
pflow.py a Potential Flow Solver and Visualizer

Mechanical Engineering Technical Report 2017/12
Ingo Jahn

School of Mechanical and Mining Engineering
The University of Queensland.

July 28, 2018

Abstract

plow.py is a simple teaching and analysis tool for 2-D Potential Flows. It is a collection
of code, that allows the construction of simple flow fields that meet the Potential Flow gov-
erning Equations. A range of plotting and visulisation tools are included.

This report is a brief userguide and example book.

Contents

1 Introduction 2
1.1 Getting the Code . 2
1.2 Dependencies and Installation . 2

1.2.1 Easy Installation - Windows Users . 2
1.2.2 More Complex Install - Linux Users & OS X users 2

1.3 Citing this tool . 3

2 Distribution 4
2.1 Modifying the code . 4

3 Using the Tool: 5-minute version for experienced python Users 5

4 Using the Tool: Detailed explanation 6
4.1 Creating your Flow field . 6

4.1.1 Building Blocks . 6
4.2 Define the range and resolution for your simulation 8
4.3 Plotting the results for PSI, U, V, ... 8
4.4 Extracting data . 9
4.5 Saving data . 10

5 Example - Vortex near wall 12

6 References 15

7 Appendix 15
7.1 Template for jobfile.py . 15
7.2 Source Code: pflow.py . 17

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/328927863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Potential Flow is a simple but powerful analysis approach to simulate inviscid flow. This report is
the userguide for pflow.py a tool to analyse simple 2-D flows together with a selection of plotting
and post-processing tools. The code allows flow-fields, consisting of the following building blocks
to be analysed: Uniform Flow, Sink/Source, Irrotational Vortex, Doublet, and other user-define
options.
The post-processing tool allows plotting of stream functions ψ, velocity vectors, velocity contour
plots, and pressure contours. In addition post-processing tools are included to extract point data
and data along lines.

1.1 Getting the Code

The code is distributed as part of the HTDT - Heat engine & Turbomachinery Design Tools
code under a GNU General Public License 3 license. The code can be downloaded from https:

//bitbucket.org/uqturbine/htdt/src. The source code and examples are located in the
htdt/src/PotentialFlow/ and htdt/examples/PotentialFlow/ sub-directories respectively.

1.2 Dependencies and Installation

pflow.py is written in python. The following packages are required:

• python 2.7 or python 3.x- any standard distribution

• numpy

• matplotlib

There are two options to run and install pflow.py.

1.2.1 Easy Installation - Windows Users

1. Copy the file pflow.py and jobfile.py and any other files you want to use into the same
directory.

2. Open spyder3 (available to download from https://anaconda.org/anaconda/python)

3. Navigate to the directory containing the files.

4. Run pflow.py with the following command in the spyder console:
%run pflow.py --job=jobfile.py

5. The results will appear in the spyder console

1.2.2 More Complex Install - Linux Users & OS X users

This installation path is slighty more complex, but allows easier use of the code.
For OS X:
From terminal, execute the following command: $$ vi ~/.profile and add the following two
lines:
export PYTHONPATH=${PYTHONPATH}:${HOME}/path-to-file

export PATH=${PATH}:${HOME}/path-to-file

followed by restarting the terminal.

2

https://bitbucket.org/uqturbine/htdt/src
https://bitbucket.org/uqturbine/htdt/src
https://anaconda.org/anaconda/python

For Linux (e.g. UBUNTU):
From terminal, execute the following command: $$ gedit ~/.profile and add the following
two lines:
export PYTHONPATH=${PYTHONPATH}:${HOME}/path-to-file

export PATH=${PATH}:${HOME}/path-to-file

followed by restarting the terminal.

The above steps ensure that pflow.py is on the search path for executables and python modules.
This allows the code to be executed from any directory using the command:
$$ pflow.py --job=jobfile.py

1.3 Citing this tool

When using the tool in simulations that lead to published works, it is requested that the following
works are cited:

• Jahn, I. (2017), pflow.py a Potential Flow Solver and Visualizer, Mechanical Engineering
Technical Report 2017/12, The University of Queensland, Australia

3

2 Distribution

pflow.py is distributed as part of the code collection maintained by the CFCFD Group at the
University of Queensland [1]. This collection is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or any later version. This program collection is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details http://www.gnu.org/licenses/.
Alternatively the code is included in the Appendix.

2.1 Modifying the code

You can modify and adjust the code to your heart’s content. If you want to share the updated
and modified code, please email an updated version together with a short description of the
changes to the authors. Once reviewed the changes will be included in future versions of the
code.

4

http://www.gnu.org/licenses/

3 Using the Tool: 5-minute version for experienced python
Users

If you understand python and know how the potential flow building blocks work, this is for you.

1. Find an existing example file, e.g. jobfile.py.

2. Change the number and type of building blocks used to assemble your potential flow field,
e.g. a1 = UniformFlow(1.0,0.0). A full list of options is available in section 4.1.1.

3. Change the settings for how the flow will be visualised.
E.g. plot.psi()

4. (Optional) Ask the code for an on-screen display of local flow conditions.
E.g. screen.locations([[0.,-0.5], [0.,0.5]])

5. Save the job file.

6. Run the code:
If using spyder:

• Start spyder
• Navigate to the directory containing pflow.py and your input file.
• Run the code from the spyder console with: %run pflow.py --job=jobfile.py

(Replace jobfile.py with the name of your input file)

If running from terminal in Linux or OS X

• Open a terminal
• Navigate to the directory containing your input file (and pflow.py if you haven’t

added it to PATH and PYTHONPATH).
• Run the code from the terminal with the command pflow.py --job=jobfile.py

(Replace jobfile.py with the name of your input file)

7. If you want to save your data, add the option --out-file=data.txt to your file

5

4 Using the Tool: Detailed explanation

4.1 Creating your Flow field

In potential flow, different flow features, building blocks, that full-fill Laplace’s equation by them-
selves, are superimposed (added) in order to generate complex flow-field solutions. The first step
in pflow.py is to define these building blocks, which can be combined to create the complex
flow-field.

Step: 1
Create a file that details the simulation you want to perform. In this document the file is called
jobfile.py. Within this file start by defining the model reference data. The following variables
are available. If skipped the

mdata.name : (default = ””) name of simulation case.

mdata.dimensions : (default = 2) dimensions of domain. Currently limited to 2.

mdata.Pinf : (default = 0 Pa) free-stream pressure used for calculations

mdata.rho : (default = 1.225 kg/m3) density used for flow calculations

mdate.Uinf : (default = np.nan’) If ’nan’, this parameter will be calculated based on vector
sum of all uniform flow fields that are defined. Alternatively if an integer or float is defined,
this value will be used.

Step: 2
Within the file define the building blocks you are using to construct your flow solution. The
following code section defines Uniform Flow with U = 5 m/s, V = 0 m/s and a Source located at
(0.5, 0.) with a net flow rate of 5 kg/s/m:

Uniform Flows
A1 = UniformFlow (5 . , 0 . , l a b e l =’U−Flow ’)
Sources
D1 = Source (0 . 5 , 0 . , 5 . , l a b e l =’Source 1 ’)

See section 4.1.1 for a list of possible options and detailed descriptions.

4.1.1 Building Blocks

Currently the following Building Blocks are supported.

Uniform Flow: UniformFlow(u,v,label=’)’
This creates a uniform flow with the velocity components u and v in the x- and y-direction
respectively. The velocity vectors for the flow-field are shown in Fig. 1a.
The streamfunction is defined as:

Ψ = u y − v x (1)

Source: Source(x0,y0,m,label=’)’
This generates a source (use -ve m for sink) located at the position defined by (x0, y0).
Velocity vectors for the flow-field are shown Fig. 1b.

6

The streamfunction is defined as:

θ = tan− 1

(
y − y0

x− x0

)
(2)

Ψ = θ
m

2π
(3)

Vortex: Vortex(x0,y0,Gamma=Gamma,label=’)’ or Vortex(x0,y0,K=K,label=’)’
This generates an irrotational vortex of circulation Γ or strength K, depending on whether
Gamma= or K= is specified, with the core locates at (x0, y0) (If K is supplied, circulation is
calculated as Γ = 2πK). Velocity vectors for the flow-field are shown Fig. 1c.
The streamfunction is defined as:

r =
[
(x− x0)

2
+ (y − y0)

2
] 1

2

(4)

Ψ = − Γ

2π
ln r = −K ln r (5)

Doublet: Doublet(x0,y0,a,U_inf,label=’)’
This generates the flow field known as a doublet. This is generated if a source and sink are

brought very close together with a separation s = a2 πU∞
m in the flow direction. ±m is the

strength of the source and sink. The center of the doublet is located at (x0, y0). Velocity
vectors for the flow-field are shown Fig. 1d.
The streamfunction is defined as:

Ψ = U∞ (y − y0)
−a2

(x− x0)
2

+ (y − y0)
2 (6)

This doublet works only for flow in the +x directions. For other flows modify the code or
manually generate a doublet by bringing together a source and sink, aligned with the flow
direction.

User defined: User_Defined(x0,y0,n,label=’)’
This generates the streamlines for flow around a 90◦ corner, located at position. Velocity
vectors for the flow-field are shown Fig. 1e.
The streamfunction is defined as:

Ψ = n (x− x0) (y − y0) (7)

Name Name(x0,y0,Var1,Var2,Var3,label=’)’
This is a template for future building blocks that you may want to implement. The block
class must have the following functions and components:

• instances = [] This ensures all instances of the class are collected.
• __init__(self,....) This initializes the function and reads in the initial settings
self.__class__.instances.append(self) This appends the current instance to the
instances list.

• evaP(self,x,y) This returns the value of the stream function, Ψ at the point defined
by the coordinates (x, y)

• eval(self,x,y) This returns the value of the u and v velocity at the point defined
by the coordinates (x, y). This should be the analytical solution to dΨ

dy and −dΨ
dx .

7

(a) Uniform Flow (b) Source (c) Vortex

(d) Doublet (e) User Defined

Figure 1: Building Blocks available to generate Potential Flow solutions.

4.2 Define the range and resolution for your simulation

After the building blocks have been defined, the next step is to define the range over which the
data will be solved and how the data is visualised and plotted. This is done by adjusting the
settings of the visual class.

Step: 3 (optional)
Use the following settings to adjust how much (x-range and y-range) is plotted and the resolution
of the data:

visual.xmin : (default = -1.) sets xmin for plots

visual.xmax : (default = 1.) sets xmax for plots

visual.ymin : (default = -1.) sets ymin for plots

visual.ymax : (default = 1.) sets ymax for plots

visual.Nx : (default = 50) number of points used for discretisation in x-direction. Larger values
will create better plots, but this will slow down the code.

visual.Ny : (default = 50) number of points used for discretisation in y-direction

visual.subplot : (default = 0) sets whether to plot individual graphs or to plot all graphs in a
single figure.
0 - all individual graphs;
1 - subplots in single figure.

4.3 Plotting the results for PSI, U, V, ...

Once the area and visualisation settings have been defined, you now must define what is plotted.

8

Step: 4
Use the following commands to create different types of graphs.

plot.psi(levels=20) : plots ’real’ streamlines, contours of psi. Use levels to set number of
contours.

plot.psi magU(min=[], max=[], levels=20) : create contour plot of velocity magnitude
with overlaid stream functions. Use min and max to specify range and levels to set numbers
of contours.

plot.vectors() : plots nice looking velocity vectors. Note these are not equi-potentials of
streamfunction, Ψ.

plot.vectors magU(min=[], max=[], levels=20) : create contour plot of velocity magni-
tude with overlaid velocity vectors. Use min and max to specify range and levels to set
numbers of contours.

plot.magU(min=[], max=[], levels=20) : create contour plot of velocity magnitude. Use
min and max to specify range and levels to set numbers of contours.

plot.U(min=[], max=[], levels=20) : create contour plot of U velocity. Use min and max
to specify range and levels to set numbers of contours.

plot.V(min=[], max=[], levels=20) : create contour plot of V velocity. Use min and max
to specify range and levels to set numbers of contours.

plot.P(min=[], max=[], levels=20) : create contour plot of pressure. P = Pinf − 1
2 ρ |U |

2 .
Use min and max to specify range and levels to set numbers of contours. Pinf and ρ are
defined as part of the model settings (see section 4.1).

plot.Cp(min=[], max=[], level=20) : create contorus of pressure coefficient Cp. Cp = 1.−
P/(1

2 ρU
2
inf). Use min and max to specify range and levels to set numbers of contours.

Uinf and ρ are defined as part of the model settings (see section 4.1).

For example, to create two graphs, one showing stream-functions, Ψ, and one showing ve-
locity vectors super-imposed with velocity magnitude (velocity range limted to [0., 10.]), use the
following code:

p l o t . vectors magU (min = [0 .] , max= [1 0 .] , l e v e l s =20)
p l o t . p s i (l e v e l s =20)

The results are shown in Fig. 2.

4.4 Extracting data

In addition to plotting the data it is also possible to evaluate the properties at single points or
along lines.

Step: 5
The display of data on screen is achieved using the following commands

screen.variables([‘Psi‘, ‘magU‘, ‘P‘]) : This defines the parameters that will be evaluated.
The following variables are available:

Psi : Value of streamfunction
magU : Velocity magnitude
U : x-component of velocity

9

(a) Streamlines
(b) Streamlines superimposed with contours of Ve-
locity magnitude (magnitude capped at 10 m s−1).

Figure 2: Streamline and Streamline + Velocity magnitude plots generated for flow-field gener-
ated by UniformFlow and Source

V : y-component of velocity
P : pressure
Cp : pressure coefficient

screen.locations([[x0,y0], [x1,y1], ...]) : Extracts the local values at the points with coor-
dinates (x0, y0) and (y0, y1).

screen.Lineval([x0,y0], [x1,y1], N=10) : Extracts the local values at N = 10 equally
spaced points between (x0, y0) and (y0, y1).

The following code extracts stream function, Ψ, velocity magnitude, and pressure at the
points (−0.5,−0.5) and (−0.5, 0.5), and also along the line between (−1.0, 0.0) and (1.0, 0.0).

Extract data along l i n e s
s c r e en . l o c a t i o n s ([[−0.5 ,−0.5] , [−0 . 5 , 0 . 5]])
s c r e en . L ineva l ([− 1 . , 0 .] , [1 . , 0 .] , N=9)

A screen grab of the result is shown in Fig. 3. As expected, pressure and velocity are infinite at
the center of the source.

4.5 Saving data

The setup of a simulation and the data displayed on screen can also be written to an output
file. To achieve this run pflow.py with the --out-file=datafile.txt, where datafile.txt can
be any file name. For example:
%run pflow.py --job=jobfile.py --out-file=Test1.txt (For use in spyder)
pflow.py --job=jobfile.py --out-file=Test1.txt (For use in from terminal)
will save your data to Test1.txt, which can be opened with any text editor.

10

++
Output Data :
Density = 1.225 kg/ s
Uinf = 5 .0 m/ s

Points :
X−l o c Y−l o c Psi magU P
−0.50 −0.50 −4.63 4 .37 −11.72
−0.50 0 .50 4 .63 4 .37 −11.72

Lines :
X−l o c Y−l o c Psi magU P
−1.00 0 .00 2 .50 4 .47 −12.24
−0.75 0 .00 2 .50 4 .36 −11.66
−0.50 0 .00 2 .50 4 .20 −10.83
−0.25 0 .00 2 .50 3 .94 −9.50

0 .00 0 .00 2 .50 3 .41 −7.12
0 .25 0 .00 2 .50 1 .82 −2.02
0 .50 0 .00 0 .00 i n f − i n f
0 .75 0 .00 0 .00 8 .18 −41.01
1 .00 0 .00 0 .00 6 .59 −26.61

Figure 3: Stream function value, velocity magnitude and pressure evaluated at discrete points.

11

5 Example - Vortex near wall

This example shows how Potential_Flow.py can be used to analyse the flow field generated by
a uniform flow parallel to a wall and a vortex positioned at a distance of 0.5 m from the wall.
The problem is illustrated in Fig. 4a.

(a) Flow problem

(b) Using symmetry, in the form of a second vortex
positioned behind the wall, a straight streamline
representing the wall is created.

Figure 4: Example case, consisting of uniform flow and a vortex positioned near a wall.

In order to generate the effect of a wall (straight streamline) one can use the principle of
symmetry. Thus the problem we actually solve using Potential Flow theory is the one shown
in Fig. 4b, which consists of three building blocks. The Uniform Flow, the Vortex at (0.0, 0.5)
and a mirror image (about the x-axis) of the Vortex, located at (0.0,−0.5). By symmetry this
generates a straight streamline along the x-axis, which is equivalent to a wall (by definition no
flow crosses a streamline, making it equivalent to a wall).

The appropriate code, defining the Uniform Flow, with a strength of 5.0 and vortices with
a strength of ±5.0 is given below. First the building blocks are generated as variables A1, C1,
and C2. Then the extend of the grid over which we solve the flow-field is defined as ±2 in the
x-direction and ±1 in the y-direction.

The results from the plotting functions, showing field data and data along the wall, are shown
in Fig. 5. The obtained velocity in the wall parallel direction equals the analytical solution to
the problem, given by

UT (x) = U∞ +
Γh

π (x2 + h2)
(8)

= 5.0 +
5.0× 0.5

π
(
x2 + 0.52

)
UT (0) = 5.0 + 3.18 = 8.18

s e t model parameters
mdata . name = ’ Vortex + Uniform Flow adjacent to a wal l ’
mdata . dimensions = 2

12

Def ine the Components
a1=Vortex (0 . 0 , 0 . 5 , Gamma=−5., l a b e l =’Vortex ’)
a2=Vortex (0 .0 , −0 .5 , Gamma=5. , l a b e l =’Vortex ’)
b=UniformFlow (5 . , 0 .)

Def ine how the s o l u t i o n w i l l be v i s u a l i s e d .
v i s u a l . xmin =−2.
v i s u a l . xmax =2.
v i s u a l . subplot = 0

p lo t . p s i (l e v e l s = 20)
p l o t . vectors magU (min=0. , max=20.)
p l o t .P(min=−100, max=0)

Def ine what i s pr in ted to s c r e en
sc r e en . v a r i a b l e s ([’ Psi ’ , ’U’ , ’V’ , ’P ’])
s c r e en . L ineva l ([−2 . 0 , 0 . 0] , [2 . 0 , 0 . 0] , N=19)

(see section 7.1 for a more detailed input template)
As expected along the wall (y = 0.0) the flow velocity in the vertical direction (V) is zero, as

one would expect for a wall. Similarly the component of fluid velocity along the wall (U) is seen
to accelerate, which results in a pressure reduction.

These results show the ability of potential flow to create simple flow fields, but it also high-
lights that potential flow is inviscid. If a real fluid, with viscosity, was used the x-component of
velocity would be zero also. Nevertheless solutions created using potential flow are accurate for
conditions and geometries, where the effects of viscosity are small.

13

(a) Streamlines (b) Pressure contours

(c) U-Velocity, extracted along the x-axis (d) Screen output

Figure 5: Flow field and flow properties obtained from a uniform flow with u-velocity of 5.0 m/s
and a vortex with a strength of −5.0 positioned 0.5 m from a wall running along the x-axis.

14

6 References

References

[1] CFCFD, The Compressible Flow Project http://cfcfd.mechmining.uq.edu.au The Uni-
versity of Queensland

7 Appendix

7.1 Template for jobfile.py

1 ”””
2 Template input f i l e f o r HX solver . py
3 ”””
4

5# se t model parameters
6 ”””
7 Set parameters t ha t de f i ne model cond i t i ons (op t i ona l)
8 mdata . Pinf − (d e f u a l t = 0 Pa) s e t s P−i n f i n i t y used in c a l c u l a t i o n s
9 mdata . rho − (d e f a u l t = 1.225 kg/s) s e t s dens i t y used f o r c a l c u l a t i o n s

10 mdata . Uinf − (d e f a u l t = np . nan m/s) s e t s U−i n f i n i t y used in c a l c u l a t i o n s .
11 I f NaN t h i s w i l l be c a l c u l a t e d au tomat i ca l l y .
12 ”””
13 mdata . name = ’ Vortex + Uniform Flow adjacent to a wa l l ’
14 mdata . dimensions = 2
15

16# Define the Bui ld ing Blocks
17 ”””
18 The f o l l ow i n g i s a shor t summary o f the supported components . See the User−Guide
19 f o r more d e t a i l e d i n s t r u c t i o n s and d e t a i l e d d e f i n i t i o n .
20

21A = UniformFlow (Vx ,Vy, l a b e l =’UFlow1 ’)
22−−> c r ea t e s a uniform with v e l o c i t y magnitude and d i r e c t i on de f ined by the
23 x and y components Vx and Vy
24

25B = Vortex (Cx ,Cy ,K=K, l a b e l =’Vortex1 ’)
26−−> c r ea t e s a i r r o t a t i o n a l vor t ex l o ca t ed at (Cx , Cy) with a s t r eng t h
27 K = Gamma / (2 ∗ p i) . A p o s i t i v e Gamma r e s u l t s in a vor t ex r o t a t i n g in
28 the an t i c l o c kw i s e d i r e c t i on .
29

30B = Vortex (Cx ,Cy ,Gamma=Gamma, l a b e l =’Vortex1 ’)
31−−> c r ea t e s a i r r o t a t i o n a l vor t ex l o ca t ed at (Cx , Cy) with a s t r eng t h Gamma. A
32 p o s i t i v e K r e s u l t s in a vor t ex r o t a t i n g in the an t i c l o c kw i s e d i r e c t i on .
33

34C = Source (Cx ,Cy ,m, l a b e l =’Source1 ’)
35−−> c r ea t e s a source / s ink l o ca t ed at (Cx ,Cy) . m i s the mass f l ow ra te (per un i t
36 depth) coming out o f the source . Use +ve m for source and −ve m for s ink s
37

38D = Doublet (Cx ,Cy ,R, Uinf , l a b e l =’Doublet1 ’)
39−−> c r ea t e s a doub l e t (co−l o ca t ed source and s ink) l o ca t ed at (Cx , Cy) . R s e t s
40 the rad ius o f the enc l o s ing s t reaml ine t ha t i s generated . When used in
41 conjunct ion with a uniform f low to show the f l ow around a cy l inder , s e t
42 Ux and Uy to match the x and y components o f the uniform f low .
43

44 E = User Defined (Cx ,Cy , n , l a b e l =’user1 ’)
45−−> Secre t . Try i t out and see i f you can work out what i t i s .

15

http://cfcfd.mechmining.uq.edu.au

46

47 ”””
48

49 a1=Source (0 . 5 , 0 . 0 , 1 0 . , l a b e l=’ Source ’)
50 b=UniformFlow (5 . , 0 .)
51

52# Define how the s o l u t i on w i l l be v i s u a l i s e d .
53 ”””
54 By use the f o l l ow i n g s e t t i n g s to ad ju s t the v i s a u l i s a t i o n .
55−−−− Define p l o t t i n g Window −−−−−
56 v i s u a l . xmin − (d e f a u l t = −1.) s e t s x min fo r p l o t s
57 v i s u a l . xmax − (d e f a u l t = 1 .) s e t s x max fo r p l o t s
58 v i s u a l . ymin − (d e f a u l t = −1.) s e t s y min fo r p l o t s
59 v i s u a l . ymax − (d e f a u l t = 1 .) s e t s y max fo r p l o t s
60 v i s u a l .Nx − (d e f a u l t = 50) number o f po in t s used f o r d i s c r e t i s a t i o n
61 in x−d i r e c t i on
62 v i s u a l .Ny − (d e f a u l t = 50) number o f po in t s used f o r d i s c r e t i s a t i o n
63 in x−d i r e c t i on
64 v i s u a l . s u bp l o t − (d e f a u l t = 0) 0 − a l l i n d i v i d u a l graphs ; 1 − s u b p l o t s in
65 s i n g l e f i g u r e
66

67−−−− Define what i s p l o t t e d −−−−
68 p l o t . p s i (l e v e l s =20) − p l o t s ’ r e a l ’ s t reaml ines , contours o f p s i . Use l e v e l s to
69 s e t number o f contours .
70 p l o t . psi magU (min=[] , max=[] , l e v e l s =20) − crea t e contour p l o t o f v e l o c i t y
71 magnitude with o v e r l a i d stream func t i ons . Use min and
72 max to s p e c i f y range and l e v e l s s e t s numbers o f contours .
73 p l o t . v e c t o r s () − p l o t s nice l ook ing s t r eaml ine s . Note the se are not
74 e u q i p o t e n t i a l s o f p s i .
75 p l o t . vectors magU (min=[] , max=[] , l e v e l s =20) − crea t e contour p l o t o f v e l o c i t y
76 magnitude with o v e r l a i d v e l o c i t y v e c t o r s . Use min and
77 max to s p e c i f y range and l e v e l s s e t s numbers o f contours .
78 p l o t .magU(min=[] , max=[] , l e v e l s =20) − crea t e contour p l o t o f v e l o c i t y magnitude .
79 Use min and max to s p e c i f y range and l e v e l s s e t s numbers
80 o f contours .
81 p l o t .U(min=[] , max=[] , l e v e l s =20) − crea t e contour p l o t o f U v e l o c i t y . Use min
82 and max to s p e c i f y range and l e v e l s s e t s numbers o f

contours .
83 p l o t .V(min=[] , max=[] , l e v e l s =20) − crea t e contour p l o t o f V v e l o c i t y . Use min
84 and max to s p e c i f y range and l e v e l s s e t s numbers o f

contours .
85 p l o t .P(P in f =0. , rho=1.225 , min=[] , max=[] , l e v e l s =20) − crea t e contour p l o t o f
86 pressure , us ing P in f and rho to perform the c a l c u l a t i o n .
87 P = P inf − 1/2 ∗ rho ∗ magU∗∗2. Use min and max to
88 s p e c i f y range and l e v e l s s e t s numbers o f contours .
89 p l o t .Cp(U inf =1. , rho=1.225 , min=[] , max=[]) − crea t e contorus o f pressure
90 c o e f f i c i e n t Cp, us ing U inf and rho to perform the
91 c a l c u l a t i o n .
92 Cp = P / (1/2 ∗ rho ∗ U inf ∗∗2)
93 ”””
94

95 v i s u a l . xmin=−2.
96 v i s u a l . xmax =2.
97 v i s u a l . subp lot = 0
98

99 p lo t . p s i (l e v e l s = 20)
100 p lo t . vectors magU (min=0. , max=20.)
101 p lo t .P(min=−100, max=0)
102

103

104# Define what i s p r in t ed to screen
105 ”””

16

106−−−− Define what i s d i s p l a y ed −−−−
107 screen . v a r i a b l e s ([’ Psi ’ , ’magU ’ , ’U ’ , ’V ’ , ’P ’ , ’Cp ’]) − prov ide l i s t o f parameters

t ha t
108 w i l l be eva lua t ed . (d e f a u l t [’ Psi ’ , ’P ’ , ’magU ’])
109 screen . l o c a t i on s ([[x0 , y0] , [x1 , y1] , [x2 , y2] , . . .]) − prov ide l i s t o f po in t s
110 where to eva lua t e data
111 screen . Lineva l ([x0 , y0] , [x1 , y1] , N=5) − e va l ua t e s cond i t i ons at N e qua l l y
112 spaced po in t s between (x0 , y0) and (x1 , y1)
113 ”””
114

115 s c r e en . v a r i a b l e s ([’ Ps i ’ , ’U ’ , ’V ’ , ’P ’])
116 s c r e en . L ineva l ([−2 . 0 , 0 . 0] , [2 . 0 , 0 . 0] , N=19)

7.2 Source Code: pflow.py

The source code for pflow.py is available from the htdt repository. https://bitbucket.org/

uqturbine/htdt/src and located in the htdt/src/PotentialFlow/ directory

17

https://bitbucket.org/uqturbine/htdt/src
https://bitbucket.org/uqturbine/htdt/src

	Introduction
	Getting the Code
	Dependencies and Installation
	Easy Installation - Windows Users
	More Complex Install - Linux Users & OS X users

	Citing this tool

	Distribution
	Modifying the code

	Using the Tool: 5-minute version for experienced python Users
	Using the Tool: Detailed explanation
	Creating your Flow field
	Building Blocks

	Define the range and resolution for your simulation
	Plotting the results for PSI, U, V, ...
	Extracting data
	Saving data

	Example - Vortex near wall
	References
	Appendix
	Template for jobfile.py
	Source Code: pflow.py

