural goals as long as they use appro-
priate behavioural strategies to compensate for their hippocampal dysfunction.  
In Study 3, we analysed early volumetric changes following medial temporal lobe resection. The 
structural analysis revealed a significant increase of the right hippocampal volume and an in-
crease of grey matter volume in the medial prefrontal cortex, following left-sided resections. 
These results demonstrate that there is significant structural plasticity of the contralateral hippo-
campus, even in patients with a long-standing unilateral hippocampal dysfunction, and that these 
structural reorganisation processes extend to include distant but functionally connected brain 
regions.  
In conclusion, findings from these three studies show that hippocampal dysfunction leads to   
adaptation processes on both the behavioural and the structural level. Therefore, future learning 
and rehabilitative programmes should be directed at boosting these processes. 
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1. Introduction 
 

Traditionally, the hippocampus has mainly been seen as a gateway to memory, and hippo-

campal dysfunction has predominantly been associated with memory impairments. Yet in the 

last decades, research has broadened our understanding of the role of the hippocampus in 

memory, emotion regulation, and other cognitive functions. The extent of deficits after hippo-

campal lesions, however, varies considerably across patients, with some only showing minor 

deficits in cognitive performance. This implies compensatory processes that occur with differ-

ing efficacy in distinct patient groups. In addition, there are differences between children and 

adults in the structure and function of the hippocampus as well as significant changes in 

memory performance during the development that suggest an age-related shift in information 

processing. Against that background, this doctoral thesis deals with adaptation processes in 

the developing brains of children as well as with adaptation processes in the adult brain with 

hippocampal dysfunction. In three experimental studies, I have explored the behavioural and 

structural factors underlying compensation. 

1.1. Anatomy of the Hippocampus  

Due to its distinctive sea-horse shape, the 16th century Bolognese anatomist Giulio Cesare 

Aranzi named this structure of the brain ‘hippocampus’, a term originating from Greek      

mythology (Greek: ἱππόκαμπος) and referring to a creature that was imagined to be half 

horse (Greek: ἵππος) and half sea monster (Greek: κάμπος). Almost 200 years later, 

René-Jacques Croissant de Garengeot coined the term ‘Cornu Ammonis’ for the same struc-

ture. The curved shape of the hippocampus reminded him of the horn of a ram’s head, as 

can be seen in the ancient Egyptian god Amun (Lewis, 1923). Nowadays, the term ‘hippo-

campus’ is generally accepted and applied, while ‘Cornu Ammonis’ has survived in its abbre-

viated form ‘CA’, referring to the subfields of the hippocampus. 

The terms ‘hippocampal formation’ and ‘hippocampus’ are often used as synonyms. 

Yet hippocampal formation usually refers to a group of adjacent cortical structures in the  
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medial temporal lobe (MTL). This group consists of the dentate gyrus, hippocampus, subicu-

lum, presubiculum, parasubiculum, and entorhinal cortex (Per, Morris, Amaral, Bliss, & 

O’Keefe, 2006). Within the temporal lobe, the hippocampus is densely connected with the 

entorhinal cortex, perirhinal cortex, and parahippocampal cortex. These surrounding struc-

tures receive inputs from association areas in the frontal, parietal, temporal, and cingulate 

cortices. In humans, the perirhinal and parahippocampal cortices provide the major input to 

the entorhinal cortex, which then projects to the hippocampus. Although the signal that flows 

through the hippocampus is unidirectional, there are many recurrent connections between 

the entorhinal cortex and all of the hippocampal subdivisions: CA1, CA2, and CA3. The main 

projections from the hippocampus run to the fornix and further to the mammillary bodies and 

to the thalamus (Amaral, 1999; Amaral & Lavenex, 2006; Lavenex & Amaral, 2000). 

 

 

Fig.: Intraventricular hippocampal formation from above showing the anterior (1), middle (2), and posterior (3) 

portions of the hippocampal formation. The fimbrial fornix (f) and the temporal horn of the lateral ventricle (V) can 

be found near the posterior hippocampus. Bars indicate rostral (R), caudal (C), medial (M), and lateral (L) direc-

tions (from Amaral, 1999). 
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1.2. The Role of the Hippocampus for Learning, Memory, and Other Behaviours 

The key role of the hippocampus for declarative, i.e. conscious, memory processes is 

well-investigated. Over the years, numerous studies have demonstrated that the hippo-

campus is crucial for encoding new information (Kee, Teixeira, Wang, & Frankland, 2007; 

Ramírez-Amaya, Balderas, Sandoval, Escobar, & Bermúdez-Rattoni, 2001; Stone et al., 

2011; Tashiro, Makino, & Gage, 2007; Trouche, Bontempi, Roullet, & Rampon, 2009; 

van Praag et al., 2002) and for retrieving memories (Milner, Corkin, & Teuber, 1968; Vargha-

Khadem et al., 1997). Additionally, the hippocampus appears to contribute to the memory 

consolidation (Diekelmann & Born, 2010; Gais et al., 2007; Kreutzmann, Havekes, Abel, & 

Meerlo, 2015; Lahl, Wispel, Willigens, & Pietrowsky, 2008). These processes may occur pre-

dominantly during sleep (Rasch & Born, 2013) and may be related to default mode network 

(DMN) activity (Huo, Li, Wang, Zheng, & Li, 2018; Sestieri, Corbetta, Romani, & Shulman, 

2011). 

Nowadays, the hippocampus is not primarily considered as a long-term repository for memo-

ries. Rather, it is regarded as a structure binding together relations among different elements 

of experience that are represented in cortices outside the hippocampus (Eichenbaum, 2001). 

Furthermore, during the acquisition of new information the hippocampus is involved in inte-

grating new memories to related knowledge, and simultaneously prevents interference with 

similar information (Kesner, Lee, & Gilbert, 2004).  

The hippocampus also maintains pattern separation and pattern completion processes, 

which are involved in the differentiation between similar experiences (Bakker, Kirwan,   

Miller, & Stark, 2008; Gilbert, Kesner, & Lee, 2001; Rolls, 2013). The hippocampus supports 

the formation of new associative memories to facilitate a flexible knowledge system, which 

may be used for decision making in novel and uncertain situations (Eichenbaum, 2001; 

O’Neil et al., 2015; Zeithamova, Schlichting, & Preston, 2012). Additionally, the hippocampus 

contributes to autobiographical memories (Addis, Moscovitch, & McAndrews, 2007;    

Scoville & Milner, 1957), imagination, and thinking about the future (Schacter et al., 2012). 
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The hippocampus also plays a key role in spatial behaviour, including orientation and naviga-

tion (O’Keefe & Nadel, 1978). The hippocampal place cells reflect the topography of envi-

ronmental cues (Eichenbaum, Dudchenko, Wood, Shapiro, & Tanila, 1999; O’Keefe, 1979) 

and represent spatial dimensions (O’Keefe & Burgess, 1996). Furthermore, these cells inter-

act with grid cells, which respond to the location in the environment, and with border cells 

expressing the proximity to geometric borders (Rowland, Roudi, Moser, & Moser, 2016).  

Additionally, the hippocampus is necessary for the use of allocentric representations but not 

for egocentric spatial representations (Banta Lavenex, Amaral, & Lavenex, 2006).  

Although the hippocampus has been in the focus of neuroscience for decades, we are still 

missing a comprehensive theory about its function. For example, the cognitive map theory 

(O’Keefe & Nadel, 1978) focuses on the role of the hippocampus for spatial relations in the 

environment. The relational memory theory (Eichenbaum, 2004), on the other hand, empha-

sises hippocampal activity as critical for relational memory binding. The multiple trace theory 

argues that the hippocampus supports the storage and retrieval of information, while seman-

tic information is represented in the neocortex (Nadel & Moscovitch, 1997; Nadel, 

Samsonovich, Ryan, & Moscovitch, 2000). And a last example: The episodic memory theory 

focuses on human memory processes and stresses the importance of the hippocampus for 

episodic memory but not for semantic memory (Tulving & Markowitsch, 1998). 

While these theories focus on memory processes, they do not address the role of the hippo-

campus for other cognitive functions. For example, recent studies reported that the hippo-

campus supports higher-order perception (Graham, Barense, & Lee, 2010; Lee, Yeung, & 

Barense, 2012; Yonelinas, 2013) and language processing (Duff & Brown-Schmidt, 2012). 

Moreover, the hippocampus influences the awareness and perception of the self (Lu, Li, 

Wang, Song, & Liu, 2018). As part of the limbic system, this structure is also involved in 

stress and emotion regulation (Bannerman et al., 2004; Dong, Swanson, Chen, Fanselow, & 

Toga, 2009; Fanselow & Dong, 2010). 
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The hippocampal structure changes over the lifespan and these structural changes may in-

fluence hippocampus-dependent functions. For example, episodic memory performance 

(Newcombe, Balcomb, Ferrara, Hansen, & Koski, 2014; Sluzenski, Newcombe, & Ottinger, 

2004) and relational flexibility increase gradually during development (Edgin, Spanò,     

Kawa, & Nadel, 2014). In this period, the hippocampus also undergoes structural and     

functional changes (Lavenex & Banta Lavenex, 2013). These developmental changes are 

associated with an increase in the performance of tasks that demand representational flexi-

bility (DeMaster, Coughlin, & Ghetti, 2016; Schlichting, Guarino, Schapiro, Turk-Browne, & 

Preston, 2017).  

The hippocampus-dependent memory functions develop throughout childhood and again 

change significantly during ageing. A growing number of studies has focused on age-related 

memory decline (Ghisletta, Rabbitt, Lunn, & Lindenberger, 2012; Spencer & Raz, 1995) as 

well as on the regional loss of neurons and synapses (Lister & Barnes, 2009).                

However, different memory functions are affected differently by ageing. For example, the 

memory for content shows a smaller age-related decrease compared to the memory for con-

text (Spencer & Raz, 1995). Moreover, creating and retrieving intra-item and inter-item asso-

ciations seem also to be impaired in older adults (Old & Naveh-Benjamin, 2008). Last but not 

least, neuroimaging studies also underline the difference between healthy ageing and patho-

logical processes in old age such as in Alzheimer’s disease (Lister & Barnes, 2009;       

West, 1993).  

1.3. Behavioural Consequences of Hippocampal Dysfunction 

Studies on brains with hippocampal lesions contribute profoundly to understanding the hippo-

campal function. As the hippocampus is vulnerable to a variety of neurological and psychiat-

ric disorders, clinical studies allow assessing its role for human cognitive processes. 

The results of human lesion studies have been highly influential in linking the hippocampal 

structure to cognitive functions. Ever since the first study that identified the hippocampus as 

a crucial structure for memory (Scoville & Milner, 1957), numerous patient studies have con-
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firmed the pivotal role of the hippocampus for declarative memory processes. In particular, 

hippocampal lesions in animals and humans lead to impairments in visuospatial memory and 

orientation, especially when allocentric spatial representations need to be established (Astur, 

Taylor, Mamelak, Philpott, & Sutherland, 2002; Banta Lavenex et al., 2006; Bohbot et al., 

1998). Furthermore, patients with hippocampal damage are unable to learn spatial infor-

mation about new environment but can recall remotely learned spatial memories (Clark & 

Maguire, 2016). 

A number of neurological and psychiatric disorders also affect the hippocampus. For exam-

ple, hippocampal sclerosis is the most common pathology underlying MTL epilepsy (Gates & 

Cruz-Rodriguez, 1990). Hippocampal sclerosis is characterised by an extensive cell loss 

(Blümcke et al., 2000) and atrophy (Düzel et al., 2006), and typically involves significant 

memory impairments (Helmstaedter, 2002). Alzheimer’s disease, which is the most frequent 

form of dementia worldwide (World Health Organization, 2009), is another well-known and 

socially relevant disease resulting from hippocampal pathology. Hippocampal atrophy and 

memory deficits are core symptoms of Alzheimer’s disease and may result in amnesia 

(Halliday, 2017). Hippocampal lesions are also observed in limbic encephalitis and multiple 

sclerosis due to inflammatory responses and immunologically mediated mechanisms 

(Dalmau & Bataller, 2006; Geurts et al., 2007). Recent studies have linked hippocampal  

pathology in these diseases with deficits in long-term memory (Hansen, 2019; Planche et al., 

2017). Pathological hippocampal changes and memory deficits in hippocampus-dependent 

memory tasks have also been observed in chronic stress (Kim, Pellman, & Kim, 2015) as 

well as in disorders such as depression (Sapolsky, 2002) and schizophrenia (Heckers & 

Konradi, 2010; Lieberman et al., 2018). 

1.4. Structural and Functional Plasticity of the Hippocampus in Animal Experiments 

Animal experiments have broadened our understanding of the hippocampus. Altman and 

Das (1965) demonstrated, for the first time, that hippocampal plasticity occurs postnatally in 

the rat dentate gyrus. About 40% of the granule cells in mature 5–10 year-old monkeys are 
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added to the granule cell layer after birth (Jabès, Banta Lavenex, Amaral, & Lavenex, 2010). 

Neurotransmitters, growth factors, hormones, and pharmacological substances modulate the 

hippocampal plasticity (Kempermann, 2011). Interestingly, also external factors like exercise, 

enriched environment, or stress may influence plasticity processes (Kempermann, 2011). 

For example, increased hippocampal neurogenesis due to physical exercise has been linked 

to an enhanced formation of new memories (Creer, Romberg, Saksida, van Praag, & 

Bussey, 2010). Moreover, external factors may have an additive effect: running and enriched 

housing conditions have both been shown to enhance hippocampal neurogenesis, but only 

the mice housed in an enriched environment presented an increased survival rate of new 

hippocampal cells (Curlik & Shors, 2013).  

Hippocampal functions may also be taken over by other brain areas. A previous study 

(Lavenex, Banta Lavenex, & Amaral, 2007) reported that monkeys that had received hippo-

campal lesions early in life presented intact spatial relational learning. Conversely, adult ani-

mals with similar lesions showed impairments in this cognitive domain (Banta Lavenex         

et al., 2006). Further exploration of the functional organisation of the MTL memory system 

after neonatal hippocampal damage revealed that – depending on the presence or absence 

of the hippocampus – different structures support spatial learning (Chareyron, Banta 

Lavenex, Amaral, & Lavenex, 2017). 

1.5. Structural and Functional Plasticity of the Hippocampus in Healthy Humans and 

in Human Patients 

Although there are striking differences in its cytoarchitecture and connectivity across species, 

the hippocampus has a similar appearance and basic structure among all mammals (West, 

1990). Correspondingly, findings from human studies – similarly as in animal studies – also 

suggest the existence of both local hippocampal and extrahippocampal neocortical mecha-

nisms that compensate for hippocampal immaturity and dysfunction. 

The crucial finding came many years after the first demonstration of neurogenesis in animals. 

Eriksson et al. (1998) investigated the brain tissue post-mortem of patients who had suffered 
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from tumours and who had received a marker determining the cell proliferation rates. 

That way, Eriksson and his team showed, for the first time, neurogenesis in the adult human 

hippocampus. Moreover, a study using carbon-14 dating as a parameter for dividing cells     

reported that hippocampal neurogenesis persists throughout adulthood (Spalding et al., 

2013). Only a modest decline in the number of new cells per day was observed during     

ageing (Spalding et al., 2013), and hippocampal neurogenesis seems to continue to some 

extent even in persons of up to an age of 100 years (Knoth et al., 2010). External factors 

such as physical exercise (Fotuhi, Do, & Jack, 2012; Voss, Vivar, Kramer, & van Praag, 

2013), learning (Draganski et al., 2006; Kühn, Gleich, Lorenz, Lindenberger, & Gallinat, 

2014; Maguire et al., 2000; Woollett & Maguire, 2011), and environment (Kempermann, 

2011) have been demonstrated to influence the hippocampal volume. 

Many studies reported a link between the increased hippocampal volume and memory per-

formance in humans. Increased hippocampal volume correlated positively with memory per-

formance (Erickson et al., 2011), even at an old age (Düzel, Van Praag, & Sendtner, 2016). 

Interestingly, volume changes may also serve as a predictor of successful learning (Woollett 

& Maguire, 2011). Moreover, structural hippocampal plasticity was even observed in patients 

suffering from Alzheimer’s disease (Mufson et al., 2015; Rosen, Sugiura, Kramer, Whitfield-

Gabrieli, & Gabrieli, 2011; ten Brinke et al., 2015) and schizophrenia (Pajonk et al., 2010). 

In addition to local hippocampal mechanisms, hippocampal dysfunction may induce compen-

satory processes in extrahippocampal brain regions that operate with distinct efficacy in    

different patient groups. For example, bilateral lesions of the hippocampus in children      

severely affect their episodic memory, while their semantic memory is not affected    

(Vargha-Khadem et al., 1997). Similar lesions in adults, however, affect both memory      

systems (Squire & Zola, 1996). Children who had been operated due to MTL epilepsy re-

gained preoperative memory performance within 12 months after the surgical treatment. 

In contrast, adults, after similar resection, showed a reduced verbal memory performance 

after 12 months compared to their baseline level (Gleissner, Sassen, Schramm, Elger, & 

Helmstaedter, 2005). Adult patients with MTL epilepsy only suffered postoperatively from 
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memory deficits when the resected area had just a few pathological changes (Hermann & 

Whitman, 1992; Seidenberg et al., 1998). Additionally, a recent study (Finke, Bruehl, Düzel, 

Heekeren, & Ploner, 2013) reported that patients with a long disease duration showed in-

creased activity in the contralateral hippocampus and in an extensive bi-hemispherical neo-

cortical network. This increased activity correlated positively with the memory performance. 

Taken together, human studies suggest the existence of hippocampal and extrahippocampal 

compensation mechanisms. However, the temporal course of hippocampal changes during 

development and after the acquired hippocampal dysfunction is still largely unclear.        

Closing this gap is crucial: a better understanding of the functional and structural hippocam-

pal plasticity is a critical precondition for the development of supportive interventions in hu-

mans with hippocampal dysfunction.  

 



2. Research Questions and Experimental Approach  
  

 

12 

2. Research Questions and Experimental Approach 
 

My doctoral thesis investigates how the developing brain and the adult brain with acquired 

hippocampal dysfunction adapt both strategically and structurally to behavioural contexts that 

require hippocampal integrity. This dissertation encompasses three studies: Study 1 on be-

havioural strategies in the developing brain (Shing et al., 2019); Study 2 on behavioural 

strategies in the lesioned mature brain (Pajkert et al., 2017); and Study 3 on structural 

changes in the lesioned mature brain (Pajkert et al., submitted 2019). 

Study 1 and Study 2 focus on behavioural strategies during a hippocampus-dependent 

memory integration task. This task is a modified version of the associative inference para-

digm (Preston, Shrager, Dudukovic, & Gabrieli, 2004; Zeithamova, Dominick, & Preston, 

2012; Zeithamova & Preston, 2010). It assesses an essential hippocampal function that    

allows combining information from different episodes to guide decisions in new situations. 

In particular, it allows to investigate how new experiences may lead to the reactivation of 

previously stored, overlapping memories. Successful completion of this task requires binding 

information across overlapping experiences. 

Behavioural and imaging studies suggest that the forming of inferential memories (‘memory 

integration’) may occur both during encoding (‘integrative encoding’, Zeithamova, Schlichting, 

et al., 2012) and during retrieving (‘recombination at retrieval’, Zeithamova, Schlichting, et al., 

2012). We investigated which of the two strategies is predominantly used during memory 

integration: integrative encoding or recombination at retrieval. 

During the experiments, participants were presented a set of overlapping object-face pairs 

(AB) and face-object pairs (BC) as well as non-overlapping face-object pairs (DE). After 

learning (encoding phase), participants completed a test (retrieval phase). They were tested 

on the recall of directly related associations (AB-, BC- and DE-trials, also called ‘direct trials’). 

The participants were also tested on indirectly related associations (AC-trials, also called 

‘indirect trials’) that were connected through the shared association with an overlapping 
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face (B). The experiment comprised four cycles, each of which included an encoding phase 

and a retrieval phase. By analysing the accuracy and the reaction time in these conditions, 

we aimed to investigate the behavioural strategies that compensate for hippocampal immatu-

rity and hippocampal dysfunction. 

In Study 3, we analysed retrospectively longitudinal data from patients operated on the MTL 

due to epilepsy. All patients underwent neuropsychological assessment as part of a standard 

pre- and postoperative evaluation procedure. Verbal memory and visuospatial episodic 

memory were assessed using a German adaptation of the Rey Auditory Verbal Learning 

Test (Helmstaedter, Lendt, & Lux, 2000) and the Rey-Osterrieth Complex Figure Test (Shin, 

Park, Park, Seol, & Kwon, 2006), respectively. 

2.1. Study 1: Behavioural Strategies in the Developing Brain 
 

Despite the crucial role of learning and remembering across the lifespan, only a few         

researchers have investigated the influence of age-related changes on memory integration. 

For example, Schlichting and colleagues (2017) reported that children (6–11 years) and ado-

lescents (12–16 years) showed a performance difference between indirect trials and direct 

trials. This difference, however, was not observed among young adults (18–30 years). 

The purpose of Study 1 was to describe in more detail the developmental changes in inferen-

tial memory performance. To do so, we compared children during middle childhood            

(9–10 years, n = 25), adolescents (12–13 years, n = 23), and young adults (19–25 years, 

n = 20) with respect to their ability to form inferential memories. We hypothesised that chil-

dren show poorer memory performance than other age groups, especially with respect to 

indirect trials.  

2.2. Study 2: Behavioural Strategies in the Lesioned Mature Brain 
 

So far, little is known about the effects of hippocampal damage on memory integration.    

Previous studies found that hippocampal activity increases during tasks that require making 

inferences from past knowledge compared to tasks that require directly learned associations 
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(Heckers, Zalesak, Weiss, Ditman, & Titone, 2004; Preston et al., 2004). However, it re-

mained unclear if and, if so, how an acquired hippocampal dysfunction influences the 

memory integration. 

The aim of Study 2 was, thus, to test whether hippocampal lesions impair performance in the 

memory integration task. We recruited subjects (n = 5) who suffered from MTL damage in 

adulthood (four postsurgical lesions following resection of a benign brain tumour, one 

postencephalitic lesion), as well as healthy control participants (n = 17) selected to match 

age and years of education of all patients. We hypothesised that acquired hippocampal   

lesions decrease memory performance in indirect trials, while direct trials remain unimpaired.  

2.3. Study 3: Structural Changes in the Lesioned Mature Brain 
 

Recent findings suggest that an increased recruitment of the contralateral hippocampus and 

extratemporal regions after a hippocampal resection may be an important part of the com-

pensation mechanisms for hippocampal dysfunction (Bettus et al., 2009; Bonelli et al., 2010; 

Finke et al., 2013; Sidhu et al., 2013). In healthy humans, hippocampal plasticity may occur 

on a timescale ranging from hours to years (Draganski et al., 2006; Erickson et al., 2011; 

Sagi et al., 2012; Tavor, Hofstetter, & Assaf, 2013; Thomas et al., 2016; Woollett & Maguire, 

2011). However, the temporal properties of contralateral hippocampal plasticity as well as 

connected areas after focal damage are still subject of research. 

In Study 3, we therefore investigated whether unilateral resection of the MTL, including the 

hippocampus, induces measurable volumetric changes in the contralateral hippocampus and 

related brain areas. All patients underwent a unilateral resection of the left (n = 19) and right 

(n = 12) MTL, including the hippocampus. We studied patients before surgery and 3 months 

after surgery using voxel-based morphometry (VBM) and neuropsychological assessment. 

We investigated possible volumetric changes of the contralateral hippocampus and the sig-

nificance of these structural changes. 
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4. Summary of the Results 
 

This chapter presents a brief summary of the findings of each study. For a detailed descrip-

tion of the analyses conducted, please see the manuscripts in chapter 3 above.  

4.1. Study 1: Behavioural Strategies in the Developing Brain 

To assess behavioural strategies during brain development, we compared the performance 

of three participant groups of different ages in an associative memory task (see chapter 2). 

For statistical comparisons, we used two trial types: indirect trials and direct trials.              

We included only the indirect trials (AC) for which both corresponding direct trials (AB, BC) 

were correctly remembered. We used only the non-overlapping pairs (DE) as direct trials. 

4.1.1. Accuracy 

For the statistical evaluation of the data, we conducted a mixed analysis of                       

variance (ANOVA) on accuracy measures with the following factors: cycle x trial type x age 

group. For a detailed description of this analysis see the section ‘Accuracy’ in the paper re-

print (page 20 of this thesis). Neither the main effect for cycle nor any interaction involving 

cycle was significant, so we merged all data across cycles for further analyses.  

We found a significant effect of the trial type: the accuracy in direct trials (DE) was signifi-

cantly higher than in indirect trials (AC). There was also a significant difference in the respec-

tive performances of the age groups. A post hoc test revealed that young adults outper-

formed teenagers who for their part outperformed children. 

4.1.2. Reaction Time 

To evaluate the reaction time, we used a mixed ANOVA with the following factors: cycle x 

trial type x age group. For a detailed description of this analysis see the section ‘Reaction 

Time’ in the paper reprint (page 20 of this thesis).  

We found a significant main effect of cycle and an interaction between cycle and trial type. 

The reaction time dropped across cycles and this decline was greater in the indirect trials 
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(AC) than in the direct trials. The trial type effect, the age group effect, and an interaction 

between the two also reached the significance level. For further exploration, we calculated 

the difference in reaction time between the indirect and direct trials. This revealed that chil-

dren were particularly slower than teenagers and young adults in making judgements on indi-

rect trials (AC) compared to direct trials (DE). 

4.1.3. Correlation Analyses 

Based on the results described above, we hypothesised that participants who formed inte-

grated representations show a higher correlation between direct and indirect trials. To inves-

tigate this hypothesis, we used the path models implemented in Mplus (Muthén & Muthén, 

1998-2010) to calculate a partial correlation between the accuracy in direct (AB, BC) and 

indirect (AC) trials. For a detailed description of these analyses see the section ‘Correlation 

between accuracy on direct (AB, BC) and inference (AC) trials’ in the paper reprint (page 21 

of this thesis).  

The analysis revealed that young adults showed a higher correlation between the accuracy 

in direct and in indirect trials compared to children. The AC-AB/BC correlations of teenagers 

and young adults as well as the correlations of children and teenagers did not significantly 

differ from each other. 

4.1.4. Conclusions 

Children showed significantly larger differences in reaction times between indirect and direct 

trials than teenagers and young adults. The longer reaction times for indirect trials support 

the idea that children may recombine the overlapping pairs during the test. Thus, it is very 

likely that children rely more on making inferences during retrieval rather than during        

encoding.  

Young adults, on the other hand, showed the lowest differences between reaction times for 

indirect and direct trials. Thus, young adults may be more likely to form integrated represen-

tations of overlapping pairs at different memory processing stages. Furthermore, the results 
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of the correlation analyses revealed that young adults relied closely on direct associations for 

making inferential decisions, whereas children were less consistent in forming integrated 

representations.  

Taken together, our data indicate that an age-related shift in the integrative memory perfor-

mance takes place between middle childhood and young adulthood. Children are less con-

sistent when forming integrated representations, and make inferential decisions during the 

retrieval phase. On the other hand, young adults present more consistent behavioural strate-

gies for forming integrated representations, both during the encoding and/or the retrieval 

phase. 

4.2. Study 2: Behavioural Strategies in the Lesioned Mature Brain 

We used indirect and direct trials for statistical analyses. As no significant difference was 

observed between the AB-, BC-, and DE-trials, we pooled these trials and applied them as 

direct trials for further analyses. 

4.2.1. Accuracy 

The performance of the patients and healthy controls was analysed separately for the direct 

(AB, BC, and DE) and for the indirect (AC) trials. While we did not find a significant difference 

between groups in the direct trials, the performance in the indirect trials was significantly 

worse in the patient group compared to the control group. For a detailed description of these 

analyses see the section ‘Accuracy’ in the paper reprint (page 31 of this thesis). 

The analysis of the performance across cycles revealed that the group difference in indirect 

trials changed over the course of the experiment. While there was no statistically significant 

difference between patients and controls in the indirect trials in cycles 1 and 2, patients 

showed a significantly decreased performance in cycles 3 and 4. By contrast, the perfor-

mance in the direct trials did not differ between patients and controls across cycles.  
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4.2.2. Reaction Time 

We analysed reaction times of the two main trial types across cycles. For a detailed descrip-

tion of these analyses see the section ‘Reaction Times’ in the paper reprint (page 32 of this 

thesis). No significant differences in the reaction times between patients and controls in the 

indirect (AC) and direct trials (AB, BC, DE) were observed. Reaction times decreased in the 

indirect trials for both groups without significant differences between groups. The reaction 

time for the direct trials across cycles remained constant and no significant changes were 

observed. 

4.2.3. Correlation Analyses 

For further exploration of the data, we conducted correlation analyses between the individual 

performance in the indirect trials (AC) and in the direct trials (AB, BC, DE). The number of 

individuals in the patient group was too small for these analyses, so we conducted the     

analyses exclusively for the control group. For a detailed description of these analyses see 

the section ‘Correlation Analyses’ in the paper reprint (page 32 of this thesis). In cycle 1, 

AC-performance correlated significantly with the performance in all of the direct trial types, 

whereas in cycle 4 AC-performance correlated significantly with the performance in the 

BC-trials only. 

4.2.4. Conclusions 

At the beginning of the experiment, patients performed on indirect trials at a level similar to 

that of the control group. This suggests that patients did not show impairments initially on an 

inferential memory task. However, despite increasing familiarity with the task, the perfor-

mance of the patients on the indirect trials decreased during the experiment.  

On the other hand, the controls improved their accuracy in the indirect trials. Interestingly, a 

further analysis revealed a growing reliance on BC-trials for indirect decisions among the 

task. This observed behavioural pattern of the control group may be interpreted as an      

increased tendency to form integrated representations during or following the encoding 

phase. Assuming that the underlying integration mechanism in patients was the same as in 
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the control group, the decreasing memory performance on indirect trials during the experi-

ment may point to a preserved retrieval-based strategy and an impaired integrative encoding 

in patients. 

4.3. Study 3: Structural Changes in the Lesioned Mature Brain 

In this retrospective study, we analysed pre- and postoperative neuropsychological and 

structural neuroimaging data of patients who had undergone unilateral resection of the MTL 

for the treatment of epilepsy. Both groups of patients, i.e. with either left-sided or right-sided 

surgery, showed a similar extent of resection. The lesions affected the anterior hippocampus, 

amygdala, entorhinal cortex, and some parts of the perirhinal cortex in all patients. Additional 

damage to the parahippocampal and inferotemporal cortex was found in some patients. 

4.3.1. Neuropsychological Assessment 

Both patient groups did not significantly differ in their demographic and disease-related vari-

ables. Longitudinal group differences in memory performance between both patient groups 

were assessed using mixed ANOVA with the following factors: resection side x time point. 

For a detailed description of these analyses see the section ‘Neuropsychological assess-

ment’ in the manuscript reprint (page 45 of this thesis). The ANOVAs were conducted sepa-

rately for both verbal and visuospatial memory. On the verbal memory test, the group with a 

left-sided pathology showed a significantly decreased performance compared to the patients 

with a right-sided pathology. Conversely, on the non-verbal memory test, patients with a 

right-sided pathology performed significantly worse than patients with a left-sided pathology. 

4.3.2. Longitudinal Grey Matter Changes in the Hippocampus and the DMN 

To assess hippocampal volume changes, we applied a VBM analysis that was modified to 

evaluate longitudinal structural changes (Douaud et al., 2009). For a detailed description of 

these analyses see the section ‘Longitudinal grey matter changes in the hippocampus and 

the DMN’ in the paper reprint (page 45 of this thesis).  

After left-sided resections, a region in the right hippocampus homologous to the resected 

area showed a significant increase in grey matter volume. In addition, an exploratory analysis 
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including the brain regions belonging to the DMN revealed a grey matter volume increase in 

the left medial prefrontal cortex in patients with left-sided resection. In patients with         

right-sided resections, we neither observed a significant volume change nor did we find a 

correlation between the observed volume changes and the memory performance. 

4.3.3. Conclusions 

The longitudinal study revealed a significant increase of the right hippocampal volume and a 

volume increase in the DMN after the left MTL resection. Postsurgical plasticity occurred       

3 months after MTL resection and, thus, surprisingly early. These results demonstrate that 

the resection of an already dysfunctional hippocampus may trigger significant postsurgical 

plasticity processes. Furthermore, these structural reorganisation processes extend to     

include distant but functionally connected brain regions.  

Further research is needed to assess the function of the structural reorganisation for the 

memory. A better understanding of these processes and their functional relevance at the 

individual level is crucial for presurgical investigations. Individualised diagnostic markers 

would help to predict the postoperative outcome and to assess the rehabilitative potential. 

 



5. Discussion  
  

 

67 

5. Discussion 

Studies 1-3 revealed that developing and lesioned brains adapt structurally and behaviourally 

to hippocampal dysfunction on multiple levels. Both mechanisms may facilitate successful 

adaptations: structural plasticity, which involves hippocampal and extrahippocampal    

changes, and a behavioural compensation, which is context-dependent and may support 

flexible behavioural strategies. In the following chapter, the most relevant results of         

Studies 1-3 and their implications for adaptive processes will be discussed.  

5.1. Study 1: Behavioural Strategies in the Developing Brain – Decision Making in 

Children  

We applied an associative memory task to compare developmental changes in the perfor-

mance of children, teenagers, and young adults. In terms of accuracy, young adults per-

formed better than teenagers in both trial types, who in turn performed better than children. 

Contrary to our expectation, children did not perform worse on indirect trials than on direct 

trials. However, children reacted significantly slower in indirect trials compared to other 

groups. 

Although a recent study (Schlichting et al., 2017) found for children and adolescents a signi-

ficantly lower memory performance in the indirect trials compared to the direct trials,             

in Study 1 we did not observe similar differences in accuracy between the groups. In our 

Study, the repeated inference tests as well as previous knowledge about overlapping trials 

probably prepared the subjects for reoccurring inference trials. These modifications in the 

task structure seem to be the most plausible explanations for the discrepancies between 

both studies in the inferential memory performance (cf. Schlichting & Preston, 2015; 

Zeithamova, Dominick, et al., 2012).  

The absence of the expected shift in the memory performance among different age groups 

may also suggest that the inferential memory develops earlier during childhood than ex-

pected. A recent review (Keresztes, Ngo, Lindenberger, Werkle-Bergner, & Newcombe, 
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2018) supports this suggestion by claiming that the developing memory system relies more 

on generalisation and detecting regularities than on encoding and remembering particular 

information. Based on the assumption that generalisation is supported by pattern completion, 

it is convincing that these processes also support memory inference: For example, generali-

sation may occur by filling in new representations relying on previously stored knowledge 

(Yassa & Stark, 2011). 

Although the accuracy on indirect and direct trials did not differ significantly in the children 

group, children showed the greatest delay in reaction time between indirect and direct trials. 

A recent study concerning reaction time and hippocampal activity pattern during memory 

integration reported that fast inferences may be facilitated by integration at encoding 

(Schlichting, Zeithamova, & Preston, 2014). This study linked short reaction times with a 

similar hippocampal activity pattern during encoding of BC-trials and during retrieval of      

AC-trials. According to these findings, the increased reaction times during indirect trials in the 

children group in our Study 3 may indicate that children are more likely to mainly rely on a 

retrieval-based strategy. Pursuant to this interpretation, children would first retrieve the direct 

associations and then make the inferential judgement.  

Taken together, our findings point to a developmental shift in building inferential memory. 

Children seem to rely more on recombination at retrieval, whereas young adults form inte-

grated representations at different stages of memory processing. Furthermore, supportive 

conditions like familiarity with the task and task structure may play a crucial role in integrating 

partially overlapping information, especially in a developing brain.  

5.2. Study 2: Behavioural Strategies in the Lesioned Mature Brain – Decision Making in 

Patients with Hippocampal Dysfunction 

In Study 2, we compared the inferential memory performance of control participants and pa-

tients with MTL damage. In the beginning of the experiment, both groups presented a similar 

accuracy level on both trial types. By the end of the experiment, the accuracy of the patients, 

however, dropped across cycles – but only for the indirect trials. The decreased performance 
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may not simply be explained by hippocampal damage, but likely results from the dysfunction 

of an additional integration mechanism. 

Contrary to the performance of the patient group, the controls improved their accuracy during 

the experiment. They also showed an increasing correlation between BC-pairs and AC-pairs, 

which allows to assume that the anticipation of repeated AC-decisions might have influenced 

controls to form integrated ABC-representations when encoding the BC-pairs. This may indi-

cate a shift in memory integration from relying on recombination at retrieval to encoding-

based inference across cycles.  

Assuming that patients relied on the same integration mechanism as controls, the decreasing 

memory performance on indirect trials during the experiment may point to a preserved      

retrieval-based strategy and an impaired integrative encoding in patients. It seems that the 

patients – similarly to children (Shing et al., 2019) – show an intact retrieval-based mecha-

nism during forming inferential representations. 

Recent findings in healthy controls underpin the central role of the hippocampus within net-

works for memory integration during retrieval (Heckers et al., 2004; Preston et al., 2004) but 

also during encoding (Shohamy & Wagner, 2008; Wimmer & Shohamy, 2012; Zeithamova, 

Dominick, et al., 2012). The encoding-based integration in visual inferential tasks seems to 

particularly depend on the posterior ventromedial prefrontal cortex and the right anterior   

hippocampus (Schlichting & Preston, 2015) – and the right hippocampus is the very brain 

region that was affected in all patients participating in this study. 

Previously to Study 2, there have been no lesion studies on associative inference in human 

patients. Our research provides additional support for previous studies reporting that the con-

tribution of the hippocampus and prefrontal areas to memory integration is not constant, but 

rather is modulated by contextual factors such as the task structure (Schlichting, Mumford, & 

Preston, 2015; Zeithamova, Dominick, et al., 2012). The inferential decisions may be suffi-

ciently supported by networks outside the damaged MTL. This implies that memory integra-
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tion relies on the flexible interaction of hippocampus-dependent and hippocampus-

independent mechanisms of memory integration. 

In summary, these findings provide a link between the imaging studies of memory integra-

tion/inferential reasoning in healthy controls and the behavioural studies in neuropsychiatric 

patients by showing that damage to the hippocampus is sufficient to create a memory inte-

gration deficit and to leave the associative memory functions unimpaired. However, the    

observed deficits in inferential memory may be sufficiently compensated by structures out-

side the damaged MTL. Future studies, thus, should further explore conditions that influence 

reliance on integrated representations. 

5.3. Study 3: Structural Changes in the Lesioned Mature Brain – Early Plasticity Pro-

cesses 

Study 3 revealed structural plasticity 3 months after the MTL resection and underline the  

relevance of early postoperative plasticity, even in patients with a long-standing unilateral 

hippocampal dysfunction.  

Hippocampal plasticity was previously observed in healthy subjects (Draganski et al., 2006; 

Erickson et al., 2011; Woollett & Maguire, 2011) but also in patients with neurological and 

neuropsychiatric disorders (Mufson et al., 2015; Pajonk et al., 2010; Rosen et al., 2011; 

ten Brinke et al., 2015). Recent studies reported that the contralesional hippocampus as well 

as the ipsilateral hippocampus remnant can compensate unilateral hippocampal damage at a 

functional level (Bonelli et al., 2013; Sidhu et al., 2016; Stretton et al., 2014). These func-

tional changes were observed as early as 3 months postoperatively, with further reorganisa-

tion at 12 months after the surgery (Sidhu et al., 2016; Stretton et al., 2014). In Study 3, we 

demonstrated that postoperative reorganisation includes not only functional but also        

structural plasticity and may occur as early as 3 months postoperatively. 

Our findings underlined the importance of pre- and postoperative reorganisation for patients 

with a hippocampal dysfunction. A previous study (Braun et al., 2008) compared patient 

groups with similar surgical lesions to the right MTL but different pre-operative disease 
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courses. This study showed that patients suffering from hippocampal sclerosis, which      

develops early in life, did not reveal memory deficits on a non-verbal memory task. On the 

contrary, reduced memory performance was shown for patients with similar right-sided tem-

poral lobe lesions but with shorter preoperative disease duration and operated due to benign    

tumours. In a further imaging study, Finke and colleagues (2013) showed that both patient 

groups revealed strikingly distinct activation patterns. These patterns were associated with 

different behavioural performance: successful memory compensation in the patient group      

operated due to hippocampal sclerosis correlated positively with increased activation of the 

contralesional hippocampus and an increased functional engagement of the memory network 

in the neocortex. Our findings demonstrate that postoperative plasticity may be also triggered 

in addition to such long-standing preoperative plasticity processes and occur on a            

surprisingly short timescale. 

Functional studies with non-operated patients suffering from MTL epilepsy observed abnor-

mal connectivity in the ipsilateral and contralateral temporal lobe, in extratemporal regions, 

and in brain areas related to the DMN (Bettus et al., 2009; Frings, Schulze-Bonhage, Spreer, 

& Wagner, 2009; Liao et al., 2011; Voets et al., 2012). Despite a wide range of literature on 

the DMN and MTL epilepsy, no study explicitly addressed the question of postoperative 

changes in structure and function within the DMN. So, in Study 3, we addressed such struc-

tural changes. We showed that postlesional reorganisation processes not only cause a sig-

nificant volume increase in contralateral homologous areas but also induce early changes in 

large-scale networks. Structural variations have been suggested to underlie functional con-

nectivity alterations in patients with MTL epilepsy (Voets et al., 2012), so that the observed 

hippocampal volume increase may contribute to the postsurgical normalisation of functional 

network alterations in these patients (Sidhu et al., 2016; Stretton et al., 2014). 

Study 3 revealed that postlesional processes induce significant structural changes on a short 

timescale. The structural reorganisation processes can extend beyond contralateral homolo-

gous areas to include functionally connected brain regions and may potentially contribute to 

functional network changes and to an improvement of the memory performance.              
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Further studies are needed to characterise these processes and establish their role for    

functional and behavioural compensation processes.  

5.4. Conclusions 

The brain adapts to hippocampal dysfunction on multiple levels. In situations that require 

hippocampal integrity, both structural plasticity and context-dependent behavioural compen-

sation allow for flexible behavioural strategies. It would be worthwhile for the future to under-

take studies that focus on the interaction between the behavioural and the structural mecha-

nisms. Also, future studies that will use repeated structural neuroimaging and neuropsycho-

logical assessments may reveal critical time windows for successful reorganisation, both dur-

ing the development of the brain and after hippocampal damage. This knowledge would con-

tribute to improving teaching programmes, to taking into consideration the developing course 

of memory performance, and to individualising cognitive rehabilitation approaches for pa-

tients with temporal lobe resection. 

 



6. References  
 

 

73 

6. References 
 

 

Addis, D. R., Moscovitch, M., & McAndrews, M. P. (2007). Consequences of hippocampal 

damage across the autobiographical memory network in left temporal lobe epilepsy. 

Brain, 130, 2327–2342. 

Altman, J., & Das, G. D. (1965). Autoradiographic and histological evidence of postnatal 

hippocampal neurogenesis in rats. The Journal of Comparative Neurology, 124(3),   

319–335. 

Amaral, D. G. (1999). Introduction: What is where in the medial temporal lobe? 

Hippocampus, 9(1), 1–6. 

Amaral, D., & Lavenex, P. (2006). Chapter 3: Hippocampal Neuroanatomy. In Andersen, P., 

Morris, R., Amaral, D., Bliss, T., & O’Keefe, J. (Eds.), The Hippocampus Book           

(pp. 37–114). Oxford University Press. 

Astur, R. S., Taylor, L. B., Mamelak, A. N., Philpott, L., & Sutherland, R. J. (2002).     

Humans with hippocampus damage display severe spatial memory impairments in a 

virtual Morris water task. Behavioural Brain Research, 132(1), 77–84. 

Bakker, A., Kirwan, C. B., Miller, M., & Stark, C. E. L. (2008). Pattern separation in the 

human hippocampal CA3 and dentate gyrus. Science, 319(5870), 1640–1642. 

Bannerman, D. M., Rawlins, J. N. P., McHugh, S. B., Deacon, R. M. J., Yee, B. K., Bast, T., 

Zhang, W. N., Pothuizen, H. H. J, & Feldon, J. (2004). Regional dissociations within the 

hippocampus - Memory and anxiety. Neuroscience and Biobehavioral Reviews, 28(3), 

273–283. 

Banta Lavenex, P., Amaral, D. G., & Lavenex, P. (2006). Hippocampal lesion prevents 

spatial relational learning in adult macaque monkeys. The Journal of Neuroscience : 

The Official Journal of the Society for Neuroscience, 26(17), 4546–4558. 



6. References  
 

 

74 

Bettus, G., Guedj, E., Joyeux, F., Confort-Gouny, S., Soulier, E., Laguitton, V.,          

Cozzone, P. J., Chauvel, P., Ranjeva, J.-P., Bartolomei, F., & Guye, M. (2009). 

Decreased basal fMRI functional connectivity in epileptogenic networks and 

contralateral compensatory mechanisms. Human Brain Mapping, 30(5), 1580–1591. 

Blümcke, I., Suter, B., Behle, K., Kuhn, R., Schramm, J., Elger, C. E., & Wiestler, O. D. 

(2000). Loss of Hilar Mossy Cells in Ammon’s Horn Sclerosis. Epilepsia, 41(s6),    

S174–S180. 

Bohbot, V. D., Kalina, M., Stepankova, K., Spackova, N., Petrides, M., & Nadel, L. (1998). 

Spatial memory deficits in patients with lesions to the right hippocampus and to the right 

parahippocampal cortex. Neuropsychologia, 36(11), 1217–1238. 

Bonelli, S. B., Powell, R. H. W., Yogarajah, M., Samson, R. S., Symms, M. R., 

Thompson, P. J., Koepp, M. J., & Duncan, J. S. (2010). Imaging memory in temporal 

lobe epilepsy: Predicting the effects of temporal lobe resection. Brain, 133, 1186–1199. 

Bonelli, S. B., Thompson, P. J., Yogarajah, M., Powell, R. H. W., Samson, R. S., 

McEvoy, A. W., Symms, M. R., Koepp, M. J., & Duncan, J. S. (2013). Memory 

reorganization following anterior temporal lobe resection: A longitudinal functional MRI 

study. Brain, 136, 1889–1900. 

Braun, M., Finke, C., Ostendorf, F., Lehmann, T.-N., Hoffmann, K.-T., & Ploner, C. J. (2008). 

Reorganization of associative memory in humans with long-standing hippocampal 

damage. Brain : A Journal of Neurology, 131(Pt 10), 2742–2750.  

Chareyron, L. J., Banta Lavenex, P., Amaral, D. G., & Lavenex, P. (2017). Functional 

organization of the medial temporal lobe memory system following neonatal 

hippocampal lesion in rhesus monkeys. Brain Structure and Function, 222(9),        

3899–3914. 

Clark, I. A., & Maguire, E. A. (2016). Remembering Preservation in Hippocampal Amnesia. 

Annual Review of Psychology, 67, 51–82. 



6. References  
 

 

75 

Creer, D. J., Romberg, C., Saksida, L. M., van Praag, H., & Bussey, T. J. (2010). Running 

enhances spatial pattern separation in mice. Proceedings of the National Academy of 

Sciences, 107(5), 2367–2372. 

Curlik, D. M., & Shors, T. J. (2013). Training your brain: Do mental and physical (MAP) 

training enhance cognition through the process of neurogenesis in the hippocampus? 

Neuropharmacology, 64, 506–514. 

Dalmau, J., & Bataller, L. (2006, December). Clinical and Immunological Diversity of Limbic 

Encephalitis: A Model for Paraneoplastic Neurologic Disorders. Hematology/Oncology 

Clinics of North America. 

DeMaster, D., Coughlin, C., & Ghetti, S. (2016). Retrieval flexibility and reinstatement in the 

developing hippocampus. Hippocampus, 26(4), 492–501. 

Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews. 

Neuroscience, 11(2), 114–126. 

Dong, H.-W., Swanson, L. W., Chen, L., Fanselow, M. S., & Toga, A. W. (2009).     

Genomic–anatomic evidence for distinct functional domains in hippocampal field CA1. 

Proceedings of the National Academy of Sciences, 106(28), 11794–11799. 

Douaud, G., MacKay, C., Andersson, J., James, S., Quested, D., Ray, M. K., Connell, J., 

Roberts, N., Crow, T. J., Matthews, P. M., Smith, S., & James, A. (2009). Schizophrenia 

delays and alters maturation of the brain in adolescence. Brain, 132(9), 2437–2448. 

Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Buchel, C., & May, A. 

(2006). Temporal and Spatial Dynamics of Brain Structure Changes during Extensive 

Learning. Journal of Neuroscience, 26(23), 6314–6317. 

Duff, M. C., & Brown-Schmidt, S. (2012). The hippocampus and the flexible use and 

processing of language. Frontiers in Human Neuroscience, 6(April), 1–11. 

 



6. References  
 

 

76 

Düzel, E., Schiltz, K., Solbach, T., Peschel, T., Baldeweg, T., Kaufmann, J., Szentkuti, A., & 

Heinze, H. J. (2006). Hippocampal atrophy in temporal lobe epilepsy is correlated with 

limbic systems atrophy. Journal of Neurology, 253(3), 294–300. 

Düzel, E., Van Praag, H., & Sendtner, M. (2016). Can physical exercise in old age improve 

memory and hippocampal function? Brain, 139(3), 662–673. 

Edgin, J. O., Spanò, G., Kawa, K., & Nadel, L. (2014). Remembering things without context: 

Development matters. Child Development, 85(4), 1491–1502. 

Eichenbaum, H. (2001). The hippocampus and declarative memory: cognitive mechanisms 

and neural codes. Behavioural Brain Research, 127(1–2), 199–207. 

Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that 

underlie declarative memory. Neuron, 44(1), 109–120. 

Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999).                       

The hippocampus, memory, and place cells: is it spatial memory or a memory space? 

Neuron, 23(2), 209–226. 

Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., 

Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., 

Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training 

increases size of hippocampus and improves memory. Proceedings of the National 

Academy of Sciences of the United States of America, 108(7), 3017–3022. 

Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D., & 

Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 

4(11), 1313–1317. 

Fanselow, M. S., & Dong, H. W. (2010). Are the Dorsal and Ventral Hippocampus 

Functionally Distinct Structures? Neuron, 65(1), 7–19. 

 



6. References  
 

 

77 

Finke, C., Bruehl, H., Düzel, E., Heekeren, H. R., & Ploner, C. J. (2013). Neural correlates of 

short-term memory reorganization in humans with hippocampal damage. The Journal of 

Neuroscience : The Official Journal of the Society for Neuroscience, 33(27),          

11061–11069. 

Fotuhi, M., Do, D., & Jack, C. (2012). Modifiable factors that alter the size of the 

hippocampus with ageing. Nature Reviews Neurology, 8(4), 189–202. 

Frings, L., Schulze-Bonhage, A., Spreer, J., & Wagner, K. (2009). Remote effects of 

hippocampal damage on default network connectivity in the human brain. Journal of 

Neurology, 256(12), 2021–2029. 

Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M., Rauchs, G., 

Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., & Peigneux, P. (2007). 

Sleep transforms the cerebral trace of declarative memories. Proceedings of the 

National Academy of Sciences, 104(47), 18778–18783. 

Gates, J. R., & Cruz-Rodriguez, R. (1990). Mesial temporal sclerosis: pathogenesis, 

diagnosis, and management. Epilepsia, 31(s3), 55-66. 

Geurts, J. J. G., Bö, L., Roosendaal, S. D., Hazes, T., Daniëls, R., Barkhof, F., Witter, M. P., 

Huitinga, I., & van der Valk, P. (2007). Extensive hippocampal demyelination in multiple 

sclerosis. Journal of Neuropathology and Experimental Neurology, 66(9), 819–827. 

Ghisletta, P., Rabbitt, P., Lunn, M., & Lindenberger, U. (2012). Two thirds of the age-based 

changes in fluid and crystallized intelligence, perceptual speed, and memory in 

adulthood are shared. Intelligence, 40(3), 260–268. 

Gilbert, P. E., Kesner, R. P., & Lee, I. (2001). Dissociating hippocampal subregions: A double 

dissociation between dentate gyrus and CA1. Hippocampus, 11(6), 626–636. 

Gleissner, U., Sassen, R., Schramm, J., Elger, C. E., & Helmstaedter, C. (2005). 

Greater functional recovery after temporal lobe epilepsy surgery in children. Brain, 128, 

2822–2829. 



6. References  
 

 

78 

Graham, K. S., Barense, M. D., & Lee, A. C. H. (2010). Going beyond LTM in the MTL: 

A synthesis of neuropsychological and neuroimaging findings on the role of the medial 

temporal lobe in memory and perception. Neuropsychologia, 48(4), 831–853.  

Halliday, G. (2017). Pathology and hippocampal atrophy in Alzheimer’s disease. The Lancet 

Neurology, 16(11), 862–864. 

Hansen, N. (2019). Long-Term Memory Dysfunction in Limbic Encephalitis. Frontiers in 

Neurology, 10, 330. 

Heckers, S., & Konradi, C. (2010). Hippocampal Pathology in Schizophrenia. Current Topics 

in Behavioral Neurosciences, 4, 529-53. 

Heckers, S., Zalesak, M., Weiss, A. P., Ditman, T., & Titone, D. (2004). Hippocampal 

activation during transitive inference in humans. Hippocampus, 14(2), 153–162. 

Helmstaedter, C. (2002). Effects of chronic epilepsy on declarative memory systems. 

Progress in Brain Research, 135, 439–453.  

Helmstaedter, C., Lendt, M., & Lux, S. (2000). Verbaler Lern- und Merkfähigkeitstest, 

Testhandbuch. Hogrefe. 

Hermann, B., & Whitman, S. (1992). Psychopathology in epilepsy: The role of psychology in 

altering paradigms of research, treatment, and prevention. American Psychologist, 

47(9), 1134–1138. 

Huo, L., Li, R., Wang, P., Zheng, Z., & Li, J. (2018). The default mode network supports 

episodic memory in cognitively unimpaired elderly individuals: Different contributions to 

immediate recall and delayed recall. Frontiers in Aging Neuroscience, 10(January),     

1–10.  

Jabès, A., Banta Lavenex, P., Amaral, D. G., & Lavenex, P. (2010). Quantitative analysis of 

postnatal neurogenesis and neuron number in the macaque monkey dentate gyrus. 

European Journal of Neuroscience, 31(2), 273–285.  



6. References  
 

 

79 

Kee, N., Teixeira, C. M., Wang, A. H., & Frankland, P. W. (2007). Preferential incorporation 

of adult-generated granule cells into spatial memory networks in the dentate gyrus. 

Nature Neuroscience, 10(3), 355–362. 

Kempermann, G. (2011). Seven principles in the regulation of adult neurogenesis. European 

Journal of Neuroscience, 33(6), 1018–1024. 

Keresztes, A., Ngo, C. T., Lindenberger, U., Werkle-Bergner, M., & Newcombe, N. S. (2018). 

Hippocampal Maturation Drives Memory from Generalization to Specificity. Trends in 

Cognitive Sciences, 22(8), 676–686. 

Kesner, R. P., Lee, I., & Gilbert, P. (2004). A behavioral assessment of hippocampal function 

based on a subregional analysis. Reviews in the Neurosciences, 15(5), 333–351. 

Kim, E. J., Pellman, B., & Kim, J. J. (2015). Stress effects on the hippocampus: a critical 

review. Learning & Memory, 22(9), 411–416. 

Knoth, R., Singec, I., Ditter, M., Pantazis, G., Capetian, P., Meyer, R. P., Horvat, V., Volk, B., 

& Kempermann, G. (2010). Murine Features of Neurogenesis in the Human 

Hippocampus across the Lifespan from 0 to 100 Years. PLoS ONE, 5(1), e8809. 

Kreutzmann, J. C., Havekes, R., Abel, T., & Meerlo, P. (2015). Sleep deprivation and 

hippocampal vulnerability: Changes in neuronal plasticity, neurogenesis and cognitive 

function. Neuroscience, 309, 173–190. 

Kühn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., & Gallinat, J. (2014). Playing Super 

Mario induces structural brain plasticity: gray matter changes resulting from training with 

a commercial video game. Molecular Psychiatry, 19(2), 265–271. 

Lahl, O., Wispel, C., Willigens, B., & Pietrowsky, R. (2008). An ultra short episode of sleep is 

sufficient to promote declarative memory performance. Journal of Sleep Research, 

17(1), 3–10. 

 



6. References  
 

 

80 

Lavenex, P., & Amaral, D. G. (2000). Hippocampal-neocortical interaction: a hierarchy of 

associativity. Hippocampus, 10(4), 420–430. 

Lavenex, P., & Banta Lavenex, P. (2013). Building hippocampal circuits to learn and 

remember: Insights into the development of human memory. Behavioural Brain 

Research, 254, 8–21. 

Lavenex, P., Banta Lavenex, P., & Amaral, D. G. (2007). Postnatal Development of the 

Primate Hippocampal Formation. Developmental Neuroscience, 29(1–2), 179–192. 

Lee, A. C. H., Yeung, L.-K., & Barense, M. D. (2012). The hippocampus and visual 

perception. Frontiers in Human Neuroscience, 6(April), 1–17.  

Lewis, F. T. (1923). The significance of the term Hippocampus. Journal of Comparative 

Neurology, 35(3), 213–230. 

Liao, W., Zhang, Z., Pan, Z., Mantini, D., Ding, J., Duan, X., Luo, C., Wang, Z., Tan, Q., 

Lu, G., & Chen, H. (2011). Default mode network abnormalities in mesial temporal lobe 

epilepsy: a study combining fMRI and DTI. Human Brain Mapping, 32(6), 883–895. 

Lieberman, J. A., Girgis, R. R., Brucato, G., Moore, H., Provenzano, F., Kegeles, L., 

Javitt, D., Kantrowitz, J., Wall M. M., Corcoran, C. M., Schobel, S. A., & Small, S. A. 

(2018). Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective 

review and hypothesis for early detection and intervention. Molecular Psychiatry, 23(8), 

1764–1772. 

Lister, J. P., & Barnes, C. A. (2009). Neurobiological changes in the hippocampus during 

normative aging. Archives of Neurology, 66(7), 829–833. 

Lu, H., Li, X., Wang, Y., Song, Y., & Liu, J. (2018). The hippocampus underlies the 

association between self-esteem and physical health. Scientific Reports, 8(1), 1–6. 

Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., 

Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the 



6. References  
 

 

81 

hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the 

United States of America, 97(8), 4398–4403. 

Milner, B., Corkin, S., & Teuber, H.-L. (1968). Further analysis of the hippocampal amnesic 

syndrome: 14-year follow-up study of H.M. Neuropsychologia, 6(3), 215–234. 

Mufson, E. J., Mahady, L., Waters, D., Counts, S. E., Perez, S. E., DeKosky, S. T.,  

Ginsberg, S. D., Ikonomovic, M. D., Scheff, S. W., & Binder, L. I. (2015). Hippocampal 

plasticity during the progression of Alzheimer’s disease. Neuroscience, 309, 51–67. 

Muthén, L. K., & Muthén, B. O. (2010). Mplus user’s guide. Sixth Edition. Muthén & Muthén. 

Nadel, L., Samsonovich, A., Ryan, L., & Moscovitch, M. (2000). Multiple trace theory of 

human memory: Computational, neuroimaging, and neuropsychological results. 

Hippocampus, 10(4), 352–368.  

Nadel, L., & Moscovitch, M. (1997). Memory consolidation and the hippocampal complex. 

Cognitive Neuroscience, 7, 217–227. 

Newcombe, N. S., Balcomb, F., Ferrara, K., Hansen, M., & Koski, J. (2014). Two rooms, two 

representations? Episodic-like memory in toddlers and preschoolers. Developmental 

Science, 17(5), 743–756. 

O’Keefe, J. (1979). A review of the hippocampal place cells. Progress in Neurobiology, 13(4), 

419–439. 

O’Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal 

neurons. Nature, 381(6581), 425–428. 

O’Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford University 

Press. 

O’Neil, E. B., Newsome, R. N., Li, I. H. N., Thavabalasingam, S., Ito, R., & Lee, A. C. H. 

(2015). Examining the Role of the Human Hippocampus in Approach-Avoidance 

Decision Making Using a Novel Conflict Paradigm and Multivariate Functional Magnetic 



6. References  
 

 

82 

Resonance Imaging. Journal of Neuroscience, 35(45), 15039–15049. 

Old, S. R., & Naveh-Benjamin, M. (2008). Differential effects of age on item and associative 

measures of memory: a meta-analysis. Psychology and Aging, 23(1), 104–118. 

Pajkert, A., Finke, C., Shing, Y. L., Hoffmann, M., Sommer, W., Heekeren, H. R., & 

Ploner, C. J. (2017). Memory integration in humans with hippocampal lesions. 

Hippocampus, 27(12), 1230–1238. 

Pajkert, A., Ploner, C. J., Lehmann, T.-N., Witte, V., Oltmanns, F., Sommer, W., 

Holtkamp, M., Heekeren, H. R., & Finke, C. (submitted 2019). Early volumetric changes 

of hippocampus and medial prefrontal cortex following medial temporal lobe resection. 

Pajonk, F.-G., Wobrock, T., Gruber, O., Scherk, H., Berner, D., Kaizl, I., Kierer, A., Müller, S., 

Oest, M., Meyer, T., Backens, M., Schneider-Axmann, T., Thornton, A. E.,             

Honer, W. G., & Falkai, P. (2010). Hippocampal plasticity in response to exercise in 

schizophrenia. Archives of General Psychiatry, 67(2), 133–143. 

Per, A., Morris, R., Amaral, D., Bliss, T., & O’Keefe, J. (2006). Chapter 1: Hippocampal 

formation. In Andersen, P., Morris, R., Amaral, D., Bliss, T., & O’Keefe, J. (Eds.), 

The Hippocampus Book (pp. 3–8). Oxford University Press.  

Planche, V., Ruet, A., Coupé, P., Lamargue-Hamel, D., Deloire, M., Pereira, B.,           

Manjon, J. V., Munsch, F., Moscufo, N., Meier, D. S., Guttmann, C. R., Dousset, V., 

Brochet, B., & Tourdias, T. (2017). Hippocampal microstructural damage correlates with 

memory impairment in clinically isolated syndrome suggestive of multiple sclerosis. 

Multiple Sclerosis Journal, 23(9), 1214–1224.  

Preston, A. R., Shrager, Y., Dudukovic, N. M., & Gabrieli, J. D. E. (2004). Hippocampal 

contribution to the novel use of relational information in declarative memory. 

Hippocampus, 14(2), 148–152.  

Ramírez-Amaya, V., Balderas, I., Sandoval, J., Escobar, M. L., & Bermúdez-Rattoni, F. 

(2001). Spatial long-term memory is related to mossy fiber synaptogenesis. The Journal 



6. References  
 

 

83 

of Neuroscience: The Official Journal of the Society for Neuroscience, 21(18),        

7340–7348.  

Rasch, B., & Born, J. (2013). About Sleep’s Role in Memory. Physiological Reviews, 93(2), 

681–766.  

Rolls, E. T. (2013). The mechanisms for pattern completion and pattern separation in the 

hippocampus. Frontiers in Systems Neuroscience, 7(October), 1–21. 

Rosen, A., Sugiura, L., Kramer, J., Whitfield-Gabrieli, S., & Gabrieli, J. (2011). 

Cognitive training changes hippocampal function in mild cognitive impairment: a pilot 

study. Journal of Alzheimer’s Disease, 26(s3), 349–357. 

Rowland, D. C., Roudi, Y., Moser, M.-B., & Moser, E. I. (2016). Ten Years of Grid Cells. 

Annual Review of Neuroscience, 39(1), 19–40. 

Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. 

(2012). Learning in the fast lane: new insights into neuroplasticity. Neuron, 73(6),  

1195–1203. 

Sapolsky, R. M. (2002). Depression, antidepressants, and the shrinking hippocampus. 

Proceedings of the National Academy of Sciences, 98(22), 12320–12322. 

Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. 

(2012). The Future of Memory: Remembering, Imagining, and the Brain. Neuron, 76(4), 

677–694.  

Schlichting, M. L., Guarino, K. F., Schapiro, A. C., Turk-Browne, N. B., & Preston, A. R. 

(2017). Hippocampal Structure Predicts Statistical Learning and Associative Inference 

Abilities during Development. Journal of Cognitive Neuroscience, 29(1), 37–51. 

Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015). Learning-related representational 

changes reveal dissociable integration and separation signatures in the hippocampus 

and prefrontal cortex. Nature Communications, 6, 8151. 



6. References  
 

 

84 

Schlichting, M. L., & Preston, A. R. (2015). Memory integration: neural mechanisms and 

implications for behavior. Current Opinion in Behavioral Sciences, 1, 1–8. 

Schlichting, M. L., Zeithamova, D., & Preston, A. R. (2014). CA1 subfield contributions to 

memory integration and inference. Hippocampus, 1260, 1248–1260.  

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal 

lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20(11), 11–22. 

Seidenberg, M., Hermann, B., Wyler, A. R., Davies, K., Dohan, F. C., & Leveroni, C. (1998). 

Neuropsychological outcome following anterior temporal lobectomy in patients with and 

without the syndrome of mesial temporal lobe epilepsy. Neuropsychology, 12(2),     

303–316. 

Sestieri, C., Corbetta, M., Romani, G. L., & Shulman, G. L. (2011). Episodic memory 

retrieval, parietal cortex, and the default mode network: functional and topographic 

analyses. The Journal of Neuroscience : The Official Journal of the Society for 

Neuroscience, 31(12), 4407–4420. 

Shin, M.-S., Park, S.-Y., Park, S.-R., Seol, S.-H., & Kwon, J. S. (2006). Clinical and empirical 

applications of the Rey-Osterrieth Complex Figure Test. Nature Protocols, 1(2),       

892–899. 

Shing, Y. L., Finke, C., Hoffmann, M., Pajkert, A., Heekeren, H. R., & Ploner, C. J. (2019). 

Integrating across memory episodes: Developmental trends. PLoS ONE, 14(4), 1–11. 

Shohamy, D., & Wagner, A. D. (2008). Integrating memories in the human brain: 

hippocampal-midbrain encoding of overlapping events. Neuron, 60(2), 378–389. 

Sidhu, M. K., Stretton, J., Winston, G. P., Bonelli, S., Centeno, M., Vollmar, C., Symms, M., 

Thompson, P. J., Koepp, M. J., & Duncan, J. S. (2013). A functional magnetic 

resonance imaging study mapping the episodic memory encoding network in temporal 

lobe epilepsy. Brain, 136(6), 1868–1888. 



6. References  
 

 

85 

Sidhu, M. K., Stretton, J., Winston, G. P., McEvoy, A. W., Symms, M., Thompson, P. J., 

Koepp, M. J., & Duncan, J. S. (2016). Memory network plasticity after temporal lobe 

resection: a longitudinal functional imaging study. Brain, 139(2), 415–430. 

Sluzenski, J., Newcombe, N., & Ottinger, W. (2004). Changes in reality monitoring and 

episodic memory in early childhood. Developmental Science, 7(2), 225–245. 

Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., 

Boström, E., Westerlund, I., Vial, C., Buchholz, B. A., Possnert, G., Mash, D. C.,    

Druid, H., & Frisén, J. (2013). Dynamics of hippocampal neurogenesis in adult humans. 

Cell, 153(6), 1219–1227. 

Spencer, W. D., & Raz, N. (1995). Differential effects of aging on memory for content and 

context: A meta-analysis. Psychology and Aging, 10(4), 527–539.  

Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative 

memory systems. Proceedings of the National Academy of Sciences, 93(24),        

13515–13522.  

Stone, S. S. D., Teixeira, C. M., Zaslavsky, K., Wheeler, A. L., Martinez-Canabal, A., 

Wang, A. H., Sakaguchi, M., Lozano, A. M., & Frankland, P. W. (2011). Functional 

convergence of developmentally and adult-generated granule cells in dentate gyrus 

circuits supporting hippocampus-dependent memory. Hippocampus, 21(12),          

1348–1362.  

Stretton, J., Sidhu, M. K., Winston, G. P., Bartlett, P., McEvoy, A. W., Symms, M. R., 

Koepp, M. J., Thompson, P. J., & Duncan, J. S. (2014). Working memory network 

plasticity after anterior temporal lobe resection: A longitudinal functional magnetic 

resonance imaging study. Brain, 137, 1439–1453.  

Tashiro, A., Makino, H., & Gage, F. H. (2007). Experience-Specific Functional Modification of 

the Dentate Gyrus through Adult Neurogenesis: A Critical Period during an Immature 

Stage. Journal of Neuroscience, 27(12), 3252–3259. 



6. References  
 

 

86 

Tavor, I., Hofstetter, S., & Assaf, Y. (2013). Micro-structural assessment of short term 

plasticity dynamics. NeuroImage, 81, 1–7. 

ten Brinke, L. F., Bolandzadeh, N., Nagamatsu, L. S., Hsu, C. L., Davis, J. C.,               

Miran-Khan, K., & Liu-Ambrose, T. (2015). Aerobic exercise increases hippocampal 

volume in older women with probable mild cognitive impairment: a 6-month randomised 

controlled trial. British Journal of Sports Medicine, 49(4), 248–254. 

Thomas, A. G., Dennis, A., Rawlings, N. B., Stagg, C. J., Matthews, L., Morris, M.,   

Kolind, S. H., Foxley, S., Jenkinson, M., Nichols, T. E., Dawes, H., Bandettini, P. A., & 

Johansen-Berg, H. (2016). Multi-modal characterization of rapid anterior hippocampal 

volume increase associated with aerobic exercise. NeuroImage, 131, 162–170. 

Trouche, S., Bontempi, B., Roullet, P., & Rampon, C. (2009). Recruitment of adult-generated 

neurons into functional hippocampal networks contributes to updating and strengthening 

of spatial memory. Proceedings of the National Academy of Sciences, 106(14),     

5919–5924. 

Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of the 

hippocampus. Hippocampus, 8(3), 198–204. 

van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). 

Functional neurogenesis in the adult hippocampus. Nature, 415(6875), 1030–1034. 

Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W., & 

Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and 

semantic memory. Science, 277(5324), 376–380.  

Voets, N. L., Beckmann, C. F., Cole, D. M., Hong, S., Bernasconi, A., & Bernasconi, N. 

(2012). Structural substrates for resting network disruption in temporal lobe epilepsy. 

Brain, 135(8), 2350–2357. 

 



6. References  
 

 

87 

Voss, M. W., Vivar, C., Kramer, A. F., & van Praag, H. (2013). Bridging animal and human 

models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17(10),    

525–544. 

West, M. J. (1993). Regionally specific loss of neurons in the aging human hippocampus. 

Neurobiology of Aging, 14(4), 287–293. 

West, M. J. (1990). Stereological studies of the hippocampus: a comparison of the 

hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, 

wild mice and men. Progress in Brain Research, 83, 13–36. 

Wimmer, G. E., & Shohamy, D. (2012). Preference by association: how memory 

mechanisms in the hippocampus bias decisions. Science, 338(6104), 270–273. 

Woollett, K., & Maguire, E. A. (2011). Acquiring “the knowledge” of London’s layout drives 

structural brain changes. Current Biology, 21(24), 2109–2114. 

World Health Organization. (2009). Dementia. Retrieved July 20, 2019, from 

https://www.who.int/en/news-room/fact-sheets/detail/dementia. 

Yassa, M. A., & Stark, C. E. L. (2011). Pattern separation in the hippocampus. Trends in 

Neurosciences, 34(10), 515–525. 

Yonelinas, A. P. (2013). The hippocampus supports high-resolution binding in the service of 

perception, working memory and long-term memory. Behavioural Brain Research, 

254(1), 34–44. 

Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012). Hippocampal and ventral medial 

prefrontal activation during retrieval-mediated learning supports novel inference. 

Neuron, 75(1), 168–179.  

 

 

 



6. References  
 

 

88 

Zeithamova, D., & Preston, A. R. (2010). Flexible memories: differential roles for medial 

temporal lobe and prefrontal cortex in cross-episode binding. The Journal of 

Neuroscience : The Official Journal of the Society for Neuroscience, 30(44),         

14676–14684.  

Zeithamova, D., Schlichting, M. L., & Preston, A. R. (2012). The hippocampus and inferential 

reasoning: building memories to navigate future decisions. Frontiers in Human 

Neuroscience, 6(March), 1-14. 

 

 



7. Erklärung  
 

 

89 

7. Erklärung 
Hiermit erkläre ich, die Dissertation selbstständig und nur unter Verwendung der angegebe-
nen Hilfen und Hilfsmittel angefertigt zu haben. 
Ich habe mich anderwärts nicht um einen Doktorgrad beworben und besitze keinen Doktor-
grad in dem Promotionsfach. 
Ich erkläre, dass ich die Dissertation oder Teile davon nicht bereits bei einer anderen wis-
senschaftlichen Einrichtung eingereicht habe und dass sie dort weder angenommen noch 
abgelehnt wurde. 
Ich erkläre die Kenntnisnahme der dem Verfahren zugrunde liegenden Promotionsordnung 
der Mathematisch-Naturwissenschaftliche Fakultät II der Humboldt-Universität zu Berlin vom 
3. August 2006. Weiterhin erkläre ich, dass keine Zusammenarbeit mit gewerblichen Promo-
tionsbearbeiterinnen/Promotionsberatern stattgefunden hat und dass die Grundsätze der 
Humboldt-Universität zu Berlin zur Sicherung guter wissenschaftlicher Praxis eingehalten 
wurden. 
Mit der Erfassung der Daten gemäß „Satzung zur Erhebung von Daten über Abschluss- und 
Qualifikationsarbeiten“, Amtl. Mitteilungsblatt der HUB Nr. 63/2010 bin ich einverstanden.  

 

Declaration 
I hereby declare that I completed the doctoral thesis independently based on the stated   
resources and aids. I have not applied for a doctoral degree elsewhere and do not have a 
corresponding doctoral degree in this doctoral subject. 
I have not submitted the doctoral thesis, or parts of it, to another academic institution and the 
thesis has not been accepted or rejected. 
I declare that I have acknowledged the Doctoral Degree Regulations which underlie the pro-
cedure of the Faculty of Mathematics and Natural Sciences II (Humboldt-University), as 
amended on 3rd August 2006. Furthermore, I declare that no collaboration with commercial 
doctoral degree supervisors took place, and that the principles of Humboldt-Universität zu 
Berlin for ensuring good academic practice were abided by.  
I agree that my data will be collected according to "Satzung zur Erhebung von Daten über 
Abschluss- und Qualifikationsarbeiten", Amtl. Mitteilungsblatt der HUB Nr. 63/2010.  

 

................................................................................  

Datum / Unterschrift der Kandidatin 
Date / signature of the candidate 

 



8. Akademischer Lebenslauf  
 

 

90 

8. Akademischer Lebenslauf  
 
 
 

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version 

meiner Arbeit nicht veröffentlicht. 
 
 
 
 
 
Berlin, den 14. Oktober 2019    ................................................................... 

 Anna Pajkert 


	Acknowledgments
	Table of Contents
	Zusammenfassung
	Abstract
	1. Introduction
	1.1. Anatomy of the Hippocampus
	1.2. The Role of the Hippocampus for Learning, Memory, and Other Behaviours
	1.3. Behavioural Consequences of Hippocampal Dysfunction
	1.4. Structural and Functional Plasticity of the Hippocampus in Animal Experiments
	1.5. Structural and Functional Plasticity of the Hippocampus in Healthy Humans and in Human Patients

	2. Research Questions and Experimental Approach
	2.1. Study 1: Behavioural Strategies in the Developing Brain
	2.2. Study 2: Behavioural Strategies in the Lesioned Mature Brain
	2.3. Study 3: Structural Changes in the Lesioned Mature Brain

	3. Manuscripts
	3.1. Manuscript 1: Behavioural Strategies in the Developing Brain
	3.2. Manuscript 2: Behavioural Strategies in the Lesioned Mature Brain
	3.3. Manuscript 3: Structural Changes in the Lesioned Mature Brain

	4. Summary of the Results
	4.1. Study 1: Behavioural Strategies in the Developing Brain
	4.1.1. Accuracy
	4.1.2. Reaction Time
	4.1.3. Correlation Analyses
	4.1.4. Conclusions

	4.2. Study 2: Behavioural Strategies in the Lesioned Mature Brain
	4.2.1. Accuracy
	4.2.2. Reaction Time
	4.2.3. Correlation Analyses
	4.2.4. Conclusions

	4.3. Study 3: Structural Changes in the Lesioned Mature Brain
	4.3.1. Neuropsychological Assessment
	4.3.2. Longitudinal Grey Matter Changes in the Hippocampus and the DMN
	4.3.3. Conclusions


	5. Discussion
	5.1. Study 1: Behavioural Strategies in the Developing Brain – Decision Making in Children
	5.2. Study 2: Behavioural Strategies in the Lesioned Mature Brain – Decision Making in Patients with Hippocampal Dysfunction
	5.3. Study 3: Structural Changes in the Lesioned Mature Brain – Early Plasticity Processes
	5.4. Conclusions

	6. References
	7. Erklärung

