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Abstract 

Leptospirosis, a life-threatening yet neglected disease caused by Gram negative 

spirochete Leptospira, is a zoonotic disease of global public health importance. In China, 

at least 2.5 million cases have been reported since the 1950s. Although there has been a 

decline in incidence since the 2000s, leptospirosis remains a major public health issue. 

The incidence of leptospirosis has remained at a low level in the past few years; this 

provides opportunities to eliminate the transmission. However, effective control and 

elimination strategies in China are hindered by considerable knowledge gaps regarding 

the epidemiology, burden, and the geographical distribution of leptospirosis in the country. 

There is a need to develop spatial explicit tools to help analyse the spatiotemporal 

heterogeneity of leptospirosis incidence to provide a necessary evidence base to better 

inform planning and implementation of targeted leptospirosis surveillance and control 

strategies.  

The overall objectives of the program of research are to (1) review and critically evaluate 

the spatial analytical tools used in leptospirosis studies (Chapter 4); (2) quantify and map 

the spatial trends of the burden of leptospirosis in China (Chapter 5); (3) explore the 

geographical pattern and hotspots of leptospirosis incidence, and its socioecological 

characteristics (Chapter 6); (4) quantify the role of environmental and socioeconomic 

factors on the spatial variation of leptospirosis incidence and to produce spatially-explicit 

predictive maps of incidence of leptospirosis (Chapter 7); and 5) assess the association of 

weather, environmental indicators and leptospirosis incidence to develop localised 

temporal prediction models (Chapter 8). 

A total of 115 peer-reviewed published articles were reviewed and critically evaluated; 

gaps in knowledge and future directions of the use of spatial techniques in the field of 

human and animal leptospirosis were discussed (Chapter 4). In Chapter 5, I analysed 

8158 notified human leptospirosis cases reported during 2005–2016 to estimate 

geographical variation in the leptospirosis burden. I found that approximately 10,313 

disability-adjusted life-years (DALY) were lost due to Leptospira infection during 2005–

2015. Those most affected by leptospirosis were males, young populations, and farmers. 

Of the total DALYs, 30% was from premature death among those aged under 20 years. 

The spatial analyses in Chapter 6 revealed that the high-risk counties for leptospirosis 

were clustered and were mainly in the southwest and southern region of China along the 

Yangtze River and Pearl River. High-risk counties were significantly different in terms of 
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their demographical, environmental, and socioeconomic profiles compared with low-risk 

counties. The study in Chapter 7 further revealed that the environmental and 

socioeconomic effects significantly differed between the Upper Yangtze River Basin and 

the Pearl River Basin, confirming that leptospirosis transmission is highly geographic 

specific. After accounts for environmental and socioeconomic factors, the Bayesian spatial 

conditional autoregressive models indicated that the highest leptospirosis incidence was 

identified throughout the western and southern part of the Upper Yangtze River Basin and 

in the midstream and lower reaches of the Pearl River Basin (Chapter 7). For timely 

intervention, the evidence from the study of high-risk counties—Yilong County and Mengla 

County (Chapter 8)—demonstrated that variability of rainfall and satellite-based physical 

environmental parameters, including vegetation (indicated by normalized difference 

vegetation) and flooding (indicated by modified normalized difference water index), can be 

used as predictors of leptospirosis outbreaks. However, the response and lag effects of 

such indicators are significantly varied between locations. 

This thesis demonstrates that spatial epidemiological tools have benefited the 

understanding of the epidemiology of leptospirosis in China and they can be further used 

to support intervention programs to eliminate transmission of leptospirosis in the residual 

hotspots. This thesis lays a foundation for further development of an integrated spatial-

temporal decision support system for leptospirosis control to support health authorities in 

planning and implementing effective and timely spatially targeted public health 

interventions in the identified residual high-risk regions.  
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Chapter 1 Introduction 

1.1 Background 

Leptospirosis is a widespread emerging zoonosis caused by spirochetes belonging to the 

genus Leptospira (Faine et al., 1999; Bharti et al., 2003; Pappas et al., 2008). Each year, 

there have been at least one million human cases of leptospirosis infection resulting in 

approximately 58,900 deaths worldwide. Recent disease burden estimates indicate that 

approximately 2.9 million disability-adjusted life-years (DALYs) were lost per year with the 

highest burden found in low-income developing countries, especially affecting communities 

in tropical and subtropical regions (Costa et al., 2015; Torgerson et al., 2015). However, 

there are concerns that current burden estimates are possibly an underestimate due to 

diagnostic and surveillance constraints and lack of disease awareness (WHO, 2003; Bharti 

et al., 2003). In 2009 the World Health Organization formed the Leptospirosis Burden 

Epidemiology Reference Group (LERG) with the aim of carrying out more research and 

formulating policies to reduce the burden of leptospirosis (WHO, 2010). 

Leptospiral infection in human occurs due to direct exposure of injured skin or mucous 

membranes to infected animal tissues or urine, or by indirect contact with mud or water 

containing pathogenic Leptospira spp. (Levett, 2001). There are 13 pathogenic species, 

eleven “intermediate” species which occasionally cause mild clinical manifestations, and 

eleven saprophytes which are free-living environmental micro-organisms not known to 

cause disease (Xu et al., 2016b; Casanovas-Massana et al., 2020). More than 250 

pathogenic serovars and 40 genomospecies have been identified worldwide (Haake and 

Levett, 2015; Vincent et al., 2019; Casanovas-Massana et al., 2020). Various carrier 

animals, including companion animals, livestock and wild mammals, have been identified 

as potential reservoirs of infection. In rural settings, agricultural animals, such as pigs, 

cattle, sheep and goats, are known to carry Leptospira serovars but rodents are also 

known to be an important carrier (Adler and de la Pena Moctezuma, 2010). In urban areas, 

rodents are the main reservoir for carrying and shedding pathogenic Leptospira into the 

environment (Vinetz et al., 1996; de Faria et al., 2008; Santos et al., 2017; Blasdell et al., 

2019; Briskin et al., 2019). Different epidemiological settings might lead to variation on the 

mode of transmission, distribution, and the clinical expression and severity of illness (Ko et 

al., 1999; Ashford et al., 2000; Bharadwaj et al., 2002; Cosson et al., 2014).  
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Traditionally, leptospirosis has been an occupational-hazard commonly affecting farmers, 

abattoir workers, veterinarians, miners, and soldiers (Terry et al., 2000; Lacerda et al., 

2008; Parveen et al., 2016; Burns et al., 2016). Nowadays, leptospirosis is commonly 

reported after flooding due to severe weather events; it especially affects poor urban 

communities in tropical and subtropical regions where access to basic services, such as 

safe water and sanitation, adequate drainage systems, and housing and waste 

management, is deficient (Ko et al., 1999; Barcellos and Sabroza, 2001; Bharadwaj et al., 

2002). Recently, leptospirosis has generated travel-related concerns as a considerable 

number of cases have been reported among travellers returning from endemic countries 

after engaging in outdoor recreational activities (e.g., triathlon and water-sports) (Sejvar et 

al., 2003, Ricaldi and Vinetz, 2006; Brockmann et al., 2010, de Vries et al., 2018; 

Schönfeld et al., 2019).  

Leptospirosis transmission involves the interaction of climate, environmental, and 

sociodemographical factors which makes disease-control interventions challenging. 

Leptospirosis incidence is known to follow a seasonal pattern and it is closely linked with 

variation in weather conditions (Desvars et al., 2011; Coelho and Massad, 2012; 

Chadsuthi et al., 2012; Weinberger et al., 2014; Joshi et al., 2017; Matsushita et al., 2018; 

Deshmukh et al., 2019). Climate change is presumed to intensify severe weather events 

and flooding which could escalate leptospirosis outbreaks, especially in tropical and 

subtropical countries (Lau et al., 2010). Moreover, uncontrolled urbanisation, resulting from 

population growth and economic development, has boosted significant environmental 

changes and widened the economic gap, making leptospirosis control more challenging. It 

is expected that by 2050, 68% of the global population will reside in urban areas; 

moreover, the urban population living in slums is estimated to increase, especially in 

developing countries (UN-DESA, 2019; UN-HABITAT, 2016). Together extreme weather 

events, population growth, and urbanisation under low level sanitation conditions are 

thought to be critical drivers for the (re)emergence of leptospirosis and the shift in its 

geographical and temporal distribution (Lau et al., 2010). The dynamic relationships 

between leptospirosis incidence and weather, anthropogenic environments and animal 

husbandry systems (including rodent ecology and control) remain unclear. Such lack of 

evidence limits the effectiveness of public health interventions for leptospirosis control and 

elimination.  
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The effectiveness of leptospirosis prevention strategies depends on understanding its 

distribution and local risk factors (Haake and Levett, 2015). For instance, in rural areas 

where Leptospira infection is mainly associated with agricultural practices, in addition to 

promoting protective measures among farmers, improving farm biosecurity measures and 

livestock vaccination are the most important components of an integrated strategy (i.e. a 

One Health approach) for reducing the risk of human leptospirosis (Ellis, 2015; Pimenta et 

al., 2019). In contrast, in urban settings, especially in flood-prone areas and urban slums, 

strategies should focus on improving local community environmental and socioeconomic 

conditions to reduce rodent infestations and leptospiral exposure by providing drainage 

systems, housing, and access to safe water hygiene and sanitation (WASH) (Lau and 

Jagals, 2012; Hagan et al., 2016). Hence, better understanding of the local epidemiology 

and transmission mechanisms will allow policy makers to define appropriate preventive 

and control programs that are tailored to the local epidemiological characteristics. 

In many developing countries, surveillance systems are often inadequate in detecting and 

reporting leptospirosis cases, and this hampers leptospirosis control (Sejvar et al., 2005; 

Costa et al., 2012), especially in remote and resource-limited areas. Developing countries 

greatly depend on passive case finding rather than conducting active surveillance or 

epidemiological surveys as it is much more cost-efficient. However, such passive 

surveillance notification data could still provide important information which can improve 

our understanding about the epidemiology and disease distribution. For example, routine 

surveillance data gathered using geographic information system (GIS) technology could be 

utilised to generate operational maps and spatiotemporal forecasting models to guide 

decision-makers in planning and implementing interventions locally. Despite the public 

health importance of leptospirosis, so far, such approaches are not embedded in existing 

surveillance systems (WHO, 2011; Goarant, 2016), making resource allocation for 

leptospirosis diagnosis and disease control inefficient. Developing a simple and low-cost 

prediction tool for helping decision-makers and local health workers is therefore a priority 

(WHO, 2011).  

Motivated by the complexity of leptospirosis epidemiology, gaps in knowledge, and 

challenges to controlling the disease, the Global Leptospirosis Environmental Action 

Network (GLEAN) was launched in 2010 with the aim of strengthening multi-disciplinary 

and inter-sectoral collaboration to establish contemporary, cost-effective, feasible, and 

sustainable solutions to control leptospirosis—especially in high-risk populations (Durski et 
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al., 2014). To pursue its mission, a plan of action was designed under four key elements, 

namely predict, prevent, detect, and intervene. Understanding the key drivers of 

transmission and developing predictive models, risk maps, and outbreak detection tools 

are some of the actions that should be followed up by the GLEAN members. The 

development of such tools to support surveillance and control of leptospirosis will improve 

local and regional preparedness for a leptospirosis outbreak (WHO, 2011). 

Recent progress in statistical analysis, GIS and remote-sensing (RS) processing provide 

opportunities to produce reliable tools that could be used to support and strengthen health 

systems (Tatem, 2014; Lindström et al., 2015). A variety of approaches have been used to 

support health officials in designing and applying disease control strategies. Of which, 

spatial epidemiological tools, such as mapping and spatial-temporal risk modelling, are 

now widely recognised as one of the effective tools that allow for the identification of high-

risk areas and the prediction of risks. This approach can provide a scientific basis or 

evidence that can effectively guide public health agencies in distributing and improving 

resources for disease control and prevention at specific areas (Rezaeian et al., 2007). 

Spatial epidemiology is a specialist branch of epidemiology that aims understand 

geographical disease patterns and factors that influence the distribution of disease—

including demographic, environmental, behavioural, socioeconomic, genetic, and 

infectious risk factors (Elliott and Wartenberg, 2004). This approach has been widely used 

to understand the epidemiology of diseases, including vector-borne diseases (Bi et al., 

2013; Houngbedji et al., 2016; Eisen and Lozano-Fuentes, 2009; Fan et al., 2014; 

Dhewantara et al., 2015), waterborne diseases—such as schistosomiasis (Soares 

Magalhães and Clements, 2011; Hodges et al., 2012; Soares Magalhães et al., 2014; Lai 

et al., 2015; Wang et al., 2016), cholera (Gatto et al., 2012), cryptosporidiasis and 

giardiasis (Burnet et al., 2014)—and rodent-borne diseases, including scrub typhus (Wu et 

al., 2016), hemorrhagic fever with renal syndrome (Wu et al., 2011), Lassa fever (Fichet-

Calvet and Rogers, 2009), and plague (Qian et al., 2014).  

In China, leptospirosis is of public health importance. Because it was commonly spread at 

harvest time, leptospirosis was known in the ancient Chinese language as ‘rice-harvest 

jaundice’ and it was believed to be caused by a ghost or bad spirit (Faine, 1999). 

Leptospirosis was first reported in 1934 and it has been a mandatory notifiable disease 

since 1955. Cases of leptospirosis have been reported in more than 80% of the total 

provinces (34 provinces) and since 1955, there have been more than 2.5 million cases and 
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20,000 deaths (Zhang et al., 2012; Shi et al., 2000). Leptospira interrogans serovars have 

been responsible for most human infections in China. So far, 76 serovars belonging to 18 

serogroups of pathogenic Leptospira have been identified from a wide range of animals in 

China (Hu et al., 2014; Han et al., 2018; Zhang et al., 2019; Ma et al. 2020). Among these 

animals, rats Apodemus agrarius is known as the most important Leptospira host among 

other animal reservoirs, such as pigs, cattle, and dogs (Shi et al., 2000; Zhang et al., 2012; 

Liu et al., 2016, Zhang et al., 2019). Different animals can harbour one specific or multiple 

serogroups, for instance, Icterohaemorrhagie is predominantly found in rodents, Canicola 

in dogs, Hardjo, Pomona, and Grippothyphosa is found in cattle, Pomona, Kennewicki, 

Tarrasovi, or Bratislava is found in pigs (Levett, 2001; Ellis, 2015; Zhang et al., 2019). In 

fact, a recent study by Zhang et al (2019) have demonstrated the genetic diversity across 

China, which suggested the animal reservoirs responsible for human leptospirosis in a 

region. The diversity and variation of Leptospira spp and animal hosts abundance and its 

relationships could be geographically varied depending on the climate and environmental 

conditions, which in turn may influence the variation in the relative risk of leptospirosis 

transmission.  

The incidence of leptospirosis in China has been dramatically decreasing since the 1990s, 

reaching a relatively low annual incidence rate of 0.70 per 100,000 people (Zhang et al., 

2012; Hu et al., 2014). Despite the reported reduction in leptospirosis incidence, local 

outbreaks still occur in parts of the country (Li et al., 2013; Fan et al., 2014; Wang et al., 

2014; Wu et al., 2015; Xu et al., 2016a; Tang et al., 2017). This low-level leptospirosis 

incidence has been viewed by China’s health authority as the best opportunity for 

eliminating leptospirosis in China. To maintain this momentum and to achieve the 

elimination goal, there is a need for evidence on the burden and the geographical 

distribution of the residual high-risk areas for leptospirosis across China and key factors 

associated with the transmission on a regional and local scale. 

China has the third largest surface area in the world with diverse weather and landscape, 

the largest human population, and some of the largest livestock populations (UN-DESA, 

2019). China has favorable conditions for Leptospira transmission both climatologically 

and ecologically (Zhao et al., 2016). Differences in weather and landscape ecological 

conditions, circulating serovars, animal hosts and human socioeconomic conditions across 

the country are suggested as influencing the geographical distribution of human 

leptospirosis incidence in China (Zhang et al., 2012). However, the distribution of residual 
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leptospirosis hotspots and the role of such determinants in the heterogeneity of 

leptospirosis risk, both at regional and local levels, remain inconclusive. Knowing the 

residual distribution and the heterogeneity in the epidemiology and risks would allow for 

better identification of intervention priorities for each area at-risk, as well as guiding health 

authorities in allocating the resources and determining where improved interventions 

should be implemented (Herbreteau et al., 2007; Hamm et al., 2015).  

One approach to understanding and exploring the geographical and temporal distribution 

of leptospirosis, the profile of high-risk areas for leptospirosis, and the effects of 

environmental and socioeconomic factors in the spatial heterogeneity of leptospirosis risk 

is by performing an ecological study. The aim of my research is not to determine the 

causal relationship between socioecological factors and leptospirosis transmission. 

Instead, it is designed to utilise available leptospirosis notification data, available 

environmental and sociodemographic data, and spatial analytical approaches to generate 

an evidence base for informed decision-making for policy makers in planning and 

implementing efficient spatially targeted interventions to help control and eliminate 

leptospirosis transmission in China. 

 

1.2 Hypothesis and research aim  

This program of research aimed to answer the primary research question “How did the 

incidence and burden of leptospirosis in China vary geographically and temporally and 

what environmental and socioeconomic factors have influenced the spatiotemporal 

distribution nationally and locally?” 

This Thesis set out to assess the general research hypothesis that the distribution of and 

risk factors for notified leptospirosis incidence and burden is spatially and temporally 

heterogeneous across China and that this phenomenon is due to the heterogeneity in local 

environmental and socioeconomic factors throughout China.   

The overall aim of my research was to apply spatial and temporal analytical techniques to 

uncover the epidemiology and disease ecology of leptospirosis at the national and local 

level in China. These insights can assist local health authorities in the design and 

implementation of effective and timely leptospirosis control programs to pursue the 

disease-elimination goal.  
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1.3 Objectives 

To meet the aim of this research, I defined ten specific research objectives: 

a. Identify and critically evaluate the use of spatial analytical tools for leptospirosis 

control to develop a general framework on the application of spatial epidemiological 

tools for leptospirosis (Presented in Chapter 4) 

b. Estimate burden of disease in terms of disability-adjusted life-years (DALY) at 

province-level across China (Presented in Chapter 5) 

c. Map the geographical distribution of the incidence and burden in terms of DALY at a 

sub-national level across China (Presented Chapter 5) 

d. Determine spatial and temporal patterns of incidence of leptospirosis at county-level 

across China (Presented in Chapter 6) 

e. Identify spatial clusters (high-risk and low-risk counties as well as outliers) across 

China (Presented in Chapter 6) 

f. Determine and compare demographical, environmental, and socioeconomic 

characteristics among the identified high-risk counties relative to low-risk counties 

for leptospirosis in China (Presented in Chapter 6);   

g. Quantify the role of the climatic, physical environment and socioeconomic risk 

factors in the spatial heterogeneity of leptospirosis incidence in high-risk regions in 

China (Presented in Chapter 7) 

h. Develop predictive incidence maps for leptospirosis, accounting for the 

environmental and socioeconomic risk factors to identify counties at highest risk of 

leptospirosis (Presented in Chapter 7).  

i. Assess the short-term association between climate variability and remotely-sensed 

physical environmental factors—including precipitation, humidity, temperature, 

vegetation, and flooding—and leptospirosis incidence in high-risk counties to 

develop temporal prediction models (Presented in Chapter 8). 

 

1.4 Significance of research 

The research detailed in this thesis provides essential evidence on the recent estimates of 

the geographical variation in the burden of leptospirosis in terms of DALYs. It allows the 

identification of areas and population at the highest burden for leptospirosis in China. By 

using spatial analytical tools, my research extended novel evidence in that it provides fine 

hotspot maps and key demographical, environmental, and socioeconomic characteristics 

within residual hotspots. Additionally, using state-of-the-art spatial modelling techniques, I 
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have successfully developed the first smoothed leptospirosis incidence maps that take into 

account various climatic, environmental and socioeconomic factors, spatial dependency in 

the data, and uncertainty. These maps can help in the identification of areas where 

interventions and resources are most needed, and where surveillance and case 

management need to be improved. Finally, to deliver effective public health interventions 

promptly, I developed risk forecasting models to provide actionable information for 

prevention and preparedness for leptospirosis epidemics at a local level. The program of 

research presented in this thesis demonstrates the value of GIS/RS and spatial analytical 

tools. It lays an essential foundation for the development of a spatial decision support 

system (SDSS) and an early warning system to inform decision-makers in planning and 

implementing geographic-specific interventions programs for leptospirosis with potential 

application for other zoonotic diseases. 

 

1.5 Structure of the thesis 

The thesis incorporates nine chapters (Figure 1-1). In the first chapter, I provide an 

introductory chapter, which explains the motivation, significance and objectives of the 

research. It is then followed by a general literature review in Chapter 2 and the description 

of the general methods (Chapter 3) used in each research chapter. In Chapter 4, I present 

a systematic review of spatial epidemiological tools applied to leptospirosis. This is 

followed by research chapters which look at the small-scale historical trend in disease 

burden in China (Chapter 5), identifying the high-risk areas and profiling their 

environmental and socioeconomic conditions (Chapter 6), quantifying the role of ecological 

and socioeconomic factors to develop a spatially explicit predictive map for the incidence 

of leptospirosis in high-risk regions in China (Chapter 7). Finally, assessing the short-term 

association of climate variability and remote-sensed environmental indicators on the 

incidence of leptospirosis (Chapter 8) to lay a foundation for the early warning system. The 

thesis ends with a general discussion and conclusions (Chapter 9) that highlight key 

research findings, implications for public health intervention, general limitations, as well as 

the recommendation for future studies. 
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Figure 1-1 Organization of the thesis
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Chapter 2 General literature review 

2.1 Context 

The literature review outlined in this chapter describes the brief discovery of Leptospira 

and leptospirosis, its biology and classification, transmission mechanism, factors driving 

the transmission of leptospirosis, morbidity and burden of leptospirosis, clinical 

manifestations and diagnosis, and current approaches to prevent and control the 

transmission. In addition, the literature review explains the significance of spatial analytical 

approaches to support disease control and how such approaches have been used in the 

previous leptospirosis studies. This literature review presents gaps in knowledge in the 

existing literature that provided the rationale for my program of research presented in this 

thesis.  

 

2.2 History, biology and classification of Leptospira 

2.2.1 History 

The first evidence of jaundice was identified in Mesopotamia mythology, where a jaundice 

epidemic was described as when the river brought yellow plants (Sigerist, 1951). Yet, the 

specific description of the disease was recognised before Hippocrates discovered it. A 

hundred years later, based on the records provided by Hippocrates, Galen, and Avicenna, 

modern scientific communities attempted to define jaundice and the causative agent of 

disease clearly. In 1812, Larrey provided a clear description of the fièvre jaune, which 

became known as Weil’s disease among Napoleon’s armies at Heliopolis in 1800 (Faine, 

1999). Before that, however, Dr. Wittman’s record had also provided information about the 

characteristics of Weil’s symptoms and climate conditions when the epidemic occurred, 

which he observed in the Ottoman camp during his mission with the Turkish Army and the 

British Militar (Wittman, 1803). During the nineteenth century, a considerable number of 

Weil’s infections were reported over Western Europe among troops. In 1886, Adolf Weil 

published his historic report Ueber eine eigentümliche, mit Milztumor, Icterus und Nephritis 

einhergehende akute Infektionskrankheit (Concerning a characteristic infectious disease, 

accompanied bysplenomegaly, jaundice and nephritis) (Weil, 1886). The causative agent 

of Weil’s disease was not discovered until in 1907 Stimson demonstrated the identification 

of Spirochaete interrogans in the kidney tissue of a patient who reportedly died due to 

yellow fever (Stimson, 1907). About three years later, during the period 1910 to 1920, 

German and Japanese scientists—such as Huebener, Reiter, and Inada—discovered the 
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cause of Weil’s disease (Hubbert and Reiter, 1915, 1916; Inada et al., 1916). The role of 

rodents as Leptospira carriers and different serovars was also discovered by Inada’s team 

(Ido et al., 1917,1918). 

 

2.2.2 Leptospira: Biology and Classification 

Leptospira has helically shaped with hooked ends, 0.1 µm long in diameter and 6-20 µm in 

length, highly motile, Gram-negative, obligate aerobic with optimum growth occuring at a 

temperature of 28–30°C and in the pH range 7.2–7.6 (Faine et al., 1999) (Figure 2-1). 

They grow in media, enriched with vitamins B2 and B12, long-chain fatty acids, and 

ammonium salts, where the long-chain fatty acids are used as the carbon source and are 

metabolised by -oxidation (Haake, 2000). In natural conditions, it can survive in rivers, 

mud, swamps, and alkaline soils (Elder et al., 1986). However, acidity (pH), temperature, 

and the occurrence of inhibitory compounds can affect its survival rate in the environment. 

In favorable environmental conditions, leptospires can survive for months, even years 

(Chang et al., 1948; Smith and Self, 1955; Andre-Fontaine et al., 2015). 

  

Figure 2-1 Image of Leptospira interrogans serovar copenhageni under scanning electron 

microscope. Reprinted from Bharti et al. (2003) with permission from Elsevier Ltd. ©2003 

 

Leptospira is a genus of bacteria belonging to the family Leptospiraceae and phylum of 

Spirochaetes. Based on its phylogenetic, this genus is classified into three groups: 

saprophytic, intermediate, and pathogenic species (Picardeau et al., 2008; Ko et al., 2009; 

Picardeau, 2017). To date, 35 Leptospira species have been identified. Eleven species are 

considered as saprophytic—a free-living bacteria and harmless for humans, including L. 

biflexa, L. brenneri, L. harrisiae, L. idonii, L. levettii, L. macculloughii, L. meyeri, L. 

terpstrae, L. vanthielii, L. wolbachii, and L. yanagawae. Eleven species are known in the 

intermediate group, which means that the species intermittently cause human and animal 
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infection, including L. broomii, L. fainei, L. haakeii, L. hartskeerlii, L. inadai, L. licerasiae, L. 

perolatii, L. neocaledonica, L. saintgironsiae, L. venezuelensis, and L. wolffii. Lastly, 13 

species are known to be pathogenic, including L. adleri, L. alexanderi, L. alstonii, L. 

barantonii, L. borgpetersenii, L. ellisii, L. interrogans, L. kirschneri, L. kmetyi, L. 

mayottensis, L. noguchii, L. santarosai and L. weilii (Feine et al., 1999, Petersen et al., 

2001; Matthias et al., 2008; Vincent et al., 2019). Recently, a study revealed two novel 

species belong to the pathogenic group: L. yasudae sp. nov. and L. stimsonii sp. nov 

(Casanovas-Massana et al., 2020). Of which, L. interrogans is known to be the significant 

causative agent for the incidence of severe leptospirosis (Tubiana et al., 2013). This 

pathogenic group is classified into more than 250 serovars belonging to 24 serogroups 

(Cerqueira and Picardeau, 2009; Hartskeerl and Smythe, 2015).  

 

2.3 Transmission, epidemiology and burden of Leptospirosis  

2.3.1 Transmission  

Leptospirosis is a worldwide emerging zoonotic disease. Transmission occurs involving 

the interaction between pathogenic Leptospira, animal hosts, and the environment (Figure 

2-2). A broad range of animals have been identified that can host Leptospira, including 

domestic/companion animals (e.g., dogs, cats, horses), livestock (e.g., cattle, pigs, sheep) 

and wild animals (e.g., possums, bats) (Eymann et al., 2007; Tulsiani et al., 2011; Ellis, 

2015; Han et al., 2018, Zhao et al., 2019). However, among these, rats and other rodents 

are known as the most important source for human infection. In China, Leptospira 

interrogans serovars have been responsible for most human infections and Apodemus 

agrarius is the most important animal host among other animals, such as pigs, cattle and 

dogs (Shi et al. 2000; Zhang et al. 2012; Liu Y. et al. 2016). So far, 76 serovars belonging 

to 18 serogroups of pathogenic Leptospira have been identified from a wide range of 

animals in China (Hu et al., 2014; Han et al., 2018; Zhang et al., 2019; Ma et al. 2020). 

Different animals can harbour one specific or multiple serogroups, for instance, 

Icterohaemorrhagie is predominantly found in rodents, Canicola in dogs, Hardjo, Pomona, 

and Grippothyphosa is found in cattle; Pomona, Kennewicki, Tarrasovi, or Bratislava is 

found in pigs (Levett, 2001; Ellis, 2015; Zhang et al., 2019). In rural areas, livestock 

animals may also act as a reservoir for Leptospira spp (Agampodi et al., 2011, 2015). 

While in urban settings, rats and other rodents have been reported as the major source for 

many human infections (Ko et al., 1999; Hagan et al., 2016). From the literature review, it 
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is evident that the mode of transmission could vary geographically as it greatly depends on 

the ecology, diversity of animal reservoirs, and the predominant serovars.  

Infected hosts carry leptospires on their renal tubules and shed the bacteria to the 

environment via urine or faeces excretion. These animals become asymptomatic carriers 

and can shed Leptospira-contaminated urine into the environment over a long period. The 

free-living Leptospires enter the human body through abrated or open skin wounds and 

through mucous membranes, causing broad clinical signs and complications within days. 

The clinical presentation of the infection is discussed in the next section. Human infection 

could be due to incidental exposure to the contaminated soil or water, or by direct contact 

with urine or tissues of infected animals (Milner et al., 1980; Plank et al., 2000; McLean et 

al., 2014). Human-to-human transmission has been rarely reported (Levett, 2001). As 

water is an important medium facilitating the animal-to-human transmission, leptospirosis 

is, hence, considered as one of the zoonotic water-associated diseases as well (Moe, 

2004). 

 

 

Figure 2-2 Leptospirosis transmission. Reprinted from Ko et al. (2009) with permission 

from Nature ©2009 

 

2.3.2 Epidemiology 

Leptospira infection is likely to affect young adults between the age of 20 and 49 years 

(Costa et al., 2015). However, studies have also reported that school-age children (aged 
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under  20 years) are at the highest risk of acquiring severe leptospirosis (Weil’s disease) 

(Zhang et al., 2012; Cassadou et al., 2016; Hem et al., 2016; Lokida et al., 2016; 

Narayanan et al., 2016; Tan et al., 2016). About 80% of the total burden of leptospirosis is 

likely to affect males (Torgerson et al., 2015). Traditionally, leptospirosis has been 

associated with occupational hazards, affecting farmers (Lacerda et al., 2008; Yupiana et 

al., 2019; Mgode et al., 2019), soldiers (Mccrumb et al., 1957; Johnston et al., 1983; Burns 

et al., 2016), miners (Parveen et al., 2016), and abattoir workers (Terry et al., 2000). But, 

leptospirosis infection can also be acquired by people in non-specific occupational groups.  

Globalisation and tourism have shifted the mode of leptospiral exposure. Leptospirosis is 

now also considered an important travel-related risk (Ricaldi and Vinetz, 2006; Pappas et 

al., 2008; Bandara et al., 2014; Brockmann et al., 2010, de Vries et al., 2018; Schönfeld et 

al., 2019). Leptospirosis has been linked with outdoor sport and leisure activities. In the 

past two decades, a considerable number of leptospirosis cases have been reported 

among international travellers who returned from endemic countries where they 

participated in eco-adventure activities, such as triathlon, canyoning, canoeing, whitewater 

rafting, and kayaking (Sejvar et al., 2003, Hochedez et al., 2012; Gundacker et al., 2017).  

Leptospirosis is generally found in rural and urban areas that are tropical or subtropical. 

The epidemiology and driver of leptospirosis may be different in both settings. In rural 

areas, leptospirosis is often associated with small-scale subsistence agricultural activities 

(Bharti et al., 2003; Garcia-Ramirez et al., 2015). Farmers are, therefore, likely to have a 

greater risk of being exposed to the contaminated environment or infected animals (rats 

and livestock) during harvesting or milking. In contrast, in cities, leptospirosis is likely to 

occur due to incidental exposure to a contaminated environment following severe weather-

related events, such as typhoons and flooding (Amilasan et al., 2012; Lin et al., 2012; 

Smith et al., 2013; Mendoza et al., 2013; Lin et al., 2015; Mohd Radi et al., 2018; Togami 

et al., 2018). Urban leptospirosis disproportionately affects impoverished urban dwellers 

living in flood-prone areas and in poor living conditions where essential services—such as 

safe drinking water, sanitation, environmental hygiene, waste management and access to 

health services—are lacking (Ko et al., 1999; Bacallao et al., 2014; McBride et al., 2005; 

Felzemburgh et al., 2014). In developing countries, urbanisation and flooding play a 

significant role in the (re)emergence of leptospirosis in urban areas (Lau et al., 2010).  

The occurrence of leptospirosis is influenced by climate, environment, and poverty (Hotez 

et al., 2008, 2015; Tan et al., 2014). Studies have reported that leptospirosis incidence is 
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seasonal and is likely driven by climate, especially in tropical countries (Desvars et al., 

2011; Coelho and Massad, 2012; Chadsuthi et al., 2012; Weinberger et al., 2014; Joshi et 

al., 2017; Matsushita et al., 2018; Deshmukh et al., 2019). In tropical regions, most 

outbreaks occur during the rainy season resulting from high exposure to the abundant 

contaminated environment (water or soil) due to high rodent populations. In contrast, in 

temperate climates, leptospirosis is more likely linked with occupational and recreational 

activities (e.g., contact with infected livestock, contact with contaminated water/soil) (Desai 

et al., 2009; Garvey et al., 2014).  

The risk of leptospirosis is expected to be higher in the future. Climate change is 

presumed to intensify severe weather events and flooding that could escalate frequent 

outbreaks, especially in tropical and subtropical countries (Lau et al., 2010). Research by 

Sanchez-Montez et al. (2015) and Zhao et al. (2016) suggests that climate is one of the 

factors favouring the emergence of the geographical distribution of leptospirosis.  

In a developing country where topography, climate, biodiversity, and demographic and 

socioeconomic condition are highly complex, such as China, the epidemiology and 

geographical distribution of leptospirosis is likely to be heterogeneous (Shi et al., 1995), 

making general interventions inefficient. Thus, it is crucial to understand local 

epidemiology to better inform planning and implementation of targeted interventions that 

suit local conditions. 

 

2.3.3 Risk factors 

Based on the literature review, risk factors for leptospirosis are categorised into individual 

or behavioural, climatic, animal exposure, physical environmental and socioeconomic 

risks.  

Individual-level risks 

At the individual level, leptospirosis infection is mainly related to behaviours. Infection 

could be due to (i) occupational exposure, such as farming, mining, slaughtering, 

soldiering, animal farming and veterinary medicine (Mccrumb et al., 1957; Johnston et al., 

1983; Terry et al., 2000; Lacerda et al., 2008; Burns et al., 2016; Parveen et al., 2016; 

Yupiana et al., 2019; Mgode et al., 2019); (ii) recreational exposures (e.g., triathlon, 

swimming, canyoning, canoeing, whitewater rafting, kayaking, fishing, hunting) (Sejvar et 

al., 2003, Hochedez et al., 2012; Agampodi et al. 2014; Gundacker et al., 2017); or (iii) 

poor sanitation and hygiene practices (e.g., drinking or swallowing river water, walking 
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barefoot, bathing in the river, cooking using flood water, not using protective wear) 

(Murhekar et al., 1998; Leal-Castellanos et al., 2003; Bhardwaj et al., 2008; Agampodi et 

al., 2015; Neela et al., 2019). Demographically, leptospirosis risk is higher among adults 

and males as they are most likely to engage in such high-risk occupations and recreational 

activities. However, several studies have also reported leptospirosis incidence in children 

(Mohan et al., 2009; Adesiyun et al., 2011; Narayanan et al., 2016; Mišić‐Majerus et al., 

2017).  

Climatic  

The association of meteorological factors on leptospirosis occurence has been numerously 

studied at different geographical settings, either in rural or urban areas (Chadsuthi et al., 

2012; Coelho and Massad, 2012; Desvars et al., 2011; Ghizzo Filho et al., 2018; Gutiérrez 

and Martínez-Vega, 2018; Matsushita et al., 2018; Pappachan et al., 2004; Robertson et 

al., 2012; Soares et al., 2010; Suwanpakdee et al., 2015; Weinberger et al., 2014; Zhao et 

al., 2016; Baquero and Machado, 2018). Weather factors, such as rainfall, temperature, 

and relative humidity, are known important climatic factors associated with leptospirosis 

incidence (Mohan et al., 2009; Socolovschi et al., 2011; Batchelor et al., 2012; Benacer et 

al., 2016; Sumi et al., 2016). However, the effects of weather on the spatial distribution of 

leptospirosis risk is varied in each location. In Thailand, Chadsuthi et al. (2012) demonstrated 

that rainfall and temperature might vary in effect across different regions within the country, 

suggesting the need for specific interventions and further exploration at a local scale. Studies have 

shown significant association between rainfall and spatial distribution of leptospirosis risk (Mayfield 

et al., 2018; Baquero and Machado, 2018). In Mexico, Sanchez-Montes et al. (2015) 

demonstrated that temperature was more likely to be associated with the geographical 

variation of leptospirosis cases than rainfall/precipitation. In contrast, in Brazil, Baquero and 

Machado (2018) found that temperature was a preventive factor for leptospirosis.  

Abundant precipitation, optimum temperature and humid conditions provide plentiful food 

resources or vegetation and suitable conditions for rodents to breed (Previtali et al., 2009, 

Perez et al., 2011) and in turn increases the abundance of rodents (Mills and Childs, 1998) 

and the likelihood of exposure to a leptospiral contaminated environment. In Cambodia, 

Ivanova et al. (2012) found that the prevalence of Leptospira in rodents caught in paddy 

fields, inundated areas, and forests was higher during the rainy season. In Brazil, 

Casanovas-Massana et al. (2018) demonstrated that the abundance of Leptospira DNA in 

surface waters was 47% higher during the wet season than during the dry season. 
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Environmental risks 

Leptospirosis is strongly associated with environmental health. Leptospirosis outbreaks are 

known to be strongly associated with flooding after severe weather events (Leal-Castellanos et al., 

2003; Amilasan et al., 2012; Smith et al., 2013; Suwanpakde et al., 2015; Tang et al., 2017; 

Wang et al., 2014; Matshushita et al., 2018; Widiyanti et al., 2019). Living in flood-prone 

areas or in densely populated settlement areas, which have poor sanitation, a poor sewage 

system and improper garbage disposal, favours rodent infestation, and are the most 

important environmental risk factors associated with leptospirosis (Ko et al., 1999; Bhardwaj 

et al., 2008; Reis et al., 2008; Lau et al., 2016, Mwachui et al., 2015; Barcellos et al., 2001, 

Gracie et al., 2014; Hagan et al., 2016, Falzemburgh et al., 2014; Blasdell et al., 2019; Briskin et al., 

2019).  

Disease incidence results from dynamic interactions between humans, vectors or 

reservoirs, and pathogens which are influenced by landscape composition and 

configuration (Lambin et al., 2010). Vegetation cover, surface temperature, and altitude 

are landscape features that may influence the magnitude of disease transmission; while 

spatial proximity of habitats of hosts, reservoirs, and pathogens affects the degree of 

disease risks. Previous studies have shown that leptospirosis is associated with land use 

and land cover (LULC) (Rood et al., 2017; Gracie et al., 2014; Lau et al., 2012a), elevation 

(Hagan et al., 2016; Lau et al., 2016), proximity to waterbodies or flooding (Della Rossa et 

al., 2016; Lau et al., 2016; Soares et al., 2010; Briskin et al., 2019), and vegetation (Della 

Rossa et al., 2016; Hagan et al., 2016). 

The risk of leptospirosis is associated with LULC. Rood et al. (2017) demonstrated that 

leptospirosis incidence was associated with areas characterised by a low proportion of 

built-up areas and a high coverage of grassland. In Thailand, Della Rossa et al. (2016) 

demonstrated that infected rodents were most likely to be found in fragmented habitats 

with dense forest cover located on sloping ground areas. Likewise, in American Samoa, 

Lau et al. (2012a) found that living in areas surrounded by vegetated land was correlated 

with leptospirosis seropositivity.  

Risk of human leptospirosis was higher in an area situated near a river or paddy fields that 

are prone to flooding (Soares et al., 2010; Robertson et al., 2012; Della Rossa et al., 2016; 

Lau et al., 2016). A recent study by Briskin et al. (2019) demonstrated that the risk of 

infection was reduced as the distance to the canal increased. Living at lower elevation was 
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associated with Leptospira seropositivity or risk of infection (Lau et al., 2012a; Hagan et al., 

2016).  

The risk however could be heterogenous geographically and temporally (Gracie et al., 2014; 

Suwanpakde et al., 2015; Hagan et al., 2016). The spatial risk of infection variesgreatly 

depending on the local microenvironmental conditions. Suwanpakde et al. (2015) 

demonstrated that flooding was not directly associated with leptospirosis but different 

drivers such as agriculture practices have influenced the geographical and temporal 

pattern of the incidence across regions in Thailand. A study conducted by Hagan et al. 

(2016) demonstrated that, in the slum community (local level), households living in the 

lowest altitude areas, surrounded by more vegetation and minimal access to waste 

collection, were at higher risk of leptospiral infection. Whereas Gracie et al. (2014) found 

that at regional level leptospirosis incidence was associated with the number of people 

residing in urban slums while at a local level the risk was determined by the proportion of 

the area likely to flood. 

Animal exposure 

Rats and other rodents are the important risk factors associated with leptospirosis, both in 

rural and urban areas. However, in rural areas, where subsistence farming is common, 

leptospirosis risk is also associated with exposure to livestock animals, such as cattle, 

pigs, goats, and sheep (Leal-Castellanos et al., 2003; Salmon-Mulanovich et al., 2019; 

Brockmann et al., 2016; Lau et al., 2012b; Allan et al., 2018; Shresta et al., 2018). 

Moreover, the risk is likely to be higher when livestock are raised in a traditional or 

subsistence farming system with lack of pasture grazing management and poor biosecurity 

measures (Schoonman and Swai, 2010). Whereas in urban slums, the presence of rats 

and other rodents is the primary risk associated with leptospirosis (Sarkar et al., 2002; 

Reis et al., 2008; Costa et al. 2015b; Vitale et al., 2018).  

Socioeconomic risks 

Unchecked urbanisation and poverty are believed to be the key driver for the emergence 

of leptospirosis (Ko et al., 1999; Lau et al., 2010). Rapid urbanisation has led to severe 

urban poverty as seen in the uncontrolled growth of urban slums. Poverty generates 

circumstances that favour the spread of infectious diseases and prevents communities 

from obtaining adequate access to basic services, such as sanitation, safe water, 

education, and health services (World Health Organization, 2012; Hotez et al. 2008, 2015).  
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Prior studies have demonstrated that socioeconomic status (SES) was associated with 

leptospirosis risk (Reis et al., 2008, Bacallao et al., 2014). Several indicators explaining 

SES have been used, including proportion of population living in extreme poverty 

(Bacallao et al., 2014), gross domestic product (GDP) (Zhao et al., 2016), poverty rate 

(proportion of population under the poverty line) (Lau et al., 2016; Mayfield et al., 2018b), 

Gini index and illiteracy rates (Schneider et al., 2015). Bacallao et al. (2014) demonstrated 

that areas with a large proportion of people living in extreme poverty were at highest risk of 

acquiring leptospirosis. However, Schneider et al. (2015) found no association between 

Gini index (as indicator describing inequality income per capita by municipality) and 

number of leptospirosis cases. Poor urban and peri-urban communities and rural 

communities are found to have a higher risk of leptospirosis. This was partly because of 

inadequate access to health education, healthcare, and proper housing and basic 

sanitation that was unfavourable to rat infestations.  

In China, the relationship between these socioeconomic indicators and the burden of 

leptospirosis remains poorly understood. Enormous economic development has sent more 

than 600 million people out of extreme poverty during 1981–2010; the poverty rate fell 

from 84% in 1980 to 10% in 2013 (UN-HABITAT, 2016). The extent to which the 

socioeconomic changes during the past decades in China has contributed to the shift in 

the epidemiology and burden of leptospirosis has not been adequately analysed. 

 

2.3.4 Incidence and Burden 

Worldwide, it has been estimated that there have been 1.03 million cases of leptospirosis, 

causing approximately 60,000 deaths each year, with 73% of global incidence estimates 

taking place in poor-resource countries (Costa et al., 2015). Asia has been estimated to be 

the region with the highest annual incidence (5.5–55.5/100,000 population) and mortality 

(0.29–2.96/100,000 population) rates. However, available incidence and mortality 

estimates are believed to be inaccurate since disease surveillance and laboratory 

diagnostic capacity in many countries are inadequate, especially in developing countries 

(Bharti et al., 2003). Tropical countries are more likely to have higher incidence than 

temperate countries as there is a more favourable environment for Leptospira to survive 

longer. In particular, most of the tropical countries are developing countries with high-risk 

conditions owing to their diverse potential animal reservoirs and a greater population at 

risk owing to a limited health system (WHO, 2011).  
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Leptospirosis was responsib le for a s ignificant health burden globally. It has been 

estimated that approximately 2.90 million DALYs (95% uncertainty interval [UI] 1.25–4.54 

million DALYs) were lost per year globally because of leptospirosis (Torgerson et al., 

2015). This put the burden of leptospirosis (41.8 DALYs per 100,000 population) relatively 

equal with the burden of lymphatic filariasis (40 DALYs per 100,000 population) and 

schistosomiasis (48 DALYs per 100,000 population). Leptospirosis is most 

likely affecting males (2.3 million DALYs or 80% of total DALYs) more than females. 

Among age groups, adults aged 20–49 years are the group most affected (1.5 million or 

52% of total DALYs). The biggest contribution to the DALY is the number of years of life 

lost due to premature mortality (YLLs), which accounts for 2.80 million YLLs (95% UIs: 

1.16–4.46 million). However, these burden estimates were based on the incidence and 

mortality data reported by Costa et al. (2015) who obtained the data from passive 

surveillance, which is prone to uncertainty and underestimation.  

The seminal study by Torgerson and colleagues (2015) provided the first global country-

level map of the burden of leptospirosis. Distribution of the burden of leptospirosis is varies 

geographically, with the highest burden estimates identified in low-income countries along 

the equator, particularly South-East Asia countries. Among the Asian countries, it has 

been estimated that China has the second largest burden estimate (301,688 DALYs, 95% 

UI: 119,388–525,491 or 22.05 DALYs per 100,000 population, 95 UI: 8.82–38.81) after 

India (684,369 DALYs, 95% UI: 290,213–1,217,287 or 56.35 DALY per 100,000 

population, 95% UI: 23.90–100.23). This burden estimate, however, may be irrelevant 

since the morbidity and mortality of leptospirosis in China has been gradually declining for 

the past 20 years (Zhang et al., 2012) and, since 1997, the incidence of leptospirosis has 

declined to less than 1 per 100,000 (Zhang et al., 2012; Hu et al., 2014). However, the 

researchers assumed that the burden was homogenously distributed within China. Since 

leptospirosis epidemiology is quite complex—greatly depending on the local climate, 

environment, and socio-demographic conditions—the geographical distribution of the 

burden is most likely to vary even within a country. Mapping the most recent burden 

estimates, particularly at finer spatial resolution, is essential so that policymakers are 

better informed when planning and implementing region-specific public health 

interventions.  

Despite this reduction, local outbreaks still occur in parts of the country (Li et al., 2013; Fan 

et al., 2014; Wang et al., 2014; Wu et al., 2015; Xu et al., 2016a; Tang et al., 2017), 

indicating that the transmission of leptospirosis are still exist. This low-level transmission 
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has been viewed by China’s health authorities as an opportunity for eliminating 

leptospirosis in the country. To achieve this operational goal, clear evidence about which 

demographic groups are at highest risk of leptospirosis, the location of residual high-risk 

areas for leptospirosis, as well as information on local drivers of infection (e.g., 

demographical, climatic, environmental and socioeconomic) are required. 

 

2.4 Clinical manifestations and diagnosis 

2.4.1 Clinical features 

Generally, the incubation period for leptospirosis takes 5–14 days, with ranges between 2 

and 30 days (Faine et al., 1999) (Figure 2-3). Most people may probably not seek immediate 

medical attention since, in its early phase (known as acute ‘leptospiraemic’ phase), 

leptospiral infection commonly presents as undifferentiated, mild flu-like symptoms. Fever, 

chills, headache, abdominal pain, nausea, conjunctival suffusion, vomiting, skin rash, 

muscle tenderness, myalgia, prostration, cough, jaundice, anorexia, diarrhea, hemoptysis 

are common symptoms during this acute stage. After the initial week of illness, 

leptospirosis could resolve suddenly but it could also lead to a severe, icteric presentation 

known as Weil’s disease. This severe form generally evolves among approximately 5–15% 

of patients, with case fatality rates around 10–50% (McBride et al., 2015). Weil’s disease 

could lead to severe complications, such as acute renal failure, pulmonary haemorrhage 

syndromes, myocarditis, cardiac involvement, and Guillain-Barré syndrome (Haake et al., 

2015; Dev et al., 2019; Herath et al., 2019). Host susceptibility factors, the concentration of 

Leptospira, and the virulence of the strain influence the amelioration of illness (Ko et al., 

2009). 

Symptoms of leptospirosis could resemble symptoms of other diseases, such as dengue, 

malaria, scrub typhus, hantavirus, pneumonia, and acute undifferentiated fever (AUF) 

(Levett, 2001; Gasem et al., 2009, 2016; Lokida et al., 2016). As a result, physicians often 

misdiagnose leptospirosis due to it exhibiting broad and non-specific clinical 

manifestations. Moreover, in the absence of adequate disease awareness and diagnostic 

laboratory capacity, leptospirosis is difficult to recognise, and accurate diagnosis becomes 

challenging, particularly in developing countries.  
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Figure 2-3 Leptospiral infection dynamic. Reprinted from Ko et al. (2009) with permission 

from Nature ©2009 

 

2.4.2 Laboratory diagnosis 

There are several confirmatory laboratory tests to ascertain leptospirosis, which can be 

grouped into direct and indirect approaches. Direct diagnostic techniques including 

microscopy, culture and molecular methods. Direct microscopy and dark field phase contrast 

microscopy can be performed to identify leptospires in blood, urine and cerebrospinal fluid 

(CSF). However, the weakness of this technique is that it needs certain number of 

Leptospira to be examined (about 10 cells/ml) and it is very hard to assure false positives 

and false negatives (Picardeau et al., 2014). Leptospires can also be isolated from blood, 

urine and CSF samples. However, the culture method is technically complicated and time-

consuming, requires several weeks of incubation at 28–30°C, needs routine dark-field 

microscopic examination, has low sensitivity and Biosafety cabinet level 2 (BSL-2) 

laboratory. Alternatively, Leptospiral DNA in clinical material can be tested by molecular 

diagnosis using polymerase chain reaction (PCR) (Merien et al., 1995; Fonseca et al., 

2006). This method offers a rapid test with high sensitivity and specificity. Recently, 

several developments of conventional PCR have been performed, such as multiplex PCR 

assay and 16s rRNA-PCR, followed by restriction fragment length polymorphism (RFLP), 

which potentially can be used for early detection of leptospirosis (Ahmed et al., 2012; 
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GÖKmen et al., 2016). However, it is costly and not widely available in most primary 

healthcare in developing countries.  

Indirect diagnostic approaches can also be used to detect Leptospira. These include 

microscopic agglutination test (MAT), enzyme-linked immunosorbent assay (ELISA) and 

indirect haemagglutination assay (IHA). So far, due to its high sensitivity and specificity, 

MAT is considered as the ‘gold-standard’ technique to serologically confirm leptospirosis 

(Goris and Hartskeerl, 2014). A standard criterion for a positive MAT is a fourfold increase 

in antibody titre or a conversion from seronegativity to a titre of 1/400 or above. However, 

this could be varied between countries depending on the local epidemiological conditions. 

In fact, MAT has also limitations. This test requires live cultures of leptospires which may 

not be available in resource-constrained countries. Substantial resources and qualified 

technicians are essentially required to perform MAT requires. Moreover, cross-reaction 

could occur between serovars in each serogroup, so that additional testing might be 

needed to determine the exact serovar causing infection (WHO, 2011). 

Another serological test including IgM ELISA, macro-agglutination, immunofluorescence 

assay (IFA), indirect hemagglutination assay (IHA), latex agglutination, lateral flow assays 

(LFA) and IgM dipstick can be used as screening test (McBride et al., 2005). Several 

antibody-based kits have been trialled to help quickly detect clinically suspected 

leptospirosis infection at the early acute stage, so that primary healthcare doctors can 

administer antibiotics promptly to prevent further complications which also reduces the 

cost for hospitalisation. However, the sensitivity and specificity for each test is inconsistent. 

If possible, further diagnosis should be done by using MAT test to confirm leptospirosis. To 

date, none of these available tests have fulfilled the principle of rapid diagnostic tests: 

accurate, user-friendly, low-cost, interpretable, consistent, and timely (Picardeau et al., 

2014).  

 

2.5  Prevention and control  

2.5.1 Managing risks in human 

Several preventive actions have been recommended to minimising the risk of infection in 

humans. Leptospirosis can be avoided by a combination of mechanical and social 

approaches. As leptospirosis is commonly known as an occupational hazard, prevention 

can be mechanically applied by using personal protective equipment (PPE), such as 

boots, gloves, goggles, clothes. While there is discrepancy in the effectiveness of PPE on 
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preventing Leptospira infections (Dreyfus et al., 2015; Pittavino et al., 2017), studies have 

shown the benefits of using PPE in preventing leptospirosis infection (Phraisuwan et al., 

2002; Tomcyzk et al., 2014). Based on meta-analysis, it shows that using footwear is a 

robust protective measure for leptospirosis infection (OR = 0.59; 95% CI: 0.37–0.94) 

(Tomcyzk et al., 2014). 

In addition to promoting PPE in high-risk populations to prevent leptospirosis, 

chemoprophylaxis could be one of the preventive strategies. The use of antibiotic 

prophylaxis to prevent leptospirosis infection has been documented in previous studies 

(Takafuji et al., 1984; Gonsalez et al., 1998; Sehgal et al., 2000; Agampodi et al., 2008; 

Bhardwaj et al., 2008; Dechet et al., 2012; Chusri et al., 2014; Fonseka et al., 2019). So 

far, doxycycline (200 mg orally once per week) is thought to be a significant 

chemoprophylactic for preventing leptospiral infection but the protective level is 

considerably varied among studies. Although researches have reported success in some 

studies (Takafuji et al., 1984, Dechet et al., 2012), the application of a chemoprophylaxis 

approach to the general population during an outbreak or when there is flooding is 

challenging without adequate awareness among the high-risk population (Sehgal et al., 

2000; Bhardwaj et al., 2008; Fonseka et al., 2019). Also, a systematic review indicates that 

doxycycline may not be appropriate in the long term for the general population as it could 

lead to many contraindications (e.g., nausea, vomiting, allergies) (Brett-Major and Lipnick, 

2009). 

Using such approaches alone, however, might not be effective during flooding or a post-

disaster scenario where the risk of exposure to an environment containing Leptospira is so 

high. Therefore, behavioural change should be followed by social approaches, primarily 

through improving the level of awareness about leptospirosis. Better understanding about 

the risk, symptoms, and modes of transmission can help improve initial preventive 

measures and appropriate treatment among at-risk populations and by local health 

workers. Health education packages, for example, could be delivered through school 

curiculla. Such an approach with other diseases, such as worm infections, has been 

demonstrated to significantly improve children’s knowledge about the disease and help in 

reducing infections (Bieri et al., 2013; Al-Delaimy et al., 2014). A cluster-randomised 

intervention trial conducted by Bieri et al. (2013) at Chinese schools in the Hunan 

province, for instance, showed that the health education packages (e.g., workshops, video, 

pamphlet, classroom discussions) successfully increased student’s knowledge about soil-

transmitted helminths, resulting in a change in hand-washing behaviour and a 50% 
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reduction in the incidence of infection. In the leptospirosis context, there are examples 

from La Reunion Islands and French Polynesia in which leptospirosis awareness materials 

(e.g., leaflets, posters) were distributed in schools in addition to general hygiene education 

(Goarant, 2016). 

Immunisation is another preventive measure that has potential and may be the most 

effective way to prevent leptospirosis, especially for those populations at greatest risk. Yet, 

there are still key issues that impede the development and implementation of human 

vaccines, including serovar-specific effectiveness, side-effects, and short duration of 

protection (Koizumi and Watanabe, 2005; Adler, 2015). To date, several vaccines—

including whole cell attenuated and inactivated vaccines, leptospiral lipopolysaccharides 

(LPS) vaccines, and recombinant DNA vaccines—are available (Martinez et al., 2004; 

Laurichesse et al., 2007; Wang et al., 2007; Adler, 2015; Rajapakse et al., 2015; Xu and 

Ye, 2017; Laurichesse et al., 2007). So far, a well-established vaccine is the whole cell 

monovalent vaccine, but it is not effective against different serovars. Immunisation may 

not be effective in massive areas where the epidemiology (e.g., reservoir hosts) and risks 

could be varied. To develop effective vaccines, an improved understanding on Leptospira 

diversity and its genetic characters is therefore essential.   

Licensed human Leptospira vaccines are limited and are now only available in a few 

countries, including in China (Hu et al., 2014; Xu and Ye, 2017). Currently, a single 

multivalent, inactivated leptospirosis vaccine is used in China. This vaccine uses seven 

strains of the main L. interrogans serogroups, including three highly virulent (serogroup 

Icterohaemorrhagiae, Grippotyphosa, and Autumnalis) and four low-virulence strains 

(serogroup Canicola, Pomona, Australis, and Hebdomadis), and it is still applied to 

populations at-risk during annual epidemic periods (Xu and Ye, 2017, Zhang et al., 2019a). 

Notably, the most important preventive measure in the absence of vaccines is prompt 

diagnosis followed by immediate treatment. 

  

2.5.2 Managing risks in animals  

Livestock biosecurity and animal husbandry 

Food producing animals, such as cattle, pigs, and sheep, also play a significant role in 

leptospirosis transmission—either as maintenance host or accidental host for Leptospira. 

As aforementioned, a wide range of serogroups and serovars can harbour and infect 

livestock. It has been suggested that rodents are a major pest in farms and are a causative 
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agent of leptospirosis in animals (Webster et al., 1995; Backhans and Fellstrom, 2012). At farm 

level, biosecurity measures (e.g., livestock management, vaccination, antibiotic use/ 

metaphylactic protocol, quarantine, animal-health monitoring, rodent control) have an 

important role in controlling Leptospira spillover from animal to human (Graham et al., 

2008; Mughini-Gras et al., 2014; Ellis, 2015). An integrated strategy to control leptospirosis 

in livestock by combining extensive biosecurity measures, vaccination, and antibiotic 

metaphylaxis has successfully reduced outbreaks of the infection at farm level (Mughini-

Gras et al., 2014; Pimenta et al., 2019). For instance, in Brazil, a recent study by Pimenta 

et al. (2019) highlighted that integrating immunisation and antibiotic therapy and improving 

management practices has efficiently reduced reproductive failure in dairy cattle due to 

leptospirosis.  

Although there is variation in the findings regarding the effect of vaccination on animals 

(Adler and de la Pena Moctezuma, 2010; Ayral et al., 2014), vaccination seems to be the 

most feasible and effective way to lower the risk of infection in livestock and domestic 

animals. Vaccination has effectively reduced the incidence of abortion in herds due to 

Leptospira infection (Jacobs et al., 2015). It has also potential to reduce urinary shedding 

and renal carriage in livestock; although the rate of efficacy varies among studies (Allen et 

al., 1982; Hodges et al., 1985; Vallée et al., 2016). A study in New Zealand showed that a 

campaign for vaccination of dairy cows helped to reduce leptospirosis among dairy 

farmers by more than 80% (Marshall, 1987). Based on recent Bayesian random effect 

meta-analysis, the vaccine efficacy against Leptospira serovar Hardjo in cattle was 89.9% 

(95% probability interval 80.6%–94.9%), suggesting that vaccine could be used to prevent 

leptospirosis incidence both in animals and humans working with livestock (Sanhueza et 

al., 2018). 

 

2.5.3 Managing environmental risks  

The environmental driver of leptospirosis is multifactorial as discussed in earlier sections. 

The emergence of leptospirosis is associated with poor living conditions (e.g., unsafe 

water and poor sanitation, poor waste management, improper drainage or sewage system) 

that favour rodent infestation of human dwellings. During the rainy season, flooding 

amplifies the exposure risk as it helps spread the Leptospira-contaminated urine of rats or 

infected animals as well as disrupting basic services.  Controlling environmental risks 

needs to be directed towards improving environmental conditions and basic infrastructure, 
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such as providing water, sanitation and hygiene (WASH), a drainage system, rodent 

control, and flood management (Lau et al., 2010, 2012; Alderman et al., 2012). 

Furthermore, knowing when interventions should be implemented and a better 

understanding of the local climate variability and the environmental conditions that signal 

the highest risk to Leptospira exposure is essential. To help improve timely outbreak 

prevention and control, a study on understanding the short-term association between 

climate and physical environmental indicators and human leptospirosis emergence is 

discussed in Chapter 8. 

  

2.5.4 Surveillance 

The objective of disease surveillance is to provide accurate, complete, and representative 

data on disease incidence and burden, high-risk areas, and potential upcoming outbreaks 

(Jena et al., 2004). Such information is needed to guide policy makers and health 

authorities at every level to effectively plan and implement leptospirosis control strategies. 

However, surveillance for leptospirosis in most of the endemic countries, especially in 

developing countries, is restricted by the lack of good performance and coverage of 

diagnostic tools, and epidemiological data. In addition, there are no tools that can help to 

locate and forecast high-risk areas for leptospirosis and to detect outbreaks (WHO, 2010, 

2011). Geographical information system (GIS) in combination with statistical modelling 

could be used to identify areas most at risk, quantify risk, and forecast outbreaks by taking 

into account, at least, climatic and environmental data. However, to date, the use of such 

approaches for leptospirosis control and surveillance is still poorly documented and there 

is no available comprehensive evaluation regarding its application. The general 

importance of GIS for understanding disease epidemiology and control is elaborated in the 

next section.  

Early warning systems (EWSs) are at the forefront of modern infectious disease surveillance 

systems. EWSs strengthen surveillance as they can help to anticipate excesses in disease 

incidence that can lead to large outbreaks. To date, methods for effectively forecasting 

leptospirosis outbreaks for geographically targeted prevention, case detection, and 

response is still lacking (WHO, 2010, 2011). A few studies have been initiated to forecast 

leptospirosis outbreaks based on climate variables or seasonality as part of developing an 

EWS (Chadsuthi et al., 2012; Weinberger et al., 2014). All of these studies, however, were 

solely based on weather data. Future outbreak-prediction models should explore the 
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opportunity to incorporate environmental indicators (e.g., abundance of rodents, flooding) (Goarant et 

al., 2016). Research outlined in Chapter 8 shows how I developed temporal models by incorporating 

both weather and remotely sensed environmental data to estimate risk and lagged effects, which lay the 

foundation for an EWS of leptospirosis in China.  

 

2.6  The importance of a spatial analytical approach and a spatial decision support 

system (SDSS) for disease control  

2.6.1 Spatial epidemiology 

To support effective leptospirosis surveillance and control, health authorities need tools to 

guide them to where interventions are needed the most. One of the specific branches in 

epidemiology, which pinpoints on analysing the spatial pattern of the disease of interest 

and its association with sociodemographical, environmental, genetic and other risk factors 

with  part icular emphasis on  the small-area level, is known as spatial 

epidemiology (Elliott and Wartenberg, 2004). This involves visualisation or mapping, 

exploration of spatial clusters, and spatial modelling (Pfeiffer et al., 2008).  Spatial 

epidemiological tools can be used as decision tools which can provide evidence to 

effectively guide public health authorities in planning, implementing, and evaluating 

disease control and prevention at specific areas (Rezaeian et al., 2007; Caprarelli and 

Fletcher, 2014).  

Recently, spatial epidemiological approaches have been extensively used to explain the 

epidemiology of various kinds of infectious diseases: vector-borne diseases, such as 

malaria (Hay et al., 2000; Bi et al., 2013; Houngbedji et al., 2016) and dengue (Eisen and 

Lozano-Fuentes, 2009; Fan et al., 2014; Dhewantara et al., 2015, 2019; Astuti et al., 

2019); zoonotic waterborne diseases, such as schistosomiasis (Soares Magalhaes and 

Clements, 2011; Hodges et al., 2012; Soares Magalhaes et al., 2014; Lai et al., 2015; 

Wang et al., 2016); and rodent-borne diseases, such as scrub typhus (Wu et al., 2016), 

hemorrhagic fever with renal syndrome (Wu et al., 2011), Lassa fever (Fichet-Calvet and 

Rogers, 2009) and plague (Qian et al., 2014).  

 

2.6.2 Application of spatial epidemiology in leptospirosis 

As high-quality spatial data become increasingly available there has been a growing 

interest in using spatial epidemiological analysis to acquire a better understanding of 

leptospirosis epidemiology. Basic spatial analytical techniques through visualisation of the 
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georeferenced point or areal data to map the distribution of leptospirosis incidence or 

prevalence and attributable risks (e.g., environment, socioeconomic data) have been used 

in previous studies (Barcellos and Sabroza, 2000, 2001; Stevens et al., 2011; Lau et al., 

2015, 2016; Reis et al., 2008; Gracie et al., 2014; Garcia- Ramirez et al., 2015). For 

instance, Barcellos and Sabroza (2001) mapped the incidence and several environmental 

factors and found that higher incidence was observed in flood-risk areas and proximity to 

waste disposal sites. Reis et al. (2008) used 6-cm resolution of aerial photographs to 

confirm that elevation and proximity to open sewers and waste disposal were 

environmental risks for leptospirosis in slum communities in Brazil. Moreover, based on 

DALY estimates, Torgerson and colleagues (2015) produced the first global country-level 

map of the burden of leptospirosis. These maps are important as they can be used to 

support and guide health authorities to put into practice public- and animal- health 

interventions. Mapping risk at finer spatial resolution is essential for better informing 

policymakers in designing and implementing area-specifc public health interventions. In 

Chapter 5 to Chapter 7, I provide examples of mapping leptospirosis risk on a global and 

sub-national/local scale. 

Spatial analytical tools can be used to investigate disease patterns, to help generate 

hypothesis, and to explain the potential drivers associated with disease distribution. In 

previous studies, spatial patterns of incidence or risk have been examined to ascertain 

whether the disease is clustered or randomly spread across space and time (Pfeiffer et al., 

2008). For instance, Tassinari et al. (2008) used a space-time analysis and showed that 

leptospirosis incidence appeared to be geographically clustered in a given period of time 

and it was believed that it was explained by high rainfall intensity. Mohd Radi et al. (2018) 

used spatial analytical tools to determine the spatial-temporal pattern of leptospirosis 

incidence in Kelantan, Malaysia. They showed that the leptospirosis hotspots were more 

likely to be spatially clustered after flooding and that this correlated with distance to 

garbage refusal sites and land use. Research detailed in Chapter 6 describes the 

application of spatial analytical tools to investigate residual hotspots of leptospirosis in 

China and the use of GIS to help characterise the key demographical, environmental and 

socioeconomic conditions of high-risk areas. 

Spatial analytical tools in combination with stastical modelling can also be used to estimate 

risk, generate predictive maps of incidence or prevalence, number the population-at-risk, 

and identify areas where risk at its highest. A few researchers have aimed to develop 

predictive risk maps for leptospirosis in their studies. For instance, using georeferenced 



 
 

30 

 

point data (surveyed households) and non-spatial logistic regression models, predictive 

maps for seroprevalence of leptospirosis were first developed by Lau et al. (2012a) in her 

study in American Samoa, by taking into account individual-level factors and four 

environmental factors (altitude, pig density, vegetation, and soil type). The maps showed 

that variation in seropositivity was indeed correlated with individual-level factors and 

environmental factors. Seroprevalence was predicted to be higher in those households 

residing in villages at low elevation, in rural areas, on clay soil, and with higher pig density. 

Rood et al. (2017) used simultaneous autoregression (SAR) to predict the incidence of 

leptospirosis by taking into account land use, type of soil, water infrastructure, cattle farm 

density, and the proportion of certain groups of the population. A recent study by Mayfield 

et al. (2018b) demonstrated the use of spatial Bayesian networks to produce probabilistic 

risk maps of leptospirosis infection under different epidemiological settings. The study 

showed that the effect of such factors on the probability of infection differed in both rural 

and urban areas—except for the effect of density of commercial dairy farms. The presence 

of pigs and high poverty rates was likely to increase the risk of infection, especially in rural 

areas. Although such an approach offers benefits concerning its capacity and flexibility to 

deal with a range of data, researchers using this technique do not fully take into account 

spatial dependency and uncertainties, and they assume that the spatial process was 

stationary.  

Spatial autocorrelation is one crucial foundation of spatial epidemiology, and it should be 

adequately addressed in analysing the spatial variation. Spatial autocorrelation explains 

the degree of similarity between two observations at certain locations. It is important to 

note that two neighbouring locations are usually more identical than those the distant ones 

(Pfeiffer et al., 2008). This has been known as Tobler’s First Law of Geography. Failing to 

account the spatial autocorrelation in the models’ residuals could violate the assumption of 

independence and thus will generate inaccurate estimates. Also, uncertainties that may 

have resulted from the use of the data, models, analyses and predictions have to be 

considered in the modelling processes (Elith et al., 2002). Maps that provide estimates of 

uncertainty in model outputs can help inform health authorities to decide objectively in 

planning and implementing spatially targeted programs for disease control (Clements et 

al., 2006). Predictive tools for leptospirosis need to be developed to improve leptospirosis 

control (WHO, 2010, 2011).  

One of the approaches that allow researchers to include spatial correlation and 

uncertainties is the Bayesian method. Recently, the Bayesian method has been widely 
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used in the spatial epidemiology of tropical diseases as it offers several benefits compared 

with traditional approaches (Best et al., 2005). First, the Bayesian spatial method is useful 

in minimising bias and variance compared with conventional statistical methods (Besag et 

al., 1991). It is a probabilistic likelihood-based method which is highly flexible and is able to 

adapt to data availability issues. Second, it provides suitable platforms for incorporating 

spatial correlation and uncertainty in the modelling process (Clements et al., 2006). While 

the Bayesian method offers such appealing advantages, it has scarcely been used in 

estimating and predicting the geographical variations in the risk of leptospirosis and there 

remains a need to document the applicability of GIS, RS, and spatial analytical tools for 

control and surveillance of leptospirosis. A critical review of the application of spatial 

analytical tools for leptospirosis is presented in Chapter 4. Moreover, the application of 

Bayesian spatial modelling to estimate the spatial risk of leptospirosis is illustrated in 

Chapter 7. 

2.6.3 Spatial decision support system 

While mapping leptospirosis and the use of spatial analytic tools in this field has been well 

documented, their full potential as tools to support decision-making processes has not 

been well recognised. The use of the spatial decision support system (SDSS) in public 

health contexts has been demonstrated in several countries to support vector-borne 

diseases and elimination program of malaria (Wangdi et al., 2016; Kelly et al., 2011), but it 

has not been applied to controlling leptospirosis. An SDSS provides a user-friendly 

computerised system, incorporating geographical or spatial data, disease notification data, 

and other attributes (e.g., resources, demographics). It can automatically analyse the 

available data to generate enriched and interactive visual graphics or maps and tables to 

guide decision making for planning and implementation of interventions (Kelly et al., 2011).  

 

2.7 Summary 

Based on the literature review above, the following gaps in knowledge have been identified 

in the context of leptospirosis epidemiology and control: 

1. While there has been a growing number of studies on leptospirosis aimed at 

utilising the spatial analytical approaches to understand its epidemiology, a 

comprehensive evaluation of the use of such methods in existing studies is not 

available.  
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2. Torgerson and colleagues (2015) provided the first global country-level map of the 

burden of leptospirosis. However, this burden estimate may no longer be relevant 

for China as researchers argue in recent reports that the morbidity and mortality of 

leptospirosis in China have been gradually decreasing since the 1990s (Zhang et 

al., 2012). Most importantly, Torgerson’s study did not adequately capture the 

variation within the country. To better inform policymakers in planning and 

implementing local specific public health interventions, recent estimates of the 

burden as well as its geographical distribution at more satisfactory spatial resolution 

is essential. Before this thesis, no one had estimated and mapped DALYs for 

leptospirosis at a sub-national level, especially in China. 

3. In developing countries where topography, climatic, biodiversity, demographic and 

socioeconomic conditions are highly complex, such as in China, the epidemiology 

and geographical pattern of leptospirosis incidence are likely to be heterogeneous. 

This could make business-as-usual interventions inefficient. Thus, it is crucial to 

understand local epidemiology to better inform planning and implementation of 

targeted interventions that suit local conditions. However, the role of environmental 

and socioeconomic factors in the heterogeneity of distribution of leptospirosis 

incidence, especially in China, remains unknown. 

4. The World Health Organization – Leptospirosis Research Group (LERG) 

recommends the development of predictive tools to support the identification of 

geographic areas that are at highest risk and the populations affected by 

leptospirosis (WHO, 2010). In recent years, a growing number of studies have 

developed predictive maps of leptospirosis incidence to assist leptospirosis control 

(Lau et al., 2012a, Rood et al., 2017, Mayfield et al., 2018b, Baquero and Machado, 

2018). While leptospirosis is also an important public health problem in China, 

spatially explicit predictive maps for leptospirosis have not been developed. 

5. While it is well established that leptospirosis outbreaks are strongly seasonal and 

influenced by weather (Chadsuthi et al., 2012; Weinberger et al., 2014; Matsushita 

et al., 2018), weather-based models to predict leptospirosis outbreak remain lacking 

(Goarant, 2016). Furthermore, there is limited research into predictive models 

incorporating environmental parameters.  
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Chapter 3 General methodology  

3.1 Context 

In this thesis, I used data from different sources. Chapter 4 consists of a systematic review 

of data retrieved from major online literature databases: Pubmed, Web of Science, 

Scopus, EMBASE, Zoological records and ScieLo. I obtained the leptospirosis data used 

in Chapter 5 to Chapter 8 from the China Center for Disease Control and Prevention 

(CDC). In addition, environmental and socioeconomic data were collected from several 

publicly available databases, including the United States Geological Survey (USGS) 

databases, China Resource and Environmental Science Data Center of the Chinese 

Academy of Sciences, China Meteorological Data Sharing Service System, WorldClim, 

WorldPop, China National Bureau of Statistics and Food and Agriculture Organization 

(FAO). In this chapter, I describe the data used in this thesis, and I provide a summary of 

all the data in Table 3-1. 
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Table 3-1 Epidemiological, environmental and socioeconomic data used in this thesis 

Data Description Sources Chapter 

5 

Chapter 

6 

Chapter 

7 

Chapter 

8 

Epidemiological data     

Human leptospirosis case Notification data (2005–2016) 

containing information on age, 

gender, code of county, 

coordinates, date of onset of 

illness, date of death, case 

classification (suspected, probable, 

confirmed) 

China Center for Disease Control and 

Prevention 

    

Environmental variables     

Climatic data Precipitation China Meteorological Data Service 

Center.  

    

Relative humidity China Meteorological Data Service 

Center. 

    

Gridded precipitation data (1-km x 

1-km). Values were sampled at 

county-level using ArcGIS software 

WorldClim      

Land surface temperature 

(LST) 

Raster data with 1-km spatial 

resolution. Monthly LST for each 

county for 2005–2016 was 

sampled using ArcGIS software. 

Values were sampled at county-

level using ArcGIS software 

MODIS Terra, MODIS11A2 8-day, 1 km 

spatial resolution 

    

Normalized Difference 

Vegetation index (NDVI) 

Raster data with 250 metre spatial 

resolution. Monthly NDVI value for 

each county for period of 2005–

2016 was sampled using ArcGIS 

software. The NDVI value ranges 

from -1 to 1. 250 metre spatial 

resolution 

MODIS Terra 13Q1 v006 Vegetation 

Indices 16-Day L3 Global, 250 metre 

spatial resolution 

    

Modified Normalized Difference 

Water Index (MNDWI) 

Monthly NDWI value for each 

county for 2005–2016 was 

MODIS Terra MOD09A1.V6 8-day, 

500m spatial resolution  
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Data Description Sources Chapter 

5 

Chapter 

6 

Chapter 

7 

Chapter 

8 

sampled using ArcGIS software. 

NDWI calculated by using formula 

(RGREEN-RSWIR) / (RGREEN + RSWIR) 

The value of the index ranges from 

-1 to 1.  

Elevation Shuttle Radar Topography Mission 

(SRTM)- Digital elevation model 

(DEM), 1-km (30-arc seconds) 

spatial resolution. Values were 

sampled at county-level using 

ArcGIS software 

WorldClim     

Slope Slope was calculated from the 

SRTM-DEM elevation data by 

using ArcGIS toolbox. The mean 

slope values for each county were 

sampled using ArcGIS software. 

WorldClim     

Land cover Land cover types for 2005 and 

2015. Reclassified into 6 types: 

cultivated land, forested land, 

grassland, waterbodies, artificial 

surfaces and bare land. 

Data Center for Resources and 

Environmental Sciences, Chinese 

Academy of Sciences (RESDC) 

    

Hydrological features  River basin boundaries and 

streams  

GTOPO Hydro1K, HydroSHEDS, 

SRTM, 3 arc-second resolution 

    

Livestock density Gridded pig and cattle density with 

2010 as year of reference. Cell 

resolution 0.00833 (1-km x 1-km). 

Values were sampled at county-

level using ArcGIS software. 

 

 

 

 

FAO-GeoNetwork model of livestock 

density (GLW 2.01) 
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Data Description Sources Chapter 

5 

Chapter 

6 

Chapter 

7 

Chapter 

8 

Socioeconomic variables     

Population Annual population data by county 

(2005–2015) 

China National Bureau of Statistics      

Population density Population density v4 (2005, 2010, 

2015) (raster data). Values were 

sampled at county-level using 

ArcGIS software. 

Socioeconomic Data and Applications 

Center (SEDAC)  

    

Farmland/crop production Raster data for crop production (in 

kg per ha). Values were sampled 

at county-level using ArcGIS 

software. 

Resource and Environmental Science 

Data Center of the Chinese Academy of 

Sciences (http://www.resdc.cn)  

    

Type of county (residence) Urban or rural type A 5x5 km resolution rural/urban surface 

derived from the Global Rural-Urban 

Mapping Project (GRUMP),  

    

Gross Domenstic Product 

(GDP) 

Gridded GDP per capita (2010). 

Values were sampled at county-

level using ArcGIS software. 

(http://www.geodoi.ac.cn/weben/doi.asp

x?Id=125) (Huang Y et al. 2014). 

    

 

 

 

http://www.resdc.cn/


 
 

37 

 

3.2 Leptospirosis data 

Leptospirosis notification data from 2005 to 2016 were provided by the China CDC. The 

data are publicly available upon request to the data center of the CDC. In China, 

leptospirosis is classified as Class B Notifiable Disease since 1955, hence all suspected 

and confirmed leptospirosis cases must be reported by all health providers at county-level 

to the CDC through the web-based reporting system, the China Information System for 

Diseases Control and Prevention (CISDCP). Notified leptospirosis cases include 

information about sex, age, occupation, date of onset of illness, date of diagnosis, date of 

death, case classification (suspected, clinical, and laboratory-confirmed), and address. All 

records were anonymised prior to the commencement of analysis. Ethics clearance for the 

use of these leptospirosis data was provided by the Medical Research Ethics Committee 

of the University of Queensland (Number 2016001608) and the Ethics Committee of 

Beijing Institute of Disease Control and Prevention (see Appendix A) 

Leptospirosis cases are classified into three categories: suspected, clinically diagnosed, 

and confirmed. Suspected cases are defined as an individual with: i) a clinical symptom 

such as acute fever (up to 39 °C), which may be accompanied by chills, myalgia, or 

malaise; and ii) history of exposure within a month before the onset of illness to the 

following risk factors: epidemic season, reside in the epidemic area, either direct or indirect 

contact with suspected animals and their urine or faeces or with contaminated water and 

soil. Clinical (probable) cases are defined as suspected cases with at least one of the 

following clinical manifestations: conjunctival hyperemia, gastrocnemius tenderness, or 

enlargement of the lymph nodes. Whereas a confirmed case is defined as a suspected 

case with one or more any of the following laboratory results: i) positive culture of 

Leptospira from blood, urine, tissues, or cerebrospinal fluid (CSF); ii) microscopic 

agglutination test (MAT) titre of ≥400 in single or paired serum samples; iii) a fourfold or 

greater rise in MAT titres between acute and convalescent-phase samples; iv) the 

presence of pathogenic Leptospira spp detected by polymerase chain reaction (PCR); v) 

the presence of IgM antibodies by enzyme-linked immunosorbent assay (ELISA). Indeed, 

the IgM ELISA is not a ‘gold-standard’ serological test. While it has limited sensitivity and 

specificity, it has been useful especially in resource-poor areas in China. Additionally, as 

MAT is not sensitive for early infection and is not available in hospitals in remote areas, 

IgM ELISA has been used routinely in general laboratories. The national diagnostic criteria 
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for leptospirosis issued by the National Health and Family Planning Commission (NHFPC) 

(Ministry of Health of China, 2008).  

 

3.3 Environmental indicators 

Environmental indicators are grouped into climatic, physical environmental, and animal 

host data. 

3.3.1 Climatic data 

I used meteorological data, such as precipitation and relative humidity, from various 

sources depending on the scale of study. For country- and region-level analysis (Chapter 6 

and 8), I used gridded raster meteorological data (i.e. precipitation) with 30 arc-seconds (~ 

1-km) spatial resolution, which was extracted from WorldClim (v.2) (available at 

www.worldclim.org) (Hijmans et al. 2005; Fick and Hijmans 2017). For county-level 

analysis (Chapter 7), I used daily meteorological records from local weather stations that 

are made available by the China Meteorological Data Sharing Service System 

(http://cdc.cma.gov.cn/).  

 

3.3.2 Physical environmental data 

Elevation and slope at 30 arc-seconds (~ 1-km) spatial resolution was extracted from 

WorldClim (v.2) (available at www.worldclim.org) digital elevation model (DEM). Data for 

the normalized difference vegetation index (NDVI) with 250 metre spatial resolution were 

retrieved from MODIS Terra 13Q1 v006 Vegetation Indices 16-Day L3 Global. I used 

MODIS Terra 09A1 v006 with 500-meter spatial resolution to calculate a modified 

normalised water difference index (MNDWI) as a waterbodies or flood indicator. Land 

surface temperature (LST) (C) data were extracted from MODIS Terra MOD11A2, with an 

8-day composite and 1-km resolution. All MODIS products were downloaded from the 

United States Geological Survey (USGS) Earth Resources Observation and Science 

(EROS) Center (https://eros.usgs.gov/). Land cover data were obtained from the Data 

Center for Resources and Environmental Sciences, Chinese Academy of Sciences 

(RESDC) (http://www.resdc.cn).  

 

http://www.worldclim.org/
http://cdc.cma.gov.cn/
http://www.worldclim.org/
https://eros.usgs.gov/
http://www.resdc.cn/
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3.3.3 Animal hosts data 

I used data for livestock density (pig and cattle) from Gridded Livestock of the World 

version 2.01 with 1-km spatial resolution retrieved from FAO-GeoNetwork 

(http://www.fao.org/geonetwork/srv/en/main.home)(Robinson et al. 2014).   

3.4 Socioeconomic data 

I used county-level population data, for 2005 to 2016, from the China National Bureau of 

Statistics. Population density data were obtained from WorldPop, with 100-metre spatial 

resolution (http://www.worldpop.org.uk/data).An urban extent grid (v.1) raster dataset was 

obtained from the Global Rural-Urban Mapping Project (GRUMP v.1) (Center for 

International Earth Science Information Network - CIESIN - Columbia University et al. 

2011) and used to determine the proportion in each county of urbanised and rural areas 

(http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents). I used a farmland 

productivity raster map, obtained from the Resource and Environmental Science Data 

Center of the Chinese Academy of Sciences (http://www.resdc.cn). Data for county-level 

gross domestic product (GDP) were obtained from gridded GDP of China with 1-km 

resolution (http://www.geodoi.ac.cn/weben/doi.aspx?Id=125) (Huang Y et al. 2014). 

 

3.5 Methods 

Data and methods used in each chapter are detailed in Table 3-2.  

 

http://www.fao.org/geonetwork/srv/en/main.home
http://www.worldpop.org.uk/data
http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents
http://www.resdc.cn/
http://www.geodoi.ac.cn/weben/doi.aspx?Id=125
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Table 3-2 Data and methods used in each chapter 

Chapter Data and methods 

Chapter 4 

Objectives: 

• To identify and critically 
appraise published literature 
reporting on the use of spatial 
tools for leptospirosis control 

• To formulate guidelines for the 
application of spatial analytical 
tools for leptospirosis control 
and surveillance 

 

• Six databases were searched (Pubmed, Web of Science, EMBASE, Scopus, SciELO, and Zoological Record) 
from the 1930s to October 2018; 

• Articles that met inclusion and exclusions criteria are reviewed (see Section 4.3.2); 

• Data for study site, year of publication, study design (cross-sectional, case-control, cohort, etc.), infection 
data used (e.g. human, animal, or both), study objective (e.g. disease mapping, detect clustering, spatial 
and/or temporal modelling), methodologies (e.g. spatial/temporal analyses techniques, data sources, spatial 
and temporal resolution), predictors (e.g. environmental, climatic, socioeconomic, demographic), and 
outcomes (e.g. type of maps, findings) were extracted and summarised.   

 

 

Chapter 5 

Objectives: 

• To investigate the changes in 
notified morbidity and mortality 
of leptospirosis  

• To quantify the demographical, 
temporal and geographical 
heterogeneity of the burden 
during 2005 to 2015. 
 

 

• Province-level leptospirosis case data from 1 January 2005 to 31 December 2015 were used. It included 
information about age, gender, occupation, date of onset of illness, diagnosis and death, place of residence 
(i.e. county and province) and case classification (suspect, clinical, and confirmed).  

• Yearly demographic data, including population data by age, sex, and occupation, were collected from the 
National Bureau of Statistics of China for each province from 2005 to 2015.  

• Incidence rate and mortality rate (per 100,000 people) was calculated. 

• Burden in terms of Disability-adjusted life-years (DALY) was estimated based on Torgerson et al. (2015) and 
Global Burden of Disease framework.  

• Changes in incidence, mortality, and burden were mapped using GIS software. 

• Simple linear regression was performed to detect trends.  

• A chi-square (2) test was performed to determine the difference in incidence, mortality rate, and burden by 
age, sex, and occupation in different time periods. P values of < 0.05 were considered statistically significant.  

• A multiplicative seasonal decomposition analysis was conducted using SPSS version 24 (IBM Corp., Armonk, 
NY, USA) to examine seasonality of leptospirosis incidence. 

Chapter 6 

Objectives: 

• To describes the 
spatiotemporal pattern of 
leptospirosis during 2005 to 
2016 in China (global analysis) 

• To determine high-risk and 
low-risk counties  

• To examined whether the 

• County-level leptospirosis case data from 1 January 2005 to 31 December 2016 were used. It included 
information about age, gender, occupation, date of onset of illness, diagnosis and death, place of residence 
(i.e. county and province) and case classification (suspect, clinical, and confirmed). 

• County-level population data were collected from the National Bureau of Statistics of China.  

• The disease standardized morbidity ratio (SMR) was calculated. 

• Spatial smoothing based on the empirical Bayes method was applied. R software package ‘DCluster’ was 
used. 

• Spatial analyses involved tests for (i) global spatial autocorrelation Moran’s I for each year and (ii) local 
indicators of spatial association (LISA) to determine cluster of counties with high or low rates (for each year). 
R software package ‘spdep’ and GeoDA software were used. 
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Chapter Data and methods 

spatial pattern of leptospirosis 
has changed over the period  

• To characterise environmental 
and socio-demographic factors 
specifically attributed to high-
risk and low-risk areas 

• Descriptive analyses were performed to profile and compare demographical, ecological, and socioeconomic 
conditions of all cluster categories. Chi-square tests (for categorical variables) or one-way ANOVA or Kruskal-
Wallis test with post hoc Tukey’s honestly significant difference (HSD) test (for continuous variables) were 
performed. 

• Maps were created using GIS software 

Chapter 7 

Objectives: 

• To quantify the effect of 
environmental and socio-
economic factors on the spatial 
variation of incidence of 
leptospirosis 

• To generate smoothed 
incidence of leptospirosis  

 

• County-level leptospirosis infection data for 2005–16 were used and restricted to two regions: Upper Yangtze 
River Basin (UYRB) and Pearl River Basin (PRB). 

• County-level environmental and socioeconomic data were sampled: precipitation, LST, NDVI, MNDWI, 
elevation, slope, livestock density, crop production, population density, urban-rural, and GDP. 

• Non-spatial model: Spearman’s correlation, univariate analysis Poisson Generalized Linear Model (GLMs).     

• Spatial autocorrelation in the residuals of the final models was examined using Moran’s I analysis. 

• Bayesian conditional autoregressive - zero-inflated Poisson regression (CAR-ZIP) was constructed for each 
region. The ZIP approach was selected to overcome issues associated with excess zero counts in 
leptospirosis notifications (Lambert 1992; Agarwal et al. 2002). 

• Spatial effects of covariates on leptospirosis distribution was estimated for each region using Bayesian 
software OpenBUGS. 

• Maps of posterior mean and standard deviation were developed using GIS software. 

Chapter 8 

Objective: 

• To assess the short-term effect 
of climate variability and 
satellite-based physical 
environmental parameters on 
incidence of leptospirosis  

 

• Monthly leptospirosis cases (1 January 2006 to 31 December 2016) were used. 

• Monthly meteorological data (precipitation and relative humidity) for the same period were used. 

• Monthly remote-sensed environmental data (NDVI, MNDWI, LST) for the same period were used. 

• Spearman’s correlation, cross-correlation analysis, and seasonal decomposition analysis were performed.  

• Negative Binomial - Poisson Generalize linear model (GLM) was used to estimate the effects of climatic and 
environmental factors on the incidence of leptospirosis, controlling for seasonality. This approach was used to 
overcome issues related with overdispersion in the count data. 

• The goodness-of-fit of the models was examined based on Bayesian Information Criterion (BIC) and 
deviance. The model with lower BIC and deviance was chosen as the final model.  

• The seasonality and autocorrelations of the deviance residuals of the final models were checked by visually 
examining the sequence charts and partial autocorrelation function over time lags. 
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Chapter 4 Spatial epidemiological approaches to inform 

leptospirosis surveillance and control: a systematic review and 

critical appraisal of methods 

 

This chapter has been published in Zoonoses and Public Health as a review paper. The 

concept and design of the methodology of the study was formulated by PWD (80%) with the 

assistance of RJSM (20%). PWD was responsible for data management (100%), data 

analyses (100%) and the interpretation of results (80%) was discussed in consultation with 

RJSM (10%) and all co-authors (10%). PWD was responsible for drafting the manuscript 

(100%). PWD was responsible for revision of the final version of the manuscript (90%), taking 

into account the comments and suggestions of RJSM (5%) and all co-supervisors (5%). 

Reprinted from Zoonoses and Public Health, March 2019; Volume 66 Issue 2, pp.185-206. 

Dhewantara, P.W., Lau, C.L., Allan, K.J., Hu, W., Zhang W., Mamun, A.A. and Soares 

Magalhães, R.J. Spatial epidemiological approaches to inform leptospirosis surveillance and 

control: A systematic review and critical appraisal of methods. Permission to reprint has been 

obtained from John Wiley and Sons. 

 

4.1  Context 

Spatial epidemiology is a specialist branch of epidemiology that deals with ‘the description, 

analysis and interpretation of geographic variation in disease with respect to demographic, 

environmental, behavioral, socioeconomic, genetic, and infectious risk factors particularly at 

small-area level, involving disease mapping, geographic correlation studies, disease cluster 

and clustering’ (Elliott and Wartenberg, 2004, p.998). Considering the role of place together 

with person and time in disease transmission is a valuable approach for generating and 

testing aetiological hypotheses about environmental determinants of disease. Moreover, 

spatial epidemiology can provide evidence to effectively guide public health agencies in 

distributing and improving resources for disease control and prevention in specific areas 

(Rezaeian et al., 2007). The literature review in Chapter 2 revealed that there are a 

considerable number of epidemiological studies aimed at understanding factors associated 
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with leptospirosis transmission, but few that have utilised a spatial analytical approach to 

explore and provide a better knowledge of the disease and to generate tools to support 

leptospirosis control. At the time when the research plan for this chapter was developed, there 

was no study that documented, reviewed, and comprehensively evaluated the application of 

spatial analytical techniques in the available leptospirosis studies. Therefore, in this chapter, I 

set out to perform a systematic review of studies to look at the general application of spatial 

analytical tools in the field of leptospirosis and the relative importance of such tools in 

supporting leptospirosis disease control programs. I also critically assess gaps in the 

methodology that could limit the benefits of these tools in helping health authorities to design 

targeted interventions for reducing the burden of leptospirosis.  

The systematic review was conducted by following the standard Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) protocol (Moher et al., 2009). At the first 

stage, I set out several keywords to search the literature in six databases: Scopus, Web of 

Science, Pubmed, EMBASE, SciELO and Zoological Records. Subsequently, I screened and 

identified studies that were eligible for review based on the predefined inclusion and exclusion 

criteria. At the second stage, I reviewed and critically evaluated the methods used in those 

studies regarding the source of epidemiological data as well as analytical approaches (e.g., 

the spatial unit of analysis, visualisation, spatial exploration tools and modelling techniques). 

The systematic review demonstrated that in recent years we have seen a substantial growth 

in leptospirosis studies that use spatial epidemiological approaches, highlighting the relative 

importance of such approaches to better understand patterns and their underlying factors. 

However, while there has been an increase in number, I found that only a few studies had 

generated spatially explicit predictive maps for leptospirosis. In addition, the quality of the 

epidemiological data, the relevance and complexity of factors incorporated in the analysis, 

and the spatial analytical methods used among studies differed widely, which prevented 

comparison between studies. Therefore, based on these findings and to improve the value 

and practicality of maps in supporting leptospirosis disease control and surveillance, I 

proposed a general framework which provides clear guidance to adequately design and apply 

spatial analyses.  
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4.2  Introduction 

Leptospirosis is a zoonotic disease of major public health and animal health importance 

caused by pathogenic spirochete belonging to the genus Leptospira that is common in 

tropical and sub-tropical countries (Faine et al., 1999; Bharti et al., 2003). Annually worldwide, 

it is estimated that at least one million human cases and 58,900 deaths occur leading to the 

loss of approximately 2.9 million DALYs (Costa et al., 2015; Torgerson et al., 2015). In 

animals, Leptospira infection can lead to reproductive failure in livestock (e.g., abortion, 

premature progeny, stillbirths, infertility, and fetal mummification), decreased milk production 

and systemic illness, which may be fatal and cause significant economic losses (Donahue et 

al., 1995; Martins et al., 2012; Ellis, 2015). Hence, it is imperative to improve the delivery of 

disease control strategies in both human and animals. 

Leptospirosis transmission is driven by a complex interaction of environmental, 

socioeconomic, demographic and individual determinants which result in considerable 

geographical and temporal variation in infection risk (Lau et al., 2010; Mwachui et al., 2015). 

Infection may occur through contact with infected reservoir animals’ urine and tissues, or with 

Leptospira-contaminated soil or water. More than 300 serovars of Leptospira spp, categorised 

into 25 serogroups, have now been identified worldwide (Levett, 2001). There are 10 

pathogenic species and five intermediate species which occasionally cause mild clinical 

manifestations (Xu et al., 2016b). A wide range of animals including domestic (e.g., livestock 

and companion animals), wildlife, and rodents have been identified as Leptospira carriers 

(Adler and de la Pena Moctezuma, 2010; Haake and Levett, 2015).   

The incidence of leptospirosis is geographically and temporally varied, and it is strongly 

associated with climatic, environmental and local socioeconomic factors (Cosson et al., 

2014). A higher incidence is reported in tropical, humid and temperate regions, especially 

during the wet season, disproportionately affects deprived populations both in rural and urban 

areas (Ko et al., 1999). Numerous leptospirosis outbreaks, particularly in urban setting are 

often linked with severe flooding resulting from heavy rainfall or cyclones (Ko et al., 1999; 

Amilasan et al., 2012; Dechet et al., 2012). In rural areas, leptospirosis is closely correlated 

with agricultural processes such as rice paddy harvesting and livestock husbandry 

(Prabhakaran et al., 2014; Ellis, 2015). Ecological degradation of living conditions due to rapid 

population growth and urbanisation coupled with climate change are considered to be some 
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of the most important driving forces behind current and future leptospirosis outbreaks (Lau et 

al., 2010)  

The complexity in transmission pathways for leptospirosis constitutes a significant challenge 

for control strategies, especially in remote and poor resource endemic areas. There is a need 

to develop accurate and cost-effective tools to improve existing surveillance and strengthen 

control strategies. Geographic information systems (GIS), remote sensing (RS), and 

geospatial statistics tools have now been greatly enhanced and used in public health studies 

and have the potential to help improve disease epidemiology and control. The present paper 

is aimed to comprehensively review the use of spatial analytical methods in leptospirosis 

studies to help improve research designs and lay the foundation for further leptospirosis 

studies to support more effective surveillance and control programs. Leptospirosis 

transmission strongly involves interdependent interaction between animals, humans, and the 

environment (Rabinowitz et al., 2013). Hence, in this paper, we focused on how spatial and 

temporal approaches have been used in leptospirosis studies of both animals and humans. 

Future research directions on the application of spatiotemporal analysis in leptospirosis are 

also discussed. 

 

4.3  Methods  

4.3.1 Search strategy  

Using standard systematic review and meta-analysis (PRISMA) guidelines (Moher et al., 

2009), I searched Pubmed, Web of Science, EMBASE, Scopus, SciELO, and Zoological 

Record for peer-reviewed articles published until 31 October 2018. In order to identify other 

relevant articles not captured by the initial searches, I manually searched the reference lists of 

included articles (Hopewell et al., 2007). To retrieve relevant articles, I used a combination of 

the following search terms: spatial, spatiotemporal, geographical information system, 

mapping, remote sensing, prediction, outbreak, cluster, and leptospirosis (Appendix B: Table 

B-1). No restrictions on language or publication date were applied.  

All articles retrieved from the databases were stored and checked for duplicates using 

EndNote™ (Thomson Reuters, Philadelphia, PA, USA) reference manager. All unique titles 

and abstracts (when available) were screened to identify relevant publications that met 
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inclusion criteria by one reviewer (PWD). Full review was then applied to all articles available 

in a full text for eligibility by two reviewers (PWD and RJSM). Eligible articles were grouped 

into three categories: studies that used data on (i) human, (ii) animal, or (iii) both human and 

animal infection.  

 

4.3.2 Inclusion and exclusion criteria 

Studies were eligible for inclusion if they applied one or more spatial analyses techniques 

including visualisation (defined as mapping leptospirosis infection data to illustrate spatial 

patterns of disease distribution), exploration (defined as applying statitistical tools to analyse 

such patterns, including whether the infection data were clustered or random), and modelling 

(e.g., utilise spatial and non-spatial data to explore associated risk factors for infection, to 

quantify spatial variation in risk, and to develop spatial and/or temporal predictive models). 

Papers were excluded if: (i) abstract or full paper not available; (ii) experimental design 

studies, case series or case reports, studies on the genetic characterisation of Leptospira 

spp. without involving spatial analyses; (iii) ecological or environmental surveys associated 

with animal reservoirs without providing Leptospira infection data; (iv) non-spatial studies; (v) 

studies that dealt with seasonality with no further attempt to develop temporal predictive 

models; or (vi) short communications, conference proceedings, commentaries, review 

articles, books or book sections. 

 

4.3.3 Data extraction 

For each eligible article, I extracted and summarised data on study location, year of 

publication, study design (e.g., cross-sectional, case-control, cohort), leptospirosis 

epidemiological data (e.g., human, animal, or both) and diagnostic methods used, study 

objective (e.g., disease mapping, detect clustering, spatial and/or temporal modelling), spatial 

and/or temporal analysis methods (e.g., visualisation, exploration, modelling), predictors (e.g. 

environmental, climatic, socioeconomic, demographic), and outcomes (e.g. maps, findings).   

 



 
  

47 

 

4.4 Results 

4.4.1 General characteristics of studies included in the review 

A total of 1468 records were identified from six databases and 23 additional records were 

identified through manual searches from bibliographic lists of included papers. A total of 690 

unique records remained after the removal of 778 duplicates. A total of 263 papers published 

until October 2018 met our inclusion criteria and were included for full-text review. After full-

text review, a total of 115 articles from 41 countries were finally included in our systematic 

review (Figure 4-1). 
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Figure 4-1 Search and selection process based on PRISMA framework (Moher et al., 2009). Total of 115 records published until 
31 October 2018 were reviewed.
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The trend in number of publications reporting the use of spatiotemporal approaches to 

understand the epidemiology of human and/or animal leptospirosis has been increasing with 

most studies occurring after 2010 (Figure 4-2). A total of 65 studies used data on human 

infection, 39 studies used animal infection data, and 11 studies used data on both human and 

animal infection. Studies were performed either at the sub-national (n = 79/115) level, national 

level (n = 35/115) or regional level (n = 1/115). No global or continental-scale studies were 

reported in any of the papers included in our review.  

The majority of leptospirosis studies were reported from the Americas, especially in Brazil 

(24.61%, n = 16/65) for human leptospirosis studies and the United States (28.20%, n = 

11/39) for animal leptospirosis studies (Figure 4.3). Studies using both human and animal 

infection data were conducted in eight countries, mainly in Southeast Asia (45%, n = 5/11), 

including Thailand, Indonesia, and the Philippines. 

 

 

Figure 4-2 Number of included articles in the review classified by time period. Articles were 
grouped into three categories based on the epidemiological data used: human, animal, and 
both human and animal infection data. The use of spatial analytical methods in the field of 
leptospirosis appears to grow since 1970. 
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Figure 4-3 Distribution of selected papers on spatial and/or temporal analysis of human 
leptospirosis (A), animal leptospirosis (B), and both human and animal leptospirosis (C). 
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From the total of 115 eligible articles, 106 (92.17%) studies in 37 countries dealt with spatial 

analyses which included visualisation (90.56%, n = 97/106), exploration (33.01%, n = 35/106), 

and modelling (47.16%, n = 50/106). Whereas, nine articles applied temporal or time-series 

modelling techniques as tools to predict human (n = 7) and animal (n = 2) leptospirosis 

incidence. Among those studies that included spatial analysis, few studies (15.09%, n = 

16/106) conducted visualisation, exploration, and modelling concurrently (Della Rossa et al., 

2016; Gracie et al., 2014; Lau et al., 2012a; Mayfield et al., 2018a; Miyama et al., 2018; Mohd 

Radi et al., 2018; Raghavan et al., Brenner, 2012; Robertson et al., 2012; Soares et al., 2010; 

Suwanpakdee et al., 2015; Tassinari et al., 2008) (Appendix B: Table B-2).  

 

4.4.2 Leptospirosis infection data sources, case definitions and diagnostic tests 

Leptospirosis infection data were mostly obtained from national notification system (45.21%, n 

= 52/115), medical records or laboratory databases (include hospital admission database) 

(22.60%, n = 26/115). Only 40 studies (34.78%, n = 40/115) used infection data generated by 

surveys. Most studies were cross-sectional (86.95%, n = 100/115), few (6.08%, n = 7/115) 

were case-control studies (Ghneim et al., 2007; Hennebelle et al., 2013; Raghavan et al., 

2011, 2013; Suryani et al., 2016; Ward, 2002a; Ward et al., 2004) and only six studies 

(5.21%) employed a prospective cohort design (Deshmukh et al., 2019; Hagan et al., 2016; 

Ko et al., 1999; Ledien et al., 2017; Mišić-Majerus, 2014; Reis et al., 2008).  

In terms of diagnostic approaches, human infection data used were most commonly based on 

microscopic agglutination test (MAT) (50.76%, n = 33/65), enzyme linked immunosorbent 

assay (ELISA) (33.84%, n = 22/65) or polymerase chain reaction (PCR) (13.84%, n = 9/65). 

Eleven studies used culture in combination with serological tests or PCR (Biscornet et al., 

2017; Desvars et al., 2011; Jansen et al., 2005; Pijnacker et al., 2016; Rood et al., 2017; 

Slack et al., 2006, 2007; Soares et al., 2010; Suwanpakdee et al., 2015; Tassinari et al., 

2008; Weinberger et al., 2014) to diagnose human infection. As with human studies, the 

majority of animal studies also used MAT (53.84%, n = 21/39) to determine animal infection 

status, and three studies used ELISA only (Miyama et al., 2018; Pijnacker et al., 2016; Soares 

et al., 2010). Eight studies used culture in combination with serological tests or PCR.  

Thirty-one (47.69%, n = 31/65) human leptospirosis studies, four studies (10.25%, n = 4/39) 

on animal leptospirosis, and four studies (36.36%, n = 4/11) that used animal and human 
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infection data did not clearly describe the case definitions of leptospirosis infection. And, 28 

studies did not specifically describe the diagnostic techniques used. 

 

4.4.3 Mapping the geographical distribution of leptospirosis 

Mapping human leptospirosis data 

Most spatial studies (96.55%, n = 56/58) produced human infection maps and most utilised 

data obtained from the national disease surveillance notification systems (73.21%, n = 41/56). 

Maps were produced to depict incidence or prevalence in certain administrative areas 

(48.21%; n = 27/56) either at regional (n = 1) (Schneider et al., 2017), national (n = 11) 

(Gonwong et al., 2017; Jansen et al., 2005; Lau et al., 2012a; Massenet et al., 2015; 

Robertson et al., 2012; Rood et al., 2017; Schneider et al., 2012; Shi et al., 1995; Stevens et 

al., 2011; van Alphen et al., 2015; Zhao et al., 2016) or sub-national scales (n = 15) (Barcellos 

et al., 2000, 2003; Chaiblich et al., 2017; Garcia-Ramirez et al., 2015; Gracie et al., 2014; 

Herbreteau et al., 2006; Ko et al., 1999; Lau et al., 2015; Mišić-Majerus, 2014; 

Mohammadinia, 2017; Mohd Radi et al., 2018; Myint et al., 2007; Schneider et al., 2015; 

Soares et al., 2010; Vega-Corredor and Opadeyi, 2014). Twelve studies used Kernel density 

estimation technique to generate smoothed distribution maps of disease counts, risk or 

population density (Chaiblich et al., 2017; Cook et al., 2017; de Melo et al., 2011; Deshmukh 

et al., 2019; Filho et al., 2014; Lau et al., 2012b, 2012c; Mohd Radi et al., 2018; Reis et al., 

2008; Rood et al., 2017; Tassinari et al., 2004; Vega-Corredor and Opadeyi, 2014). Two 

studies constructed suitability maps for leptospirosis occurrence at national level (Sanchez-

Montes et al., 2015; Zhao et al., 2016).  

Seroprevalence maps were produced by three studies (5.35%, n = 3/56) based on ELISA 

(Gonwong et al., 2017) or MAT (Lau et al., 2012a; Lau et al., 2016). Seropositivity maps were 

created based on serological (MAT) data collected from the field surveys (Lau et al., 2012b, 

2012c). Six studies mapped the distribution of predominant serovars identified from field 

studies (Lau et al., 2012a, 2012b, 2012c, 2015; Myint et al., 2007; Slack et al., 2007). No 

serogroup or serovar distribution maps at regional and global scale were reported. 

Spatiotemporal maps were created (21.42%, n = 12/56) (Baquero and Machado, 2018; 

Dhewantara et al., 2018; Garcia-Ramirez et al., 2015; Gracie et al., 2014; Hagan et al., 2016; 

Lau et al., 2015; Robertson et al., 2012; Soares et al., 2010; Sulistyawati et al., 2016; 
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Suwanpakdee et al., 2015; Tassinari et al., 2004, 2008; van Alphen et al., 2015) to illustrate 

changes in distribution (Della Rossa et al., 2016; Gracie et al., 2014; Lau et al., 2015; 

Schneider et al., 2012; Soares et al., 2010; Sulistyawati et al., 2016; Suwanpakdee et al., 

2015; Tassinari et al., 2004, 2008), disease rates/risks (Baquero and Machado, 2018; Garcia-

Ramirez et al., 2015; Hagan et al., 2016; Robertson et al., 2012; Suwanpakdee et al., 2015; 

van Alphen et al., 2015), or burden in terms of disability-adjusted life years (DALYs) 

(Dhewantara et al., 2018). One set of sub-national spatiotemporal maps describing changes 

in serovar-specific cases was produced at state level in Australia (Lau et al., 2015). Summary 

of the studies on mapping leptospirosis is provided in Appendix B: Table B-3 and Table B-4. 

 

Mapping animal leptospirosis data 

Thirty-four studies used mapping approaches to describe spatial heterogeneity in 

incidence/prevalence, serostatus, or distribution of Leptospira infections among various 

reservoir animals including companion animals, livestock, rodents, and wildlife. Few studies 

created prevalence maps at national (2.94%; n = 1/34) (Suwancharoen et al., 2016) or sub-

national (14.70%; n = 5/34) (Filho et al., 2014; Hesterberg et al., 2009; Machado et al., 2016; 

Scolamacchia et al., 2010; Silva et al., 2018) levels. The infection data of companion animals 

(e.g., dogs) were obtained commonly from laboratory databases/medical records deposited at 

veterinary clinics (32.35%, n = 11/34). Serovar-specific prevalence in livestock was mapped 

(8.82%, n = 3/34) in Australia (Elder et al., 1986; Elder and Ward, 1978) and Japan (Miyama 

et al., 2018). Livestock, rodents, or wildlife-animals infection data were often collected from 

animal sampling. Few studies reported the use of Kernel density risk maps (n = 2) (Filho et 

al., 2014; Hashimoto et al., 2015) and suitability maps (n = 1) (Dobigny et al., 2015). No 

spatiotemporal maps for animal leptospirosis was reported.  

 

Mapping human and animal infection data 

Eleven articles used both human and animal infection data (Assenga et al., 2015; Biscornet et 

al., 2017; Chadsuthi et al., 2017; Cipullo and Dias, 2012; Della Rossa et al., 2016; Fonzar and 

Langoni, 2012; Hurd et al., 2017; Pijnacker et al., 2016; Sumanta et al., 2015; Villanueva et 

al., 2014; Widiastuti et al., 2016), but only 64% (n = 7/11) of studies incorporated both human 

and animal infection data into their maps. One study created a national level seroprevalence 
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map for both humans and animals (Chadsuthi et al., 2017). At the sub-national level, six 

studies mapped the geographic co-distribution of serogroups (Assenga et al., 2015; 

Villanueva et al., 2014) or Leptospira seropositivity (Cipullo and Dias, 2012; Fonzar and 

Langoni, 2012; Sumanta et al., 2015; Widiastuti et al., 2016) in both humans and animals. No 

maps have been produced on describing spatial-temporal changes in risks were identified in 

this group of study.  

 

4.4.4 Exploratory analysis: detecting spatial autocorrelation and disease clustering  

On studies that used human infection data  

A wide range of classic global and local spatial clustering analyses were used to investigate 

large-scale and small-scale variations in patterns of disease distribution (Table 4-1; Appendix 

B: Table B-5). Eight studies used global Moran’s I to test spatial clustering on areal data 

(Cook et al., 2017; Della Rossa et al., 2016; Goncalves et al., 2016; Gracie et al., 2014; 

Mohammadinia et al., 2017; Rood et al., 2017; Soares et al., 2010; Suryani et al., 2016). Two 

studies analysed clustering of point data by using global Moran and average nearest 

neighbour methods (Mohd Radi et al., 2018; Suryani et al., 2016). While Knox test was used 

to assess global spatial clustering of the leptospirosis over space and time (Bennett and 

Everard, 1991). Localised spatial clustering techniques were applied to determine hotspots, 

including Local Indicators of Spatial Association (LISA) (n = 3) (Mohd Radi et al., 2018; Rood 

et al., 2017; Soares et al., 2010) and Getis and Ord’s (Gi
*) (n = 3) (Hassan and Tahar, 2016; 

Mayfield et al., 2018a; Suwanpakdee et al., 2015). Both global and local tests for clustering 

were only applied in a few studies (14.28%) (n = 3/21) (Lau et al., 2012a; Rood et al., 2017; 

Soares et al., 2010). 

Locating the high-risk clusters across space, seven studies used SaTScan (Kulldorff and 

Nagarwalla, 1995) at national (Gutierrez and Martinez-Vega, 2018; Lau et al., 2012a; 

Massenet et al., 2015; Robertson et al., 2012) and sub-national scale (Deshmukh et al., 2019; 

Sulistyawati et al., 2016; Tassinari et al., 2008). The maximum circular spatial window was 

often set at 50% (Gutierrez and Martinez-Vega, 2018; Lau  et al., 2012a; Massenet et al., 

2015; Sumanta et al., 2015) of the population at risk. The temporal window used ranged from 

30 days (Tassinari et al., 2008) to one year (Massenet et al., 2015); although five studies did 
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not explicitly define spatial or temporal windows (Deshmukh et al., 2019; Robertson et al., 

2012; Sulistyawati et al., 2016). 
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Table 4-1 Summary of approaches used to measure spatial clustering in human, animal, and both human-animal leptospirosis studies 

Spatial clustering methods N Infection data 

Human (n=21) Animal (n=13) Both human and 
animal (n=1)  

Global measures  Moran’s I / Global Moran 11 Cook et al. (2017); 
Della Rossa et al. 
(2016); Goncalves 
et al. (2016); 
Gracie et al. 
(2014); 
Mohammadinia et 
al. (2017); Mohd 
Radi et al. (2018); 
Rood et al. (2017); 
Soares et al. 
(2010); Suryani et 
al. (2016) 

Alton et al. (2009) Hurd et al. (2017)  

Geary’s c 1   Hurd et al. (2017) 

Cuzick-Edwards Kth neighbour test 3  Hennebelle et 
al.(2013); 
Raghavan et al., 
(2012); 
Scolamacchia et 
al. (2010) 

 

Average nearest neighbour 2 Mohd Radi et al. 
(2018); Suryani et 
al. (2016)  

  

Knox test 1 Bennett and 
Everard (1991) 

  

Semivariogram/Empirical variogram 6 Lau et al. (2012a) Alton et al. (2009); 
Raghavan et al. 
(2011, 2012, 
2013) 

Hurd et al., 2017 

Local measures / 
cluster detection  

LISA / Local Moran 3 Mohd Radi et al. 
(2018); Rood et al. 
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Spatial clustering methods N Infection data 

Human (n=21) Animal (n=13) Both human and 
animal (n=1)  

(2017); Soares et 
al. (2010) 

Getis-Ord G* 3 Hassan and Tahar 
(2016); Mayfield et 
al. (2018a); 
Suwanpakdee et 
al. (2015) 

  

Bernoulli/Poisson spatial scan statistics 10 Cipullo and Dias 
(2012); Deshmukh 
et al. (2019); Lau et 
al. (2012a) 

Alton et al. (2009); 
da Silva et al. 
(2006); 
Hennebelle et al. 
(2013); Himsworth 
et al. (2013); 
Miyama et al. 
(2018); Nicolino et 
al. (2014); 
Sumanta et al. 
(2015) 

 

Poisson/Binomial/Multinomial space-time scan 
statistics 

8 Gutierrez and 
Martinez-Vega 
(2018); Massenet 
et al. (2015); 
Robertson et al. 
(2012); Sulistyawati 
et al. (2016); 
Tassinari et al. 
(2008) 

Alton et al. (2009); 
Gautam et al. 
(2010); 
Hennebelle et al. 
(2013); Ward, 
(2002a) 

 

FlexScan spatial cluster test 1   Hurd et al. (2017) 
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On studies that used animal infection data 

Eleven articles tested for global or local spatial clustering on the animal infection data. Few 

studies applied both global and local tests (n = 2) (Alton et al., 2009; Hennebelle et al., 2013). 

A variety of methods were used including global Moran’s I (n = 1) (Alton et al., 2009), Cuzick 

and Edwards’ k-nearest neighbour and variogram (n = 3) (Hennebelle et al., 2013; Raghavan 

et al., 2012; Scolamacchia et al., 2010) to detect spatial clustering of infected animals. Nine 

studies investigated clusters of infected animals using scan statistics, including spatial scan 

test, temporal and spatial scan statistics, spatial permutation test (69.23%, n = 9/13) (Alton et 

al., 2009; da Silva et al., 2006; Gautam et al., 2010; Hennebelle et al., 2013; Himsworth et al., 

2013; Miyama et al., 2018; Nicolino et al., 2014; Sumanta et al., 2015; Ward, 2002a).  

 

On studies that used both human and animal infection data 

Only one study explored spatial pattern of both human and animal infection data. This study 

used a variety of spatial clustering methods including Moran’s I and Geary’s c as well as 

employing several different cluster detection techniques using SaTScan and FlexScan 

software (Hurd et al., 2017).  

 

4.4.5 Modelling risk of leptospirosis infection and spatial risk prediction 

Modelling risk of human infection 

Thirty-one studies (53.44%, n = 31/58) quantified the effect of a set of selected explanatory 

variables on leptospirosis incidence/prevalence, at national-level (n = 15/31) and sub-national 

level (n = 17/31) (Table 4-2). The summary of studies on modelling leptospirosis risk and 

covariates used in the study was detailed in Appendix B (Table B-6 and Table B-7, 

respectively). Most studies assessed the association between environment (e.g., land use, 

altitude, flood risk) (n = 29/31) or climatic factors (e.g., precipitation) (n = 18/31) and 

leptospirosis incidence/prevalence (Figure 4-4). Half of the studies utilised environmental 

data, including land cover, elevation, Normalized Difference Vegetation Index (NDVI) 

Normalized Difference Water Index (NDWI) and climatic data obtained from remote-sense 

databases (e.g. MODIS, Landsat) (Baquero and Machado, 2018; Gracie et al., 2014; Lau et 

al., 2012a, 2012b, 2016; Schneider et al., 2012; Suwanpakdee et al., 2015; Vega-Corredor 
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and Opadeyi, 2014; Zhao et al., 2016) (Appendix B: Table B-8). A recent study proposed the 

use of modified NDWI (MNDWI) to estimate the risk of Leptospira infection following flood 

(Ledien et al., 2017).  

 

 

Figure 4-4 Covariates included in the models and the proportion of studies that incorporated 
those variables. Land-use/land cover (e.g., NDVI, type of residence, presence of paddy field), 
precipitation, altitude, presence of animal reservoirs, population density, and poverty were the 
most common predictors included in the models to estimate risk of leptospiral infection. 
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Table 4-2 Summary of modelling techniques used in eligible leptospirosis studies 

Modelling approach N Leptospirosis epidemiological data 

Human (n=31) Animal (n=17) Human and animal 

(n=3) 

Regression  Linear regression/Generalized linear 

models (GLMs) /Poisson 

regression/Binomial GLM/Quadratic 

regression 

14 Ledien et al. (2017); 

Mohd Radi et al. 

(2018); Reis et al. 

(2008); Schneider et 

al. (2012); Vega-

Corredor and 

Opadeyi (2014) 

Biscornet et al. 

(2017); Elder et al. 

(1986); Himsworth 

et al. (2013); 

Ivanova et al. 

(2012); Major et al. 

(2014); Miyama et 

al. (2018) 

 

Chadsuthi et al. 

(2017); Della Rossa 

et al. (2016); Hurd et 

al. (2017) 

 Logistic regression/multilevel mixed-effect 

logistic models/multinomial logistic models 

17 Cook et al. (2017); 

Lau et al. (2012a, 

2012b, 2016); 

Robertson et al. 

(2012); Schneider et 

al. (2012); Tassinari 

et al. (2008); Zhao et 

al. (2016) 

Alton et al. (2009); 

Ghneim et al. 

(2007); Himsworth 

et al. (2013); 

Raghavan et al. 

(2011, 2012, 

2013); Silva et al. 

(2018); Ward et al. 

(2004) 

Chadsuthi et al. 

(2017) 

 Generalized additive models (GAMs) 3 Hagan et al. (2016); 

Reis et al. (2008) 

Bier et al. (2013)  

 Negative binomial (NB)/Zero-inflated 

negative binomial regression models 

2 Schneider et al. 

(2015); 

Suwanpakdee et al. 

(2015) 

  

 Geographical weighted regression (GWR) 5 Mayfield et al. 

(2018a); 

Mohammadinia et al. 

(2017); Mohd Radi et 
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Modelling approach N Leptospirosis epidemiological data 

Human (n=31) Animal (n=17) Human and animal 

(n=3) 

al. (2018); Vega-

Corredor and 

Opadeyi (2014); 

Widayani et al. 

(2016) 

 Generalized linear mixed models (GLMMs) 2 Tassinari et al. 

(2008) 

Alton et al. (2009)  

 Boosted regression trees (BRTs)  2 Ledien et al. (2017) White et al., 

(2017) 

 

Autoregressive 

models 

Simultaneous Auto Regression (SAR) 1 Rood et al. (2017)   

      

Disease 

distribution 

modelling 

Maximum entropy (MAXENT) Ecological 

niche models, Genetic Algorithm for Rule 

Set Production (GARP) 

2 Sanchez-Montes et 

al. (2015); Zhao et 

al. (2016) 

  

      

Bayesian 

approach 

Integrated Nested Laplace Approximation 

(INLA) + Stochastic Partial Differential 

Equations (SPDE); Bayesian inference; 

Besag, York and Mollie (BYM) model; 

Spatial Bayesian Networks 

4 Baquero and 

Machado (2018); 

Hagan et al. (2016); 

Reis et al. (2008);  

Mayfield et al. 

(2018b) 

  

Interpolation 

technique 

Kriging 3 Deshmukh et al. 

(2019); Dozsa et al. 

(2016); Goncalves et 

al. (2016) 

  

      

Correlation Pearson correlation / Spearman’s 

correlation 

4 Gonwong et al. 

(2017); Gracie et al. 

Elder and Ward 

(1978) 
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Modelling approach N Leptospirosis epidemiological data 

Human (n=31) Animal (n=17) Human and animal 

(n=3) 

(2014); Soares et al. 

(2010) 

 Chi-square test 3 Barcellos and 

Sabroza (2001); 

Goncalves et al. 

(2016) 

Ghneim et al. 

(2007) 

 

 ANOVA/Bivariate analysis 3 Barcellos and 

Sabroza (2000); 

Schneider et al. 

(2012); Suryani et al. 

(2016) 

  

 Mallow’s Cp statistics 1  Elder et al. (1986)  

Decision 

analysis 

Decision tree analysis 1  Bier et al. (2012)  
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About half of modelling studies included host-related variables such as the presence of 

animals (e.g., rodents, pigs, dogs, livestock) or animal population size or density into the 

models (Cook et al., 2017; Dozsa et al., 2016; Hagan et al., 2016; Lau et al., 2012a, 2012b; 

2016; Mayfield et al., 2018a, 2018b; Reis et al., 2008; Schneider et al., 2012; Suwanpakdee 

et al., 2015; Zhao et al., 2016). Animal hosts data were collected either from animal surveys 

(e.g., trapping), livestock census data, or from publicly available GIS databases (e.g., Food 

and Agricultural Organization-GeoNetwork).  

Twenty-one studies (67.72%, n = 21/31) included socioeconomic variables (e.g., population 

density, income, agricultural production and urbanization) into their models. Population 

density (Ledien et al., 2017; Zhao et al., 2016) and socioeconomic indicators (e.g., GDP or 

poverty rate) (Baquero and Machado, 2018; Mayfield et al., 2018a, 2018b; Schneider et al., 

2015; Zhao et al., 2016) were the most common predictors included in the models. Individual-

level variables (e.g., age, gender, occupation, education/literacy, behavioral risk, or ethnicity) 

were incorporated in 16 out of 31 (51.61%) studies.  

Traditional regression analyses were the most common statistical modelling technique used 

to quantify the association between these variables and leptospirosis incidence/prevalence 

(Table 4-2). Simultaneous autoregressive models (n = 1) (Rood et al., 2017) and boosted 

regression tree (BRT) models (n = 1) (Ledien et al., 2017) were also reported. To address the 

spatial non-stationarity of relationships between the spatial distribution of leptospirosis 

incidence and environmental and sociodemographic factors, five studies applied 

geographically weighted regression (GWR) (Mayfield et al., 2018a; Mohammadinia et al., 

2017; Mohd Radi et al., 2018; Vega-Corredor and Opadeyi, 2014; Widayani et al., 2016). Two 

studies used ecological niche modelling using Maxent (Zhao et al., 2016) and Genetic 

Algorithm for Rule-set Production (GARP) (Sanchez-Montes et al., 2015) at a national scale 

(Sanchez-Montes et al., 2015; Zhao et al., 2016), and three studies applied a Bayesian 

approach to their analyses (n = 3) (Baquero and Machado, 2018; Hagan et al., 2016; Reis et 

al., 2008). In addition, the spatially explicit Bayesian Networks (BNs) have been introduced by 

one Fijian study (Mayfield et al., 2018b). Overall, only two studies completely constructed 

spatially-structured models (n = 2/31) (Lau et al., 2012a; Rood et al., 2017) in which model 

parameters were estimated (SAR and logistic regression, respectively), global and local 
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spatial autocorrelation in the residuals of the models were tested (using global Moran’s I and 

semi-variogram), and spatial predictive maps were generated.  

 

Modelling risk of animal infection  

Seventeen studies (43.36%, n = 17/39) conducted in six countries assessed the association 

between incidence (n = 7) (Ghneim et al., 2007; Major et al., 2014; Raghavan et al., 2011, 

2012, 2013; Ward et al., 2004; White et al., 2017) or prevalence (n = 10) (Alton et al., 2009; 

Bier et al., 2012, 2013; Biscornet et al., 2017; Elder et al., 1978, 1986; Himsworth et al., 2013; 

Ivanova et al., 2012; Miyama et al., 2018; Silva et al., 2018) with various predictors at national 

(n = 6) and sub-national (n = 11) levels. As with human studies, the effect of physical 

environmental (64.70%, n=11/17) (Alton et al., 2009; Biscornet et al., 2017; Elder et al., 1986; 

Ghneim et al., 2007; Ivanova et al., 2012; Raghavan et al., 2011, 2012, 2013; Silva et al., 

2018; Ward et al., 2004; White et al., 2017) and climatic factors (52.94%, n=9/17) (Elder et al., 

1978, 1986; Ghneim et al., 2007; Himsworth et al., 2013; Ivanova et al., 2012; Major et al., 

2014; Silva et al., 2018; Ward et al., 2004; White et al., 2017) on animal infections was the 

most commonly studied. Nine studies used RS-based environmental data (Dobigny et al., 

2015; Ghneim et al., 2007; Ivanova et al., 2012; Raghavan et al., 2011, 2013; Silva et al., 

2018; Ward et al., 2004; White et al., 2017) including land cover/land use, elevation, or slope 

(Appendix B: Table B-7). Eight studies included parameters on the presence of other animal 

species in their models (Bier et al., 2012, 2013; Ghneim et al., 2007; Miyama et al., 2018; 

Raghavan et al., 2012; Silva et al., 2018; Ward et al., 2004; White et al., 2017). Only three 

studies assessed the role of socioeconomic covariates (e.g., household income of the owner) 

on animal infection (n = 2) (Raghavan et al., 2012; Silva et al., 2018; White et al., 2017). The 

individual-level variables, such as animal age, sex, breed, and behaviours, were less reported 

(n = 4) (Alton et al., 2009; Bier et al., 2013; Himsworth et al., 2013; Silva et al., 2018).  

In terms of modelling techniques, regression models were most commonly used (n = 12/17) 

(Table 4-2). Among those, only three studies accounted for spatial autocorrelation in the 

residual of the models (Raghavan et al., 2011, 2012, 2013). Using a boosted regression tree, 

one study generated a national-scale predictive map of canine leptospirosis in the United 

States (White et al., 2017), but this study did not address spatial autocorrelation in the 
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residuals or prediction uncertainty. None of studies generated spatially structured prediction 

maps for animal leptospirosis incidence/prevalence. 

 

Modelling risk of both human and animal infection 

Three articles from three countries assessed the effect of various covariates on both animal 

and human infection (n = 3/11) (Chadsuthi et al., 2017; Della Rossa et al., 2016; Hurd et al., 

2017). All of them focused on the role of environmental factors and climate on human and 

animal infection. Of these, only two studies generated spatially structured models and 

addressed spatial autocorrelation (Della Rossa et al., 2016; Hurd et al., 2017). No reviewed 

studies generated spatial prediction maps for both human and animal incidence/prevalence. 

 

Temporal modelling as tools for leptospirosis outbreak detection  

Nine studies performed time-series (temporal) regression at national (Chadsuthi et al., 2012; 

Desvars et al., 2011; Joshi et al., 2017; Lee et al., 2014; Ward, 2002b; Weinberger et al., 

2014) and sub-national levels (Coelho and Massad, 2012; Deshmukh et al., 2019; Matsushita 

et al., 2018) to assess the effect of climatic variables and forecast leptospirosis outbreaks for 

humans (n = 7) (Chadsuthi et al., 2012; Coelho and Massad, 2012; Deshmukh et al., 2019; 

Desvars et al., 2011; Joshi et al., 2017; Matsushita et al., 2018; Weinberger et al., 2014) and 

canine infection (n = 2) (Lee et al., 2014; Ward, 2002b) (Table 4-3). Various temporal 

resolutions ranging from daily to monthly infection data were used with various timespans 

ranging from 7 to 16 years. Most studies included climatic factors such as precipitation, 

temperature, and humidity as predictors (n = 8/9) in the models. One study investigated the 

effect of El-Nino Southern Oscillation (ENSO) components (e.g., sea surface temperature 

anomaly, southern oscillation index, and oceanic Nino index) on human leptospirosis 

incidence in New Caledonia (Weinberger et al., 2014). Autoregressive models were used in 

three studies: human leptospirosis (n = 2) (Chadsuthi et al., 2012; Desvars et al., 2011) and 

canine leptospirosis (n = 1) (Ward, 2002b). One sub-national study in the Philippines 

employed a distributed lag non-linear (quasi-Poisson) model to assess non-linear 

relationships between rainfall and leptospirosis and the role of flood events (Matsushita et al., 

2018). 
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Table 4-3 Summary of papers dealing with temporal time-series modelling 

Reference Objective Location 

(spatial 

scale) 

Study 

period 

(temporal 

scale) 

Data 

source 

Method(s) Predictor(s) Findings  

Human 

leptospirosis 

(n=7) 

       

Weinberger 

et al. (2014) 

To assess the 

relationships 

between 

climate and 

meteorological 

variables with 

leptospirosis 

cases; to 

develop a 

predictive 

model for 

timing of 

leptospirosis 

outbreaks 

New 

Caledonia 

(national) 

2000–

2012 

(monthly) 

Laboratory-

based 

passive 

surveillance 

notification 

Negative 

Binomial 

Regression 

model (NBM), 

Principal 

component 

analysis, 

Bayesian 

information 

criteria (BIC), 

partial 

correlations, 

multivariate 

analysis, log-

transformation, 

training tests, 

Serfling approach 

Oceanic Nino 

Index (ONI), 

sea surface 

temperature, 

Southern 

Oscillation 

Index (SOI), 

rainfall, and 

temperature 

Significant 

associations between 

leptospirosis 

incidence and El Nino 

indices, SST 

anomalies, and 

rainfall. SST anomaly 

could forecast an 

increase in 

leptospirosis cases 

with a 4-month lag.  

Coelho and  

Massad 

(2012) 

To examine 

the correlation 

between 

leptospirosis 

cases with 

climatic 

predictors 

Sao 

Paolo, 

Brazil 

(sub-

national) 

1998–

2005 

(daily) 

Hospital 

admission 

report 

Negative 

binomial 

regression model 

(NBM) 

Rainfall, Max-

Min humidity, 

and 

temperature 

Significant correlation 

between hospital 

admissions and 

rainfall intensity with 

lag of 14–18 days. 
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Reference Objective Location 

(spatial 

scale) 

Study 

period 

(temporal 

scale) 

Data 

source 

Method(s) Predictor(s) Findings  

Desvars et 

al. (2011) 

To describe 

seasonality of 

leptospirosis 

and to test for 

correlation 

with 

meteorological 

factors 

Reunion 

Island 

(national) 

1998–

2008 

(monthly) 

Hospital-

based 

passive 

surveillance 

notification 

Time-series 

analysis, log 

transformation, 

autocorrelation 

function (ACF), 

partial 

autocorrelation 

(PACF), 

augmented 

Dickey-Fuller 

test, ARIMAX, 

cross-

correlations 

functions, 

goodness of fit 

criterion, AIC, 

Student’s test 

Rainfall, 

temperature, 

global solar 

radiation (GSR) 

Monthly cases of 

leptospirosis 

influenced by 

cumulated rainfall 

with lag of 2 months 

and mean 

temperature and 

GSR during the 

month. Overall, the 

model could explain 

67.7% of the variation 

of leptospirosis 

incidence.  

Chadsuthi et 

al. (2012) 

To determine 

and forecast 

the seasonal 

pattern of 

leptospirosis 

based on 

historical 

leptospirosis 

cases and 

meteorological 

data 

Thailand 

(national) 

2003–

2009 

(monthly) 

Passive 

surveillance 

notification 

Time-series 

analysis, log 

transformation, 

autocorrelation 

function (ACF), 

partial 

autocorrelation 

(PACF), 

augmented 

Dickey-Fuller 

test, ARIMAX, 

cross-

Rainfall, 

temperature 

The role of rainfall 

and temperature on 

leptospirosis cases 

varied spatially 

across different 

regions. In the 

northern region, 

leptospirosis was 

driven by rainfall with 

a lag of 8-months; 

while in northeastern, 

rainfall and 
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Reference Objective Location 

(spatial 

scale) 

Study 

period 

(temporal 

scale) 

Data 

source 

Method(s) Predictor(s) Findings  

correlations 

functions, 

goodness of fit 

criterion, AIC 

temperature were 

found to be 

associated with 

leptospirosis 

incidence with 10-

months and 8-months 

lag, respectively. 

Joshi et al. 

(2017) 

To estimate 

the influence 

of climatic 

variables on 

leptospirosis 

cases 

Republic 

of Korea 

(national) 

2001–

2009 

daily) 

Passive 

surveillance 

notification 

Time-series 

analysis, 

multivariate 

Poisson 

generalized 

linear models, 

variance inflation 

factor (VIF) 

Daily minimum, 

maximum, and 

mean of 

temperature, 

minimum 

relative 

humidity, daily 

cumulative 

rainfall, solar 

radiation, total 

hours of 

sunshine 

The minimum 

temperature, rainfall, 

and solar radiation 

were positively 

associated with 

leptospirosis cases 

with a lag of 0–

11weeks. 

Deshmukh et 

al. (2019) 

To determine 

the 

association of 

climatic 

factors and 

leptospirosis 

incidence 

Wardha 

district, 

India (sub-

national)  

2015–

2016 

(monthly) 

Hospital-

based 

surveillance 

Poisson time-

series regression 

Minimum-

maximum 

temperature, 

relative 

humidity, 

rainfall 

Relative humidity in 

the month and rainfall 

in the previous month 

was the main 

determinant of 

leptospirosis 

incidence in a given 

month 
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Reference Objective Location 

(spatial 

scale) 

Study 

period 

(temporal 

scale) 

Data 

source 

Method(s) Predictor(s) Findings  

Matsushita et 

al. (2018) 

To estimate 

the 

relationship 

between 

rainfall, 

flooding and 

leptospirosis 

infection  

Manila, 

Philippines 

(sub-

national) 

2001–

2012 

(weekly) 

Hospital-

based 

surveillance 

Distributed lag 

non-linear (quasi-

Poisson) model, 

natural cubic 

spline, quasi-AIC, 

variance inflation 

factor (VIF) 

Rainfall, flood Rainfall were 

correlated with 

increased hospital 

admission for 

leptospirosis at a lag 

of 2 weeks. This 

association may 

partly be explain by 

flood events. 

Animal 

leptospirosis 

(n=2) 

       

Lee et al. 

(2014) 

To assess and 

compare 

regional 

seasonal 

patterns in 

seropositivity 

for canine 

leptospirosis  

United 

States 

(national) 

2000–

2010 

(monthly) 

Laboratory 

database 

Seasonal-trend 

decomposition 

analysis based 

on Loess (STL), 

logistic 

regression model 

- Each geographic 

region has distinctive 

seasonal patterns for 

seropositivity. In 

general, the highest 

positivity rates were 

reported in the fall.  

Ward 

(2002b) 

To describe 

the seasonal 

patterns of 

canine 

leptospirosis; 

to assess the 

role of rainfall 

on canine 

United 

States and 

Canada 

(national) 

1983–

1998 

(monthly) 

 

Laboratory 

database 

Time-series 

analysis, 

autocovariance 

(ACF), partial 

autocovariance 

(PACF), 

autoregression 

models, Akaike’s 

information 

Rainfall Rainfall (lag of 3 

months) could be 

used to predict 

canine leptospirosis 

incidence in the U.S 

and Canada. 
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Reference Objective Location 

(spatial 

scale) 

Study 

period 

(temporal 

scale) 

Data 

source 

Method(s) Predictor(s) Findings  

leptospirosis 

incidence  

criteria (AIC), 

cumulative 

spectrum, Box-

Pierce, 

fluctuation tests, 

z-distribution, t-

statistic,  
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Model validation 

Overall, model validation procedures to determine model accuracy were described in less 

than half of spatial modelling studies. Several measures were used to evaluate models 

including information criteria such as Akaike’s information criterion (AIC), Bayesian 

information criterion (BIC), or deviance information criteria (DIC), Pearson chi-squared 

goodness-of-fit tests, and Hosmer-Lemeshow test. Data partitioning (e.g., splitting the data 

into training and testing subsets) was often used to validate the models as well as internal 

cross-validation (White et al., 2017). The Area Under the Receiver-operator curve (AUC 

ROC) analysis (Lau et al. 2012a; Mayfield et al., 2018b; Zhao et al., 2016) was applied to 

determine discriminatory performance and predictive accuracy of the models.   

 

4.5 Discussion 

This study is the first to review the application of spatial analytical methods in the field of 

leptospirosis epidemiology. The review demonstrates the potential of spatial-temporal 

epidemiological approaches to improve our knowledge of human and animal leptospirosis and 

its possible applications for assisting future intervention strategies to reduce leptospirosis 

burden. However, this review has identified some methodological limitations of existing 

studies that hinders their ability to provide a sound evidence base to guide local control efforts 

to reduce the burden of leptospirosis in humans and animals. 

The source and quality of leptospirosis infection data substantially underpins the validity of 

spatial epidemiological studies. Indeed, my review noted that most studies have utilised 

leptospirosis notification data obtained from passive surveillance, which is likely to under 

represent the true incidence; although using notification data could be more feasible 

compared to conducting cross-sectional eco-epidemiological studies. It is noteworthy to 

acknowledge important disadvantages when using notification data, particularly for a disease 

such as leptospirosis, which is prone to being highly underreported. Of note, one concern with 

leptospirosis case ascertainment is that many endemic countries have limited laboratory 

capacity to undertake confirmatory diagnostic tests, so that the notification data may be 

primarily based on rapid diagnostic tests (RDT) or ELISA. Even these tests may not be 

routinely available throughout the country and this could lead to significant underdiagnosis 

and underreporting. In addition, other issues including the sensitivity and specificity of the 
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diagnostic methods used and discrepancies in reporting systems may also impede the quality 

of such notification data. To further compound this problem, this review identified several 

studies that did not clearly state the diagnostic tests or the case definitions used. These 

issues may greatly affect the clarity and quality of the data and thus lead to uncertainty about 

the geographical distribution of leptospirosis. This could misguide policy makers when 

developing strategies to efficiently target interventions to populations and areas at greatest 

risk. Given these limitations, future studies should carefully deal with the uncertainty in the 

epidemiological data.     

In terms of spatial analysis approach, a considerable number of studies have used 

visualisation techniques to produce morbidity and mortality distribution  maps. Indeed, such 

maps could be useful to assist health authorities to understand the geographical distribution 

of cases or risks. However, there are some common issues that needs to be carefully 

addressed when producing maps so that they are not misinterpreted. Besides the quality of 

data, the validity of the outcome of spatio-temporal analyses is greatly dependant on the 

spatial scale at which the analysis was performed, the type of data used (point or areal data), 

and how aggregation of areal data was conducted.  

In particular, mapping geographical distribution of Leptospira serogroups or serovars 

identified in humans, host animals, and the environment is also of great importance; yet, this 

review indicates that this is still poorly explored. Such maps could be beneficial to support 

vaccine development (mainly for animals) and to better design control programs (e.g., 

identifying key animal sources of human infection to target One Health interventions). Of note, 

mapping the current distribution and future spread of pathogenic Leptospira may provide 

better understanding on the burden of leptospirosis. Further studies are therefore strongly 

encouraged to map the distribution of serogroups or serovars at various spatial-scales as it 

has important implications for understanding patterns of leptospirosis endemicity and aiding 

investigators to generate hypotheses on the potential source(s) of infection (host animals) as 

some specific serogroups/serovars are linked with specific host animals (e.g., serovars 

Canicola with dogs, Pomona with pigs, Hardjo with cattle) as well as disease severity and 

associated socioecological conditions.  

Exploring spatial clustering of leptospirosis prior to modelling is fundamental for 

understanding spatial dependency of cases (Lawson, 2013). Furthermore, investigation of the 
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presence of spatial dependence is a first step for deciding the best modelling approach for 

quantifying predictors of disease and predictive risk mapping. This review demonstrates 

significant variation in the application of techniques used to test for spatial clustering, which 

requires systematic analysis as demonstrated by some of the studies reviewed here (Lau et 

al., 2012a; Rood et al., 2017). To detect spatial clustering, both global and local indices of 

spatial autocorrelation should be estimated, and it is also important to consider the type of the 

data (areal or point data) when choosing methods. This review highlights that almost all 

studies have overlooked the importance of assessing spatial autocorrelation in the residuals 

of non-spatial models. It also appears that most studies solely evaluated spatial 

autocorrelation, but when present, did not incorporate it into the modelling framework. 

Ignoring spatial dependence in the data can give rise to spurious associations, inaccurate and 

biased parameter estimations and spatial risk predictions (Dormann, 2007; Pfeiffer, 2008).  

Another step for exploring spatial dependence involves the utilisation of spatial cluster 

detection techniques; by far the most commonly used by the studies reviewed here was 

Kuldorff’s Spatial Scan statistic (SaTScan). This method allows researchers to estimate the 

relative risk inside and outside identified geographical clusters of disease by using predefined 

scanning windows and Monte Carlo simulation (Martin Kulldorff & Neville Nagarwalla, 1995). 

Despite its simplicity, there was no standard selection of thresholds across studies for the 

shape and size of the cluster scanning window (~10–50% of the population at risk) as the size 

and shape selection may depend on the nature of the data and their objectives. All studies 

assumed that disease clusters were circular, while ecologically, the disease often forms 

irregular shaped clusters (e.g., due to variation in a population or environmental 

characteristics). The use of circular scanning windows may reduce the chance to detect non-

circular shaped clusters. To better detect and deal with irregularity of the disease clusters, 

alternative cluster detection tools could be used for future studies, such as FlexScan or a 

multidirectional optimal ecotope-based algorithm (AMOEBA) (Aldstadt and Getis, 2006; 

Ramis et al., 2014; Zhu et al., 2016).  

This review shows that large number of spatial modelling studies assessed the association 

between physical environment (e.g., altitude, vegetation, proximity to waterbodies, sewerage 

systems or waste) and climatic factors on leptospirosis, suggesting the high importance of the 

environment on leptospirosis transmission, while factors associated with sociodemographic 
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conditions (e.g., urbanisation, poverty) and animal hosts appears to remain overlooked by 

many studies. In the context of zoonotic disease control, it has now been recognised that a 

One Health approach has greater potential to effectively control disease burden rather than 

focusing on human disease alone. Such framework should therefore be accommodated in 

future spatial models (i.e. the inclusion of animal host factors along with environment 

predictors and social determinants of health) to provide more comprehensive evidence for 

decision-making processes.  

In terms of modelling methodology, the majority of spatial modelling studies reviewed here 

used a range of traditional regression models (frequentists) and very few have applied 

modelling techniques (e.g., Bayesian geostatistics methods) that fully address spatial 

autocorrelation. A disadvantage when using standard statistical modelling techniques is that 

they assume independence of observations and do not account for potential spatial 

dependency between neighbouring locations. When overdispersion or the effect of spatial 

dependence on the data are ignored, the standard errors could be underestimated and hence 

increase the risk of Type I errors (Pfeiffer, 2008). In addition, such traditional regression 

models are not able to identify variation in the relationships between the predictors and 

capture the complexity of disease transmission. There are several promising methods that 

could be used in future leptospirosis studies, such as Bayesian geostatistics, geographically 

weighted regression (GWR) and spatial Bayesian Belief Network (BBN). Recently, Bayesian 

geostatistics techniques have been widely used in various spatial epidemiological zoonotic 

diseases studies. This method has advantages over common frequentist regression models. 

Bayesian approaches are suitable when data are sparse and highly clustered. It allows 

accounting for spatial autocorrelation and adequately addresses uncertainties in the model 

design (Cressie et al., 2009; Diggle et al., 1998, 2007). Other methods such as geographically 

weighted regression (GWR) (Mayfield et al., 2018a) and Bayesian Belief Network (BBN) (Lau 

et al., 2017; Pittavino et al., 2017) have also been used in a few epidemiological studies in 

leptospirosis. The former provides opportunity to better deal with spatial non-stationarity of 

covariates in the models (Fotheringham et al., 2002), while the latter has the ability to 

effectively reveal and describe the complexity of relationships between variables in disease 

system (Landuyt et al., 2013; Lewis and McCormick, 2012). To help enhance understanding 

of leptospirosis transmission and predictive maps, further studies should be directed on 

exploring such non-traditional modelling techniques and incorporating spatial-temporal 
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elements into the models. All of these methods may allow researchers to produce more 

robust and better predictive risk maps for leptospirosis to better inform health managers on 

planning leptospirosis control. However, as the models become more complex and more 

advance modelling techniques are being used, it may greatly need considerable time, 

technical skill requirements, and computational capacity. For instance, using Bayesian 

geostatistical models could take hours or even days to run the model, while some techniques 

(e.g., spatial BNs) could be much faster and almost instantaneous. A recent study in Fiji offers 

a promising approach to better understand leptospirosis transmission under various 

socioecological scenarios by using spatial Bayesian Networks (Mayfield et al., 2018b) 

Assessing the effect of climate variability (e.g., precipitation, temperature, ENSO) on 

leptospirosis risk allows researchers and public health officials to forecast when outbreaks 

may occur. It should be noted that one of the critical limitations of the conventional time-series 

modelling (e.g., ARIMA) is that it mainly assesses linear relationships of variables within the 

time series data (Zhang et al., 2014), while the relationships between variables and infection 

are commonly non-linear. To better address this non-linearity of associations, some 

techniques could be used in the future model such as distributed lag non-linear models 

(DLNM) (Gasparrini et al., 2010). Given the complexity of the leptospirosis infection pathway, 

future spatiotemporal models of leptospirosis distribution also need to incorporate the joint 

effects of multiple variables such as climatic and socioecological factors. One potential 

approach to better incorporate those complexities and enhance the predictive capability of 

leptospirosis forecasting models is machine learning. The application of machine learning 

algorithms such as Random Forest, Boosted Gradient and Neural Networks, have been 

demonstrated to have better performance and high predictive ability in several public health 

studies (Carvajal et al., 2018; Chen et al., 2018; Guo et al., 2017; Hu et al., 2018). Future 

studies should be directed to exploring such machine learning methods in modelling 

leptospirosis transmission. 

 

4.5.1 Framework for the application of spatial analytical tools for leptospirosis studies 

Based on the review, I proposed a general framework that could guide the application of 

spatial epidemiological methods for future leptospirosis studies (Figure 4-5). In general, there 

are three key components: input, spatial analytical processes, and output. Note that the first 
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stage (input) is a critical part of the inference as the analytical processes and the usefulness 

of the outputs (maps) greatly depends on the quality, type, and spatial and/or temporal scale 

of the infection data and attributes. This framework has potential to be adopted not only for 

leptospirosis but also for other diseases.  

 

 

Figure 4-5 General framework for the application of spatial analytical tools for leptospirosis 
studies  

 

Leptospiral infection data could be obtained from either notification or surveys. Case 

definitions and methods used to diagnose leptospiral infection should be clearly reported. 

Prior to the analysis, spatial data type should be determined as point or areal data (by 

aggregating the data into certain level of spatial unit) as well as the spatial and temporal unit 

of analysis. Incorporating wide-range covariates (e.g., human and animal hosts, climatic, 

physical environments, socioeconomic) into the analysis would improve understanding the 

determinants of the geographical variation of risk of leptospirosis. Geographical and temporal 
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patterns of disease risk is considered influenced by the heterogeneity in hosts (including 

humans and animals), climatic and physical environments, socio-demographical and also the 

quality of existing control measures. The spatial and temporal resolutions of those covariates 

should mirror the resolution of the epidemiological data. Based on the type of spatial data, 

using GIS tools (e.g., point or zonal mean statistics), the value of each covariate could be 

sampled.  

The basic step of spatial analysis is visualisation, which aims to describe patterns in the 

infection data. Data could be presented as point or choropleth to describe 

prevalence/incidence or standardised morbidity ratio. To investigate the spatial pattern of the 

data, according to the type of the data (point or areal data), appropriate statistical tests are 

carried out to test global (first order) and local (second order) spatial clustering.  

These tests are essential for exploring disease distribution over space (e.g., random or 

clustered over the space) and to locate high-risk areas. The ultimate objective of spatial 

and/or temporal analysis is to quantify risks and generate spatial and/or temporal prediction 

models. This stage employs both non-spatial and spatial regression techniques. All potential 

covariates are included and selected using fixed-effect regression model. Spatial 

autocorrelation in the residuals of the final models should be assessed, both by using global 

and local tests 

Models with the ability to incorporate a spatial dependence component (i.e. Bayesian 

geostatistical model) are the most relevant to use when spatial autocorrelation is evident. 

Spatial regression models for risks (prevalence or incidence) could be constructed in 

Bayesian statistical software e.g. OpenBUGS version 1.4 (Medical Research Council 

Biostatistics Unit, Cambridge, UK and Imperial College London, London, UK). All models 

should include all selected covariates as fixed effects plus a geostatistical random effect, in 

which spatial autocorrelation between locations is modelled using an exponentially decaying 

autocorrelation function. The outputs of Bayesian models, including parameter estimates and 

spatial prediction at unsampled locations, are termed as “posterior distributions”. The 

posterior distributions in terms of the posterior mean and standard deviation then could be 

mapped using GIS software. This map is known as predictive risk maps. Further details on 

Bayesian model-based geostatistics techniques can be found elsewhere (Diggle and Ribeiro, 

2007). 
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4.6 Limitations 

Publication bias is an important limitation which should be considered when interpreting our 

findings. This review solely relied on published research manuscripts and we did not take into 

account other types of publications (e.g., theses or dissertations, conference proceedings). In 

addition, most studies captured by systematic search came from a limited set of countries; 

this may reflect substantial issues within the countries regarding the availability of the data 

due to technical issues (e.g., reporting systems, diagnostic capacity) in many endemic 

countries (Musso and La Scola, 2013; Schreier et al., 2013), poor public awareness and 

knowledge on the disease (Mohan and Chadee, 2011), and variation in surveillance systems 

(Costa et al., 2012).      

 

4.7 Conclusions 

While the use of spatial and temporal analyses has been greatly appreciated in the field of 

leptospirosis research, the quality of studies and analytical approaches varied significantly. To 

better understand the epidemiology and processes underlying leptospirosis transmission, 

appropriate spatio-temporal techniques should be chosen and applied taking into 

consideration quality and type of data, the geographical scale of analysis and type of 

covariates for inclusion. Uncertainty in disease modelling outputs should be carefully 

considered so that the model outputs can be effectively applied to support leptospirosis 

control interventions. Future work should be prioritised on optimising the potential of GIS/RS 

for developing a user-friendly and interactive decision-support system, providing an 

updateable map at local and national level at finer resolution as new data become available, 

and constructing more robust and reliable predictive models that account for spatial and 

temporal dependencies in leptospirosis transmission from different animal hosts and in 

different environments. 
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Chapter 5 Epidemiological shift and geographical heterogeneity 

in the burden of leptospirosis in China 

 

This chapter has been published in Infectious Diseases of Poverty as an original peer-

reviewed research paper. The concept and design of the study outlined in this Chapter 5 was 

formulated by PWD (80%) with the assistance of RJSM (20%). WYZ provided the data. PWD 

was responsible for data management (100%), data analyses (100%) and the interpretation of 

results (75%) was discussed in consultation with RJSM (15%) and all co-authors (10%). PWD 

was responsible for drafting the manuscript (100%). PWD was responsible for revision of the 

final version of the manuscript (90%), taking into account the comments and suggestions of 

RJSM (5%) and co-supervisors (5%). 

 

5.1 Context 

The literature review in Chapter 2 shows that leptospirosis is indeed a disease of public health 

importance, in that a total of 1.03 million cases and 58,900 deaths occur per year worldwide, 

resulting in the loss of roughly 2.9 million disability-adjusted life-years (DALYs) per year 

(Costa et al., 2015; Torgerson et al., 2015). In China, leptospirosis is of public health 

importance. Previous studies had indicated that leptospirosis outbreaks had been reported in 

more than 80% of the total provinces (34 provinces) and has caused more than 2.5 million 

cases and 20,000 deaths (Zhang et al., 2012; Shi et al., 2000). Nevertheless, since the 1990s 

the incidence of leptospirosis has been considerably declining, reaching a relatively low 

incidence of 0.70 cases per 100,000 people per year (Zhang et al., 2012; Hu et al., 2014). 

However, evidence on how the burden of leptospirosis in China has changed over time at 

sub-national level is lacking. In light of the gaps identified in the literature review (Chapter 2) 

and findings of the systematic review detailed in Chapter 4, and while numerous maps had 

been produced, no studies have attempted to map the burden of leptospirosis (in terms of 

DALYs) at sub-national level. A recent update of the spatiotemporal heterogeneity of the 

burden of leptospirosis in the country is essential to help policy decision makers and health 

authorities to guide the identification of areas and populations at highest risk for leptospirosis 

and resource allocation.  
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In this chapter, I utilised human leptospirosis data reported from 2005 to 2015 in China to 

explore the annual trend in morbidity and mortality both spatially (at province level) and 

temporally (yearly) and to demonstrate how this trend influences the distribution of the burden 

estimates of leptospirosis in terms of DALYs at sub-national level. In this study, I estimated 

that a total of 10,313 DALYs were lost during 2005–2015 due to leptospirosis infection. Most 

of the burden was attributable to mortality (~82.5% of DALYs). I also found that males (7,149 

DALYs) and those aged 10–19 years (3,078 DALYs) were the most affected population by 

leptospirosis. I found that the geographical distribution of the burden estimates was 

heterogeneous at province level with the highest estimates identified in provinces within the 

Pearl River basin (Region A) and the Yangtze River basin (Region B). However, I also found 

that there was a significant decrease in morbidity and mortality of leptospirosis from 2005 to 

2015, impacting a substantial decrease in burden estimates up to 95%. Despite this, I found 

that during the period of 2011–2015 incidence remained high in southwestern China, 

including the Yunnan and Sichuan provinces, indicating that factors contributing to 

leptospirosis transmission are still present in these residual high-risk regions. To the best of 

my knowledge, this study is the only one of its kind to demonstrate province-specific DALY 

estimates for human leptospirosis, especially in China.  

       

5.2 Introduction 

Leptospirosis is a zoonotic disease of global public health importance caused by pathogenic 

spirochetes belong to the genus Leptospira (Vinetz, 2001). It has caused more than one 

million cases and 58,900 deaths per year (Costa et al., 2015), and it has been estimated 

approximately 2.90 million DALYs lost due to leptospirosis worldwide (Torgerson et al., 2015). 

Leptospirosis is acquired mainly through contact with contaminated water or soil containing 

Leptospira. In some cases, infections may also occur through direct contact with infected 

animals (Levett, 2001). Due to non-specific clinical characteristics, leptospirosis is often 

challenging to diagnose leading to underreported incidence which in turn may limit the 

effectiveness of control programs (Bharti et al., 2003; Lau et al., 2010). 

Leptospirosis is an important zoonotic disease in China. It was first reported in 1934 and it 

became a mandatory notifiable disease since 1955. To date, more than 2.5 million cases and 

20,000 deaths have been reported; more than 80% of the total provinces (34 provinces) have 
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reported leptospirosis cases (Zhang et al., 2012; Shi et al., 2000). Leptospirosis remains a 

significant public health problem in the country where a broad range of potential reservoirs 

and serovars are still circulating in the country. Furthermore, rapid population growth, poverty, 

and industrialisation have led to excessive urbanisation and environmental changes, such as 

deforestation and urban expansion (Yeh et al., 2011; Hu et al., 2014; Siciliano et al., 2012; Liu 

et al., 2008; Claudio et al. 2015), which might influence disease nidality through direct impacts 

on the natural habitat of reservoirs and affects the spillover of infection between wildlife 

animals, domestic animals, and humans. Also, extreme weather events, such as flooding 

following typhoons, may significantly impact impoverished communities with lack of access to 

safe water, sanitation, and health services (Lau et al., 2010), leading to an increased risk of 

Leptospira exposures. 

Using notified leptospirosis morbidity and mortality data from the 1970s, a study has 

estimated that there were approximately 301,688 DALYs lost annually due to leptospirosis in 

China (Torgerson et al., 2015). Nevertheless, in the last two decades, leptospirosis incidence 

has reduced from 10.73 cases per 100,000 people in the 1960s to 0.59 cases per 100,000 

people in the 2000s (Shi et al., 2000; Hu et al., 2014). In the light of changes in 

socioeconomic and environmental conditions that have undergone in China for the last two 

decades, there is a need to re-estimate the burden of leptospirosis and to identify residual 

pockets of transmission. To date, there is no single study that has estimated the changes in 

burden in terms of DALYs across China over time. 

Using available passive surveillance data on human leptospirosis in China, we aimed to 

investigate the changes on notified morbidity and mortality of leptospirosis and to quantify the 

demographical, temporal and geographical heterogeneity of the burden during 2005–2015. 

The findings of this study provide evidence to inform policy to allocate effective targeted 

intervention strategies for better leptospirosis control programs in China. 

 

5.3 Methods 

5.3.1 Data sources 

In China, leptospirosis is one of 39 notifiable infectious diseases that must be reported within 

24 hours (Category B disease) (Zhang et al., 2012). To illustrate, infectious diseases 
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surveillance data, including leptospirosis, is analysed by the Center for Disease Control and 

Prevention (CDC) at various level: county, prefecture, provincial, and national level. Case 

information is entered by all healthcare providers at all levels via a nationally standard form 

into a web-based Notifiable Infectious Diseases Reporting Information System (NIDRIS). In 

addition, a national system called China Infectious Disease Automated-alert and Response 

System (CIDARS) has been developed since 2005 to provide real-time outbreak notifications 

(Vileg et al., 2017; Yang et al., 2011). In term of diagnosis, the provincial branches are 

responsible for testing suspected human patient and animal sera, collecting infected animals 

and identifying infectious isolates by culture and microscopic agglutination test (MAT), 

according to the national diagnostic criteria for leptospirosis issued by the National Health and 

Family Planning Commission (NHFPC) (Ministry of Health of China, 2008). Results are then 

verified by the national-level CDC and finally reported to NHFPC.  

In this study, we used reported leptospirosis case data from 1 January 2005 to 31 December 

2015. These data included information about age, gender, occupation, date of onset of 

illness, diagnosis and death, place of residence (i.e. county and province) and case 

classification (suspect, clinical, and confirmed). Yearly demographic data including population 

data by age, sex, and occupation were collected from the National Bureau of Statistics of 

China for each province from 2005 to 2015 (NBSC, 2016).  

5.3.2 Human leptospirosis case definition  

Based on China Ministry of Health diagnostic criteria for leptospirosis (Ministry of Health of 

China, 2008), leptospirosis cases are defined into three categories: suspected, clinical, and 

confirmed. Suspected cases are defined as an individual with: a) a clinical symptom such as 

acute fever (up to 39C), which may be accompanied by chills, myalgia, or malaise and; b) 

history of exposure within a month prior to the onset of illness to the following risk factors: 

epidemic season, reside in epidemic area, either direct or indirect contact with suspected 

animals and their urine or faeces or contaminated water and soil. Clinical (probable) cases 

are defined as suspected cases with at least one of the following clinical manifestations: 

conjunctival hyperemia, gastrocnemius tenderness, or enlargement of the lymph nodes. 

Confirmed cases are defined as suspected cases with one or more any of the following 

laboratory criteria: 1) positive culture of Leptospires from blood, urine, tissues, or 

cerebrospinal fluid (CSF);  2) Microscopic Agglutination Test (MAT) titre of  ≥ 400 in single or 
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paired serum samples; 3) a fourfold or greater rise in MAT titres between acute and 

convalescent-phase samples; 4) presence of pathogenic Leptospira spp. detected by 

polymerase chain reaction (PCR); 5) presence of IgM antibodies by enzyme-linked 

immunosorbent assay (ELISA). Indeed, the IgM ELISA is not a ‘gold-standard’ serological 

test. While it has limited sensitivity and specificity, it has been useful especially in resource-

poor areas in China. Additionally, as MAT is not sensitive for early infection and is not 

available in hospitals in remote areas, IgM ELISA has been used routinely in general 

laboratories. 

 

5.3.3 Data analysis 

Morbidity and mortality calculation 

Gender, age and occupation-specific incidence rate per year was calculated. Annual number 

of laboratory-confirmed cases, total counties reported leptospirosis, incidence and case 

fatality rate (CFR) at province level were also calculated. We used yearly national and 

province-level population data obtained from National Bureau of Statistics as the denominator 

to calculate incidence and mortality rates over time.  

In the analysis, occupational group was defined into three main categories based on the type 

of industry: primary, secondary, and tertiary workforces. Farmers, plant growers, herdsman, 

seaman, and fishers were categorized as primary (agricultural-related) workforces. The 

secondary industry was defined as manufacture-related work. The tertiary workforce was 

defined for those individuals who work in services (e.g., teachers, doctors, nurses, students). 

The occupation classified as ‘others’ include individuals who retired/not working, including 

children and undefined profession. 

Exploration of seasonal patterns 

A multiplicative seasonal decomposition analysis was conducted using SPSS version 24 (IBM 

Corp., Armonk, NY, USA) to decompose the leptospirosis monthly incidence (Yt) into a 

combined trend (Tt), a seasonal component (St), and an error or residual component (Et) 

(Cleveland et al., 1990). The relationship between the different decomposition terms and 

leptospirosis incidence is: 

Yt =Tt + St + Et 
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DALYs estimation 

Based on total cases, we estimated the burden in terms of age-, sex- and province-specific 

DALYs during the period of study. We estimated the DALYs for each year by adding the 

number of Years of Life Lost due to death in the population (YLLs) and the number of Years 

Lived with Disability (YLDs) due to the disease (Murray 1994). The estimate of YLLs was 

obtained by multiplying number of cases per year and the standard life expectancy and age of 

death in years. To estimate life expectancy at the age of death, we used a standard life table 

used for the estimation of Global Burden of Disease 2010 (Murray et al. 2012). YLDs were 

calculated by multiplying incidence, disability weight (DW), and duration of the illness. The 

disability weight used for the estimation of YLDs was the same that was used in a study 

elsewhere (Torgerson et al., 2015). In brief, all death cases were defined as fatal cases. 

Thus, we were given a DW of 0.573 for one month as it was assumed that they had dialysis 

before death. For non-fatal cases, we assumed that there were 70% acute cases and 30% 

had chronic sequelae. Of those acute cases, 50% were mild (given a DW 0.053 for 2 

months), 40% were moderate (DW 0.21–2 months), and 10% severe (DW 0.562 for 2 weeks, 

0.51 for 2 weeks, and 0.21 for 1 month). Of those chronic cases, a DW of 0.245 for two 

months to three years was given (Torgerson et al., 2015). In our DALYs calculation, we did 

not consider age-weighting and discounting. 

Statistical analysis 

A simple linear regression model was used to examine annual trend in reported incidence, 

mortality, and burden estimates during 2005–2015, with the independent variable being the 

year and the dependent variable being leptospirosis incidence rate. As we observed that 

there were different trends during 2005–2015, we then divided the dataset into two blocks of 

years (2005–2010 and 2011–2015) to investigate epidemiological changes between these 

two periods. A chi-square (2) test was performed to determine the difference in the 

proportion of cases, deaths and burden by age, sex, and occupation in between time periods. 

P values of < 0.05 were considered statistically significant. All other statistical analysis was 

conducted using STATA version 13.0 (Stata Corp., College Station, TX, USA).  

Mapping incidence and burden 

For the purpose of our analyses, we used province as spatial unit of analysis. Map of 

cumulative incidence of leptospirosis (2005-2015) at province level was created. Changes in 
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the spatial distribution of incidence and burden during two periods (2005-2010 and 2011-

2015) were mapped using ArcGIS 10.5 (ESRI Inc., Redlands, CA, USA). To allow comparison 

with the previous study by Zhang et al. (2012), we grouped provinces into four regions 

(Region A, B, C, and D). 

 

5.4 Results 

5.4.1 Descriptive analysis 

A total of 7763 leptospirosis cases were reported during 2005–2015 (Table 5-1). Of these, 

2403 cases (31%) were recorded as confirmed cases, 4588 (59%) as clinical cases, and 772 

(10%) as suspected cases. The proportion of confirmed cases towards the total cases 

increased over time from 8.2% (120/1465) in 2005 to 56.7% (233/411) in 2015. The 

proportion of reported laboratory-confirmed cases during 2005–2015 varied across the 26 

provinces in China (Appendix C: Table C-1).  

By gender, a total of 5356 (69%) males and 2407 (31%) females were observed. The annual 

incidence rate (IR) was higher in males (0.08 cases per 100,000 people) compared with 

females (0.03/100,000 people) (2 = 22.50, P = 0.013, Table 5-1). Our results indicate that 

incidence differed significantly by age group (2 = 624.57, P < 0.001) with most of the cases 

(21%) reported in the 40–49 years-old age group. The higher incidence rate was identified in 

the older age groups of 50–59 years (0.09/100,000 people) and 60–69 years (0.08/100,000 

people). However, leptospirosis in younger individuals aged under 20 years was also 

reported, which accounted for a total of 1075 cases (14%), with reported incidence rates 

ranging from 0.01–0.05/100,000 people. Based on patients’ occupation, we could only identify 

two main occupational types: primary (agriculture) and tertiary (services). A total of 761 

records were classified as ‘other’ including those who did not work, children, and retired 

people. The leptospirosis incidence rate was higher in the primary sector (0.18/100,000 

people) compared with the group of tertiary workforces (0.04/100,000 people) (2 = 47.15; P < 

0.001). Furthermore, among the primary workforces, 298 (5%) cases were attributed to young 

farmers aged under 20 years old. Whereas, among the tertiary workforces, most cases (43%) 

were predominantly attributed to students aged under 20 years.  
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A more detailed leptospirosis cases by type of occupation was provided in Appendix C: Table 

C-2. Table C-2 indicates that, in general, most cases were reported among farmers (76.5%), 

followed by teacher/student (10.6%). Additionally, in the past 2-years (2014-2015), a relatively 

small number of leptospirosis cases have also been reported in cadre, commercial service 

workers, herdsman, seaman, fisherman and medical workers.  

Leptospirosis was reported from all four regions in China; the highest reported incidence rate 

was primarily observed in the Region A and B (Figure 5-1). Based on the decomposition 

analysis, the incidence of leptospirosis showed a clear seasonal pattern. The incidence 

increased from April to September and reached a peak in August/September and then 

diminished from October thereafter. The lowest incidence was consistently observed in 

February (Figure 5-2).  
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Table 5-1 Annual number of notified leptospirosis and incidence rate by sex, age and occupation and the proportion of case in 
China, 2005–2015. 

 

 

 

Characteristics 
Number of cases (per 100,000 people) 

Total IR* 
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Sex 
Female 439 (0.07) 217 (0.04) 300 (0.05) 254 (0.04) 197 (0.03) 218 (0.04) 134 (0.02) 154 (0.03) 156 (0.03) 207 (0.04) 131 (0.02) 2407 0.03 

Male 1026 (0.16) 500 (0.08) 658 (0.10) 675 (0.11) 462 (0.08) 500 (0.08) 289 (0.05) 337 (0.06) 280 (0.05) 349 (0.06) 280 (0.04) 5356 0.08 

Age 

0–9 41 (0.03) 28 (0.02) 34 (0.03) 20 (0.02) 18 (0.01) 10 (0.00) 8 (0.01) 4 (0.00) 5 (0.00) 6 (0.00) 3 (0.00) 177 0.01 

10–19 283 (0.13) 116 (0.06) 137 (0.07) 99 (0.06) 83 (0.05) 52 (0.03) 33 (0.02) 34 (0.03) 15 (0.01) 24 (0.02) 22 (0.01) 898 0.05 

20–29 236 (0.14) 86 (0.06) 107 (0.07) 120 (0.08) 70 (0.04) 62 (0.04) 40 (0.02) 47 (0.02) 48 (0.03) 71 (0.04) 45 (0.02) 932 0.05 

30–39 347 (0.14) 140 (0.07) 174 (0.09) 174 (0.09) 112 (0.06) 131 (0.07) 66 (0.04) 67 (0.04) 53 (0.03) 89 (0.05) 63 (0.03) 1416 0.07 

40–49 228 (0.12) 140 (0.07) 202 (0.10) 180 (0.09) 126 (0.06) 159 (0.08) 99 (0.05) 126 (0.06) 106 (0.05) 142 (0.07) 83 (0.03) 1591 0.07 

50–59 217 (0.15) 130 (0.08) 205 (0.12) 210 (0.12) 137 (0.08) 167 (0.10) 101 (0.08) 97 (0.07) 92 (0.07) 111 (0.08) 95 (0.05) 1562 0.09 

60–69 87 (0.09) 53 (0.06) 75 (0.08) 93 (0.10) 92 (0.09) 112 (0.12) 55 (0.06) 84 (0.09) 83 (0.09) 84 (0.09) 83 (0.06) 901 0.08 

70–79 16 (0.03) 15 (0.03) 23 (0.04) 30 (0.05) 20 (0.04) 27 (0.05) 20 (0.04) 32 (0.06) 23 (0.05) 22 (0.04) 25 (0.04) 253 0.04 

80–89 1 (0.00) 0.00 6 (0.04) 4 (0.02) 1 (0.00) 0.00 3 (0.02) 3 (0.02) 4 (0.02) 5 (0.03) 3 (0.01) 30 0.02 

90+ 0.00 0.00 1 (0.07) 0.00 0.00 0.00 0.00 0.00 1 (0.05) 0.00 1 (0.05) 3 0.02 

Occupation 
Agriculture 1119 (0.32) 500 (0.15) 721 (0.22) 726 (0.24) 526 (0.18) 571 (0.22) 312 (0.11) 387 (0.14) 312 (0.12) 466 (0.19) 305 (0.13) 5944 0.18 

Services 263 (0.11) 125 (0.05) 148 (0.06) 110 (0.03) 90 (0.02) 63 (0.02) 54 (0.02) 39 (0.01) 54 (0.02)  56 (0.02) 56 (0.02) 1058 0.04 

Case 
classification 

Confirmed 
(n, %) 

120 (8.2) 227 (31.7) 267 (27.9) 249 (26.7) 159 (24.1) 229 (31.9) 178 (42.1) 184 (37.5) 237 (54.4) 321 (57.7) 233 (56.7) 
2403 
(31) 

 

Clinical (n, 
%) 

1271 (86.8) 415 (57.9) 594 (62) 600 (64.7) 405 (61.5) 436 (61.5) 212 (50.1) 248 (50.5) 122 (28) 171 (30.8) 113 (27.5) 
4588 

(59.1) 
 

Suspected 
(n, %) 

74 (5.1) 75 (10.5) 97 (10.1) 80 (8.6) 95 (8.6) 53 (14.4) 33 (7.8) 59 (12) 77 (17.7) 64 (11.5) 65 (15.8) 
772 

(9.9) 
 

               

TOTAL 1465 (0.11) 717 (0.05) 958 (0.07) 929 (0.07) 659 (0.05) 718 (0.05) 423 (0.03) 491 (0.04) 436 (0.03) 556 (0.04) 411 (0.03) 7763  

No. counties reported 307 265 299 278 222 239 182 180 165 173 163 782  

CFR 3.29 2.66 3.86 2.04 1.82 1.53 1.17 1.02 1.16 1.07 0.24   
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Figure 5-1 Annual average incidence of leptospirosis at province level, China, 2005–2015. 
Province was grouped into four regions (Region A, B, C, D) as identified by Zhang et al 
(2012). 
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Figure 5-2 Decomposed monthly leptospirosis incidence in China 

 

In total, leptospirosis cases were reported from 782 counties in 26 provinces in China (Table 

5-2). Most leptospirosis cases were reported from Region B, where 6514 cases (84%) were 

reported during 2005–2015. The number of counties that reported cases demonstrated a 

significant reduction in 2005–2015 (P < 0.001). Overall, there was a significant declining trend 

in leptospirosis incidence from 0.11/100,000 people in 2005 to 0.03/100,000 people in 2015 

(R2 = 0.646; P < 0.05). Among provinces, both Sichuan and Yunnan had the highest reported 

incidence rate (0.26/100,000 people) in the country. Similarly, the case-fatality rates (CFR) 

also showed a downturn trend from 3.29% in 2005 to 0.24% in 2015 (R2 = 0.815, P < 0.001). 

The highest CFR was recorded in Guizhou (13.41%) compared with other provinces. Detailed 

temporal distribution of leptospirosis incidence and CFR for each province during 2005–2015 

is provided (Appendix C: Table C-1, Table C-3).   
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In addition, during 2005–2015, a total of 168 deaths attributed to leptospirosis reported in 

China. Of which, 71% (120/168) of reported deaths were attributed to males. A high mortality 

rate was observed in the 50–59 age group (0.20 per 100,000 people), followed by the 10–19 

age group (0.18 per 100,000 people). A high number of deaths (125 out of 168) were 

attributed to patients who worked in the primary sector as a farmer. A high number of deaths 

were reported from Region B (74%), particularly in Guizhou, Sichuan, Hunan, Hubei, and 

Jiangxi (Appendix C: Table C-4). There was a decrease in the reported mortality rate since 

2005 and it reached a very low level from 2011 thereafter. Reported deaths by case 

classifications were given in Appendix C: Table C-5.
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Table 5-2 Reported cases, proportion of confirmed case, counties, incidence and fatality rate of leptospirosis at province level in 
China, 2005–2015. 

  No. of cases 

reported 

(n=7763)  

% confirmed case 

(n=2403) 

No. of counties 

reported (n=782)  

Incidence per 

100,000 

CFR (%)  

Region A          

Guangdong 619 53.3 100 0.06 2.28 

Guangxi 543 40.1 92 0.10 1.16 

Hainan 47 10.6 15 0.05 0.00 

      

Region B          

Jiangsu 37 54.1 25 0.00 1.30 

Zhejiang 138 42.8 28 0.02 1.31 

Anhui 310 8.4 31 0.05 1.03 

Fujian 502 47 62 0.12 0.74 

Jiangxi 421 5.5 52 0.09 1.62 

Henan 3 0 3 0.00 0.00 

Hubei 296 10.8 31 0.05 2.96 

Hunan 656 15.9 98 0.09 3.10 

Chongqing 200 10 33 0.06 0.49 

Sichuan 2352 6.3 97 0.26 1.10 

Guizhou 291 11.7 45 0.07 13.41 

Yunnan 1308 86.2 36 0.26 0.15 

      

Region C          

Beijing 2 50 2 0.00 0.00 

Shandong 20 65 14 0.00 0.00 

Hebei 3 33.3 3 0.00 0.00 

Shanxi 3 33.3 3 0.00 0.00 

Inner Mongolia 1 100 1 0.00 0.00 

Liaoning 1 0 1 0.00 0.00 
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  No. of cases 

reported 

(n=7763)  

% confirmed case 

(n=2403) 

No. of counties 

reported (n=782)  

Incidence per 

100,000 

CFR (%)  

Jilin 2 100 2 0.00 0.00 

Shaanxi 4 25 4 0.00 0.00 

Region D          

Gansu 1 100 1 0.00 0.00 

Qinghai 1 0 1 0.00 0.00 

Xinjiang 2 0 2 0.00 0.00 
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5.4.2 Demographic and geographical changes in morbidity and mortality between 2005–

2010 and 2011–2015 

The trend in reported incidence and mortality was different between 2005–2010 and 2011–

2015 (Figure 5-3). A total of 5439 cases were reported in 2005–2010. Subsequently, there 

were only 2324 cases reported in 2011–2015 (annual IR = 0.03/100,000 people), which was 

more than 50% lower than the preceding period (P < 0.001, Table 5.3). A slight decreasing 

trend in reported incidence was identified from 2005–2010 (R2 = 0.480), while no trend in 

reported incidence has been observed during 2011–2015 (P > 0.05). Statistically, there was a 

significant difference in reported incidence between age groups during the period 2005–2010 

(z = 258.51; P < 0.001) and the period 2011–2015 (z = 50.83; P = 0.052). The highest 

reported incidence rate was observed in the 50–59 age group (0.11/100,000 people). 

Moreover, there was no significant changes in gender and occupation-specific incidence from 

2005 to 2015; the notified incidence remained high in males and primary workforces, 

especially farmers, during both periods (P < 0.001).  

Of a total 168 deaths reported, most deaths (87%, 146/168) were observed during 2005–

2010 (Table 5-3). Few deaths (22 deaths) were recorded during 2011–2015. However, we 

noted a significant difference in the mortality rate (P < 0.001) between 2005–2010 and 2011–

2015. The mortality rate fluctuated during 2005–2010; where two peaks were observed in 

2005 and 2007. In contrast, a relatively stable and low mortality rate was observed during 

2011–2015.  

Despite the significant drop in notified incidence and number of counties that reported 

leptospirosis, our analysis indicates 112 new counties notified leptospirosis infections in 

2011–2015 (Appendix C: Table C-6). During this second period, we observed that 

leptospirosis infection had been reported in four new provinces: Hebei, Inner Mongolia, Jilin, 

and Gansu (Region C and D). 
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Figure 5-3 Annual reported incidence and mortality (per 100,000 people) of leptospirosis in 
China, 2005–2015 

 

 

Table 5-3 Changes in notified incidence and mortality (per 100,000 people) due to 
leptospirosis in four regions in China during 2005–2010 and 2011–2015 

Region 
2005–2010 2011–2015 

No. of casesa Incidence Deaths Mortality No. of cases Incidence rate Deaths Mortality rate 

A 835 0.05–0.14 39 0.00–0.01 374 0.04–0.06 4 < 0.01 

B 4593 0.00–0.38 107 0.00–0.01 1941 0.00–0.28 18 < 0.01 

C 9 < 0.01 0 0 7 < 0.00 0 0 

D 2 < 0.00 0 0 2 < 0.00 0 0 

Total 5439 0.07 146 0.002 2324 0.03 22 < 0.01 
a included all cases (confirmed, clinical, and suspected) 
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5.4.3 Impact of changes in incidence and mortality on the burden of leptospirosis during 

2005–2015 

It is estimated that during 2005–2015 a total of 10,313 DALYs were lost due to leptospirosis 

or approximately 937 DALYs per annum (Table 5-4). Males are the most affected group with 

an estimated 7149 DALYs or approximately 70% of the total burden. The highest burden 

estimate was attributed to a group aged 10–19 years, both males and females, which 

accounted for around 30% of the total DALYs. The highest burden estimate was identified in 

Region B (7990 DALYs), followed by Region A (2312 DALYs) (Table 5-5).  

 

Table 5-4 Age and gender-specific YLLs, YLDs, and DALYs estimates based on reported 
leptospirosis in China, 2005–2015. 

Age 
YLLs YLDs DALYs 

Female Male Total Female Male Total Female Male Total 

0–9 79.31 237.92 317.23 9.50 31.59 41.09 88.81 269.51 358.32 

10–19 1077.14 1796.61 2873.75 40.37 163.4 203.77 1117.51 1960.01 3077.52 

20–29 566.89 1281.47 1848.36 62.94 151.28 214.22 629.83 1432.75 2062.58 

30–39 256.71 824.46 1081.17 117.32 213.98 331.31 374.03 1038.44 1412.48 

40–49 255.03 620.29 875.32 132.52 240.34 372.87 387.55 860.63 1248.19 

50–59 277.2 695.33 972.53 119.70 244.38 364.08 396.9 939.71 1336.61 

60–69 73.73 397.18 470.91 58.90 150.57 209.47 132.63 547.75 680.38 

70–79 17.28 52.81 70.09 16.15 42.99 59.14 33.43 95.8 129.23 

80–89 0 0 0 2.37 4.75 7.12 2.37 4.75 7.12 

90+ 0 0 0 0.47 0.24 0.71 0.47 0.24 0.71 

TOTAL 2603.29 5906.07 8509.36 560.25 1243.52 1803.77 3163.54 7149.59 10,313.13 
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Table 5-5 Temporal and geographical distribution of YLLs, YLDs, and DALYs of leptospirosis 
in China, 2005–2015. 

  Years of Life lost 

(YLLs)  

Years lived with 

disability (YLDs) 

Disability-adjusted life 

years (DALYs) 

DALYs/100,000 

people 

Year         

2005 2631.51 334.39 2965.90 0.22 

2006 1066.17 163.63 1229.80 0.09 

2007 1991.61 220.16 2211.77 0.16 

2008 813.55 216.36 1029.91 0.08 

2009 530.56 153.66 684.22 0.05 

2010 345.99 168.38 514.37 0.04 

2011 249.07 99.75 348.82 0.03 

2012 303.1 116.14 419.24 0.03 

2013 245.77 100.94 346.71 0.03 

2014 287.34 130.15 417.49 0.03 

2015 44.69 100.22 144.91 0.01 

     

Region         

A 2035.89 276.92 2312.81 1.44 

B 6473.47 1517.36 7990.83 1.11 

C 0 8.55 8.55 <0.01 

D 0 0.95 0.95 <0.01 

 

 

Our results indicate a 95% decline in DALYs due to leptospirosis from 2005 to 2015 (P < 

0.001, Table 5.5). The highest burden was estimated in 2005 (2966 DALYs), including 2632 

YLLs and 334 YLDs; whereas the lowest burden estimates were identified during 2015 (144 

DALYs). During 2005–2010, the total burden of leptospirosis was estimated at approximately 

8636 DALYs (1439 DALYs per annum). This consisted of 7379 YLLs and 1257 YLDs. It was 

much higher than the period of 2011–2015, which accounted for approximately 1600 DALYs 

or a decrease of 80% from the previous period (Appendix C: Table C-7). 
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Between 2005–2010 and 2011–2015, a decline in DALY estimate was observed in almost all 

provinces (Figure 5-4). In 2005–2010, high DALYs estimates were observed in Sichuan (1337 

DALYs), Guizhou (1936 DALYs), Hunan (1374 DALYs), and Guangxi (1293 DALYs). These 

four provinces had contributed to approximately 70% of the total DALYs during the period. 

However, a substantial reduction (on average at 53%) in DALYs occurred in many areas, 

including in those four provinces during 2011–2015 (P < 0.05). Although there was a 

significant reduction in DALYs, we identify that higher estimates of the burden remain 

observed in young individuals of both sexes, aged 10–19 years (P < 0.05, Figure 5-5). The 

burden estimates remained high among males (1316.8 DALYs) compared with females 

(360.3 DALYs) during 2011–2015 (P < 0.05).  

A larger quantity of annual YLLs estimates were lost during 2005–2010 (1229 YLLs) than in 

2011–2015 (225 YLLs) (P < 0.05). Leptospirosis resulted in approximately 5689 YLLs during 

2005–2007, and it has contributed 55% of the total DALYs. A three-fold reduction in the 

number of YLLs was observed in 2005–2006, but a slight increase was observed in 2007. 

Moreover, we found higher YLLs estimates were contributed by economically less-developed 

provinces, such as Sichuan, Guizhou, Hunan, and Guangxi. The highest YLLs estimate was 

attributed to younger individuals aged 10–19 years. Similarly, YLDs estimates declined over 

time (P < 0.001) and a significant difference with annual YLDs was observed between the two 

periods (P < 0.001). An extended analysis was provided (Appendix C: Table C-8 to Table C-

11).  

In terms of YLLs, Guizhou had the highest estimates on YLLs, which account for 2300 YLLs 

or 27% of the total YLLs during 2005–2015, followed by Hunan, Guangxi, and Sichuan 

(Figure 5-6). In Guizhou, the highest YLLs estimates were observed during 2005–2010 (1800 

YLLs). During 2011–2015, a dramatic change in YLLs estimates was observed in most 

provinces. However, the YLLs consistently remained relatively high in Guizhou. In terms of 

YLDs, Sichuan and Yunnan had higher estimates during both periods. 
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Figure 5-4 Changes on notified incidence (top) and geographical distribution of the burden 
(bottom) of leptospirosis in China over two periods, 2005–2010 and 2011–2015. 
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Figure 5-5 Temporal distribution of the burden estimates of leptospirosis by gender and age 
groups in China during 2005–2010 and 2010–2015. 
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Figure 5-6 Changes in geographical distribution of years of life lost (YLL) and years-lived with 
disability (YLD) due to leptospirosis in China during 2005–2015. 

 

5.5 Discussion 

Our study quantified the remarkable decrease in leptospirosis incidence and mortality in 

China during 2005–2015, which was accompanied by substantial changes in the 

demographic and geographic pattern in disease burden estimates. We observed a 

remarkable decline in reported incidence and mortality in all provinces especially in region A 

and B where leptospirosis is principally most prevalent, such as Sichuan and Yunnan. These 

findings are in line with previous county-level studies which also reported a reduction in 

notified incidence while local outbreaks were still frequently reported in some areas (Li et al., 

2013; Fan et al., 2014; Wang et al., 2014; Wu et al., 2015; Xu et al., 2016a; Tang et al., 2017) 
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Our analysis indicates that following a steep downward trend during 2005–2010, the reported 

incidence of leptospirosis in China remained quite low during the last five years. This finding 

suggests that China might have reached a low-level leptospirosis transmission similar to other 

developed countries (Gsell, 1990); although this might not indicate a real epidemiological 

situation as evidenced by the existence of persistent geographical foci of infection that can 

potentially lead to future outbreaks in the country. Also, we observed marked variation in 

fatality-rates across regions over time, which may be explained by the heterogeneity of the 

level of awareness and knowledge among populations towards leptospirosis—inadequate 

measures for early diagnosis and treatment especially during outbreaks, delay in seeking 

treatment, and severity of illness due to variation to Leptospira exposure and localised risk 

factors. Hence, more targeted control efforts are needed, especially in those high-risk areas 

and economically less developed areas, by enhancing awareness, improving access to safe 

water and sanitation facilities, and strengthening healthcare and local surveillance systems. 

Our study demonstrates updated burden estimates in terms of DALYs for leptospirosis in 

China. To the best of our knowledge, this is the first study that attempted to quantify the 

spatiotemporal heterogeneity in the burden of leptospirosis using time-series historical 

notification data, especially in China. From 2005 to 2015, it was estimated that more than 

10,000 DALYs were lost due to infections where the burden was predominantly contributed by 

high YLLs. However, our estimates are in stark contrast with those reported by a study 

elsewhere (Torgerson et al., 2015). Our smaller DALYs estimates may reflect the sharp 

reduction in both reported incidence and mortality that occurred during 2005–2015.  

The burden estimates provided by Torgerson et al. (2015) were mainly generated based on 

the morbidity and mortality estimates developed by another study elsewhere (Costa et al., 

2015) that involved modelling on the morbidity and mortality data by incorporating several 

variables, adjustments, and uncertainties. Their study was a global study and applied a global 

model to each country. It is important to consider that epidemiological conditions for 

leptospirosis transmission and notifications are geographically non-stationary and this 

approach might be inadequate to capture small-scale heterogeneities. Importantly, that study 

used published data from the 1970s, a period when leptospirosis was highly endemic and 

when China’s surveillance systems might be different than in the 2000s. This study extends 

Torgersen’s (2015) study in that we used high-resolution, contemporaneous data based on 
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recent national Chinese disease surveillance systems that have relatively good coverage 

across the country. This study successfully demonstrated spatiotemporal heterogeneity in the 

burden within China that was not captured by previous studies. We also identified variation in 

the surveillance system or diagnostic capacity, as evidenced by the difference in laboratory-

confirmed cases among provinces (see Appendix C Table C.1), which means that 

adjustments should be cautiously applied for the whole country. Applying adjustments to the 

whole country could be over/underestimating the actual incidence and mortality rates.  

It should also be noted that our burden estimate was based on passive surveillance and all 

cases reported during the period. One of the major limitations in using surveillance data is 

that could be over or underestimate the actual incidence/burden. The number of reported 

cases, the proportion of laboratory-confirmed cases, and fatality-rates have shown to be 

markedly varied during the period of study and across provinces, indicating a variation in 

diagnostic techniques capacity across the provinces and, therefore, may bias our analysis. It 

should be noted that the surveillance system in China is mainly hospital-based, but their 

laboratory capacity to undertake diagnosis through MAT, ELISA, or PCR also varies across 

hospitals. Also, since leptospirosis often presents as a broad spectrum of clinical 

manifestations, more untreated cases or false-negative cases (misclassification) might have 

occurred and lead to a high number of underreported and misdiagnosed cases, especially in 

resource-limited endemic areas. The recent findings indicated the presence of leptospiral 

infection among patients with undifferentiated fever in Hainan province (Wu et al., 2017), 

suggesting that the incidence and burden may be underestimated. Thus, enhanced-

surveillance prospective population-based studies may better help to determine existing 

leptospirosis cases in China.  

Another drawback is that there was no detailed data available on patient’s clinical 

presentations in our dataset, so that it was not possible to determine the severity of disease 

that may help to assess disability weight for DALY estimation as well as to explain the 

variation of fatality-rates across China. In addition, in this study, we used all categories of 

cases including suspect, clinical, and confirmed leptospirosis cases as defined by China 

health authority. It is necessary to acknowledge that there may also be a reporting bias that 

affects our analysis as leptospirosis have overlapping clinical presentations with another 

disease (e.g., dengue) (Bharti et al., 2003).    
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Changes in incidence and burden can be partly associated with improvement in prevention 

and control measures including health promotion activities, sanitation, and the application of 

leptospirosis vaccination program in both human and livestock animals (e.g., pigs) (Yang et 

al., 2011; Hu et al., 2014; Wang et al., 2014; Zhou et al., 2015; Xu and Ye, 2018). In terms of 

the surveillance system, the development of NIDRIS and CIDARS following outbreaks of the 

severe acute respiratory syndrome (SARS) in 2003 has helped to efficiently improve the 

timeliness, completeness, and coverage of the data across China as well as facilitating early 

detection of diseases outbreaks (Yang et al., 2011). However, it has been confirmed that 

during 2005–2015, there was no significant change in the surveillance systems as well as 

diagnostic tests, specifically for leptospirosis. While, in terms of the vaccination program, 

human leptospirosis vaccine has been developed since 1958 and until now it has been 

administered to high-risk populations in China during the epidemic seasons. A multivalent 

inactivated vaccine is currently the only one available in China (Xu and Ye, 2018). However, 

there is no available evidence that provide a detailed information regarding vaccination 

coverage for the same period (2005-2015). Despite these improvements, however, few 

outbreaks remain occur in some localities in China. 

Changes in ecological and social conditions that have been underway in China in the past 20 

years may have also played an essential role in leptospirosis epidemiology. Changes in the 

landscape, agricultural practices, and livestock husbandry—for instance, restriction on 

livestock herding, farming modernisation, and pigs or livestock vaccination (Dai, 2010; Hu et 

al., 2014)—could have impacted the transmission rate of leptospirosis in China. 

Industrialisation, for example, has led to significant epidemiological shifts in rural areas 

through the introduction of agricultural technology and mechanisation which might reduce the 

rate of human exposure to the Leptospira-contaminated environment. Also, we noticed that 

there were significant anthropogenic ecological changes following the development of the 

Three Gorges Dam and the nationwide reforestation program called “Grain for Green”, which 

probably had an effect on leptospirosis transmission. Water impoundment in many endemic 

areas has been known to have an impact on rodents’ habitat and population dynamics of the 

pathogen in those regions (Kittinger et al., 2009; Wang, 2010). These projects have also been 

reported to have had a substantial impact on other rodent- and water-borne diseases, such as 
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hemorrhagic fever with renal syndrome and schistosomiasis (Xie et al., 2015; Chang et al., 

2016; Zhou et al., 2016). However, the role of environmental changes on space-time variation 

on leptospirosis incidence and burden still needs to be explored. Also, a substantial change in 

the quality of livestock husbandry in China (e.g., improved waste management and farm 

biosecurity) might also have contributed to a decrease in transmission rate in livestock (Hu et 

al., 2014). A review of significant changes in the epidemiology of infectious diseases in China, 

including leptospirosis, has also been described elsewhere (Wang et al., 2008; Zhang and 

Wilson, 2012).   

A detail differentiation of occupation (provided in Appendix C: Table C-2) indicates a reduction 

in cases in common high-risk occupation (e.g., farmer). Indeed, there was an increased 

number of cases in commercial service workers and cadres in the past 2-years (2014-2015), 

however, the number remained relatively low compared to farmers. This is clear that the most 

affected populations by leptospirosis is still farmer relative to other occupation. This finding 

shows that the change in leptospirosis trends did not associated with occupation. 

Our results demonstrate that the highest DALY was attributed to younger individuals aged 

10–19 years due to higher mortality (YLLs) observed in this group. It is important to note that 

about 10% of the leptospirosis cases was reported among students (Appendix C: Table C-2); 

of these, about 98% were aged below 20 years and most them were lived in the Southwest 

China (63%), in particular, Sichuan province (38%) (data not shown). Interestingly, higher 

DALYs estimates were identified in economically less-developed provinces in China including 

Guangxi in Region A and Guizhou and Sichuan in Region B. Guangxi and Guizhou are known 

to have a low gross regional product among provinces in China (NBSC, 2016).  

High burden estimates in school-aged children may probably be associated with lack of 

parental supervision because of parental migration from rural areas to the cities that 

happened during the last three decades. Lack of parental supervision in preventing children 

from engaging in unhealthy behaviors and being in unhealthy environments may likely 

increase the risk of pathogenic exposure and children’s ill health (Li et al., 2015). Additionally, 

rural migration has shifted labor allocation and participation in families in farming activities, 

where children, women, and elderly become more active in farming (Chang et al., 2011; Mu 

and van de Walle, 2011) and, therefore, they are more likely to be exposed to Leptospira-

contaminated environments. It has been indicated in our findings that 5% of the total cases 
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among farmers were attributed to young farmers (aged under 20 years). Health education and 

awareness amongst this population group, especially in rural communities is, therefore, 

essential to further reduce the risk in this demographic group. These findings highlight the 

importance of improving current local surveillance for leptospirosis and healthcare services for 

the high-risk populations living in the high-risk areas identified in our study. 

We also found that disease transmission might have emerged in some counties located in 

temperate regions to the north of the country although at the very low rate. This may partly be 

due to change in environmental conditions (i.e., climate variation and changes in land 

use/land cover) or the translocation of potential reservoirs from adjoining endemic regions. 

Climate variation notably the increase in temperatures may have driven the spread of 

Leptospira towards temperate regions in China through its impact on rodent population 

growth in these areas (Desai et al., 2009). Several outbreaks in China have been thought to 

be associated with high rainfall intensity (Wang et al., 2014). However, we suggest that 

further investigation should be performed to determine whether the emerging incidence may 

correlate with changes in climate and other environmental and social conditions (e.g., human 

migration).  

However, our study has several limitations that need to be considered, which are mainly 

associated with the data. First, as there was no information regarding serovars in our data, we 

were not able to analyse further whether the observed change the distribution in incidence, 

mortality, and burden might also linked with a dynamic change in circulating serovars in the 

country during the period of study, which may reflect the distribution of potential animal 

reservoirs. A recent study by Zhang et al (2019) demonstrates the genetic diversity across 

China, suggesting the variation in animal reservoirs responsible for human leptospirosis in a 

region. Second, the observed reduction in reported incidence and mortality from 2005 to 2015 

may also be a result of the changes in social and environmental conditions in endemic areas 

as has been discussed above. In a subsequent study we, therefore, will aim to understand the 

drivers of such reduction by focusing on high-risk areas and will quantify the attributable 

fraction of determinants, such as socioeconomic development, farming practices, and 

environmental changes.  Third, in this study, I defined “Occupation” into groups, including 

primary (raw-based industry, commonly known as agriculture and fisheries), secondary 

(manufacturing) and tertiary (service) sector according to national standard of job 
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classification in China rather than using a single or detail occupation. Indeed, every single 

occupation may have differences in terms of leptospirosis epidemiology, behaviour and risk 

exposure. However, due to the small number/sparse distribution of cases by occupation (e.g., 

farmer vs Seaman/fisherman) (see Appendix C, Table C-2) in the available dataset, I did not 

able to explore the trends/effects of every single occupation on leptospirosis incidence. 

Therefore, for that reason I combined categories according to available standard occupation 

classification. 

 

5.6 Conclusion 

In the last eleven years, the disease burden estimates of leptospirosis indicated a declining 

trend across the country, suggesting the opportunity to control and eliminate leptospirosis. 

Leptospirosis should not be neglected as it remains an important zoonotic disease and 

disproportionately affects farmers and young populations, especially in that remote rural areas 

where basic sanitation and disease awareness are lacking. Enhanced intervention strategies 

will be needed in the residual high burden regions identified in this study, including promoting 

the importance of personal protective equipment (PPE) and livestock vaccination among 

farmers also improving awareness on risk of leptospirosis towards general population. Active 

surveillance is urgently required to update disease burden estimates of leptospirosis to help 

define necessary public health interventions. Finally, these findings will help design targeted 

intervention strategies in China to reduce the burden of human leptospirosis. An evaluation of 

the role of environment and socioeconomic factors on the changing leptospirosis 

epidemiology and burden should be considered in future work. Moreover, this study highlights 

a number of gaps in knowledge which will be directly addressed in the subsequent Chapters 

of this Thesis.  
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Chapter 6 Geographical and temporal distribution of the residual 

clusters of human leptospirosis in China, 2005–2016 

 

This chapter has been published in Scientific Reports as an original peer-reviewed research 

paper. The concept and design of the study presented in this Chapter 6 was formulated by 

PWD (85%) with the assistance of RJSM (15%). WYZ provided the data. PWD was 

responsible for data management (100%), data analyses (100%) and the interpretation of 

results (85%) was discussed in consultation with RJSM (10%) and all co-authors (5%). PWD 

was responsible for drafting the manuscript (100%). PWD was responsible for revision of the 

final version of the manuscript (90%), taking into account the comments and suggestions of 

RJSM (5%) and all co-supervisors (5%). 

 

6.1 Context 

The results of Chapter 5 revealed that despite the significant reduction in leptospirosis 

morbidity and burden in the past two decades, leptospirosis transmission remains high in 

some regions across China. Importantly, the study detailed in Chapter 5 identified significant 

spatial heterogeneity in leptospirosis DALYs that could be strongly correlated with local 

demographical, environmental, and socioeconomic conditions. However, such evidence is 

lacking, leading to inefficient resource allocation and difficulty in applying control programs. 

Exploration of the spatial patterns of leptospirosis incidence, as well as the spatial variation of 

its drivers at finer spatial resolution, is important to better inform local health authorities in 

effectively designing and implementing targeted public health interventions, towards the 

elimination of leptospirosis in the residual high-risk areas.  

In Chapter 6, using similar leptospirosis data as that in Chapter 5, I sought to explore whether 

the distribution of leptospirosis incidence was spatially clustered in particular areas of China, 

to what extent geographical patterns at county level changed over time, and to identify 

demographic, ecologic, and socioeconomic characteristics in the identified high-risk counties. 

To address these objectives, I employed a set of spatial analyses, including Moran’s I and 

local indicator of spatial association (LISA), to investigate global spatial clustering and to 
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locate high-risk counties, respectively. In addition, I compared the demographic, ecological, 

and socioeconomic conditions of the identified high-risk counties relative to low-risk counties. 

In this Chapter, I demonstrate that leptospirosis incidence was spatially clustered, but the 

propensity of clustering significantly declined during the period studied (i.e., became more 

randomly distributed). I identified a discrete number of high-risk counties in the provinces 

situated in tropical and sub-tropical regions of China (i.e. Yunnan, Sichuan, Chongqing, 

Guizhou, Guangdong, Guangxi, Fujian). Moreover, I found that in high-risk counties, 

leptospirosis disproportionally affected people aged 21–47 years, males, and farmers. In 

addition, compared with low-risk areas, I demonstrated that high-risk counties for leptospirosis 

appear to have higher precipitation rates, to be located at higher altitude, to be more rural, 

and to have lower livestock density, lower crop production and lower gross domestic product 

(GDP). This evidence is vital as it will help design effective local specific interventions to high-

risk leptospirosis areas in China.  

 

6.2 Introduction 

Leptospirosis, an emerging yet neglected zoonotic disease caused by the pathogenic 

spirochetes belonging to the genus Leptospira, has been a significant global public health 

hazard (Levett, 2001). Infection can be asymptomatic or can manifest as a life-threatening 

disease due to acute renal failure, liver injury, or pulmonary haemorrhage syndrome (McBride 

et al. 2005). Annually worldwide, leptospirosis is estimated to cause more than one million 

cases, 58,900 deaths, and the loss of more than 2.90 million DALYs (Costa et al., 2015; 

Torgerson et al., 2015). The high incidence occurs during wet seasons and flooding reaching 

to more than 100 per 100,000 (World Health Organization, 2003). Human infection occurs via 

direct contact between injured skin or mucous membrane with the urine or blood containing 

the bacteria of the infected animals or due to exposure to bacterial-contaminated soil or 

water. At present, a total of 10 pathogenic Leptospira and five intermediate species have 

been identified so far and it is likely that novel species will be continuously discovered (Xu et 

al., 2016; Puche et al., 2018). Leptospira could be carried by wide-range animals such as 

pigs, cattle, and dogs, but rodents act as an eminent role in shedding the bacteria into the 

environment (Ellis et al., 1981; Backhans and Fellström, 2012). The spatial variation of 

leptospirosis incidence has been known to be driven by ecological (e.g., precipitation, 
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elevation, animal hosts, land use types) and anthropogenic factors (e.g., farming activities, 

poverty) (Lau et al., 2012a; Bacallao et al., 2014; Suwanpakdee et al., 2015; Zhao et al., 

2016; Rood et al., 2017).  

In China, since the 1950s there were more than 2.5 million cases and approximately 20,000 

deaths reported to the national disease notification system (Yan et al., 2006). Within the last 

two decades, it was estimated that at least 10,000 DALYs were lost because of leptospirosis 

and it disproportionately affected males, young populations, and farmers (Dhewantara et al., 

2018a). Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai has been 

responsible for most human infections in China and Apodemus agrarius is the most important 

animal host among other animals, such as pigs, cattle, and dogs (Shi et al. 2000; Zhang et al. 

2012; Liu Y. et al. 2016). Leptospirosis cases have been notified in almost all provinces in 

China except the provinces of Ningxia and Xizang (Shi et al., 1995; Liu, 2012; Dhewantara et 

al., 2018). The geographical distribution of leptospirosis in China has been associated with 

climatic factors where the majority of incidences occurs in tropical and sub-tropical regions in 

the southwest, central, south, and southeast of China (Shi et al. 1995; Zhang et al., 2012; 

Zhao et al., 2016). A recent study suggested that physical environmental and socioeconomic 

characteristics could also play an important role in preserving leptospirosis transmission in 

China (Zhao et al., 2016). However, further investigation is required to improve our 

understanding of the characteristics of high-risk areas of leptospirosis throughout the country. 

A better understanding of such characteristics would help guide health authorities in 

identifying potential areas for leptospirosis transmission as well as in targeting vulnerable 

populations.   

During the last two decades, there was a decline in the number of notified leptospirosis cases 

and mortality in China, which might be partly due to the effectiveness of control programs 

deployed by Chinese authorities, including rodent control, improvement in sanitation 

conditions, and vaccination during epidemic season, especially in high-risk communities (Hu 

et al., 2014; Xu and Ye, 2018). However, local leptospirosis outbreaks are still occurring in 

certain parts of the country (Ma et al., 2010; Li et al., 2013; Wang et al., 2014; Tang et al., 

2017) indicating that leptospirosis remains an important zoonotic disease in the country. 

However, changes in the geographical distribution of leptospirosis incidence in China during 

the last decades, has not been adequately explored. More importantly, little is known about 
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the location of residual high-risk foci of leptospirosis and key demographic, ecological and 

socioeconomic characteristics that could explain residual disease transmission in those 

areas. This knowledge gap hinders the design and implementation of targeted interventions 

towards reducing risk and eliminating leptospirosis in China. 

Geographic information systems (GIS)-based technologies have now been widely used in 

numerous infectious disease studies including in the field of leptospirosis (Barcellos and 

Sabroza, 2000; Suwanpakdee et al., 2015; Rood et al., 2017). It allows researchers and 

health authorities to better explore and understand the disease pattern and its underlying 

determinants. GIS can be used to map disease rates and help locate and characterize high-

risk areas where interventions should be conducted. By combining GIS and spatial statistics, 

social and environmental risk factors associated with high-risk areas could be determined.  

The aims of this study are i) to investigate whether or not the spatial pattern of leptospirosis 

incidence was clustered over China during the study period, ii) to identify the location of high- 

and low-risk counties for leptospirosis and iii) to characterise high-risk counties by identifying 

differences between them and other type of counties in terms of their demographical, 

ecological, and socioeconomic conditions. These research aims fit with the current gap in 

knowledge in terms of modifiable factors that distinguish high-risk from low risk areas that 

could be targeted for the design of local interventions. Findings from the present study would 

have much value for policymaking, especially at county level, to strengthen disease 

surveillance programs and intervention strategies for leptospirosis. 

 

6.3 Methods 

6.3.1 Data collection  

Leptospirosis infection data 

We utilised notified human leptospirosis data that had been used in our previous study 

elsewhere (Dhewantara et al., 2018a). Briefly, in China, leptospirosis has been classified as 

Class B Notifiable Disease since 1955. All diagnosed cases of leptospirosis must be reported 

by all healthcare providers at county-level to the Center for Disease Control and Prevention 

through the China Information System for Diseases Control and Prevention (CISDCP). 

Notified leptospirosis cases include information about sex, age, occupation, date of onset of 
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illness, date of diagnosis, date of death, case classification (suspected, clinical, and 

laboratory-confirmed), and address. Leptospirosis cases are defined into three categories: 

suspected, clinical, and confirmed case (Ministry of Health of China, 2008). Suspected cases 

are defined as an individual with: a) a clinical symptom such as acute fever (up to 39C), 

which may be accompanied by chills, myalgia, or malaise and; b) history of exposure within a 

month prior to the onset of illness to the following risk factors: epidemic season, reside in 

epidemic area, either direct or indirectly contacted with suspected animals and their urine or 

faeces or contaminated water and soil. Clinical (probable) cases are defined as suspected 

cases with at least one of the following clinical manifestations: conjunctival hyperemia, 

gastrocnemius tenderness, or enlargement of the lymph nodes. A confirmed case is defined 

as a suspected case with one or more any of the following laboratory criteria: 1) positive 

culture of Leptospira from blood, urine, tissues, or cerebrospinal fluid (CSF);  2) microscopic 

agglutination test (MAT) titre of  ≥ 400 in single or paired serum samples; 3) a fourfold or 

greater rise in MAT titres between acute and convalescent-phase samples; 4) presence of 

pathogenic Leptospira spp detected by polymerase chain reaction (PCR); 5) presence of IgM 

antibodies by enzyme-linked immunosorbent assay (ELISA). All cases reported from 

1January 2005 to 31 December 2016 were included in our analyses.  

For the purpose of spatial analyses, all individual leptospirosis cases were linked to 

respective county-level polygons based on county code, using the GIS software (ArcGIS 

version 10.5.1, ESRI Inc., Redlands, CA, USA). Mainland China comprises 31 

provinces/autonomous region/municipalities and more than 2,900 counties, with populations 

ranging from 7123 to 5,044,430 people and geographic areas ranging from 5.4 to 197,346 

square kilometers.   

 

Ecological and socio-economic characteristics data 

Leptospirosis risk is perceived to be multifactorial in nature involving complex interactions 

between ecological and socioeconomic conditions (Lau et al., 2012a; Rood et al., 2017). 

Elevation data and monthly precipitation data with 30 arc-seconds (~ 1-km) spatial resolution 

was extracted from WorldClim (v.2) (available at www.worldclim.org), which was based on the 

average meteorological data for 1970-2000 (Hijmans et al., 2005; Fick and Hijmans, 2017). 

An urban extent grid (v.1) raster dataset was obtained from the Global Rural-Urban Mapping 

http://www.worldclim.org/
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Project (GRUMP v.1) (Center for International Earth Science Information Network - CIESIN - 

Columbia University et al. 2011) and used to determine the proportion of urbanized or rural 

areas of each county (http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents). 

Data for pig and cattle density for each county was sampled from Gridded Livestock of the 

World version 2.01 with 1-km spatial resolution retrieved from FAO-GeoNetwork 

(http://www.fao.org/geonetwork/srv/en/main.home) (Robinson et al., 2014).  Farmland 

productivity raster map were obtained from the Resource and Environmental Science Data 

Center of the Chinese Academy of Sciences (http://www.resdc.cn) (Xu et al., 2017). 

Socioeconomic condition of each county was indicated by the gross domestic product (GDP). 

A raster map of 2010 Gross Domestic Product (GDP) of China with 1-km resolution was used 

(http://www.geodoi.ac.cn/weben/doi.aspx?Id=125) (Huang et al., 2014). Zonal mean values 

for each raster datasets were sampled at each county polygon using Zonal Statistics module 

in the Spatial Analyst toolbox in ArcGIS software. 

 

6.3.2 Data analysis 

Descriptive analysis and disease mapping  

A county-level notified human leptospirosis cases were analysed descriptively and overall 

yearly notified leptospirosis and number of county reported leptospirosis were plotted. 

Number of leptospirosis cases of each county was then utilized to explore the spatial 

distribution of the leptospirosis in China. A county-level crude standardized morbidity ratio 

(SMR) was estimated by dividing the observed number of cases by the expected number of 

cases in the study population (overall incidence rate of human leptospirosis for the whole 

country from 2005 to 2016 multiplied by the population of each county) (Lawson and Williams, 

2001). County-level population data for 2005–2016 were obtained from the National Bureau 

of Statistics of China. To reduce random variation resulting from a small number of 

observations and to produce statistically more precise risk estimates, spatial smoothing based 

on empirical Bayes method was applied (defined as smoothed SMRs), so that the effect of 

different population sizes in corresponding county can be adjusted (Marshall, 1991; Meza, 

2003). The empirical Bayes smoothing procedure was implemented using R software 

package ‘DCluster’. 

 

http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents
http://www.fao.org/geonetwork/srv/en/main.home
http://www.resdc.cn/
http://www.geodoi.ac.cn/weben/doi.aspx?Id=125
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Global and local spatial autocorrelation statistics 

To determine the presence of spatial dependence in the smoothed SMRs across counties 

during the period studied, global Moran’s I statistics was calculated. As proposed by 

Assunção and Reis (Assunção and Reis, 1999; Bivand et al., 2013), Moran's I statistics were 

adjusted based on the Empirical Bayes Index. Moran’s I value ranging from -1 to 1 with a 

value close to 0 indicates no spatial clustering (random). A positive value indicates positive 

autocorrelation and a negative value means negative autocorrelation (Moran, 1950). A spatial 

weight matrix was constructed based on k-nearest neighbour approach (Bivand et al., 2013). 

The significance of Moran’s I of smoothed rates was assessed using Monte-Carlo 

randomization with 999 permutations. Significance (P < 0.05) of the test statistic indicates that 

incidence is spatially clustered or dispersed. Moran’s I population was performed under R 

environment on package ‘spdep’ (Bivand 2017; R Core Team 2015). 

Local indicators of spatial association (LISA) analysis was performed as the global pattern 

was not random. LISA was calculated to detect the presence of clusters of counties with high 

(high-high, HH) and low rates (low-low, LL), as well as spatial outliers (high-low, HL and low-

high, LH). HH clusters are defined when a county with a high value of leptospirosis incidence 

is surrounded by other counties also with high values leptospirosis incidence (later classified 

as a high-risk county) (Anselin, 1995). While LL clusters represent counties with low values of 

leptospirosis incidence surrounded by neighbouring counties with low values of leptospirosis 

incidence (classified as low-risk county). The HL or LH clusters indicate counties with high or 

low incidence surrounded by counties with low or high incidence. From a spatial epidemiology 

point of view, the spatial outliers can explain whether the area defined as receptive area (L-H) 

or endemic area (HL. LH areas are expected to be vulnerable to disease introduction as they 

are surrounded by high-risk areas. In contrast, HL areas may play an important role in 

spreading the disease to their low-risk neighbours and the probability of transmission is a 

function of both sharing similar underlying epidemiological conditions that may favour 

infection spread. LISA analysis was carried out by using GeoDA ver. 1.8 software (Anselin et 

al. 2005). Maps were created using ArcGIS v10.5 (ESRI, Redlands, CA, USA). 
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Statistical analysis 

Descriptive analyses were performed to profile and compare demographical, ecological, and 

socioeconomic conditions of all cluster categories (e.g., HH, LL, LH, HL) as identified by LISA 

analysis during the 12-year period studied. Continuous variables (e.g., age, elevation, 

precipitation, pig density, cattle density, farmland production and GDP) were described using 

their mean and 95% confidence interval (CI) or median and interquartile range (IQR). 

Categorical variables (e.g., sex, occupation type, type of county) were described as count and 

proportions and 95%CI. Differences in case demographic information, ecological and 

socioeconomic conditions between clusters were tested either using 2 tests (for categorical 

variables) or one-way ANOVA or Kruskal-Wallis test with post hoc Tukey’s honestly 

significant difference (HSD) test (for continuous variables). Levels of significance were set at 

5%. All statistical analyses were performed using SPSS 24 (IBM Corp, Armonk, NY, USA). 

 

6.4 Results 

6.4.1 Descriptive analysis 

A total of 8158 human leptospirosis cases were notified during 2005–2016 in 794 counties 

from a total of 2922 counties. Of which, 2,633 cases (32.27%) were laboratory confirmed 

cases. During 2005–2016, the notified incidence decreased as well as the number of counties 

with leptospirosis (Figure 6-1). Incidence dropped after 2005, but there was a slight increase 

in rates during 2007–2008 before incidence continued to decrease until 2016. The number of 

counties with leptospirosis appears to have a similar pattern to that of the number of reported 

cases. The number of counties decreased over time but was relatively stable during 2011–

2016 ranging from 163 to 182 counties (Appendix D: Table D-1). 

Our results indicate geographical and temporal variation in the crude standardized morbidity 

ratios (SMRs) of notified human leptospirosis in China at county level (Figure 6-2). The 

smoothed SMRs maps reveal a clear distribution of counties with relatively high leptospirosis 

rates also gradual changes in rates at the county level in China during 2005–2016 (Figure 6-

3). Two counties in the south of Yunnan province, Xishuangbanna Prefecture City (Mengla 

County) and Pu’er Prefecture City (Menglian County), consistently had the highest rate during 

2005–2016. High smoothed rates were also observed in counties situated in the southeast of 
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Sichuan, in the southeast Guizhou border to Hunan and Guangxi, north Fujian and southern 

Anhui. 

 

 

Figure 6-1 Annual notified incidence rate (per 100,000 people) and number of counties with 
human leptospirosis in China, 2005–2016. The graph was created by in R environment using 
‘ggplot2’ package. 
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Figure 6-2 Crude standardized morbidity ratios (SMRs) for human leptospirosis by counties in 
China, 2005–2016. The map was created in ArcGIS 10.5.1 software, ESRI Inc., Redlands, 
CA, USA, (https://www.arcgis.com/features/index.html).  

 

https://www.arcgis.com/features/index.html
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Figure 6-3 County-level smoothed rates maps of human leptospirosis using empirical 
Bayesian estimates, China, 2005–2016. The map was created in ArcGIS 10.5.1 software, 
ESRI Inc., Redlands, CA, USA, (https://www.arcgis.com/features/index.html).  

 

6.4.2 Spatial autocorrelation analysis 

The Moran’s I analysis demonstrates a significant positive spatial autocorrelation in rates 

throughout the period studied, indicating that leptospirosis incidence was spatially clustered. 

Yet, there was a decreasing trend in the Moran’s value over time and reached the lowest 

value in 2013 (I = 0.009, P value = 0.03) (Table 6-1).  

The local indicator spatial association (LISA) test identified high-risk counties (classified HH 

clusters; red color) in southwestern provinces (e.g., Sichuan, Guizhou, Yunnan), central 

province (e.g., Hunan), southeastern provinces (e.g., Fujian, Anhui, Jiangxi, Zhejiang) and 

southern provinces (e.g., Guangxi and Guangdong) (Figure 6-4). Low-risk counties (LL 

https://www.arcgis.com/features/index.html


 
  

118 

 

clusters; green color) were predominantly detected in provinces in the east towards northeast 

China.  

 

Table 6-1 Spatial autocorrelation (Global Moran’s I) of human leptospirosis in China from 
2005-2016. 

Year Moran’s I P value 

2005 0.3167 0.001 

2006 0.0390 0.011 

2007 0.0711 0.004 

2008 0.0841 0.001 

2009 0.0404 0.013 

2010 0.0308 0.011 

2011 0.0376 0.003 

2012 0.0373 0.016 

2013 0.0102 0.032 

2014 0.0097 0.033 

2015 0.0232 0.012 

2016 0.0198 0.015 

 

The annual incidence rate in high-risk clusters fluctuated during the study period, ranging 

from 0.28 to 2.67 per 100,000 people with the highest rates observed in 2005. The number of 

high-risk counties was reduced 25% from 64 in 2005 to 48 counties in 2016 (Table 6-2). In 

total, there were 265 (10.35%) counties in 12 provinces classified as high-risk clusters during 

2005–2016 (Table 6-3). A high proportion of high-risk counties relative to their total counties 

observed in Fujian (41%), Guangxi (32%), and Sichuan (31%). From 2005 to 2016, high-risk 

counties were consistently observed in the provinces of Yunnan, Sichuan, Guizhou, Fujian, 

and Anhui. Four counties including Yanjin (Yunnan province), Yibin and Qianwei (Sichuan 

province), and Shexian (Anhui province) were high-risk counties for 10 years of the period 

studied.  

 



 
  

119 

 

 

Figure 6-4 Annual spatial cluster patterns of human leptospirosis as determined by local 
indicator spatial autocorrelation (LISA), China, 2005–2016. The HH (later stated as high-risk, 
red) cluster was defined when high values were surrounded by high values. LL (low-risk, 
green) clusters represented a cluster of low rates surrounded by counties with low rates. LH 
(light blue) or HL (dark blue) was defined if a cluster of low or high rate values were 
surrounded by high or low rates. The map was created in ArcGIS 10.5.1 software, ESRI Inc., 
Redlands, CA, USA, (https://www.arcgis.com/features/index.html).  

 

 

 

 

 

 

 

https://www.arcgis.com/features/index.html
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Table 6-2 Descriptive statistics of human leptospirosis clusters, China, 2005–2016. 

Year Clustera 
No. of 
cases 

Rates per 
100,000 

No. of 
counties 

Type of the 
countiesb 

Population at 
risk 

Rural Urban 

2005 H-H 757 2.67 64 62 2 28,477,361 

 H-L 32 0.70 9 8 1 4,582,405 

 L-H 12 0.07 45 45 0 17,408,650 

2006 H-H 237 0.78 72 71 1 30,219,755 

 H-L 9 0.09 11 11 0 9,878,203 

 L-H 29 0.12 75 69 6 24,206,070 

2007 H-H 290 1.04 64 60 4 27,915,298 

 H-L 17 0.37 8 8 0 4,545,932 

 L-H 68 0.32 64 59 5 21,000,362 

2008 H-H 267 0.94 58 56 2 28,431,877 

 H-L 18 0.34 9 9 0 5,263,666 

 L-H 13 0.05 71 67 4 25,248,350 

2009 H-H 113 0.48 53 51 2 23,175,690 

 H-L 20 0.13 18 18 0 15,972,238 

 L-H 68 0.19 89 83 6 35,524,615 

2010 H-H 302 0.93 59 57 2 32,040,701 

 H-L 11 0.07 17 16 1 14,364,705 

 L-H 26 0.07 95 87 8 35,361,925 

2011 H-H 110 0.48 45 37 8 22,927,200 

 H-L 15 0.14 15 14 1 10,563,439 

 L-H 29 0.07 107 96 11 41,261,003 

2012 H-H 75 0.28 56 51 5 25,891,146 

 H-L 1 0.01 10 10 0 8,416,354 

 L-H 32 0.08 104 97 7 38,346,349 

2013 H-H 133 0.40 60 52 8 32,470,676 

 H-L 41 0.34 16 16 0 11,987,768 

 L-H 33 0.09 86 79 7 38,621,772 

2014 H-H 207 0.98 47 44 3 21,169,075 

 H-L 3 0.04 11 10 1 7,821,347 

 L-H 44 0.10 113 104 9 45,010,020 

2015 H-H 86 0.49 45 45 0 17,341,826 

 H-L 7 0.06 12 11 1 10,492,490 

 L-H 66 0.19 98 89 9 33,872,308 

2016 H-H 147 0.72 48 46 2 20,300,837 

 H-L 23 0.16 16 14 2 14,518,982 

 L-H 1 0.00 112 104 8 46,584,188 
a H-H, high-high (high-risk); H-L, high-low; L-H, low-high. The High-High (HH) (later stated as high-risk) 
cluster defined when they have high values surrounded by high values. Low-low (LL) (low-risk) 
clusters represented cluster of low rates surrounded low rates counties. Low-high (LH) or high-low 
(HL) was defined if a cluster of low or high rates values surrounded by high or low rates. bType of 
counties defined based on the predominant proportion of area calculated from mean values of pixels 
of gridded raster urban-rural maps (CIESIN, 2012). 
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Table 6-3 Yearly number of high-risk counties (n = 265) in each province as identified by local indicator spatial association 
(LISA), China, 2005–2016. 

Province 

Total 
counties (% 
of high-risk 
counties) 

Number of high-risk counties 
No. of cases (% 

total cases) 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Guangdong 24 (20.2) 0 6 1 2 4 7 10 2 4 1 0 2 661 (8.10)  

Guangxi 35 (31.8) 4 8 6 11 7 3 3 10 4 2 0 2 569 (6.97) 

Zhejiang 7 (7.8) 0 0 4 1 0 1 0 0 0 1 2 1 149 (1.83) 

Anhui 10 (9.5) 2 6 4 6 6 5 5 5 3 6 1 3 358 (4.39) 

Fujian 35 (41.2) 1 2 0 0 5 5 7 7 18 14 14 7 535 (6.56) 

Jiangxi 25 (25) 6 11 5 6 7 5 5 2 7 3 0 2 442 (5.42) 

Hubei 7 (6.8) 0 2 4 6 0 1 1 2 0 0 2 0 299 (3.67) 

Hunan 35 (28.7) 0 10 12 1 1 2 5 5 5 2 4 4 683 (8.37) 

Chongqing 5 (13.2) 2 0 0 0 2 0 0 0 0 0 0 1 208 (2.55) 

Sichuan 57 (31.1) 43 20 22 19 17 23 5 13 15 13 13 18 2410 (29.54) 

Guizhou 11 (12.5) 1 4 2 3 0 3 1 6 1 0 5 2 297 (3.64) 

Yunnan 14 (10.9) 5 3 4 3 4 4 3 4 3 5 4 6 1415 (17.34) 
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6.4.3 Comparative analysis of spatial clusters profile 

In general, the demographical, ecological and socioeconomic characteristics among clusters 

differed significantly (P < 0.001) (Table 6-4). The characteristics of age, gender, and 

occupation were statistically significantly different (P < 0.001) between clusters. Leptospirosis 

infections in high-risk clusters were observed in relatively younger groups (median 35; 

interquartile range, IQR: 21–47, P < 0.001) compared with cases reported in other types of 

clusters. In contrast, more leptospirosis cases were observed among older population in low-

risk clusters (48, IQR: 34–57). Overall, a high number of leptospirosis case was observed in 

males than in females (P < 0.001) in all clusters, but high-risk clusters had a relatively higher 

proportion of male cases than low-risk clusters. Additionally, the high-risk clusters had more 

farmers (80.20%, P < 0.001) compared with other cluster types. 

Elevation, precipitation, type of county, livestock density, farmland production, and gross 

domestic product (GDP) significantly differed between clusters (P < 0.001). The high-risk 

clusters were situated in areas at higher elevation (576.01 m; 95% CI: 451.17–700.25, P < 

0.001) and higher precipitation rate (136.86 mm per month; 95% CI: 123.61–150.12, P < 

0.001) compared with low-risk clusters. High-risk clusters were more rural (100%) than the 

other types of clusters (P < 0.001). Pig density did not differ among high-risk (212.20 

head/km2, 95%CI: 146.40–278.00) and low-risk clusters (190.50, 95%CI: 176.43–204.58), but 

it was still higher than the other clusters. Cattle density in high-risk clusters was much lower 

(7.88 head/km2, 95%CI: 4.14–11.62) than that low-risk clusters (36.36 head/km2, P < 0.001). 

Both receptive clusters (HL and LH clusters) had moderate livestock density. The high-risk 

clusters had lower farmland production (2,949.67 kg/ha; 95% CI: 1,953.41–3,945.93 P< 

0.001) compared with low-risk clusters (4,148.50 kg/ha 95% CI: 3,951.64–4,345.36).  

Additionally, the GDP of high-risk clusters was much lower (440.80 Yuan, 95% CI: 236.61-

644.98, p<0.001) than that in low-risk clusters (4,448.88 Yuan, 95% CI: 1025.29-1830.60). 
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Table 6-4 Comparative analysis of demographic, ecological and socioeconomic variables stratified by four types of spatial 
clusters as determined by LISA, China, 2005–2016. 

Characteristics Cluster 
F / 2 P-value High-High* (n=22)  High-Low (n=94) Low-High (n=199)  Low-Low (n=634) Other** (n=1733) 

Demographical        

Age (years)        

Median (IQR) 35 (21-47) a 45 (32-56) b 44 (30-57) b 48 (34-57) c 41 (30-53) b F=185.38 <0.001 # 

        

Sex, n (%)        

Male  985 (69.60)a 270 (71.42) 229 (76.84) 215 (63.23) 1001 (63.27)b 2 = 33.10 <0.001 

Female  431 (30.40)a 108 (28.58) 69 (23.16) 125 (36.77) 581 (36.73)b   

Occupation, n (%)        

Farmer 1136 (80.20)a 265 (70.10)a 212 (71.14)a 247 (72.64)a 1080 (68.27)b 2 = 57.79 <0.001 

Non-farmer 280 (19.80)a 113 (29.90)a 86 (28.86)a 93 (27.36)a 502 (31.73)b   

Ecological and 
Socioeconomic 

       

Mean elevation (m) 576.01 ab (451.17-
700.25) 

250.94 a (190.66-
311.21) 

675.15 b  (577.41-
772.90) 

207.49 a (177-45-237.52) 1020.36 c (963.39-
1077.34) 

F=82.50 <0.001 

Mean monthly precipitation 
(mm)  

106.82 a (97.45-
116.19) 

101.40 a 
(95.26-107.55) 

120.67 b (117.40-
123.93) 

76.88 c 

(74.57-79.19) 
62.79 d 

(61.08-64.49) 
F=167.25 <0.001 

Rural-type counties† (%) 100.00 93.61 (86.45-97.11) 91.45 (86.66-94.63) 76.02 (72.54-79.19) 86.60 (84.9-88.1) 2 =58.43 <0.001 

Mean pig density (head/km2) 212.20 a (146.40-
278.00) 

212.49 a (181.57-
243.41) 

134.28 b (114.48-
154.09) 

190.50 a (176.43-204.58) 88.68 b (83.25-
94.11) 

F=78.40 <0.001 

Mean cattle density 
(head/km2) 

7.88 a (4.14-11.62) 24.18 ab (18.06-
30.29) 

23.54 ab (19.73-
27.35) 

36.36 b   

(31.26-41.46) 
19.62 ab   

(17.55-21.70) 
F=14.41 <0.001 

Mean farmland production 
(kg/ha) 

2949.67 ab (1953.41-
3945.93) 

3372.04 b (2854.01-
3890.06) 

1457.58 c (1267.94-
1647.22) 

4296.41 c (4080.49-
4512.33) 

2315.05 a (2208.14-
2421.97) 

F=99.84 <0.001 

GDP‡ 440.80 a (236.61-
644.98) 

3070.73 b (2042.65-
4098.83) 

1427.95 c (1025.29-
1830.60) 

4448.88 d  (4006.23-
4891.54) 

1974.07 c (1787.85-
2160.30) 

F=41.99  <0.001 

        

Note: * High-High (High-risk counties): a county identified if only as HH based on LISA for more than 50% of the period of study; ** Other: not statistically 
significant cluster as determined by LISA. 
Results expressed as mean (95% CI) unless otherwise noted;  
# Kruskal-Wallis test 
† Type of each county (rural or urban) was defined based on the predominant proportion of area. The proportion of area was calculated from mean values 
of pixels of raster maps of each county polygon (CIESIN, 2012) 
‡ Unit: RMB 10,000 (Chinese Yuan) 
a,b,c,d Different letter denotes significant difference after post hoc Tukey’s HSD adjustment between value between clusters at level ≤ 0.05  
IQR, interquartile range; GDP, gross domestic product
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6.5 Discussion 

We analysed notified human leptospirosis data from 2005 to 2016 in China to determine the 

spatiotemporal geographical distribution in incidence rates, to identify residual high-risk 

counties for leptospirosis and most importantly to profile the demographical, ecological and 

socioeconomic characteristics between high-risk and low-risk counties. Overall, although 

there was a gradual decline in the notified leptospirosis incidence and a reduction in the 

number of counties reporting leptospirosis during the period studied, our analysis has 

revealed residual counties with high leptospirosis incidence in the southwestern, central, and 

southeastern China. Additionally, our study demonstrates important demographical, 

ecological and socioeconomic differences between high-risk and low-risk counties which 

could form the basis of future disease elimination strategies. These findings highlight the need 

for targeted interventions that account for local determinants to further reduce the burden of 

leptospirosis in China.  

Our analysis reveals persistently high incidence in a limited set of counties in the south 

Yunnan, namely, Mengla County in Xishuangbanna prefecture and Menglian County in Pu’er 

prefecture, which border with Myanmar and Lao P.D.R (Luang Namtha province). These 

findings also have regional significance since leptospirosis is also highly prevalent in 

Myanmar and Lao P.D.R (Laras et al., 2002; Kawaguchi et al., 2008; Dittrich et al., 2015). The 

high incidence of leptospirosis in this area may be linked to shared climatic and local 

socioecological characteristics. For example, Xishuangbanna prefecture is characterised by a 

tropical and monsoonal climate, which provides favorable conditions for Leptospira 

environmental survival. In addition to paddy fields, approximately 30% of the total land area of 

Xishuangbanna prefecture is covered by rubber plantations (Senf et al., 2013). Most people 

are involved in cash crops plantations (e.g., rubber, tea, corn, rice) as well as small-scale pig 

farming (Riedel et al., 2012). Rural communities in this area are known as the poorest 

populations with the annual GDP per capita less than US$100. Uncontrolled cross-border live 

animal trade, such as pigs, cattle and buffalo, have potential to spread some zoonotic 

diseases including leptospirosis since these species are known to be important reservoirs for 

particular pathogenic Leptospira serovars (Ellis et al., 1981; Shi et al.,1997).Hence, targeted 

intervention should be implemented in these high-risk areas and the communities living along 

the Mekong river basin. Transboundary disease monitoring programs both in humans and 

livestock animals should be prioritised to control leptospirosis, especially in the border 
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between Yunnan, Lao P.D.R, and Myanmar. Further research will be carried out to better 

understand key factors that drive leptospirosis transmission in these high-risk counties at local 

level.  

Despite a remarkable decrease in leptospirosis rates in the last decade (Zhang et al., 2012; 

Dhewantara et al., 2018a), our analyses demonstrated significant annual spatial clustering of 

leptospirosis cases. Yet, our annual estimates of clustering (as measured by Moran’I 

statistics) indicate apparent reduction in the tendency for leptospirosis clustering with time. 

This may partly be explained by considerable control efforts as well as ecological and social 

changes that occurred during the last few decades in China (Liu et al., 2018) which bring 

endemic areas to a lower endemicity level and on par with low endemicity areas surrounding 

them. Substantial preventive and control actions have been promoted, including rodent 

control programs and vaccination especially in endemic areas (Hu et al., 2014; Xu & Ye, 

2018). Also, significant investment to improve hygiene and sanitation infrastructure (Ministry 

of Environmental Protection, 2000; Li et al., 2015) throughout the country might also have 

helped at reducing the geographical extent of leptospirosis risk in China.  

The observed changes in the geographical distribution of leptospirosis risk could be also 

linked with landscape changes that have been undergoing in China (Lambin et al., 2010). Of 

note, over the past three decades, China experienced a large-scale modification in landscape 

due to industrialisation and urbanisation (Deng et al., 2015; Zhang et al., 2017; Long et al., 

2018), which may have impacted directly or indirectly the spatial distribution of leptospirosis. 

China’s land cover has been substantially impacted by the national-scale reforestation policy 

known as Grain for Green Program (Delang & Yuan, 2015) which to some extent might have 

changed vegetation structure and the diversity and population dynamics of host animals, 

including rodents, leading to changes in the distribution of leptospirosis risk. In addition, 

ecological impact due to the development of Three Gorges Dam might have also altered 

rodent abundance (Chang et al., 2016) and this might reduce the transmission risks in those 

affected areas. It was evidenced in this study by low-level incidence in Hubei and Chongqing, 

which is consistent with an existing local study (Long et al., 2007). Moreover, a recent 

seroprevalence survey in the Three Gorges Dam region has also indicated that Leptospira 

prevalence in host animals, especially in rodents, was low (Wang et al., 2017). The 

geographical changes in leptospirosis risk could be also due to changes in human 
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behaviours. In China’s rural areas, where leptospirosis is endemic, modernisation had 

triggered substantial changes in farming practices via mechanisation. This change might have 

reduced the level of exposure to leptospiral contaminated water or soil. Further local 

investigation is essentially required in the high-risk counties identified in this study to assess 

the impact of landscape and social changes on the spatial variation of risk of leptospirosis. 

Our analysis identified consistent spatiotemporal clusters of local leptospirosis in China during 

2005 to 2016. Most of the high-risk counties were spatially clustered in the tropical and sub-

tropical region in south China comprising 12 provinces: Guangdong, Guangxi, Zhejiang, 

Anhui, Fujian, Jiangxi, Hubei, Hunan, Chongqing, Sichuan, Yunnan, and Guizhou. Those 

provinces are situated along China’s major river basin of the Yangtze, Lancang (upper 

Mekong) River and Pearl River. Based on our findings, the persistent leptospirosis hotspots 

that exist over time in southwestern, central, and southeastern counties highly suggest that 

most leptospirosis incidence in these high-risk areas could be primarily driven by the interplay 

between agricultural activities, low socioeconomic conditions, rodent proliferation, and 

climate. Our study indicates that in high-risk counties, leptospirosis was observed in the 

younger population and among males and farmers compared with low-risk counties; 

suggesting that intervention in the residual high-risk counties should be more focused on this 

active population group that engage with agricultural activities. Our findings also indicated that 

high-risk counties had ecological and socioeconomic characteristics that are also common in 

areas where leptospirosis is endemic. High-risk counties were economically less-developed 

and were more rural, situated in moderate elevation with higher precipitation compared with 

low-risk counties. Interestingly, livestock population density and farmland production in high-

risk counties was much lower than that of low-risk areas, which suggests that small-scale 

farming may partly play in the epidemiology of leptospirosis in those high-risk counties. These 

high-risk counties were much more concentrated in the southwest China (Sichuan and 

Yunnan) where most people here engaged primarily in subsistence farming (e.g., paddy rice, 

rubber plantation, shifting cultivation, small scale animal farming) (Chen et al. 2016; Xu et al., 

2017). However, the role of rodent and livestock density on leptospirosis occurrence deserves 

further local investigations. To illustrate, in Guizhou, it was identified that L. interrogans 

serogroup Icterohaemorrhagiae serovar Lai was predominantly identified in rodent A. agrarius 

(Liu et al., 2016). In Pan’an county in Zhejiang, Rattus confucianus and R. flavipectus were 

found to be dominant and potential source of leptospiral infection (Ying and Zhang, 2011). In 
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addition, several major outbreaks in high-risk counties identified in this study following heavy 

rainfall leading to flooding have been reported, including in Sichuan (Wang et al. 2014) and 

Anhui (Ren et al. 2005), highlighting the importance of rainfall and flooding on leptospirosis 

risk. 

While the evidence presented in this study can be beneficial to help identify areas where 

surveillance and interventions should be directed, there are some study limitations that need 

to be considered. We incorporated all cases (i.e. suspect, clinically diagnosed and laboratory 

confirmed leptospirosis cases) in our analyses to allow comparison with Chinese government 

reports and local studies. However, as this study used leptospirosis notification data collected 

from a passive surveillance system, it has the potential to greatly underestimate the actual 

incidence rates as our dataset merely captures individuals who seek medical treatment. 

There could be some individuals who represent subclinical, mild influenza-like symptoms and 

were not aware and/or unable to look for treatment immediately, especially in remote and 

poor rural areas in China. In addition, there might also be variation in awareness and 

diagnostic capacity among doctors and hospitals over time and space, which could 

misrepresent the spatial extent of the disease.  

 

6.6 Conclusions 

In summary, our study reveals for the first time the dynamic pattern of leptospirosis 

distribution in China and identified consistent high-risk counties in China, suggesting that 

improved intervention strategies should be more targeted towards communities living in these 

high-risk counties. 
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Chapter 7 Spatial distribution of leptospirosis incidence in the 

Upper Yangtze and Pearl River Basin, China: tools to support 

intervention and elimination 

 

This chapter will be presented as a paper. The manuscript is submitted to the Science of The 

Total Environment. The concept and design of the methodology was formulated by PWD 

(85%) with the assistance of RJSM (15%). WYZ provided the data. PWD was responsible for 

data management (100%), data analyses (100%) and the interpretation of results (85%) was 

discussed in consultation with RJSM (10%) and all co-authors (5%). PWD was responsible for 

drafting the manuscript (100%). PWD was responsible for revision of the final version of the 

manuscript (90%), taking into account the comments and suggestions of RJSM (5%) and all 

co-supervisors (5%). 

Reprinted from Science of the Total Environment, July 2020, Volume 725, 138251. 

Dhewantara, P.W., Mamun, A.A., Zhang, W.Y., Yin, W.W., Ding, F., Guo, D., Hu, W., Costa, 

F., Ko, A.I. and Soares Magalhães, R.J. Spatial distribution of leptospirosis incidence in the 

Upper Yangtze and Pearl River Basin, China: Tools to support intervention and elimination. 

Copyright (2020) with permission from Elsevier Inc. 

 

7.1 Context 

The studies in Chapter 5 demonstrated that the high burden of leptospirosis was observed in 

broad regions across the Chinese landscape. In particular, Chapter 6 revealed that small 

pockets of high-risk counties are situated in tropical and sub-tropical provinces in the 

southwest and south of China, especially in the provinces along China’s two major rivers—

Yangtze River and Pearl River. Prior research detailed in Chapter 5 suggested that 

leptospirosis incidence is highly seasonal but its annual pattern tended to be different 

between the southwest and south region, suggesting that risk factors are likely 

heterogeneous between regions. From these findings, it is hypothesised that the role of 

climate, and environmental and socioeconomic factors in leptospirosis transmission in 

southwest (Upper Yangtze River Basin, UYRB) and south (Pearl River Basin, PRB) regions of 

China may be geographic-specific as leptospirosis transmission is occurring at local level. 
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Before commencing the research set out in this chapter, there were no studies in the literature 

that had investigated the spatial heterogeneity of drivers of incidence of leptospirosis in these 

two high-risk regions. To guide effective targeted disease control and public health 

interventions, local health authorities and policy makers require detailed information regarding 

areas where disease is prevalent, how it spreads geographically and what are potential risk 

factors that drive its patterns (Pfeiffer et al., 2008). 

Taken together, findings from research detailed in Chapter 5 to Chapter 6 emphasised the 

need for quantifying the effect of local environmental and socioeconomic factors on the 

geographical variation of incidence of leptospirosis and to use this evidence to develop the 

predictive maps of incidence of leptospirosis in both regions. Such maps could provide useful 

evidence to inform policymakers in prioritising areas of interventions as well as in estimating 

the at-risk populations so that resources could be adequately delivered.   

In this chapter, I set out my research into the geographical distribution of leptospirosis 

incidence in these two main river basins and the development of a predictive map of 

leptospirosis incidence, controlling for environmental and socioeconomic factors. In Chapter 

7, I utilise comprehensive environmental and socioeconomic risk factor data including 

precipitation, NDVI, NDWI, LST, elevation, slope, land cover, crop production, livestock 

density, GDP and population density. Non-spatial and spatially explicit models of predicted 

incidence of leptospirosis were built. I built two zero-inflated Poisson (ZIP) Bayesian 

conditional autoregression (CAR) models to predict leptospirosis incidence in both UYRB and 

PRB and taken into account of those environmental and socioeconomic factors, time (quarter 

and period) as fixed-effect and a spatially structured random effect.  

Results presented in this chapter demonstrate areas of priority for leptospirosis control in both 

the UYRB and the PRB. My predictive maps showed that the distribution of the high incidence 

areas in the UYRB are located in counties along the border of Chongqing, Hubei, and 

Guizhou towards the Sichuan basin and northwest Yunnan. In the PRB, the highest predicted 

incidence was identified in areas situated in the middle and lower reaches of the basin.  

This Chapter indicates that surveillance and control strategies should be improved and 

extended towards the counties adjacent to the high-incidence counties. In addition, public 

health interventions should be targeted on the population at-risk on the areas where incidence 

is predicted to be high.  
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7.2 Introduction 

Leptospirosis, a waterborne bacterial disease caused by the Gram-negative spirochete 

Leptospira, is a globally widespread life-threatening yet neglected zoonotic disease (Levett, 

2001, Bharti et al., 2003). A recent report demonstrated that every year at least approximately 

1 million leptospirosis cases and 58,900 deaths are reported across the globe, and it leads to 

the loss of roughly 2.9 million DALYs (Costa et al., 2015, Torgerson et al., 2015). However, 

the burden is considered to be higher due to inadequate surveillance and under-reporting, 

especially in developing countries where the capacity to diagnose leptospirosis is limited, and 

awareness of the disease is lacking (Bharti et al., 2003, Haake and Levett, 2015).  

To our knowledge, there are currently 35 species belonging to the genus Leptospira with 

more than 250 serovars identified. Of which, 13 species have been recognised as pathogenic 

(Guernier et al., 2018; Vincent et al., 2019; Casanovas-Massana et al., 2020). Livestock and 

companion animals can host the bacteria, but rodents are considered as the important 

reservoir for maintaining Leptospira in the environment (Haake and Levett, 2015, Zhang et al., 

2019, Krijger et al., 2019). Infection in human occurs due to direct exposure of injured skin or 

mucous membranes with the infected animal tissues or urine, or by indirect contact with mud 

or water containing pathogenic Leptospira (Levett, 2001). Though leptospirosis incidence is 

commonly high in tropical and subtropical rural areas especially infecting agricultural workers, 

leptospirosis outbreaks are now increasingly reported in major urban areas as a consequence 

of poor waste management and informal urban development, especially in developing 

countries (McBride et al., 2005, Felzemburgh et al., 2014, Sahimin et al., 2019). Moreover, 

incidence of exposure is expected to be higher in the future due to severe climate events and 

flooding driven by climate change (Lau et al., 2010).  

In China, leptospirosis is also of public health importance, resulting in more than 2.4 million 

cases and 20,000 deaths since it has been reported in 1955 (Shi and Jiang, 2000). A recent 

study has estimated that approximately 10,000 DALYs were lost during the past decade 

(Dhewantara et al., 2018a). The leptospirosis outbreak is strongly seasonal with the highest 

incidence commonly reported during the wet season (Zhang et al., 2012). Leptospira 

interrogans serogroup Icterohaemorrhagiae serovar Lai has been responsible for most 

leptospirosis cases in China and Apodemus agrarius is known as the most important host 

among other animals, such as pigs, cattle and dogs (Li et al., 2013, Hu et al., 2014). To 
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address the problem of leptospirosis infection, China’s health authorities have been 

implementing prevention and control measures including improvement in access to water and 

sanitation, reduction of leptospiral infection in animal hosts, and vaccination of high-risk 

populations (Xu and Ye, 2018). These strategies have successfully reduced leptospirosis 

incidence to a low-level in the past few decades, offering an opportunity for the elimination of 

leptospirosis transmission in the country (Zhang et al., 2012, Dhewantara et al., 2018a). 

However, recent evidence has shown that while such interventions have resulted in a 

significant reduction in incidence, persistent residual high-risk clusters of leptospirosis remain 

in the country, concentrating in tropical and sub-tropical regions along the Yangtze and Pearl 

River catchment areas (Dhewantara et al., 2018b). Previous studies suggested that the 

geographical distribution of leptospirosis incidence in China is influenced by the natural 

(climate) and anthropogenic landscape characteristics (Shi et al., 1995, Zhang et al., 2012, 

Zhao et al., 2016). Yet, there are limited studies examining the role of climate, environmental 

and socioeconomic factors on the geographical heterogeneity in leptospirosis incidence, 

especially in these two high-risk areas – i.e., Yangtze and Pearl River Basins.  

Due to its high burden and its debilitating impacts especially on vulnerable populations in 

many developing countries, control of leptospirosis is now receiving much more attention. The 

World Health Organization – Leptospirosis Research Group (LERG) recommends the 

development of predictive tools to support the identification of geographic areas that are at 

highest risk and populations affected by leptospirosis as integral to effectively targeting 

interventions (WHO - Leptospirosis Burden Epidemiology Reference Group, 2010). Risk 

mapping is increasingly being used for planning, monitoring and evaluation, and resource 

allocation in various disease control programs (Soares Magalhães et al., 2011, Owada et al., 

2018). In recent years, a growing number of studies using spatial analytical tools have been 

carried out, aiming to develop predictive maps of leptospirosis incidence to assist 

leptospirosis control (Lau et al., 2012a, Zhao et al., 2016, Rood et al., 2017, Mayfield et al., 

2018b, Baquero and Machado, 2018, Dhewantara et al., 2019b, Jagadesh et al., 2019). While 

leptospirosis is an important public health problem in China, similar risk prediction approaches 

have not been well-explored thus far. A previous country-level study in China used ecological 

niche modelling to predict the country-wide geographical distribution of leptospirosis, 

accounting for climate and environmental and socioeconomic variables (Zhao et al., 2016). 

However, this approach was unable to fully explain heterogeneity, spatial dependency, and 
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uncertainty. Fine-scale risk mapping that accounts for spatial dependency in the data and 

uncertainties is essential as it could help improve risk estimation and thus provide better 

guidance for effective spatially-targeted resource allocation and disease control for the 

attainment of elimination (Clements et al., 2006, Atkinson and Graham, 2006, Tchuem 

Tchuenté, et al., 2018). 

Bayesian conditional auto-regressive (CAR) modelling allows accounting for both spatial 

dependency and uncertainties. This technique provides a flexible and rigorous approach for 

multilevel spatial analysis and disease mapping that allows for accounting risk heterogeneity 

and unmeasured factors in a coherent manner as well as reducing errors in the estimates 

where the denominator (population) is small through smoothing, using Markov chain Monte 

Carlo simulation (Best et al., 2005). Previous studies have demonstrated the value of such a 

spatial modelling approach to examine infectious disease risk (Yang et al., 2005, Hu et al., 

2012, Gou et al., 2017, Jagadesh et al., 2019). Recently, Jagadesh et al. (2019) 

demonstrated the application of spatial Bayesian regression approach to predict geographic 

distribution of leptospirosis in French Guiana. However, the study only accounted for 

environmental and climatic factors (e.g., land cover, topography and meteorological variables) 

in the model. The relative importance of socioeconomic factors and animal reservoirs (e.g., 

livestock density, rodent abundance) in the geographical variation in leptospirosis incidence is 

poorly explored. 

In this study we aimed to quantify the role of environmental and socioeconomic factors on the 

spatial distribution of leptospirosis within the two high risk areas of China—the Upper Yangtze 

River Basin (UYRB) and Pearl River Basin (PRB)—and to generate an adjusted incidence 

maps of human leptospirosis incidence for each region that account for the variation in 

climate, environmental and socioeconomic factors. The results of this study will be beneficial 

to health authorities and policymakers in identifying areas within the two high-risk areas 

where surveillance, case management, and interventions should be improved to ensure the 

effectiveness of control and elimination strategies of leptospirosis transmission in the UYRB 

and PRB. 
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7.3 Methods 

7.3.1 Study sites 

In this study, we limited our analyses to the two major river basins in China, Upper Yangtze 

River Basin (UYRB) and Pearl River Basin (PRB) where residual leptospirosis incidence has 

been recently identified (Dhewantara et al., 2018a, 2018b). The upper reaches of (UYRB 

stretch from Mt. Geladandong (6,621 m) in southwest Qinghai Province towards Chongqing 

municipality, crossing the Sichuan Plateau to Yichang. It extends more than 4511 km which 

accounts for 70% of the total length of the Yangtze River (6300 km) with a drainage area of 

approximately 1,000,000 km2 (Fang et al., 2018) (Figure 7-1). The natural environment of 

UYRB is complex, and includes almost all geological, topographical, climatic, vegetation and 

soil types in China. The primary land use and land cover are mixed forest, bare land, and 

farmland. The UYRB is situated in the subtropical monsoon zone with an annual average 

temperature of approximately 16–20°C. The precipitation in the UYRB is primarily influenced 

by the Indian monsoon system with the annual precipitation less than 500 mm. The monsoon 

system brings abundant precipitation—approximately 70–80% of the basin’s total annual 

precipitation during the summer (May to October)—and may cause persistent rainfall when 

the rain belt is suspended within the basin for several weeks. The heavy and long-lasting 

rainfall usually leads to frequent floods. Frequent floods and droughts have been known as a 

major environmental issue in this region (Yu et al., 2009, Guo et al., 2013, Fang et al., 2018). 

In the south of China, The Pearl River is the third-longest river in China (2400 km) and covers 

an area of approximately 400,000 km2, stretches from part of Yunnan towards Guangdong 

province. It is the third largest river in terms of drainage basin area (4.573 × 105 km2) in China 

(Zhang et al., 2010). The PRB lies in the tropical and sub-tropical climate zones with annual 

mean temperature ranging from 14°C to 22°C and mean precipitation of approximately 1525 

mm per year. Precipitation is high during April–September, accounting for 80% of the yearly 

total precipitation rate (Zhang et al., 2010). In addition, the PRB is one of the regions most 

affected by frequent weather-related events and floods, causing significant social and 

economic losses (Wen, 2006). 
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Figure 7-1 Study sites 
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7.3.2 Data collection 

Data on human leptospirosis  

In this study I used reported leptospirosis notification data from the period of 1 January 2005 

to 31 December 2016, which has been described elsewhere (Dhewantara et al., 2018b). 

Briefly, in China, leptospirosis has been classified as a Class B Notifiable Disease since 1955. 

All diagnosed cases of leptospirosis must be reported by all healthcare providers at county-

level to the Center for Disease Control and Prevention through the China Information System 

for Diseases Control and Prevention (CISDCP). Notified leptospirosis cases include 

information about sex, age, occupation, address, date of onset of illness, date of diagnosis, 

date of death, case classification (suspected, clinical, and laboratory-confirmed). 

Leptospirosis cases are defined into three categories: suspected, clinical, and confirmed 

(Ministry of Health of China, 2008). A suspected case is defined as an individual with: a) a 

clinical symptom such as acute fever (up to 39C), which may be accompanied by chills, 

myalgia, or malaise and; b) history of exposure within a month prior to the onset of illness to 

the following risk factors: epidemic season, reside in epidemic area, either direct or indirectly 

contacted with suspected animals and their urine or faeces or contaminated water and soil. A 

clinical (probable) case is defined as a suspected case with at least one of the following 

clinical manifestations: conjunctival hyperemia, gastrocnemius tenderness, or enlargement of 

the lymph nodes. A confirmed case is defined as a probable case with one or more any of the 

following laboratory criteria: 1) positive culture of Leptospira from blood, urine, tissues, or 

cerebrospinal fluid (CSF);  2) microscopic agglutination test (MAT) titre of  ≥ 400 in single or 

paired serum samples; 3) a fourfold or greater rise in MAT titres between acute and 

convalescent-phase samples; 4) the presence of pathogenic Leptospira spp detected by 

polymerase chain reaction (PCR); 5) the presence of IgM antibodies by enzyme-linked 

immunosorbent assay (ELISA).  

In this study, analysis was limited to leptospirosis notification data reported from counties in 

the UYRB and PRB regions. For the purpose of our analyses, the data were divided into two 

temporal periods: 2005–2010 and 2011–2015 as our previous work (Dhewantara et al., 

2018a) had identified different trends in leptospirosis morbidity during those two periods. 

Leptospirosis counts were aggregated at county-level by quarter and block of periods, 

adjusted by the population at risk in each county. 
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Environmental data 

Several environmental data subsets known to be associated with leptospirosis transmission 

were incorporated in our spatial models, including climate (precipitation, temperature), 

flooding, topographic (elevation and slope), landscape (vegetation, land cover), residential 

setting (urban/rural) and livestock (pig and cattle density) (Lau et al., 2012a, Suwanpakdee et 

al., 2015, Hagan et al., 2016, Rood et al., 2017, Ledien et al., 2017, Baquero and Machado, 

2018, Mayfield et al., 2018b). For both regions, data for monthly precipitation, normalized 

difference vegetation index (NDVI), modified normalized difference water index (MNDWI) and 

land surface temperature (LST) between 2005 and 2016 were collected from different publicly 

available sources. Monthly precipitation data with 30 arc-seconds (~ 1-km) spatial resolution 

was downloaded from WorldClim (v.2) (available at www.worldclim.org) (Hijmans et al., 

2005). Data for NDVI, which serves as a proxy of vegetation (biomass productivity) were 

obtained from the United States Geological Survey (USGS) moderate-resolution imaging 

spectroradiometer (MODIS) product (MODIS 13Q1 v006/Terra Vegetation Indices 16-Day L3 

Global) with 250-meter spatial resolution. NDVI could be also used to reflect abundance of 

food in the ecosystem which may correlated with rodent abundance (Lumbierres et al., 2017, 

Yu et al., 2017). Data for MNDWI, which was used as a proxy of waterbodies or floods were 

obtained from MODIS 09A1 (500-meter spatial resolution). In the absence of an RS product 

to indicate flooding, MNDWI was be as a proxy of the propensity for a location to flood; 

MNDWI is an index for water on the ground which has large values in areas with long term or 

permanent high soil moisture. The assessment of MNDWI as a flooding indicator associated 

with risk of leptospirosis has been documented in a study by Ledien et al (2017). Values for 

MNDWI were calculated based on the surface reflectance of green (545-565 nm) and short-

wave infrared (SWIR) (1628-1652 nm). Land surface temperature (LST) data were obtained 

from MODIS 11A2 v006 (1-km x 1-km grid cell resolution). These monthly precipitation, NDVI, 

MNDWI and LST data were averaged into quarters. 

Land cover raster data for two time points (2005 and 2010) were retrieved from the Data 

Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) 

(http://www.resdc.cn) and reclassified into five categories: cultivated land, forested land, 

grassland, waterbodies and artificial surfaces. Elevation and slope data at 1-km spatial 

resolution were derived from a GTOPO30 digital elevation model obtained from the USGS 

archive. A 5 × 5 km resolution rural/urban surface derived from the Global Rural-Urban 

http://www.worldclim.org/
http://www.resdc.cn/
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Mapping Project (GRUMP, v1, 1995) product was obtained from the Center for International 

Earth Science Information Network of the Earth Institute at Columbia University 

(http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents). To best of my 

knowledge, this was the only best available raster data for urban/rural classification. Livestock 

data, including gridded pig and cattle density for the reference year 2005 and 2010, were 

obtained from Gridded Livestock of the World with 1-km spatial resolution 

(http://www.fao.org/geonetwork/srv/en/main.home) (Robinson et al., 2014, Gilbert et al., 

2018). I used two time points for land cover and livestock data (2005 as reference year for 

period of 2005-2010 and 2010 as reference year for 2011-2016) as there were no yearly data 

for both land cover and livestock density available. Additionally, I assumed that changes in 

landscape and livestock density appeared to be less significant over short-time period 

(yearly). 

 

Socioeconomic data 

Socioeconomic risk factors known to be associated with leptospirosis incidence were included 

in the geographical models, including agricultural practices (surrogated by crop productivity), 

gross domestic product (GDP) and population (Bacallao et al., 2014, Mayfield et al., 2018b). 

Since annual raster data for crop productivity, GDP and population density from year 2005-

2016 were not available, we used best available datasets that could reflect for each period 

studied as follow: i) raster data for crop productivity (in kilograms per hectare) for 2000 (as 

reference for period 2005-2010) and 2010 (as reference for period 2011-2016) were obtained 

from the Resource and Environmental Science Data Center of the Chinese Academy of 

Sciences (http://www.resdc.cn) (Xu Xinliang et al., 2017); ii) data for GDP in 2005 and 2010 

(as reference for period 2005-2010 and 2011-2016, respectively) with 1-km resolution was 

obtained from (http://www.geodoi.ac.cn/weben/doi.aspx?Id=125) (Huang Y et al., 2014). 

Raster data on China population density estimates (in people per hectare) for 2000 and 2010 

(as reference for period 2005-2010 and 2011-2016, respectively) with the resolution of 100 m 

were obtained from WorldPop database 

(https://www.worldpop.org/geodata/summary?id=1222). In addition, population at risk 

estimates for each year and county were obtained from the China National Bureau of 

Statistics. 

http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents
http://www.fao.org/geonetwork/srv/en/main.home
http://www.resdc.cn/
http://www.geodoi.ac.cn/weben/doi.aspx?Id=125
https://www.worldpop.org/geodata/summary?id=1222
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Spatial data management 

In this study, I used county as the geographical unit of analysis. A county-level shapefile of 

China was obtained from DIVA GIS (https://www.diva-gis.org/Data). The shapefile for both the 

UYRB and PRB boundaries were obtained from World Resources Institute (Gassert et al., 

2013) and HydroSHEDS database (Lehner, 2013), respectively. For each basin, county’s 

polygons that located within and intersected by the basin’s boundary were selected, which 

was done by using selection tools in the GIS. Based on this GIS analysis, total of 386 

counties were covered by UYRB with 170 million population. While in the PRB, total of 281 

counties were selected with total of at least 150 million population. Values of environment and 

socioeconomic variables for each county in each basin were extracted using zonal statistics 

tools in the GIS software (ArcGIS version 10.5.1, ESRI Inc., Redlands, CA, USA). Each 

leptospirosis case, environmental and socioeconomic data then were linked to the county 

polygon ID using the GIS software. Environmental and socioeconomic variables included in 

this analysis are summarised in Appendix E: Table E-1. 

 

7.3.3 Data analysis 

Non-spatial models: variable selection and analysis of residual spatial autocorrelation 

To examine the presence of collinearity between environmental and socioeconomic variables, 

a Spearman’s correlation coefficient for all pairs of variables was estimated. If the correlation 

coefficient (Spearman’s rho) between a pair of variables was | 0.7| (Dormann et al., 2013), 

the variable was excluded from the analysis. Poisson generalized linear models (GLMs) were 

then constructed to test statistical associations between individual, environmental, and 

socioeconomic variables and leptospirosis counts. All univariable models included the 

individual-level variables (age, sex, and occupation), environmental (precipitation, NDVI, 

NDWI, LST, elevation, slope, or livestock density), socioeconomic variables (crop production, 

population, or GDP) and time (quarters and block of year) as fixed effects. Female, non-

farmer, Quarter-1 (Q1) and 1st block of year (2005–2010) were set as reference. In the 

univariable analysis, variables with a P-value of 0.20 in the likelihood-ratio test were 

considered for inclusion through a manual backward stepwise variable selection process in a 

multivariable analysis. Using a backward stepwise process of variable selection, variables 

with a P-value more than 0.05 were excluded from the final multivariable model. All statistical 

https://www.diva-gis.org/Data
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analyses were carried out using the statistical software STATA 15 (Stata Corp., College 

Station, TX). Spatial autocorrelation in the residuals of the final GLM models were examined 

using Moran’s I statistics. Prior to the analysis, a Queen-based spatial adjacency weight 

matrix was constructed using GIS software. Moran’s I analysis was performed using GeoDA 

software (Anselin, 2005). Moran’s I value ranging from -1 to 1 with a value close to 0 indicates 

no spatial clustering (random). A positive value indicates positive autocorrelation and a 

negative value means negative autocorrelation (Moran, 1950). The significance of Moran’s I 

was assessed using Monte-Carlo randomization with 999 permutations. Significance (P value 

< 0.05) of the test statistic indicates that residual is spatially clustered or randomly distributed. 

 

Spatial-temporal models  

Zero-inflated Poisson (ZIP) Bayesian spatial conditional autoregressive (CAR) models of 

leptospirosis counts were developed for each region (i.e. UYRB and PRB) and fitted in 

OpenBUGS version 3.2.3 rev 1012 statistical software (Medical Research Council 

Biostatistics Unit, Cambridge, United Kingdom and Imperial College London, United 

Kingdom). ZIP models were selected to account for the excess zero counts in quarterly 

leptospirosis notifications (Lambert, 1992, Agarwal et al., 2002). ZIP models have been used 

previously in mapping risk of several diseases including schistosomiasis (Vounatsou et al., 

2009) and hand foot and mouth disease (HFMD)(Song et al., 2018). The ZIP distribution 

consists of two components: a Poisson count stage with parameter λ and a Bernoulli zero-

inflation stage with parameter p. We denote the ZIP distribution as O ~ ZIP (λ, p), where λ is 

the Poisson mean parameter conditional on the observed value not being an inflated zero. 

The p is the probability of being an inflated zero. The zero values in the ZIP distribution can 

be viewed as comprising two components: ‘structural zero’ and ‘sampling zero’. One portion 

of the zeros arises from the Bernoulli distribution with parameter p indicating the probability of 

inflated zeros (‘structural zeros’), whereas the other portion (‘sampling zeros’) comes from 

what would be expected given a Poisson distribution with parameter λ (Hu et al., 2011, 

Torabi, 2017). 

The mathematical notation of ZIP model is provided below.  We denote the observed counts 

of leptospirosis (O) for ith county (i=1, …, n) in the jth quarter and kth block of year. 



 
  

140 

 

Pr(𝑂𝑖𝑗𝑘| 𝜆𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘) = {

𝑝𝑖𝑗𝑘 + (1 − 𝑝𝑖𝑗𝑘)𝑒−𝜆𝑖𝑗𝑘     if 𝑂𝑖𝑗𝑘 = 0,

(1 − 𝑝𝑖𝑗𝑘)𝑒
−𝜆𝑖𝑗𝑘

𝜆𝑖𝑗𝑘
𝑂𝑖𝑗𝑘

𝑂𝑖𝑗𝑘!
      if 𝑂𝑖𝑗𝑘 > 0,

 

𝑂𝑖𝑗𝑘~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜂𝑖𝑗𝑘) 

𝜂𝑖𝑗𝑘 = 𝑝𝑖𝑗𝑘. λ𝑖𝑗𝑘 

𝑙𝑜𝑔𝑖𝑡 (𝑝𝑖𝑗𝑘) = 𝛼 + ∑ 𝛽𝑧

𝑍

𝑧=1

. 𝑥𝑖𝑗𝑘 + 𝑠𝑖 

𝑙𝑜𝑔 (𝜆𝑖𝑗𝑘) = 𝛼 + ∑ 𝛽𝑧

𝑍

𝑧=1

. 𝑥𝑖𝑗𝑘 + 𝑠𝑖 

Where pijk is the probability of non-zero count, ijk  is the mean count of leptospirosis without 

taking overdispersion into account in ith county, jth quarter and kth block of year,  is the 

intercept,  is a matrix of zth coefficient, x is a matrix of zth covariate and si is the spatially 

structured random effect for ith county. The OpenBUGS code for the ZIP-CAR model was 

provided in the Appendix E.  

To improve convergence, all environmental variables values were centred by subtracting the 

mean and dividing by the standard deviation. Non-informative priors were used for the 

intercept (α), and the effect sizes of covariates beta (β) (normal distribution prior with mean 

zero and precision 0.01). The spatial structured random effects (s) were assumed to follow a 

normal distribution, with a mean of zero and a variance of 1/si, where the precision of si was 

given a non-informative gamma prior distribution with shape and scale parameters = 2, 0.05. 

The prior distribution of Φ was also given a non-informative gamma prior distribution with 

shape and scale parameters = 2, 0.05. 

For each model, a burn-in of 5,000 iterations was used followed by 5,000 iteration intervals.  

Convergence was assessed using visualisation of history and density plots of the series of 

posterior values. A further 10,000 iterations were run when model parameters were 

successfully converged. These ten thousand values from the posterior distributions of each 

model parameter were stored and summarised for the analysis using the posterior mean and 
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95% credible intervals (95% CrI). Coefficient was considered as significant at an -level of 

0.05 which indicated by 95% CrI that excludes zero. The mean, standard deviation, and 

spatial-structured random effects were extracted from the posterior distributions. The county 

level predicted incidence was calculated by dividing the predicted mean count of leptospirosis 

by the county level population and visualised in the GIS software. 

To evaluate the predictive accuracy, mean absolute percentage error (MAPE) was calculated 

(Hyndman and Koehler, 2006). MAPE is a measure how large the differences between 

observed (Oi) and expected leptospirosis incidence (Pi) for ith county (i=1, …, n). The MAPE is 

calculated by using formula: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑃𝑖 − 𝑂𝑖|

𝑂𝑖
 𝑥 100

𝑛

𝑖=1

 

In this study we used a cut-off of 50%; which MAPE < 50% indicated a model have good 

performance on predicting incidence.  

 

7.4 Results  

7.4.1 Descriptive statistics  

In total, 4690 leptospirosis cases were reported from both UYRB and PRB between 2005 and 

2016, accounting for 57.48% of the total reported leptospirosis for that period. Of these 

leptospirosis cases, 3217 were reported from 185 (48.55%) counties within the UYRB region. 

In the UYRB region, leptospirosis was predominantly reported among farmers (n = 2704, 

84.05%), males (n = 2221, 69.03%), and the population group with a median age of 41 years 

(interquartile range, IQR = 27-55) (Appendix E: Table E-2). The high incidence was observed 

in counties in Sichuan, including Yilong and Huaping, and in some counties in Leshan and 

Yibin. Some high incidence counties were also observed in the Hubei province (e.g., Jianshi 

and Enshi County) (Figure 7-2). The incidence reached a peak in the third quarter (Juli-

September) of a year (Appendix E: Figure E-1). 



 
  

142 

 

 

Figure 7-2 Distribution of observed cumulative leptospirosis incidence (2005–2016) in the 
Upper Yangtze River Basin (UYRB) (top) and the Pearl River Basin (PRB) (bottom), China. 
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In the PRB region, during the same period, a total of 1473 leptospirosis cases were reported 

from 199 (70.82%) counties. Leptospirosis infection was attributed to farmers (n = 913, 

61.98%), males (n = 1053, 71.48%) and the population group with a median age of 44 years 

(IQR = 30–57). A high cumulative incidence of leptospirosis cases was observed in counties 

in Guangxi (Liping, Rongjiang and Tian’e County), Guangdong (Qingxing County) and 

southwest Fujian (Wuping County).  Annually, the incidence was at its highest in the third 

quarter (Juli-September) (Appendix E: Figure E-2). 

 

7.4.2 Variable selection: univariable and multivariable analysis 

Univariate analyses showed that type of residence (urban/rural) and population density had 

significantly strong correlation in the UYRB (Spearman’s coefficient = 0.81, P < 0.05). In 

addition, strong correlation was also identified between slope vs elevation (Spearman’s 

coefficient = 0.88, P < 0.05) and slope vs pig density (Spearman’s coefficient = 0.81, P < 

0.05), respectively (Appendix E: Table E-3). Thus, both population density and slope were not 

included into the multivariable model of UYRB. In the PRB, strong association was only found 

between urban/rural and GDP (Spearman’s coefficient = 0.94, P < 0.05) (Appendix E: Table 

E-3) and therefore we did not include the urban/rural variable in the multivariable analysis. 

Non-spatial multivariate analysis showed that all variables were found to be significantly 

associated with leptospirosis counts (Appendix E: Table E-4; Table E-5) and therefore we 

considered all these significant environmental and socioeconomic covariates in our spatial 

predictive models. Spatial autocorrelation in the residuals of the final multivariable models 

were detected (p<0.05), thus the spatial models were built. 

 

7.4.3 Spatial-temporal model 

Based on the Poisson part of the ZIP model, in the UYRB, precipitation and MNDWI was 

significantly and positively associated with the leptospirosis counts (Table 7-1). Elevation was 

significantly and negatively associated with leptospirosis counts. The mean of leptospirosis 

counts was significantly lower in the second quarter relative to the first quarter and was 

significantly lower in the period 2011–2016 compared with 2005–2010.  
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Based on the Poisson part of the ZIP model, In the PRB, precipitation, NDVI, pig density and 

cattle density and land cover were found to be significantly and positively associated with 

leptospirosis counts (Table 7-2). The expected mean of leptospirosis counts was significantly 

lower in the second and third quarter compared with the first quarter, and significantly lower in 

the period 2011–2016 relative to 2005–2010. 

 

Table 7-1 Model effect sizes for leptospirosis cases in the UYRB, China 

Covariate 
Logit component 
Mean (95% CrI)a 

Poisson part 
Mean (95% CrI) a 

Environmental   

Precipitation 6.84 (-11.88, 22.44) 3.28 (0.70, 9.71) 

LST -5.32 (-22.17, 9.27) -1.14 (-7.71, 2.09) 

NDVI 8.36 (-7.97, 22.84) 2.16 (-1.87, 12.81) 

MNDWI -8.61 (-21.91, 2.532) 4.12 (0.38, 14.24) 

Cattle density 1.29 (-12.98, 15.02) -0.09 (-4.30, 3.73) 

Pig density 2.22 (-19.02, 22.56) -6.25 (-27.17, 7.75) 

Elevation 0.92 (-19.52, 15.62) -8.04 (-22.57, -1.98) 

Land cover 
  

Cultivated land Reference Reference 

Forested land -0.04 (-26.46, 17.71) -0.22 (-23.09, 3.28) 

Grassland 2.01 (-16.1, 20.36) -1.96 (-25.35, 6.82) 

Waterbodies -0.25 (-20.04, 19.61) -0.95 (-20.1, 18.03) 

Artificial surfaces 1.25 (-18.37, 20.9) 11.27 (-11.3, 51.51) 

   

Socioeconomic   

Crop production -5.90 (-23.45, 12.32) 10.12 (-1.60, 53.52) 

Urban vs rural 3.16 (-13.73, 24.04) 4.17 (-1.01, 18.02) 

GDP 3.63 (-13.01, 18.62) -23.47 (-127.7, 0.49) 

Time   

Q2 vs Q1 6.22 (-9.029, 22.59) -16.7 (-41.95, -5.352) 

Q3 vs Q1 -2.62 (-20.24, 16.29) -5.94 (-11.14, 5.131) 

Q4 vs Q1 0.07 (-19.41, 19.64) -0.13 (-19.17, 19.01) 

2011-2016 vs 2005–2010 3.02 (-16.87, 20.61) -8.34 (-31.18, -1.73) 

   

Intercept 1.94 (-17.58, 20.86) -1.55 (-25.46, 5.33) 

Tau, precision  38.28 (4.95, 102.2 

Sigma  0.05 (0.01, 0.20) 
aCrI, Bayesian Credible Interval (The posterior distributions are summarised by the posterior mean and 95% CrI. 
A variable was considered as significant if it excluded 0). 
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Table 7-2 Model effect sizes for leptospirosis cases in the PRB, China 

Covariate 
Logit component 
Mean (95% CrI)a 

Poisson part 
Mean (95% CrI) a 

Environment   

Precipitation -5.87 (-15.49, 3.25) 0.79 (0.12, 1.58) 

LST 12.18 (1.45, 24.69) -0.28 (-0.94, 0.32) 

NDVI 5.53 (-13.91, 23.04) 7.22 (3.46, 9.89) 

MNDWI -2.14 (-21.36, 16.84) 2.10 (-7.30, 10.25) 

Pig density -9.99 (-19.10, -3.26) 0.92 (0.48, 1.33) 

Cattle density -3.41 (-11.92, 1.83) 0.62 (0.24, 0.99) 

Elevation 2.63 (-9.01, 15.02) -0.47 (-1.47, 0.50) 

Land cover   

Cultivated land Reference Reference 

Forested land 8.75 (-8.08, 26.81) 1.65 (-1.54, 4.15) 

Grassland -1.58 (-22.48, 18.65) 2.22 (-2.87, 6.66) 

Waterbodies 4.18 (-14.43, 22.21) 4.98 (0.03, 9.30) 

Artificial surfaces -0.87 (-21.00, 19.37) -6.94 (-22.18, 5.60) 

   

Socioeconomic    

GDP -3.44 (-14.14, 9.03) 0.34 (-0.31, 0.94) 

Time   

Q2 vs Q1 -0.01 (-16.74, 14.38) 5.98 (7.97, 4.10) 

Q3 vs Q1 9.09 (-6.25, 25.21) -5.91 (-8.12, -4.19) 

Q4 vs Q1 -0.03 (-19.60, 19.62) -0.12 (-20.43, 20.06) 

2011-2016 vs 2005-2010 8.96 (-8.64, 26.82) -3.46 (-5.12, -1.21) 

   

Intercept 6.54 (-11.35, 23.04) 1.99 (0.66, 3.50) 

Tau, precision    0.23 (0.11, 0.42) 

Sigma  4.79 (2.38, 8.66) 
 aCrI, Bayesian Credible Interval (The posterior distributions are summarized by the posterior mean and 95% 
CrI. A variable was considered as significant if it excluded 0). 

 

7.4.4 Smoothed incidence maps of leptospirosis in the UYRB and PRB 

Our smoothed incidence map of leptospirosis incidence in the UYRB (Figure 7-3) indicates 

that the distribution of leptospirosis was spread out from east towards south of the region, 

with the highest predicted incidence identified in a cluster of counties in the eastern part 

(Chongqing, west Hubei and Guizhou), central part (the southern part of Sichuan basin) and 

southern part (northeast Yunnan). The predicted population at risk of leptospirosis is 

103,907,069 people in a total of 179 counties. The mean absolute percentage error (MAPE) 
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of the model was 18.91%, indicating that the model showed good predictive performance (< 

50%). 

 

Figure 7-3 Spatial distribution of the observed leptospirosis incidence during 2011–2016 (top), 
predicted leptospirosis incidence for respective period (bottom) for the same period in the 
UYRB after controlling the effects of environmental and socioeconomic factors. 
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The geographical distribution of leptospirosis incidence in the PRB (Figure 7-4) appeared to 

be consistent with the observed incidence; although, it was more expanded and some high 

incidence counties appeared in the southern part of the basin. The incidence of leptospirosis 

was predicted to be higher in Hengxian (Nanning), Yongfu (Guangxi), Guangdong (e.g. 

Gaoming, Sihui, Longmen, Doumen, Xinyi), Fujian (Wuping) and Huichang (Jiangxi). In the 

PRB, the predicted population at risk was 50,681,249 people located in 105 counties. The 

MAPE of the model was 33.22%, suggesting that the model showed good predictive 

performance (< 50%). Maps of predicted standard deviation (SD) of incidence of leptospirosis, 

the posterior mean of spatially structured random effects and the probability of non-zero count 

is available in Appendix E: Figure E-1 and Figure E-2. 
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Figure 7-4 Spatial distribution of the observed leptospirosis incidence during 2011–2016 (top), 
predicted leptospirosis incidence for respective period (bottom) in PRB region after controlling 
the effects of environmental and socioeconomic factors. 

 



 
  

149 

 

7.5  Discussion 

Using recent notified leptospirosis data and a state-of-the-art approach for spatial modelling, 

our study investigated the small-scale geographical heterogeneity of leptospirosis incidence 

within the two residual high-risk areas in China, the UYRB and PRB. This is the first study to 

provide projections of leptospiral infection incidence at county-level the UYRB and PRB. Our 

study provides further insights on the effects of environmental and socioeconomic on the 

distribution of risk of leptospirosis to those already gained in prior studies (Zhao et al., 2016, 

Jagadesh et al., 2019). Our spatial modelling approach demonstrated that the incidence of 

leptospirosis is highly variable even within the regions and is driven by different ecological 

drivers after controlling for environmental and socioeconomic factors. Our findings suggest 

that interventions within the two high risk areas need to be highly targeted and local-specific if 

elimination is to be reached. Our study contributes evidence for designing and implementing 

targeted preventive and leptospirosis control policies in these both regions. Summary of the 

findings of this study was given in Table 7-3.  

In the present study, we demonstrate that seasonality in the incidence of leptospirosis 

notifications vary with geography in that for the UYRB, the incidence of leptospirosis was 

significantly lower in the second quarter (April–June) compared with the first quarter 

(January–March). In contrast, the incidence of leptospirosis notifications in the PRB was 

significantly higher in the second quarter relative to the first quarter. This finding reaffirms our 

previous study that recognised different temporal patterns of leptospirosis notifications 

between south coastal (Guangxi, Guangdong) and central inland (Sichuan, Chongqing, 

Guizhou, Hubei, Anhui) (Dhewantara et al., 2018a) areas. In addition, our findings also 

consistent with findings in other studies elsewhere. For instance, strong and different 

seasonality pattern of leptospirosis incidence has also been observed in elsewhere (Desvars 

et al., 2011, López et al., 2019). This seasonality patterns are greatly depending on climatic 

variability and the intensity of extreme weather events and flooding (Desvars et al., 2011). For 

instance, in northern Argentina, leptospirosis incidence increased during warm and temperate 

season, between December and May each year (López et al., 2019).  
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Table 7-3 Summary of the findings  

 Upper Yangtze River Basin 
(UYRB) 

Pearl River Basin (PRB) 

Ecological feature Stretch from Mt. Geladandong 
(6,621 m) in southwest Qinghai 
Province towards Chongqing 
municipality, crossing the 
Sichuan Plateau to Yichang. 
More than 4511 km which 
accounts for 70% of the total 
length of the Yangtze River 
(6300 km) with a drainage area 
of approximately 1,000,000 
km2 

Diverse and complex 
vegetation, soil type, climate 
and topography.  

Featured by mixed forest, bare 
land and cropland. 

Indian monsoon system, 
subtropical zone, 70-80% of 
the annual rainfall fall during 
May-October (summer). Mean 
temperature from 16–20°C. 

Intense floods and droughts. 

Stretch up to 2400 km 
(Yunnan to Guangdong), 
covers about 400,000 km2.  

Affected by tropical and 
subtropical climate, with 
annual mean temperature 
ranging from 14°C to 22°C 
and mean precipitation of 
approximately 1525 mm per 
year. 

About 80% of the annual 
rainfall fall during April-
September. Mean 
temperature ranging from 14-
22°C. 

Frequent and severe climate-
weather events (typhoons) 
leading to floods. 

Counties and populationa 386 counties, about 170 million 
people 

281 counties, approximately 
150 million people 

Total reported 
leptospirosis cases (2005-
2016) 

3217 cases (185 counties) 1473 cases (199 counties) 

Findings of the studyb The spatial variation in 
leptospirosis incidence was 
associated with precipitation, 
MNDWI (flood) and elevation 

Precipitation, NDVI 
(vegetation/biomass), 
livestock density and land 
cover explained the 
geographical heterogeneity 
of leptospirosis incidence 

Predicted population-at-
risk estimateb 

103,907,069 people in 179 
counties 

50,681,249 people in 105 
counties 

Suggested focus of 
intervention  

Revitalize drainage systems, 
WASH and rodent control. 
Strengthen climate-based early 
warning systems for 
surveillance 

Improve farm (small-scale) 
biosecurity measures 
(livestock vaccination, rodent 
control and waste 
management). Enhance 
disease awareness programs 
towards high-risk population 
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(farmers) (e.g., promoting 
PPE, chemoprophylaxis and 
IEC) 

a Based on GIS analysis. County level population data were obtained from China National Bureau of Statistics. 
b Based on ZIP-CAR spatial model. 

 

 

The difference in seasonality patterns between the two high risk areas may partly be driven 

by different climatic conditions that modulate exposure. The UYRB is situated in the 

subtropical monsoon area and is primarily influenced by the Indian monsoon system which 

brings abundant and long-lasting rainfall during May–October leading to severe floods. In 

contrast, the PRB lies in the tropical and sub-tropical climate zones with high precipitation 

during April–September. The findings provide important knowledge for anticipating 

leptospirosis outbreaks and for strengthening the surveillance and the capacity to diagnose 

acute undifferentiated illness in these regions.  

In line with other studies our results indicate that in both regions, the incidence of 

leptospirosis was significantly lower in 2011–2016 compared with 2005–2010 (Dhewantara et 

al., 2018a, 2018b). Based on the model, a prominent predicted reduction was identified in the 

UYRB. In the past few decades, significant progress has been made in the control of 

leptospirosis including the provision of access to safe water, sanitation and hygiene, 

improvement in biosecurity by reducing of leptospiral infection in animal (livestock) hosts 

through vaccination, and vaccination of high-risk populations (Hu et al., 2014, Xu and Ye, 

2018). In addition, this reduction could be linked with massive changes in land use along the 

Yangtze river (e.g., the development of Three Gorges Dam, land conversion due to 

urbanisation) and the introduction of agricultural mechanisation (Delang and Yuan, 2015, 

Chang et al., 2016), which may have directly or indirectly altered rodent/host diversity and 

reduced contact with a contaminated environment (Haake and Levett, 2015, Zhang et al., 

2019). 

Our study extended knowledge by that improving prior model developed by Jagadesh et al. 

(2019) through the addition of relative importance on socioeconomic and animal factors along 

with environmental variables. Our models accounted for various predictors and spatial 

autocorrelation in the data that improve the accuracy of the estimation. Most importantly, the 
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study provides uncertainty maps (e.g. maps of standard deviation) (Appendix E: Figure E-3 

and Figure E-4) that may better inform the need for evaluating and scaling-up the coverage of 

interventions towards both high- and low-risk areas. For example, the uncertainty maps can 

be used to locate areas where diagnostic capacity needs to be improved or where more 

active population-based surveillance is needed, especially in that known low-risk areas to 

accurately estimate the burden of leptospirosis.   

In both regions, we found that the leptospirosis incidence was significantly higher in areas 

with higher precipitation, which is consistent with previous studies elsewhere (Baquero and 

Machado, 2018, Gutierrez and Martinez-Vega, 2018, Dhewantara et al., 2019a). However, 

the effect size of rainfall was significantly higher in UYRB compared with PRB. In addition to 

rainfall in the UYRB, both elevation and MNDWI (a proxy for flooding) could adequately 

explain the geographical variation of the incidence of leptospirosis. Our results for UYRB 

indicate that lowland and flood-prone areas are at higher risk for leptospirosis transmission—

a finding that is consistent with the known hydro-ecology of this region (Yu et al., 2009). This 

finding also supports previous studies that elevation and flooding play a role in the 

epidemiology of leptospirosis (Lau et al., 2012, Wang et al., 2014). The UYRB features a 

predominantly a low-flat landscape, with abundant rainfall and frequent flooding, especially in 

the areas of the Yangtze valley and Three Gorges Dam reservoir (Yu et al., 2009). These 

findings confirm that leptospirosis transmission in UYRB is likely to be driven by extreme 

climatic events. Specific interventions that could be done in this area are improving the 

drainage systems as well as especially in that areas with high-risk of flooding and providing 

better access safe water and better sanitation and hygiene (WASH). In addition, the 

development of outbreak early warning system may be necessary to improve leptospirosis 

surveillance for timely preparedness and response.  

In PRB, the incidence was predicted to be higher in areas with a high greenness index (high 

biomass or vegetated areas) and a dense livestock (both pig and cattle) population, and in 

areas where waterbodies predominant. This could be due to a number of reasons. For 

example, higher greenness may be linked with an abundant rodent population and diverse 

animal reservoirs. This allow for the maintenance of Leptospira in the environment. This is 

supported by recent findings from a study in Jiangxi Province (Zhang et al., 2019)—which is 

adjacent to the PRB and shares typical climate and ecological characteristics—that revealed 
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high diversity of host animals and pathogenic Leptospira strains. Further, people living in 

areas with a dense livestock population have the potential to be exposed to infected animals 

or a contaminated environment. The finding in the PRB are also consistent with findings 

reported about American Samoa (Lau et al., 2012a) and Fiji (Mayfield et al., 2018b) that a 

significant effect of livestock density was an increased risk of leptospirosis infection. Further, 

higher incidence was found in areas with abundant waterbodies, such as lakes or in proximity 

to a river; this could be partly explained by behavioural factors (e.g., swimming, fishing, 

bathing), and such areas are prone to floods. Studies have reported that the presence of a 

river adjacent to human settlement increased the risk of leptospirosis (Lau et al., 2016, 

Mayfield et al., 2018a). Intervention programs in this region should be focused on preventing 

potential zoonotic transmission by improving biosecurity measures at farm level (e.g., 

livestock vaccination, rodent control and waste management). An integrated strategy to 

control leptospirosis in livestock by combining extensive biosecurity measures, vaccination, 

and chemoprophylaxis has successfully reduced the outbreak at farm level (Mughini-Gras et 

al., 2014; Pimenta et al., 2019). In addition, raising awareness among high-risk occupational 

groups (e.g., farmers, meat workers) through advocating protective wear for farmers (e.g. 

personal protective equipment) and chemoprophylaxis (doxycycline) and promoting 

awareness among populations at-risk (e.g. leaflets, educational packages) are also important. 

Our results also indicated that broad socioeconomic variables (GDP, crop production, 

urban/rural) were not associated with the spatial variation in the incidence of leptospirosis in 

the both the UYRB and PRB. This finding contradicts other studies that reported the 

significant role of poverty indicators in the geographical variation in leptospirosis incidence 

(Mayfield et al., 2018b, Baquero and Machado, 2018). This finding is probably due to area-

level socioeconomic status (SES) (as indicated by GDP) being a poor proxy of individual 

exposure risk and, thereby, unable to explain the spatial variation of leptospirosis incidence in 

the UYRB and PRB. Future models should incorporate individual/household-level 

socioeconomic factors (e.g., income, SES).  

Here, our modelling identified high-incidence areas and they appear to be more widespread in 

both the UYRB and PRB. In the UYRB, the incidence is predicted to be high in counties that 

border Chongqing-Hubei-Guizhou and counties in the central and southern part of the 

Yangtze valley, affecting more than 100 million people in 179 counties. In the PRB, the high-
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incidence counties are more scattered compared with the observed incidence counties. 

Higher incidence areas appear in the middle and lower reaches of the PRB. Our study 

estimated that approximately 50 million people in 105 counties are at high risk of contracting 

leptospirosis infection. In light of our study, the findings suggest there remain many areas that 

still have a high incidence of leptospirosis both in the UYRB and PRB, highlighting the 

importance of expanding the coverage of the intervention program towards larger areas within 

the region. It may also be necessary to evaluate and strengthen surveillance and diagnostic 

capacity in those predicted high-risk areas. 

In this study, the model validation was based on MAPE. This study used CAR model, which is 

basically smoothing the observed rates across all known polygons (counties) of the study. 

This CAR method is not strictly a spatial prediction technique but rather a smoothing 

approach that accounting for correlated covariates. Thus, in this context, MAPE is a robust 

approach to look at differences between the observed counts in a area and the adjusted or 

smoothed counts under the model. MAPE could provide an assessment of the role of 

covariates at explaining area-based spatial autocorrelation. 

 

Limitations 

Some limitations in this study should be considered when interpreting the findings. First, the 

study utilised all reported leptospirosis cases from both regions, including those clinically 

diagnosed and laboratory confirmed cases. This approach was chosen as it would allow 

comparing with other local epidemiological studies and government reports. In addition, as 

the data used in the study were obtained from a passive surveillance system, the results 

presented here might be influenced by the under-reporting of leptospirosis due to poor 

awareness in the population towards the symptoms, availability or accessibility of health 

services, and diagnostic testing facilities—especially in remote areas. While leptospirosis is a 

notifiable disease in China its surveillance is primarily passive in nature. To date, there have 

been no studies reporting active surveillance (e.g., by means of serosurveys) to quantify the 

true burden of infection. However, the findings of the present study indicate the opportunities 

for health authorities in the identified high-risk areas to design and plan active surveillance 

activities to better understand the local conditions that contribute to the increase risk in those 

communities identified in our study. Second, the spatial (pixel size) and temporal resolution of 
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the covariates might be not perfect as some data were not available in finer spatial resolution 

(e.g., urban-rural raster data with 5 x 5 km spatial resolution) and matched with timeframe of 

the epidemiological data used in this study (e.g., GDP). This may influence the results as 

coarse spatial and temporal resolution might subject to measurement error. Additionally, we 

estimated and used the areal mean value of each remote-sensed covariates as a proxy for 

the actual exposures. However, this technique could lead to regression dilution bias due to 

imprecise exposure estimation, which may in turn underestimate the observed effects 

(Hutcheon et al., 2010).  Fourth, although we accounted for several environmental and 

socioeconomic covariates in the development of prediction maps for leptospirosis, the 

observed effects may also be confounded by unmeasured factors (e.g., biosecurity 

improvement, rodent controls, and improvement in water supply, sanitation and hygiene 

(WASH) infrastructure in China). This is indicated by a relatively high standard deviation in 

some areas where leptospirosis is also predicted to be high (Appendix E: Figure E-1 and 

Figure E-2). Finally, in this study we did not identified any association between socioeconomic 

factors and leptospirosis incidence. We hypothesised that individual/household-level or 

community-level socioeconomic factors (e.g., behaviour, occupational exposure, presence of 

animal reservoirs in the household, access to safe drinking waste and sanitation, household 

income) could be more influential in explaining the spatial variation in the incidence of 

leptospirosis in both regions instead of broad socioeconomic factors. Unfortunately, in this 

study we did not include those variables as there was no such data available at county level. 

Further studies should include individual-, household-, and community-level socioeconomic 

factors in the prediction model to better understand the role of such factors on the spatial 

variation of leptospirosis in this region. In addition, future studies should attempt to look at the 

effect of climate change on the geographical distribution of the risk of leptospirosis in these 

regions, as the incidence of leptospirosis is likely to increase due to climate change and 

urbanisation (Lau et al., 2010). This could be achieved by incorporating various emission 

scenarios/representative concentration pathways (RCPs) into the models. 

 

7.6  Conclusion 

Our study demonstrated that drivers of leptospirosis incidence differ between high-risk areas 

of China, suggesting local-specific interventions. In UYRB, leptospirosis incidence was 
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strongly associated with flooding, while in PRB, it appeared to be strongly related with 

agricultural practices. The smoothed-predictive map of leptospirosis incidence developed in 

this study can aid health authorities and policymakers to identify areas within the two high-risk 

areas where surveillance and diagnostic capacity for leptospirosis control should be 

strengthened in order to achieve effective control and elimination. 
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Chapter 8 Climate variability, satellite-derived environmental data 

and human leptospirosis: a retrospective ecological study in 

China 

 

This research chapter has been published in Environmental Research as an original peer-

reviewed research paper. The concept and design of the study outlined in this Chapter 8 were 

formulated by PWD (80%) with the assistance of RJSM (10%) and WH (10%). WYZ provided 

the data. PWD was responsible for data management (100%), data analyses (100%) and the 

interpretation of results (85%) was discussed in consultation with WH (10%) and all co-

authors (5%). PWD was responsible for drafting the manuscript (100%). PWD was 

responsible for revision of the final version of the manuscript (90%), taking into account the 

comments and suggestions of RJSM (5%) and all co-supervisors (5%).  

Reprinted from Environmental Research, September 2019; Volume 176. Dhewantara, P.W., 

Hu, W., Zhang, W.Y., Yin, W.W., Ding, F., Mamun, A.A. and Soares Magalhães, R.J. Climate 

variability, satellite-derived physical environmental data and human leptospirosis: A 

retrospective ecological study in China. Copyright (2019) with permission from Elsevier Inc. 

 

8.1  Context 

In my review detailed in Chapter 2 and Chapter 4, I indicated that climatic and environmental 

variables are important parameters when modelling leptospirosis transmission. Research 

detailed in Chapter 5 also highlighted that leptospirosis in China is highly seasonal, but I also 

found differences in the annual epidemic pattern across regions. This may be linked with 

climate variability. The research detailed in Chapter 6 demonstrated that weather is one of the 

important determinants of leptospirosis, which means areas differ in terms of their risk 

because of precipitation (i.e. areas with higher monthly precipitation are more likely to have 

higher leptospirosis incidence). The results presented in Chapter 7 further confirmed that the 

role of socioecological factors on leptospirosis incidence was significantly geographically 

varied at county level, emphasising that risk factors of leptospirosis incidence are highly local 

specific.  
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In order to effectively deliver intervention programs, health authorities also need adequate 

information on the best timeframe for conducting interventions. Localised risk forecasting 

tools are required to better improve prevention and preparedness for leptospirosis outbreaks 

as leptospirosis transmission is likely to operate at local level. So far, as indicated in the 

systematic review detailed in Chapter 4, studies have been conducted at various scales 

(national, sub-national, and local level) (Desvars et al., 2011; Chadsuthi et al., 2012; 

Suwanpakde et al., 2015; Matshushita et al., 2018) to look at the temporal associations 

between climate and leptospirosis. Few studies, however, have attempted to use remote 

sensed parameters to examine the associations between environmental variability and 

leptospirosis incidence and to develop temporal prediction models. The goal of this chapter is 

to provide temporal models, which account for climatic information and remote-sensed 

environmental indicators, as tools to anticipate leptospirosis outbreaks in high-risk counties 

identified in Chapter 6 and Chapter 7. Before the study outlined in this chapter was initiated, 

outbreak-prediction models for leptospirosis in China had not been developed. In light of the 

strong interplay between climate, environment, and leptospirosis emergence, it became 

important to be able to measure the temporal association between climate, physical 

environment, and the incidence of leptospirosis. Such evidence can be used to lay the 

foundation for developing an outbreak prediction system to better prepare and estimate the 

impact of leptospirosis outbreaks at county level. 

In this chapter, I sought to assess the relationships between climate, environment and 

leptospirosis at local scale in selected high-risk counties in Yunnan and Sichuan province, 

namely, Mengla County and Yilong County, respectively. I selected these two counties due to 

several reasons. First, both counties were identified as high-risk counties as evidenced in 

Chapter 6 and Chapter 7. Second, both counties have different socioecological conditions in 

terms of climate, landscape, and sociocultural characteristics (Chen et al., 2016; Xu et al., 

2017).  

In this chapter, I used monthly laboratory-confirmed leptospirosis notification data from 1 

January 2006 to 31 December 2016. I used ground weather data collected from the China 

Meteorological Data Sharing Service System. In addition, I used the moderate-resolution 

imaging spectroradiometer (MODIS) derived normalized difference vegetation index (NDVI), 

the modified normalized difference water index (MNDWI), and land surface temperature 
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(LST). I quantified the year-to-year associations between these weather and environmental 

parameters and leptospirosis incidence. This involved exploring the seasonality, investigating 

cross-correlation, and developing negative-binomial generalized linear regression models.  

I demonstrated that seasonality of leptospirosis incidence is strong and site-specific. Results 

of generalized linear models demonstrated that in Mengla County, leptospirosis incidence 

was negatively associated with rainfall (lag of 6 months) and LST (lag 0 month). In Yilong 

County, the incidence of leptospirosis was positively associated with rainfall (lag 1 month), 

LST (lag 3 months) and MNDWI (lag 5 months). This study of the short-term effects of climate 

and environment on leptospirosis incidence have provided important evidence for improving 

our understanding regarding possible cycles of leptospirosis epidemics in both locations, 

which can be beneficial for strengthening surveillance programs at local level. In addition, in 

this chapter I indicated that local early warning systems for leptospirosis can be developed by 

putting altogether both local ground weather data and satellite-based environmental data.  

 

8.2 Introduction 

Leptospirosis is a water associated zoonotic disease caused by pathogenic Leptospira 

bacteria and is ubiquitously distributed in tropical and subtropical regions (Haake and Levett, 

2015). Each year, about 1 million cases of human leptospirosis are reported globally and 

approximately 60,000 people lost their lives due to the infection (Costa et al., 2015). 

Leptospiral infection in humans presents a broad spectrum of symptoms ranging from flu-like 

illness, mild fever, headaches, jaundice, and myalgia to severe infection leading to pulmonary 

haemorrhage, renal failure, hepatic dysfunction even death (Levett, 2001). Given the non-

specific clinical presentation, leptospirosis is often misdiagnosed especially in areas where 

surveillance and diagnostic capacity is limited. Infection in humans occurs due to the 

exposure to infected animals’ tissues or urine or being exposed to water or soil containing the 

bacteria. The bacteria enter the human body through wound or mucosal membranes. A wide 

range of animals including domestic and livestock animals have been considered as carriers 

and are able to shed Leptospira spp serovars into the environment, though rodents are known 

as the key actor for leptospirosis transmission (McBride et al., 2005).     

In China, leptospirosis was first reported in 1955 and since then it has become one of the 

infectious diseases that all health providers across China must give notification of (Shi et al., 
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1995; Zhang et al., 2012). Most leptospirosis outbreaks are reported in rural areas where both 

rodents and livestock could be major sources of infections and where most people are 

intensively involved in subsistence agricultural activities (Zhang et al., 2012). Local outbreaks 

following heavy rainfall and flooding have been reported in some parts of China (Tang et al., 

2017; Wang et al., 2014). Studies have shown that disease incidence and mortality has been 

declining since the 2000s, which is possibly due to demographical, ecological, and social 

changes (Dhewantara et al., 2018a; Zhang et al., 2012). Despite this dramatic reduction, 

residual high-risk areas for leptospirosis transmission still exist throughout the country 

(Dhewantara et al., 2018b), indicating that the drivers are still present. This has been 

evidenced by frequent annual local outbreaks, especially in resource-limited rural areas in 

southwest China (Zhou et al., 2015). A previous study demonstrated that during 2005–2015 

high risk areas were identified in Yunnan and Sichuan Provinces in the southwest which 

contributed to 47% of the total reported cases (Dhewantara et al., 2018b). Yet, factors 

underlying local leptospirosis transmission in these two areas are far from clear. Hence, it is 

essential to assess and identify local key environmental drivers associated with continuous 

leptospirosis transmission in order to anticipate further localised outbreaks and bring the 

disease closer to being eliminated in China.  

Indeed, leptospirosis transmission involves complex socioecological mechanisms. In tropical 

and sub-tropical regions, most leptospirosis outbreaks occur during humid and wet seasons 

or monsoons, which drive more water, moist soil, and flooding providing a favourable medium 

for Leptospira transmission. In such favourable environmental conditions, some pathogenic 

Leptospira strains can survive for days, even months (Andre-Fontaine et al., 2015; Baker and 

Baker, 1970). Further, in rural areas, the wet season coincides with intense farming activities 

(e.g. irrigating or planting paddy fields, harvesting and herding). At the same time, the rodent 

population becomes more abundant in the environment (Perez et al., 2011) as rainfall 

increases land and vegetation productivity and thus provides more food as well as suitable 

environment conditions for rodents to breed. Increases in the rodent population could boost 

Leptospira shedding into the environment as well as increase risk of transmission among 

reservoir animals. Moreover, lack of sanitation, poor waste management, and unsafe 

behaviours (e.g. walking barefoot) due to poor socioeconomic conditions increase the risk of 

human infection (Mwachui et al., 2015). 
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In the absence of adequate intervention strategies—such as routine surveillance, vaccination, 

social and environmental modifications (e.g., rodent control, water and sanitation 

improvements) and early-warning systems—leptospirosis transmission in residual high-risk 

areas is likely to continue. Climate change could potentially affect the seasonality and shift the 

geographical distribution of leptospirosis (Lau et al., 2010). The impact of meteorological 

factors on leptospirosis incidence has been widely investigated at various geographical 

settings and climatic zones (Chadsuthi et al., 2012; Coelho and Massad, 2012; Desvars et al., 

2011; Ghizzo Filho et al., 2018; Gutiérrez and Martínez-Vega, 2018; Matsushita et al., 2018; 

Pappachan et al., 2004; Robertson et al., 2012; Soares et al., 2010; Suwanpakdee et al., 

2015; Weinberger et al., 2014). Previous research demonstrated a strong association 

between leptospirosis incidence and climate, but its size and lagged effects varied between 

studies ranging from weeks to months. For instance, in New Caledonia, leptospirosis 

outbreaks were influenced by La-Niña periods which were responsible for heavy rainfall 

events in the island; it was found that rainfall at a lag of eight months was significantly 

associated with leptospirosis incidence at a given month (Weinberger et al., 2014). In 

addition, a recent study in Manila, Philippines, found an increase in leptospirosis hospital 

admissions was linked to rainfall at a lag of two weeks (Matsushita et al., 2018). Some studies 

have also demonstrated an association between leptospirosis occurrence and humidity and 

temperature (Joshi et al., 2017; Sumi et al., 2016). These studies used climatic data 

measured by ground stations. To date, few studies have investigated the role of climate on 

the leptospirosis outbreaks in China (Wang et al., 2014; Zhang et al., 2012). The association 

of climate variability on the incidence of leptospirosis in China, especially in residual high-risk 

counties remains unclear. 

In addition to climate, the role of the physical environment on leptospirosis transmission is 

also important, such as the presence of waterbodies or flooding and variation in land cover 

(Della Rossa et al., 2016; Ledien et al., 2017; Matsushita et al., 2018). Currently, remote-

sensing (RS) technologies provide a broad range of physical environment data at various 

spatial and temporal scales, which can help to better understand disease epidemiology 

(Hamm et al., 2015; Herbreteau et al., 2007). Such satellite-derived data have been widely 

used to identify environmental drivers of vector-borne disease such as malaria (Ebhuoma and 

Gebreslasie, 2016) or water-borne diseases such as cholera (Xu et al., 2015), but very few 

leptospirosis studies to date have used these RS data to quantify the role of environmental 
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risk factors in the temporal pattern of leptospirosis incidence. For instance, a moderate 

resolution imaging spectroradiometer (MODIS)-derived modified normalized difference water 

index (MNDWI) has been used as a flooding indicator and to help estimate risk for 

leptospirosis in Kampong Cham province, Cambodia (Ledien et al., 2017). This far, no studies 

have investigated the temporal relationships of both climatic and RS-based physical 

environmental indicators and leptospirosis in China. Combining both climatic and RS-based 

physical environment data can provide further insight into the local epidemiology of 

leptospirosis in China and it could be used to anticipate leptospirosis outbreaks in order to 

support local health authorities to better design timely and effective control strategies for 

leptospirosis, especially in residual high-risk areas.  

In this present study, our primary objective was to examine the short-term associations 

between climatic and satellite-derived physical environmental data on human leptospirosis in 

high-risk areas in China. 

 

8.3 Methods 

8.3.1 Study area 

This study was carried out in two counties, Mengla County in Yunnan Province and Yilong 

County in Sichuan Province (Figure 8-1). These two counties were selected because both 

were at the high-risk regions for leptospirosis in the country (Zhang et al., 2012; Dhewantara 

et al., 2018b). Moreover, both counties are situated in different climatic zones and exhibit 

unique socioecological features. Mengla County (21°27'33.24''N, 101°35'52.68''E) is located 

in Xishuangbanna and covers an area of 7093 km2 with a predominantly mountainous 

landscape with elevation ranging from 480 m to 2023 m. Mengla county has a tropical 

monsoon climate with a wet season (May–October), dry and foggy season (November–

December) and dry-hot season (January–April) and annual precipitation between 1200 and 

2500 mm. It has a population of 200,000 people and is inhabited by about 11 ethnic groups of 

which, Dai and Hani are dominant. Each group has different types of agricultural activities. 

Most Dai people live in the lowland near the river and engage with wet paddy cultivation; 

while Hani people occupy the upland hills and are involved in shifting cultivation. This region 

has also been known as the second largest rubber plantation area in China (Chen et al., 

2016).  
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Yilong County is under Nanchong city administration (3116'17.62''N, 10618'10.95''E) which 

lies in the typical subtropical humid zone characterised by high humidity, mild winter, and hot, 

humid summer. The city is also located in the Sichuan Basin where rainfall is abundant, with 

annual rainfall ranging from 900 to 1200 mm. Due to favourable climate and environmental 

conditions, most areas in the Sichuan Basin are suitable for agriculture, primarily rice 

plantation (Xu et al., 2017). The county covers an area of 1771 km2 with a population of about 

1.11 million people in 2009, and most people live in rural areas and engage in rice cultivation 

and animals farming. The county has a hilly landscape and is adjacent to the Jialing River, a 

tributary of the Yangtze River. 

 

 

Figure 8-1 Map of study location: Yilong County, Nanchong, Sichuan (A) and Mengla County, 
Xishuangbanna, Yunnan (B), China. Image of Yilong County and Mengla County was 
retrieved from Landsat 8 OLI-TIRS (available online at https://landsatlook.usgs.gov/) and 
processed in ArcGIS 10.5.1 (ESRI Inc., Redlands, CA, USA).  

 

https://landsatlook.usgs.gov/
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8.3.2 Leptospirosis notification data 

Monthly laboratory-confirmed leptospirosis cases in both counties for the period of 1 January 

2006 to 31 December 2016 were collected from the Chinese Center for Disease Control and 

Prevention (China CDC) through the China Information System for Disease Control and 

Prevention (CISDCP). A total of 543 leptospirosis cases were reported during 2006–2016 

from both counties. All cases included in the analysis were confirmed based on the standard 

diagnosis guidelines set by the National Health Commission of the People’s Republic of 

China (Ministry of Health of China, 2008). In addition, yearly population data for both counties, 

obtained from the National Bureau of Statistics, were used to estimate the leptospirosis 

incidence. Ethics clearance for this project was approved by the Medical Research Ethics 

Committee of the University of Queensland (#2016001608) and the Ethics Committee of 

Beijing Institute of Disease Control and Prevention. All potentially identifiable information has 

been removed to protect the privacy of individuals. 

8.3.3 Local meteorological data 

Monthly data on rainfall and relative humidity (RH) for the same period were calculated from 

the daily meteorological records provided by the China Meteorological Data Sharing Service 

System (http://cdc.cma.gov.cn/). Weather data were reported from two local weather stations 

in both counties. Missing values were interpolated based on the nearby weather stations 

(Eischeid et al., 2000).    

8.3.4 Remote-sensed environmental data 

For each county, we obtained remote-sensed environmental data, including normalized 

difference vegetation index (NDVI), modified normalized water difference index (MNDWI) and 

land surface temperature (LST) from MODIS Terra satellite. Briefly, NDVI was calculated 

using red (wavelength: 620-670 nm) and near infrared (NIR) (841-876 nm) of MOD09A1 

product with 8-day and 500-m resolution. The NDVI was used as a proxy of vegetation 

(biomass productivity linked with seasonal agricultural practices–rice harvesting cycle) that 

may also reflect abundance of food in the ecosystem and seasonal rodent abundance 

(Lumbierres et al., 2017, Yu et al., 2017). We used MNDWI as a proxy for the presence of 

standing waterbodies, floods or inundated water (Ledien et al., 2017). Values for MNDWI 

were calculated based on the surface reflectance of green (545-565 nm) and short-wave 

infrared (SWIR) (1628–1652 nm) (Xu, 2006). Leptospira survival and virulence depend on 
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temperature (Stoddard et al., 2014; Fraser and Brown 2017), hence we included data for land 

surface temperature (LST) (C) extracted from MODIS Terra LST product (MOD11A2) with an 

8-day composite and 1-km resolution. All MODIS products were downloaded from the United 

States Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center 

(https://eros.usgs.gov/). To cover our two study areas, two MODIS tiles were required 

(h27v05, h27v06). All images were then mosaicked, re-projected, and resampled to 500 m to 

match with other products. The time-series monthly data of NDVI, MNDWI and LST for each 

county from January 2006 to December 2016 were extracted using ArcGIS v10.5. Values for 

NDVI and MNDWI range from -1 to 1. A detailed list of remote-sensing parameters included in 

the analyses are summarised in Appendix F: Table F-1.  

8.3.5 Statistical analyses 

Variable selection 

Monthly leptospirosis counts were considered as a dependent variable in our analyses. Five 

independent climatic and RS variables were included in the analyses including rainfall, RH, 

NDVI, MNDWI and LST. Spearman’s correlation coefficient was used to examine the bivariate 

association between independent variables. Strong correlated variables (Spearman’s rho  

|0.8|) were analysed separately in the modelling stage to avoid collinearity issues. 

Associations were considered statistically significant at P < 0.05. Cross-correlation analysis 

was then performed to investigate significant temporal lags (in months) between leptospirosis 

incidence, climatic and environmental variables. The factors that did not show a significant 

temporal lag were not included in the final model. We included all variables that reached 

positive and negative significant lag values in the model selection processes with a maximum 

lag of eight months, according to previous findings (Chadsuthi et al., 2012; Weinberger et al., 

2014) and also biological and epidemiological plausibility of leptospirosis transmission.  

Exploration of seasonality 

Decomposition analysis was applied to decompose the leptospirosis monthly notification time 

series data (Yt) into a combined trend (Tt), a seasonal component (St), and an error or 

residual component (Et) (Cleveland et al., 1990). The relationship between the different 

decomposition terms and leptospirosis incidence is: 

Yt =Tt + St + Et 
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We included St into the model as a seasonal factor (SAF) to control the effect of seasonality in 

the regression model (Kumar, 2010).   

Examining short-term associations  

Since the residuals of the leptospirosis notification model are assumed to follow a Poisson 

distribution, we used a generalized linear model (GLM) to evaluate the effects of climatic and 

environmental factors on the incidence of leptospirosis, adjusted by seasonal components 

(SAF). To account for over-dispersion in the count data, a negative binomial distribution with a 

log link was used. The natural logarithm of the population was added as an offset term. The 

goodness-of-fit of the models was assessed based on Bayesian Information Criterion (BIC) 

and deviance. The model with the lowest BIC and deviance was chosen as the final model. 

The seasonality and autocorrelations of the deviance residuals of the final models were 

checked by visually examining the sequence charts and partial autocorrelation function over 

time lags. In addition, to test for collinearity among all explanatory variables in the final 

models, the variance inflation factor (VIF) was observed and variables with VIF  4 were 

removed (O’Brien, 2007). All statistical analyses were conducted using SPSS version 24 (IBM 

Corp, Armonk, NY, USA).  

 

8.4 Results   

8.4.1 Descriptive analysis 

During the 11 years of the study period, there were a total of 573 and 459 leptospirosis cases 

reported in Mengla and Yilong counties, respectively. They account for 44.90% and 28.36% 

of total leptospirosis cases recorded in Yunnan and Sichuan Provinces, respectively. Table 8-

1 summarises the mean, standard deviation (SD), minimum and maximum value, and 25th 

and 75th percentile of the distributions of leptospirosis cases, weather and remote sensed 

environmental parameters per month in the two counties studied during the entire study 

period.  

On average, there were 4.34 (range 0–29) leptospirosis cases reported per month in Mengla 

County whereas, the monthly average number of leptospirosis in Yilong was 3.47 (ranging 

from 0 to 104 cases). Mean monthly rainfall (127.62 mm with range 0 to 555.9 mm) and 

humidity (80.33%, 69–91%) in Mengla County was relatively higher compared to Yilong 
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County. The monthly mean NDVI in both counties was not significantly different ranging from 

0.06 to 0.84. The mean monthly MNDWI and LST in Mengla County was 0.1 and 6C higher, 

respectively, compared with Yilong County. The wide range of monthly mean LST was 

observed in Yilong County (6.97C to 37.79C). 

A strong seasonality pattern of leptospirosis incidence was identified in both counties with the 

highest incidence being attained in 2011–2012 (Figure 8-2). Bimodal annual seasonality was 

obviously observed in leptospirosis data from Mengla County; with two major peaks in May 

and September. In contrast, leptospirosis in Yilong County showed a single annual peak in 

September during the study period (Appendix F: Figure F-1). 
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Table 8-1 Summary statistics of monthly leptospirosis cases, climatic and environmental variables in Mengla and Yilong County, 
2006–2016 

Variables 
Mengla County  Yilong County 

Mean SD Min. Max. P25 P75  Mean SD Min. Max. P25 P75 

Leptospirosis  4.34 6.07 0 29 0.00 7.00  3.47 13.68 0 104 0.00 0.75 

Precipitation (mm) 127.62 121.47 0 555.9 32.22 194.35  33.60 38.00 0.66 230 6.43 49.30 

RH (%) 80.33 4.75 69 91 77.00 83.00  74.60 5.44 58.30 85.77 70.53 78.76 

NDVI 0.62 0.17 0.09 0.84 0.52 0.75  0.66 0.23 0.06 0.82 0.21 0.60 

MNDWI 0.35 0.28 -0.28 0.93 0.17 0.57  0.24 0.17 -0.28 0.76 0.13 0.36 

LST (C) 29.72 3.93 20.97 37.53 26.38 32.82  23.50 8.47 6.97 37.79 15.03 31.42 

Note: RH, NDVI, MNDWI and LST indicate relative humidity, normalized difference vegetation index, modified normalized difference water index and land 
surface temperature, respectively. 
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Figure 8-2 Monthly leptospirosis incidence, climatic and satellite-based environmental data in Mengla County, Xishuangbanna, 
Yunnan (left) and Yilong County, Nanchong, Sichuan (right), China, 2006-2016. 
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8.4.2 Correlation analyses 

Results of the Spearman’s correlation test indicated that all variables including rainfall, 

humidity, NDVI, MNDWI and LST were significantly correlated with leptospirosis incidence in 

Mengla County (Appendix F: Table F-2). However, NDVI was found to have an inverse 

association with leptospirosis incidence. In Yilong County, most variables showed significant 

correlation (P < 0.001) with leptospirosis incidence in the county, except humidity and 

MNDWI. No strong correlation (r  |0.8|) between leptospirosis and weather and 

environmental variables in both counties was observed.  

 

8.4.3 Time series cross-correlation between leptospirosis incidence and lagged climate and 

environmental variables 

In Mengla County, cross-correlation analysis identified significant maximum positive cross-

correlation function (CCF) between leptospirosis incidence and rainfall was at a lag of one 

month (Figure 8-3; Appendix F: Table F-3). A high negative CCF was observed between 

leptospirosis and rainfall, humidity and NDVI at lag of 6 months, 4 months, and 2 months, 

respectively. MNDWI at lag 0 have positively strong correlation with leptospirosis. LST at lag 

0 to 4-months was correlated with leptospirosis cases with the highest coefficient observed at 

lag 1. 

In Yilong County, the power of associations between leptospirosis and rainfall were also 

heterogeneous over time lags, with the highest CCF being observed in lag 2. Correlation 

between leptospirosis and humidity was relatively weak from lag 0 to lag 4. Leptospirosis was 

found to have strong positive correlation with a 1-month lag of NDVI and a 4-month lag of 

MNDWI. Positive CCF was also identified between leptospirosis and LST at lag 1 to lag 4 

months, with the maximum correlation at lag 2.  
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Figure 8-3 Cross-correlation analysis on human leptospirosis with rainfall, humidity, 
normalized difference vegetation index (NDVI), modified normalized difference water index 
(MNDWI) and land surface temperature (LST) in both Mengla County (left) and Yilong County 
(right). 
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8.4.4 Associations between leptospirosis incidence and weather and remote-sensed 

environmental indicators  

A total of 23 model candidates were constructed for both Mengla County (11 models) and 

Yilong County (12 models) (Table 8-2). In Mengla County, we identified 5 univariable models. 

Our univariable analysis shows that leptospirosis was significantly associated with a 6-month 

lag for humidity, 2-month lag for MNDWI, 2-month lag for NDVI and 6-month lag for rainfall. 

However, among these five univariable models, model 5 (rainfall at lag of 6 months) showed 

the lowest BIC value (549.24). Seven multivariable models were identified in Mengla County. 

The final model included a 6-month lag for rainfall and a 0-month lag for LST which yielded a 

substantial reduction in BIC values (BIC = 538.92).  

In Yilong County, the univariable analysis showed that rainfall at a lag of 1 month was the 

best predictor of leptospirosis (BIC = 288.28) compared with other climate and environmental 

variables. In the multivariable model, the inclusion of a 1-month lag for rainfall, a 5-month lag 

for NDWI and a 3-month lag for LST greatly reduced the BIC values by 20.67 points (BIC = 

267.61). We did not identify a statistically significant interaction effect in both counties. 

Moreover, there was no indication of multi-collinearity in both final models (Appendix F: Table 

F-4; Table F-5). 

Table 8-3 summarised the parameter estimates of the final model for both counties. In Mengla 

County, the final model suggests that for one unit (mm) increase in the rainfall at a lag of six 

months, the expected incidence rate ratio (IRR) for leptospirosis in a given month would be 

1% less, while holding the LST constant. Similarly, an increase in LST (1C) would reduce the 

rate in the current month by 14%.  

Whereas, in Yilong County, the model estimates indicated that one unit increase in rainfall 

during the previous month would increase the IRR by 1% in the current month. A 0.1 increase 

in MNDWI at five months earlier would be likely to increase the incidence by 7.7 times. A one 

degree increases in LST at lag of 3 months, would increase the expected IRR for 

leptospirosis in the current month by 19%, when rainfall and MNDWI is assumed to be 

constant in the model.
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Table 8-2 Summary of model selection in predicting leptospirosis incidence in both Mengla County and Yilong County 

Study site Model Predictor(s) lag BIC Deviance 

Mengla County 1 SAF 561.73 1.220 

 2 SAF+RH6 562.65 1.198 

 3 SAF+MNDWI2 562.18 1.194 

 4 SAF+NDVI2 560.98 1.185 

 5 SAF+Rainfall6 549.24 1.089 

 6 SAF+Rainfall6+RH3 547.95 1.048 

 7 SAF+Rainfall6+NDVI5 545.62 1.029 

 8 SAF+Rainfall6+RH6+NDVI5 545.68 0.998 

 9 SAF+Rainfall6+MNDWI5+RH6 544.40 0.987 

 10 SAF+Rainfall6+MNDWI5 + NDVI6 542.75 0.974 

 11 SAF+Rainfall6+LST0 538.92 0.974 

     

Yilong County 1 SAF 330.41 1.187 

 2 SAF+MNDWI3 328.66 1.153 

 3 SAF+RH0 323.48 1.111 

 4 SAF+MNDWI5 318.50 1.071 

 5 SAF+NDVI2 316.51 1.054 

 6 SAF+Rainfall1 288.28 0.825 

 7 SAF+Rainfall1+NDVI2 288.61 0.797 

 8 SAF+Rainfall1+RH0 289.18 0.793 

 9 SAF+Rainfall1+MNDWI3 287.68 0.787 

 10 SAF+Rainfall1+MNDWI3+NDVI2 287.41 0.751 

 11 SAF+Rainfall1+RH0+LST2 275.73 0.649 

 12 SAF+Rainfall1+MNDWI5+LST3 267.61 0.585 

     

Abbreviations: SAF, RH, NDVI, MNDWI and LST indicate seasonal factor, relative humidity, normalized difference vegetation index, modified normalized difference 

water index and land surface temperature, respectively. 
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Table 8-3 Parameter estimates of the fitted generalized linear models of the association of climatic and remotely-sensed variables with 
leptospirosis incidence in Mengla County and Yilong County, China 

Study site Predictor Lag 

(months) 

IRR 95% CI 

Lower Upper 

Mengla County SAF 0 3.388 2.400 4.783 

 Rainfall (mm) 6 0.989 0.985 0.993 

 LST (C) 0 0.857 0.792 0.929 

      

Yilong County SAF 0 1.485 1.371 1.609 

 Rainfall (mm) 1 1.013 1.003 1.023 

 MNDWI (per 0.1) 5 7.690 1.241 47.66 

 LST (C) 3 1.193 1.095 1.301 

      

Abbreviations: SAF, seasonal factor; MNDWI, modified normalized difference water index (per 0.1 MNDWI); LST, land surface temperature; 95%CI, 95% confidence 

interval.
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8.5  Discussion 

In the present ecological study, we looked at the temporal variation of human leptospirosis 

and its association with meteorological and satellite-derived physical environmental 

parameters in two of the remaining hotspots of leptospirosis in China. Both areas are 

located in different climatic zones in southwest China and our analysis revealed strong 

seasonality and unique annual cycles for leptospirosis incidence in each county. In 

addition, our study extends current knowledge in that it demonstrates that the effect of 

rainfall appears to play a pivotal role on leptospirosis transmission in both locations; 

however, we observed that its effect differs between locations. In addition to rainfall, our 

models demonstrated the importance of RS-based parameters including flooding, 

vegetation and land surface temperature (LST) on the seasonality of leptospirosis in the 

two hotspots. The findings of this study improve our knowledge about the role of climate 

and environmental factors in the temporal variability of human leptospirosis at local level. 

This work lays the foundation for establishing an integrated spatial-temporal prediction 

model for leptospirosis in China. 

In this present study, we identified a bimodal annual cycle of leptospirosis incidence in 

Mengla County, peaking in May and September. Such a pattern suggests that the drivers 

of leptospirosis transmission in this area might be multifactorial. This finding may be 

partially explained by the unique climatic and socioecological profile (e.g. agricultural 

behaviours of the communities) of this area. To illustrate, Mengla County lies in the tropical 

zone with a wet season that occurs during May to October and the majority of rural 

communities in this area are involved in agricultural activities all-year round including 

rubber tree tapping (from March to November), tea collection (February to October), 

vegetable and rice harvesting (May to June). In addition, households also raise a wide 

range of livestock, such as cattle, buffaloes, pigs, and goats for a variety of purposes (e.g. 

transport, plowing, consumption, economy, and traditional events) (Shen et al., 2017). 

Moreover, since there was a rapid expansion of monoculture rubber plantations leading to 

massive land transformation, the ecological conditions of the area were also affected (e.g. 

excessive surface runoff during wet season and water scarcity during the dry season as 

well as habitat fragmentation) (Xu et al., 2014). Such anthropogenic-driven land cover 

changes may bring impacts such as increasing the likelihood of flash flooding during wet 

season, water contamination, and the transmission of Leptospira among animals (rodents, 

wildlife and livestock) due to loss of their natural habitats which might directly or indirectly 

contribute to the cycle of leptospirosis transmission. These factors could amplify 
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leptospirosis risk and transmission in Mengla County and therefore further empirical 

studies are needed to investigate in more idetail the role of these socioecological 

processes. 

In contrast, Yilong County exhibits a strong single peak seasonal pattern with the highest 

incidence typically in September. This finding may partly reflect the modifiable effect of 

climate on leptospirosis occurrence in the area. This finding is also consistent with other 

local studies conducted elsewhere in Sichuan (Wang et al., 2014). Similar seasonality 

behaviour has also been observed by researchers in several countries such as in Thailand 

(Chadsuthi et al., 2012), Brazil (Coelho and Massad, 2012), Korea (Joshi et al., 2017), 

Reunion Island (Desvars et al., 2011) and Trinidad and Tobago (Mohan et al., 2009), 

where the majority of leptospirosis cases were found following the season when the rainfall 

and flooding events were high. The hilly and fertile subtropical region of Yilong County is 

situated in the mainstream of the Jialing River (part of Sichuan Basin), with a wet season 

ranging from April to September and peaking in July and August which often leads to 

flooding events (Song, 2013; Zhang et al., 2016). At the same time, Yilong’s people are 

involved in rain-fed paddy cultivation and pig rearing, which is likely to give them a higher 

probability of exposure to Leptospira. Local reports have shown that flooded paddy fields, 

proximity to flooded areas, and pigsties are important risk factors associated with 

leptospirosis transmission in this rural area (Tang and Zhou, 2018). Further local 

epidemiological studies, however, are still required to better understand the causal link 

between climate and socioecological factors on leptospirosis transmission within these two 

hot-spot counties.  

Indeed, our study confirmed the association between temporal patterns of leptospirosis 

incidence in both counties and climate. Our negative binomial models indicated variation in 

response and a lagged effect of rainfall on leptospirosis incidence in both locations. 

Surprisingly, our best-fitting model for Mengla County indicated a negative relationship 

between rainfall and leptospirosis as well as a long lag effect (6-months lag) of rainfall on 

leptospirosis emergence. Previous studies have documented that Leptospira could survive 

in the water for months, even years (Levett, 2001). The findings of a negative relationship 

between rainfall and leptospirosis suggests that there are other factors (most likely 

socioecological in nature) that are likely to drive leptospirosis emergence in this county. 

However, for Yilong County our study indicated positive relationships between rainfall and 

leptospirosis in which an increase in rainfall intensity is followed by an increase in 

leptospirosis incidence in the subsequent month. The finding of a temporal delay in the 
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association between leptospirosis incidence in Yilong County and rainfall is in line with 

other studies (Herrmann-Storck et al., 2005; Mohan et al., 2009). In addition, the 1-month 

lag identified in the present study is consistent with the length of incubation period for 

leptospirosis (from exposure to the onset of clinical signs), which ranges from 1 week to a 

month (Haake and Levett, 2015; Levett, 2001).  

In addition to climatic factors, our study demonstrated that RS-based indicators, such as 

MNDWI, NDVI and LST, were also associated with leptospirosis incidence, highlighting the 

important role of flooding, vegetation greenness, and temperature on disease transmission 

and that these factors could be used to forecast the risk of leptospirosis in these high-risk 

areas. Our study showed significant temporal associations between these three indicators 

and leptospirosis in both counties; although, the magnitude and direction of the estimated 

effects differed among the two counties. Within the context of leptospirosis epidemiology, 

the satellite-derived environmental data used in this study have helped explain the 

possible socioecological mechanisms of leptospirosis transmission in our study sites. 

MNDWI describes the existence of excess inundation/flooding (Ledien et al., 2017) while 

NDVI reflects vegetation productivity in both areas. Our analysis revealed different lagged 

effects of MNDWI on leptospirosis in both counties. The findings indicated that current 

increases in leptospirosis notifications were associated with a one unit increase in MNDWI 

2 to 5 months earlier. In Yilong County, for instance, our final multivariable model showed 

that a 0.1 increase in MNDWI lead to an increase in incidence by 7 times in the next five 

months while the rainfall intensity remained constant. Our study is consistent with local 

reports showing that flooding is an important factor in Yilong County (Tang and Zhou, 

2018). The use of MNDWI in our present study also supports findings from elsewhere 

(Ledien et al., 2017) which demonstrated that the MNDWI is a good flooding indicator for 

predicting leptospirosis outbreaks in Cambodia. Since most counties in the Sichuan Basin 

including Yilong County are prone to frequent flooding events (Han et al., 2016), the 

utilisation of a RS-based flooding indicator in an early warning system would be helpful for 

anticipating the risk of leptospirosis outbreaks. 

In the present study, our findings in Yilong County indicated a strong positive correlation 

between leptospirosis notification and NDVI (a vegetation indicator) at 2 months before. In 

contrast, in Mengla County a 0.1 decrease in NDVI in the present month was found to be 

associated with an increasing number of leptospirosis notifications in the following 2 to 6 

months: a contradictory response which can possibly be explained by variation in land-

cover (vegetation type) and seasonal agricultural practices undertaken by villagers 
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between counties. For instance, Mengla County’s landscape is comprised of diverse 

patches containing large deciduous rubber plantations that experience seasonal 

defoliation, primary tropical forest fragments, and rice fields. Villagers are also engaged in 

a slash-and-burn (swidden agriculture) practice (Shen et al., 2017) that may affect 

vegetation cover and small-mammal habitats and, thus, enforce runoff and migration of 

rodents towards rice fields and human settlements. In the case of Yilong County, we 

hypothesised that high rainfall increases biomass (increases in the greenness index) and 

thus increases rodent abundance (as first-level consumer) in the ecosystem, which leads 

to an increased risk of leptospiral environmental contamination (Theuerkauf et al., 2013). 

The NDVI provides an estimate of the greenness of a landscape as well as an indicator of 

vegetation productivity (biomass) (Lumbierres et al., 2017) also reflects the availability of 

food in the ecosystem. The vast amount of biomass could be associated with an increase 

in livestock grazing, agricultural activities (e.g., cropping cycle) (Zhang et al., 2015) as well 

as rodents’ abundance (Yu et al., 2017). However, the link between NDVI, rodent 

abundance and leptospirosis in these counties is still unclear. Further epidemiological 

observations are, hence, required to investigate the leptospirosis transmission mechanism 

in these two areas. 

A different effect was also observed in the relationship between LST and leptospirosis 

among counties. In Yilong County, leptospirosis notifications had a positive association 

with temperature, where increasing temperature would be likely to increase leptospirosis 

notification in the next 3 months by 20%. Previous evidence indicates that hot and wet 

conditions heightens the survival rate of Leptospira in the environment (Weinberger et al., 

2014). Leptospira can survive in temperatures ranging from 4C to 40C (Parker and 

Walker, 2011). This positive relationship is also consistent with previous studies in 

Thailand (Chadsuthi et al., 2012) and Reunion Island (Desvars et al., 2011), with a lag of 8 

months and 2 months, respectively. In Mengla County, higher ambient temperature at the 

current month was associated with a reduction in leptospirosis notifications. Our findings 

are consistent with a recent study in Brazil (Baquero and Machado, 2018). These results 

can be partly explained by the fact that higher temperature may severely reduce the soil 

moisture, thus limiting the survival rate of Leptospira in the environment (Levett, 2001).  

Our results should be interpreted in light of some limitations. Since our leptospirosis data 

were mainly based on a passive notification system, reporting biases (e.g., under-reported 

cases) could not be discarded. However, as we used a long time-series of laboratory 

confirmed leptospirosis cases (i.e. from 2006 to 2016), we believe that such an issue 
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would not substantially influence our results. Second, the accuracy of values of 

environmental variables (e.g. NDVI, MNDWI, and LST) extracted from the satellite images 

might be influenced by atmospheric conditions such as cloud cover. In this study, however, 

we attempted to minimise such effects by selecting best cloud-free images over the period 

of study. Third, given the ecological nature of our study, our findings might be influenced 

by other potential confounders which may vary between locations. For example, the 

variation may also be driven by the presence or density of animal reservoirs (e.g. livestock, 

rodents), previous or existing control and prevention measures (e.g. vaccination, 

deratisation) and local socioeconomic features, including ethnicity and accompanying 

agricultural behaviours and poverty, as well as access to safe water and sanitation. 

Unfortunately, in our study we did not take into account such factors since such data were 

not available in our notification dataset. Hence, local primary epidemiological studies 

should be carried out to investigate the role of animal and socioeconomic factors on 

leptospirosis transmission in these high-risk counties, so that it can provide a sound 

evidence base for the design of intervention studies targeting modifiable factors through 

health promotion. Fourth, in the study, I used ‘month’ as the temporal unit of analysis 

instead of ‘week’. This decision is grounded on a couple of reasons: i) In this study, I used 

“monthly” case counts per area based on the results of a preliminary temporal data 

analysis which demonstrated that there was an excess zero cases (this has been indicated 

by small mean monthly numbers and high SD (see Table 8-1). Consequently, the weekly 

data sparseness would be problematic to fit temporal models; and ii) remote-sensed data 

(e.g., NDVI, MNDWI and LST) are not commonly available in “weekly” window. 

Despite these limitations, this study has provided important evidence on the epidemiology 

of leptospirosis at local level in areas known as the residual hotspots for leptospirosis in 

China. 

 

8.6 Conclusion 

In summary, our study adds to evidence on the short-term effects of climate and 

environmental variability in leptospirosis incidence in two primary hotspots in China, 

Mengla and Yilong County. This study demonstrated the value of satellite-derived 

environmental data in combination with weather records in improving our understanding 

about leptospirosis risk factors. An important finding is that the effects of climate and 

environment on leptospirosis varied between locations, which call for local specific control 
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and intervention strategies to reduce the burden of leptospiral infection. Our models 

provided an objective foundation for the development of local leptospirosis early-warning 

systems in China. 
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Chapter 9 Discussion and conclusions  

 

9.1 Introduction 

Annually, more than one million human leptospirosis cases and 58,900 deaths are 

reported worldwide, and the most recent burden of disease estimates indicate that more 

than 2.9 million DALYs are lost due to Leptospira infections (Costa et al., 2015; Torgerson 

et al., 2015), with the highest estimated burden in tropical and subtropical countries. 

Despite its population health importance, leptospirosis remains a neglected zoonotic 

disease, especially in low- to middle-income countries (LMICs) where surveillance and 

diagnostic capacity is lacking (Bharti et al., 2003). As a result, many affected countries 

have no adequate data on where incidence and burden are predicted to be highest and 

what are factors determining the geographical and temporal variation on the burden either 

at national or sub-national level.   

The Leptospira infection in humans involves complex transmission pathways. Factors 

driving the transmission are likely to vary between locations, depending on demographical 

and socioeconomic factors, local reservoir host diversity, climatic and physical 

environment conditions. Traditionally, leptospirosis is a common bacterial infection found 

in rural settings and more likely associated with agricultural processes such as harvesting 

and livestock farming (Levett, 2001). Today, leptospiral infection is also of public health 

importance in overcrowded tropical and subtropical cities due to rapid urbanisation and 

extreme weather events and is becoming more intense. Leptospirosis outbreaks have 

been reported in major cities worldwide, affecting flood-prone areas and urban slum 

communities where water and sanitation infrastructure, drainage systems, waste 

management, and risk awareness are lacking (Ko et al., 1999; Barcellos et al., 2001; 

Togami et al., 2012; James et al., 2018; Marinova-Petkova et al., 2019). 

In China, leptospirosis is of public health importance as disease outbreaks have been 

reported in more than 80% of Chinese provinces (34 provinces) with a total of more than 

2.5 million cases and 20,000 deaths reported since 1955 (Zhang et al., 2012; Shi et al., 

2000). Since 1977, the incidence of leptospirosis has been on the decline, reaching a 

relatively low incidence of less than 1 per 100,000 (Zhang et al., 2012; Hu et al., 2014). 

Despite this reduction, local outbreaks still occur in parts of the country (Li et al., 2013; Fan 

et al., 2014; Wang et al., 2014; Wu et al., 2015; Xu et al., 2016a; Tang et al., 2017), 

indicating that residual transmission foci of leptospirosis still exist. This low-level of 
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transmission has been viewed by China’s health authorities as an opportunity for 

eliminating leptospirosis in the country. To achieve this operational goal, clear evidence on 

which demographic groups are at highest risk of leptospirosis, the location of residual high-

risk areas for leptospirosis, as well as information on local drivers of infection (e.g., 

demographical, climatic, environmental and socioeconomic) are required.  

Evaluating the spatiotemporal heterogeneity of leptospirosis risk and associated drivers 

can help improve the implementation of disease control interventions locally. In this case, 

an investigation into the spatiotemporal dynamics of leptospirosis incidence across China 

is an important first step to identifying areas at highest risk of transmission (hotspots) and 

whether or not hotspots exist and whether these are geographically stable over time. Such 

investigation also allows the exploration of plausible factors (e.g. climate, 

sociodemographic, environment) that likely explain the spatiotemporal variation in 

leptospirosis incidence. Furthermore, by collating information on the historical trends in 

incidence over space and its potential drivers over time, spatial decision support tools can 

be designed to assist health authorities and associated ‘One Health’ stakeholders (such as 

the animal and the environmental sector) in planning and implementing spatially targeted 

collaborative surveillance and control strategies for effective reduction of the burden of 

leptospirosis. 

The overall aim of the body of research outlined in this thesis was to apply spatial 

epidemiological techniques to gain operational insights on the epidemiology and disease 

ecology of leptospirosis in China to assist local health authorities in the design of 

leptospirosis control programs to pursue the disease elimination goal. The overall aim of 

the thesis was achieved by conducting a program of research outlined by the following 

objectives: 1) first, to review spatial epidemiological techniques applied in previous 

leptospirosis studies in both human and animal populations and to critically evaluate the 

methods used (Chapter 4); second, to quantify the historical trend of notified leptospirosis 

incidence and burden in terms of DALYs in China and to map the geographical and 

temporal variation of DALYs of leptospirosis at sub-national level across the country 

(Chapter 5); third, to use spatial analytical tools to investigate the spatial and temporal 

pattern of leptospirosis incidence at county-level and to profile high-risk counties in terms 

of their socio-demographical and environmental conditions (Chapter 6); fourth, to assess 

the effects of local weather and physical environmental variability on leptospirosis 

incidence (Chapter 7); and finally, to quantify the effects of environmental and 

socioeconomic factors on the spatial heterogeneity leptospirosis incidence in order to 
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develop smoothed predictive incidence maps to identify residual high-risk counties in high-

risk regions in China where disease elimination could be achieved (Chapter 8). 

This thesis provides new insights on the use of geographic information systems (GIS)/ 

remote sensing (RS) technology and geostatistical approaches for understanding the 

epidemiology of leptospirosis, which contribute to the extension of the body of knowledge 

in the field. A number of advancements are presented in the research chapters of this 

thesis including: a) a general framework for the application of spatial analytical tools for 

future leptospirosis studies; b) identification of small-scale geographical variation in the 

DALYs of leptospirosis across China in the past two decades; c) the identification of the 

residual high-risk counties and their socio-demographical and ecological profiles; d) 

evidence on the role of climatic and remotely-sensed physical environment indicators in 

leptospirosis incidence, which form the foundation for an early warning system (EWS) for 

leptospirosis; and e) evidence on the geographical variation in the role of environment and 

socioeconomic factors on the incidence of leptospirosis in China, which highlights the need 

for local-specific public-health interventions. This research has important practical 

implications for future research on the use of spatial analytical tools as decision-support 

tools for leptospirosis control and the role of climate, environmental and socioeconomic 

factors on the geographical and temporal heterogeneity of the risk of leptospirosis. 

 

9.2  Key research findings 

9.2.1 Critical assessment and the development of general framework for spatial 

epidemiological tools for leptospirosis control  

In the past decades, the use of GIS/RS and geostatistical modelling has become 

increasingly utilised in epidemiological studies along with the advancement in the 

geospatial technology and remote sensed data availability. This opportunity has been used 

in a way to better understand the epidemiology of infectious diseases to provide evidence 

to support leptospirosis control strategies. Yet, before I began the research described in 

Chapter 4, there were no studies in the literature which presented a comprehensive review 

and evaluation of the adequacy of spatial analytical methods used in past leptospirosis 

studies. This is important as this information could help guide future research as well as 

help to improve the applicability of the evidence or outputs so that it can be optimally 

applied for supporting leptospirosis control. In Chapter 4, I provided the first 

comprehensive review on how spatial analytical tools had been used in previous studies to 
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further understand the epidemiology and risk factors associated with leptospirosis, both in 

humans and animals. Based on pre-defined eligibility criteria detailed in Chapter 4, I 

reviewed a total of 115 papers retrieved from six databases: 65 studies on humans, 39 

studies on animals and 11 studies that used both human and animal data.  

In general, my systematic review in Chapter 4 demonstrated that visualisation (mapping) 

techniques were the most common approaches used by authors of published studies. 

However, none had mapped the geographical variation in the burden (in terms of DALY) at 

sub-national level before the publication of Chapter 5. Other spatial techniques, such as 

exploratory analyses to investigate spatial patterns and detect leptospirosis clusters and 

modelling studies of factors associated with geographical variation, were under-utilised. 

Furthermore, I identified only a few studies where the authors had quantified the role of 

environmental and socioeconomic factors on the leptospirosis distribution and even fewer 

had developed predictive maps for leptospirosis incidence or prevalence (Lau et al., 

2012a; Zhao et al., 2016; Rood et al., 2017; Mayfield et al., 2018b; Ahangarcani et al., 

2019). In addition, the results of the systematic review in Chapter 4 show that there have 

been few studies attempting to develop outbreak detection models. From a programmatic 

perspective, lack of adequate knowledge on where hotspots or areas at higher risk are 

located, when is the incidence at its highest, what are the drivers, and how much of the 

population is at highest risk within an area, could hinder operational activities of 

leptospirosis control. Such evidence is central for scaling-up intervention programs and the 

evaluation of interventional coverage in the identified hotspots.  

In addition, the results of the systematic review in Chapter 4 show that most studies that 

used spatial analytical tools for leptospirosis are reported from countries in the America 

continent such as Brazil and the United States. My systematic review indicates that 

despite its public health significance, the spatial analytical approach to support decision 

making in planning and implementation of leptospirosis control and surveillance was 

under-utilised, especially in developing countries such as China. There was only one study 

(Zhao et al., 2016) where the authors used spatial analytical tools to predict the 

occurrence of leptospirosis cases based on an ecological niche model (ENM). Before the 

publication of Chapter 6 and Chapter 8, none had explored the geographical leptospirosis 

hotspots and its drivers. Most importantly, none had developed spatial structured 

predictive risk maps for leptospirosis in China.  
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Ultimately, of the 115 studies evaluated, I found significant variation in terms of 

methodology, indicating there is substantial room for improvement. Based on my 

systematic review detailed in Chapter 4, I identified some limitations in past studies which 

can be summarised into five main issues. These include: i) variation in reporting case 

ascertainment (e.g. case definitions and diagnostic tests are not clearly stated in the 

report); ii) inconsistency in the application of the analysis and type of data used (e.g. using 

Moran’s I analysis in point data); iii) unsystematic or inadequate exploration of disease 

clustering (e.g. many studies had poorly addressed spatial dependency in the data); iv) 

complexity of explanatory variables included in the model (e.g. the role of socioeconomic 

and animals factors on the variation of leptospirosis distribution had been less explored) 

and; v) paucity of robust spatially-explicit prediction maps and temporal prediction models 

(e.g. most studies used non-spatial modelling and did not fully address spatial 

autocorrelation and uncertainties). Hence, according to these identified limitations, in 

Chapter 4, I developed a general framework for the application of spatial analytical 

approaches to provide clear guidance for future work in mapping epidemiological data and 

exploring and assessing drivers of leptospirosis. The framework provided in Chapter 4 

discussed several factors that need to be considered in future spatial epidemiological 

research for leptospirosis. The key principles highlighted in my framework include the 

following needs: i) to clearly explain the source of the epidemiological data, case definition 

and diagnostic methods used to ascertain leptospirosis cases to allow comparison with 

other available studies; ii) to carefully define the type of spatial data (e.g., point or areal 

data), aggregation technique, spatial and/or temporal unit of analysis; iii) to integrated data 

on a range of attributes (e.g., hosts, environment, climate and sociodemographic) to better 

understand the role of such factors in the heterogeneity of leptospirosis in human 

communities; iv) to carefully select the methodology of analysis; and v) to adequately and 

systematically address spatial autocorrelation and uncertainties so that the mapping output 

can enable the decision making processes. The proposed framework is expected to help 

improve the validity and comparability of leptospirosis spatial epidemiological through the 

development of a reliable and robust pipeline of analyses that will support leptospirosis 

control programs at different spatial scales. 
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9.2.2 Geographical pattern of the burden of leptospirosis and its epidemiological 

transition 

In light of the findings of the systematic review detailed in Chapter 4, and while numerous 

maps had been produced, in no studies was there an attempt to map the burden of 

leptospirosis (in terms of DALY) at sub-national level. The only relevant study before the 

publication of Chapter 5 was a study in which the country-level DALY estimates and 

distribution were mapped (Torgerson et al., 2015), based on global historical notification 

data, reports, and simulations. A major limitation of this study is that such coarse mapping 

of DALYs has limited functionality, given that leptospirosis is likely to vary at very fine 

spatial scales. This is because leptospirosis transmission operates locally at much finer 

spatial resolutions and transmission is highly dependent on the diversity of reservoirs and 

serovars, which are strongly linked with local socioecological conditions (Vinetz, 2001; 

Gracie et al., 2014).  

Indeed, previous studies had indicated that in China there were approximately 301,688 

DALYs lost annually due to leptospirosis (Torgerson et al., 2015). Other studies had 

shown that during 1960 to 2010, leptospirosis incidence has been reported to reduce from 

10.73 cases per 100,000 people in the 1960s to 0.11 cases per 100,000 people in 2010 

(Shi et al., 2000; Zhang et al., 2012; Hu et al., 2014). In the light of this dramatic reduction 

in incidence, and the variation in environmental and socio-demographic conditions plus 

changes in socioeconomic and environmental conditions, which have been occurring for 

the last two decades, there was a need to re-estimate the burden of leptospirosis and to 

identify areas where the burden of leptospirosis remained high. Thus, my study was 

directly aimed at filling this gap in knowledge.  

Using the most recent nationwide comprehensive individual-level notification data reported 

from the past 11 years, the research detailed in Chapter 5 provides the first account for 

China of the epidemiological transition in leptospirosis burden estimates and sub-national 

level leptospirosis burden estimates. Using a 10-year time-series dataset of leptospirosis, I 

have been able to demonstrate that at least 10,000 DALYs had been lost due to 

leptospirosis during 2005–2015. The findings of research detailed in Chapter 5 

demonstrate significant geographical heterogeneity in burden (as measured by DALY) at 

sub-national level in China that had not been reported by authors of any previous studies. 

The findings suggest that leptospirosis infection was driven by geographic-specific 

socioecological determinants. The analysis identified areas with the highest DALY 

estimates, namely, the southwest and south provinces. The estimated 10-year trend in the 
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burden, however, gradually decreased over the period with the lowest burden estimate 

observed during 2011–2015, reflecting changes in demographic and socioecological 

conditions in China as well as the effect of control measures that have been undertaken in 

China (e.g. agricultural intensification and mechanisation, vaccination, rodent control, 

improvement in water and sanitation) (Dai, 2010; Hu et al., 2014; Yang et al., 2011; Hu et 

al., 2014; Wang et al., 2014; Zhou et al., 2015; Xu and Ye, 2018).  

The research detailed in Chapter 5 demonstrated that leptospirosis disproportionately 

affected farmers and children. We posited that the high burden estimates in children in 

China could be indirectly driven by the sociodemographic changes following massive 

urbanisation. Arguably, urbanisation in China has driven labourers from rural areas 

towards major cities to seek better economic conditions, leaving behind their children with 

their grandparents (Chang et al., 2011; Mu and van de Walle, 2011). According to the 

National Bureau Statistics of China (NBSC) report, during the 20 years from 1990 to 2010, 

the migrant population, which was predominantly peasant workers, grew rapidly with an 

average annual growth rate of approximately 12%. By 2010, China had a migrant 

population of 223.43 million people (He et al., 2019). One of the impacts of parents’ 

migration to cities is the shifting role in agricultural practices in rural areas where the 

elderly and children are left behind and were noted to be more likely to engage in farm 

work (Jingzhong, 2011; Jingzhong and Lu, 2011) which, in the context of leptospirosis 

transmission, could contribute to an increased risk of leptospiral exposure. Additionally, 

these left-behind children have less parental supervision resulting in higher prevalence of 

health-risk behaviour and inadequate hygiene and nutrition—factors which are known to 

increase risk of acquiring infections (Li et al., 2015). 

 

9.2.3 Environmental and socioeconomic profiles of high-risk counties for leptospirosis 

To guide effective targeted disease control and public health interventions, local health 

authorities and policy makers require detailed information regarding areas where disease 

is prevalent, how it spreads geographically, and the potential risk factors that drive its 

patterns (Pfeiffer et al., 2008). Prior research detailed in Chapter 5 identified significant 

spatial heterogeneity in leptospirosis DALYs that could be strongly correlated with 

demographical, environmental, and socioeconomic conditions. Yet, when I conducted this 

research, evidence on the profile of risk factors that characterise high-risk areas for 

leptospirosis transmission in China was extremely scarce, making it difficult to implement 
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an efficient resource allocation and control program. As explained in Chapter 6, I 

addressed this gap in knowledge, by designing and conducting research with the aim of 

identifying high-risk areas for leptospirosis at county level and profiling key demographical, 

ecological and socioeconomic characteristics of these identified high-risk counties, using 

spatial analytical tools. 

I found that high-risk counties for leptospirosis incidence during 2005–2016 in China were 

mostly situated in the southwestern, central and southern part of the country. Persistent 

high-risk counties (22 counties in total) were identified across the study period and were 

clustered over space in the tropical and sub-tropical provinces within China’s two main 

river basins (Yangtze River and Pearl River): Sichuan, Yunnan, Chongqing, Hubei, 

Guizhou, Guangdong and Guangxi. There were two counties that consistently identified as 

high-risk clusters for leptospirosis: Mengla County (Yunnan province) and Yilong County 

(Sichuan province). My research showed that persistent hotspots of leptospirosis typically 

follow ecological and socioeconomic conditions where leptospirosis transmission is 

common. In this regard, the research in Chapter 6 showed that from an ecological 

perspective, high-risk areas for leptospirosis were situated in areas with higher monthly 

mean precipitation (106.82, range: 97.45–116.19 mm/month) and moderate elevation 

(576.01, range: 451.17–700.25 m.a.s.l). In addition, in terms of its sociodemographic 

conditions, these high-risk areas were identified as poor rural areas where more farmers 

engaged in small-scale subsistence farming as evidenced by having low GDP, low 

production, and high livestock density. Such conditions are common where leptospirosis is 

endemic (Lacerda et al., 2008; Pappas et al., 2008; Mayfield et al., 2018b). These findings 

strongly indicate that leptospirosis transmission in these residual high-risk areas may be 

primarily driven by the interplay between climate, flooding, agricultural behaviour and 

poverty. In addition, the finding of this research was central in generating other 

hypotheses: first, there is a temporal association between such climatic and environmental 

factors and leptospirosis emergence and, if this is so, second, climate and environmental 

factors can be used as early warning predictors of the risk of leptospirosis. Lastly, the 

socioecological drivers of leptospirosis incidence are geographic specific within 

southwestern (Upper Yangtze River Basin) and southern China (Pearl River Basin).  

Evidence have shown that these factors may be used to predict risk in both regions. These 

hypotheses led to another hypothesis presented in the last two chapters (Chapter 7 and 

Chapter 8), which is was formally tested. 
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9.2.4 The role of climate, environment and socioeconomic in the geographical variation of 

incidence of leptospirosis 

The results reported in Chapter 5 had shown that the burden of leptospirosis remains high 

in China although the incidence was very low. Persistent small pockets of high-risk 

incidence counties exist in tropical and sub-tropical provinces in southwestern and 

southern China where China’s two main rivers flow—the Yangtze River and the Pearl 

River (Chapter 6). Prior research detailed in Chapter 5 suggested that leptospirosis 

incidence is apparently indicate different pattern of seasonality, suggesting that risk factors 

are likely to be heterogeneous between regions. From these findings, it is hypothesized 

that the role of climate and environmental and socioeconomic factors in leptospirosis 

transmission in southwestern (Upper Yangtze River Basin) and southern (Pearl River 

Basin) regions of China are region specific. Evidence indicates that hydroclimatic 

processes and socioecological conditions in Southwest China and South China are 

unique, thus resulting in different patterns of flooding and drought (Guo et al., 2013; Zhang 

et al., 2010) which in turn may influence the annual trends of reported leptospirosis 

notifications. The UYRB lies in a subtropical monsoon zone and the precipitation in this 

region is primarily influenced by the Indian monsoon cycle, with an annual precipitation of 

less than 500 mm. The monsoon system brings abundant precipitation, and accounts for 

approximately 70–80% of the basin’s total annual precipitation during the summer (May to 

October) and may cause long lasting rainfall for several weeks, leading to frequent floods. 

In contrast, the PRB is situated in the tropical and sub-tropical zones, with precipitation 

during April to September accounting for 80% of the total yearly precipitation rate (Zhang 

et al., 2010). The precipitation variability in the region is significantly influenced by the 

Indian Ocean Dipole (IOD) and El-Niño Southern Oscillation (ENSO), especially for the 

central and eastern part of the PRB, triggering extreme events such as floods and 

droughts (Niu, 2013). In addition, the local socioecological conditions in both regions (e.g. 

topographical, landcover, population density, agricultural practices) are also 

heterogeneous, which may influence the geographical distribution of the risk of 

leptospirosis between regions that greatly differ.  

The role of climate and environmental and socioeconomic factors in the geographical 

variation associated with the risk of leptospirosis in both regions is far from clear; though 

the incidence of leptospirosis in these parts of China is known to be the highest as 

evidenced in Chapter 5 and Chapter 6. Understanding the definitive socioecological 

drivers of leptospirosis in both regions could help to estimate risk of leptospirosis. In order 
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to plan and implement effective specific leptospirosis control and interventions, local health 

authorities need visual tools such as prediction maps. My research presented in Chapter 7 

demonstrates a novel approach to identifying areas most at risk and to estimating 

populations that are most affected. I used spatial conditional autoregression (CAR) 

Bayesian models to developed smoothed leptospirosis incidence maps for two major 

residual high-risk regions in China, the UYRB and PRB, by accounting for socioecological 

factors (e.g., climate, NDVI, MNDWI, livestock density and poverty) and uncertainties. 

My research in Chapter 7 revealed that the effect of environmental and socioeconomic 

factors incorporated in the models differed between UYRB and PRB, confirming my 

research hypothesis that leptospirosis transmission is highly local specific between 

regions. In the UYRB, incidence of leptospirosis was predicted to be high in counties along 

the border of Chongqing-Hubei-Guizhou and in counties in the central Yangtze Valley. My 

study estimated that more than 100 million people in 179 counties were affected by 

leptospirosis. This region is characterised by natural hydro-ecological conditions and 

socioeconomic factors that are favourable for leptospirosis transmission, such as high 

humidity and abundant precipitation that often leads to the frequent flooding. In addition, 

this region is highly populated and is one of the central areas for crop production in China 

(Yu et al., 2009; Xu et al., 2019). Based on my geospatial model, environmental factors, 

such as rainfall, MNDWI, and elevation can explain the spatial variation in incidence of 

leptospirosis in the UYRB. The finding suggests that climate and flooding have the 

potential in modifying the spatial variation in risk of leptospirosis.  

In the PRB, high-incidence areas were found in the central and lower reaches of the Basin. 

I estimated that approximately 50 million people in 105 counties are at higher risk for 

contracting leptospirosis infection. This may be partly explained by PRB’s climate and 

socioecological features. This region lies in a subtropical humid monsoonal climate zone 

and has a high population density since the region has experienced significant 

urbanisation during the past several decades. Additionally, extreme rainfall events and 

flash flooding are common in the PRB catchment areas, especially in the lower reaches of 

PRB (Zhang et al., 2019; Liao et al., 2011). The results for the PRB region were in contrast 

with those from the UYRB region. According to 95% Credible interval (CrI), environmental 

variables—including rainfall, NDVI, livestock density and land cover—explained the spatial 

variation of the incidence of leptospirosis in the PRB. This finding suggests that in PRB, 

leptospirosis transmission was primarily associated with agricultural practices and 

occupational/behavioural factors. Increased greenness or biomass (as indicated by NDVI) 
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means an abundant supply of food in the ecosystem, which could be linked with an 

increased rodent population and intense livestock grazing (Lumbierres et al., 2017; Zhang 

et al., 2015; Yu et al., 2017). As a result, Leptospira concentration in the environment 

could be much higher. This may likely put livestock animals and humans at highest risk, 

especially farmers during the harvesting period. Further, people living in areas with a 

dense livestock population have the greatest risk of acquiring infection from animals or a 

contaminated environment. The presence of rodents in combination with poor farm/herd 

biosecurity measures (e.g. poor fencing/housing and rodent control, unvaccinated 

livestock, leftover feed, movement of infected cattle), especially among subsistence 

farming, has been found to increase the risk of zoonotic transmission (Mughini-Gras et al., 

2014; Ellis, 2015; Pimenta et al., 2019). Higher incidence was also found in areas with 

abundant waterbodies such as lakes or in proximity to rivers; this could be partly 

associated with behavioural risk factors associated with recreational activities—such as 

swimming, fishing, and bathing—as well as occupational (Mwachui et al., 2015; Hinjoy et 

al., 2019). Leptospiral infection is likely resulted from exposure to flood water which is 

contaminated by the urine of infected rodents or livestock animals. 

 

9.2.5 Using weather and remote sensed environmental data to anticipate leptospirosis 

outbreak 

Prior research detailed in Chapter 5 suggested that leptospirosis incidence is appears to 

be seasonal but its annual pattern tended to be different between localities. In addition, it 

has also been suggested that weather is one of the important determinants of 

leptospirosis, which means that areas differ from each other in terms of their risk because 

of precipitation (i.e. areas with higher monthly precipitation are more likely to have a higher 

leptospirosis incidence) (Chapter 6). Moreover, research presented in Chapter 7 revealed 

that the role of socioecological factors on leptospirosis incidence was significantly varied 

geographically. Together, these findings emphasise that to deliver effective public health 

interventions in a timely manner, localised risk forecasting tools are required to better 

improve prevention and preparedness for leptospirosis outbreaks, as leptospirosis 

transmission is likely to operate at a local level. 

Research presented in Chapter 8 was focused on the two counties, Yilong County 

(Sichuan province) and Mengla County (Yunnan province). I selected these two counties 

due to several number of reasons. First, both counties were identified as high-risk counties 
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as evidenced in Chapter 6. Second, both counties have different socio-ecological 

conditions in terms of climate, landscape, and sociocultural factors (Chen et al., 2016; Xu 

et al., 2017).  

Before the publication of Chapter 8, outbreak prediction models for leptospirosis in China, 

especially in Yilong County and Mengla County, had not been developed in any studies. 

Although climate is a known determinant of leptospirosis incidence (Desvars et al., 2011; 

Chadsuthi et al., 2012; Wang et al., 2014; Sumi et al., 2017; Filho et al., 2018), it was 

unclear—before conducting the research outlined in Chapter 8—whether climate was a 

major driver of the leptospirosis epidemic and whether it could be used to predict the risk 

of leptospirosis outbreaks in these high-risk areas.  

The available risk prediction models for leptospirosis are solely based on the relationship 

between weather attributes and leptospirosis incidence (Chadsuthi et al., 2012; 

Weinberger et al., 2014; Matsushita et al., 2018), and very few had incorporated attributes 

of the physical environment. As indicated in the systematic review in Chapter 4, limited 

studies had modelled the association between such changes in the physical environment 

(flooding and vegetation) and the emergence of leptospirosis.  

Previous research suggests that leptospirosis is a waterborne disease that is strongly 

linked with flooding after heavy rainfall (Lau, Smythe, 2010, Socolovschi et al., 2011; 

Amilasan et al., 2012; Smith et al., 2013; Mohd Radi et al., 2018; Matsushita et al., 2018). 

Rainfall also encourages excessive biomass or vegetation production which can then 

assist with the proliferation in rodent population numbers—an important reservoir species 

for leptospirosis (Diaz, 2014). In the absence of locally measured temporal environmental 

data, high-resolution earth observation (EO) images obtained from satellites can now be 

used to provide accurate cross-sections of various types of ground objects and landscape 

features over time to characterise environmental risk and host habitats; many of these 

images have been commonly used to monitor and predict the spatial and temporal 

variation of infectious diseases (Tatem 2004, 2012; Palaniyandi, 2012; Ebhuoma and 

Gebreslasie, 2016). In light of such a strong interplay between climate, environment and 

leptospirosis emergence, it became important to be able to measure the temporal 

association between climate, physical environment, and the incidence of leptospirosis. 

Such evidence can be used to lay a foundation for developing an outbreak prediction 

system to better prepare and estimate the impact of a leptospirosis outbreak. 
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To address this gap in knowledge as well as to examine the hypotheses raised from the 

findings of research, detailed in Chapter 6, I conducted research (Chapter 8) aimed at 

investigating i) the short-term effects of weather variability and environmental factors 

(NDVI, MNDWI, LST) and ii) whether weather and environmental data could be used to 

predict leptospirosis outbreak. In this study, I used NDVI as a surrogate for biomass which 

could indicate rodent dynamics, livestock grazing patterns and vegetation density; 

whereas, I used MNDWI as a flood indicator.  

The results of Chapter 8 revealed strong seasonality and unique annual cycles of 

leptospirosis incidence, in that we identified a bimodal annual cycle of leptospirosis 

incidence in Mengla County, reaching a peak in May and September. In contrast, in Yilong 

County, the incidence of leptospirosis exhibited a strong seasonal pattern of a single peak, 

with the highest incidence typically in September. This finding clearly reflects that the 

determinants for leptospirosis incidence are strongly local-specific. The discrepancy in 

seasonality between Mengla County and Yilong County, identified by the research in 

Chapter 8, suggests that drivers of leptospirosis incidence are multifactorial and tend to be 

related to its socio-ecological context. The findings in Mengla County, for instance, 

suggest that the key driver of leptospirosis transmission could be behavioural rather than 

climate driven. This is evidenced by the negative relationship between rainfall and 

leptospirosis incidence. Such bimodal seasonality may be partially explained by the unique 

climatic and behavioral profile of Mengla County communities combined with their 

associated agricultural behaviors. Mengla County lies in the tropical zone with a wet 

season occurring from May to October. Most rural communities in this area are involved in 

agricultural activities all-year round, including rubber tree tapping (from March to 

November), tea collection (February to October), and vegetable and rice harvesting (May 

to June). In addition, households also raise a wide range of livestock, such as cattle, 

buffaloes, pigs, and goats, for a variety of purposes (e.g., transport, plowing, consumption, 

economy and traditional events) (Shen et al., 2017). Such conditions and behaviors induce 

continuous Leptospira exposure and transmission and may explain why leptospirosis 

outbreaks occur more often. In contrast, leptospirosis outbreaks in Yilong County appear 

to be strongly driven by climate and flooding. This is confirmed by the strong positive 

association between rainfall, MNDWI, and leptospirosis incidence. This hilly and fertile 

subtropical region is situated in the mainstream of the Jialing River (part of Sichuan Basin) 

which is known as a flood-prone area (Song, 2013; Zhang et al., 2016).  
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In addition, my research in Chapter 8 confirmed a strong association between climate 

variability, physical environment, and leptospirosis incidence in both counties. The final 

temporal models indicated that rainfall, temperature (LST) and MNDWI variability can be 

used to predict risk of leptospirosis incidence. The findings suggest that an increase in 

rainfall at lag of one month, MNDWI at lag of 5 months, and temperature at lag of 3 

months will likely increase the incidence of leptospirosis in Yilong County. An increase in 

the MNDWI was likely to increase the incidence rate by 7.7-fold. While in Mengla County, 

an increase in incidence of leptospirosis is associated with an increased rainfall at lag of 6 

months and temperature throughout the current month.  

Overall, the research detailed in Chapter 8 demonstrated that incorporating both weather 

(rainfall and humidity) and remotely-sensed environmental data (LST, NDVI and MNDWI) 

into the models extends current knowledge by improving our understanding of the effects 

of climate and environment on leptospirosis incidence and of the possible mechanisms of 

leptospirosis transmission in these two high-risk counties. Most importantly, the research 

in Chapter 8 demonstrates the first integrated climate/environmental-based model for 

predicting incidence of leptospirosis, forming the foundation for an early-warning system 

for leptospirosis in the two high-risk areas of China. 

 

9.3  Public health implications 

The results of the research presented in this thesis have several important public health 

implications which can be summarised as follows: 

9.3.1 Identification of areas most at risk for leptospirosis 

Together the analyses outlined in Chapter 5, Chapter 6 and Chapter 7 demonstrate that 

the incidence and burden of leptospirosis in China is significantly clustered in a limited set 

of geographical areas, supporting the need for geographic specific intervention programs 

to the identified areas at highest risk. Additionally, analysis presented in Chapter 8 

provides important information for health authorities regarding when interventions 

programs need to be implemented.  

The research in Chapter 5 contributes novel updated evidence on the geographical 

distribution of DALYs at sub-national level in China. My analysis revealed significant 

reduction in the morbidity and mortality of leptospirosis during 2005-2015 and indicated 

provinces in the southwest and south of the country where the highest burden for 

leptospirosis is located, predominantly the provinces of Sichuan, Yunnan, Guizhou, 
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Guangxi and Guangdong. From a public health perspective, these findings suggest that it 

is imperative to plan and sustain healthcare investment efforts to improve diagnosis and 

health systems in these high-burden areas. In addition, in these high-burden locations, 

there is a need to reassess and improve the capacity to recognise leptospirosis cases and 

the availability of diagnostic infrastructure. This is particularly important given the broad 

spectrum of leptospirosis clinical manifestations which is a contributing factor for 

misdiagnosis and under-reporting in the absence of formal surveillance—leading to 

underestimation of disease incidence (Levett, 2001). 

The results of the research detailed in Chapter 6 extend knowledge about the 

geographical distribution of the residual hotspots for leptospirosis at county-level in China 

as well as its socioecological risk profile. The analyses detailed in Chapter 6 identified 

persistent high-risk counties in Yunnan and Sichuan provinces. Furthermore, the findings 

suggest that the high-risk counties were characterised as poor rural areas where small-

scale farming is prevalent. From a public health perspective, to ensure the effectiveness of 

control programs to achieve the elimination goal, strengthened interventions that include 

the animal sector should be targeting those high-risk rural areas identified in this study. To 

ensure a package of interventions is delivered to the hard-to-reach rural communities, 

comprehensive, multi-sectoral and integrated disease-control strategies are critical. It is 

noteworthy that it is not sufficient to merely focus control efforts on preventing leptospirosis 

infection in humans, but it is also imperative to manage risk factors in animals and the 

environment. The control programs for leptospirosis could be improved, for example, by 

integrating them with the ongoing neglected tropical diseases (NTDs) control programs, 

such as schistosomiasis or soil-transmitted helminths (STHs). One of the core strategies of 

NTDs control is the integration of WASH into the mass-drug administration (MDA) 

strategies (Campbell et al., 2017). Integration may provide a means to optimise program 

delivery, maximise efficiencies, and improve the impact of interventions.  

The Bayesian CAR model and regional smoothed leptospirosis incidence maps for the 

UYRB and PRB presented in Chapter 7 provide important information on the effect sizes 

of socioecological determinants, predicted areas most at risk, and the estimated 

population at risk in both regions. From a public health perspective, as indicated by the 

maps of smoothed leptospirosis incidence, there remain several areas with a high 

incidence of leptospirosis within the UYRB and the PRB. This suggests the importance of 

expanding the geographical coverage of intervention programs. The findings suggest that 

it may also be necessary to place strong emphasis on improving surveillance and 
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intersectoral partnerships (i.e., public health and animal health agencies, education, 

environment and social affairs) to implement interventions (e.g., health education, 

provision of WASH, waste management, rodent control, flood management, farm 

biosecurity, and poverty reduction) to reduce the burden of leptospirosis in both regions.  

However, as indicated by the research detailed in Chapter 5, leptospirosis outbreaks in 

China are highly seasonal. Therefore, in order to effectively deliver intervention programs, 

health authorities should also have adequate information on the best timeframe for 

conducting interventions. The analyses in Chapter 5 together with the findings presented 

in Chapter 8 provide important evidence to inform health authorities on how to timely 

prevent, detect, and mitigate emerging leptospirosis outbreaks. From a public health 

perspective, the findings presented in Chapter 8 indicate that, in addition to weather data, 

environmental indicators (NDVI, MNDWI) could be used as a promising signal for initiating 

early preparedness and interventions which can be integrated into the current web-based 

Notifiable Infectious Diseases Reporting Information System (NIDRIS) and early warning 

system in China (the China Infectious Disease Automated-alert and Response Systems, 

CIDARS). Based on the final model, the population at-risk in flood prone Yilong County, for 

instance, might benefit from interventions delivered one to five months before the highest 

risk period. Intensified intervention programs—such as rodent control, waste inspection, 

modifying or cleaning canals and sewage systems, advocating for protective wear for 

farmers (e.g. boots), immunisation (when available), and promoting awareness among 

populations at-risk (e.g. leaflets, educational packages)—might be implemented during the 

period leading up to the high-risk timing of leptospirosis cases. At the same time, this lag 

period might also be used by health systems to escalate their preparedness by improving 

disease awareness among doctors/clinicians, especially in the primary health services, 

and by ensuring that resources (e.g. antibiotics, diagnostic kits) are sufficient. 

 

9.3.2 Identification of populations most at risk 

In general, the analyses outlined in Chapter 5 and Chapter 6 demonstrated that analysis of 

historical leptospirosis notification data can provide important insights into populations 

most at risk of leptospirosis infection. In particular, the study in Chapter 5 provides a recent 

estimate of age and gender specific DALYs for leptospirosis in China, which is important 

for assisting health agencies in defining target populations for interventions. Together, the 

analyses presented in Chapter 5 and Chapter 6 emphasise that interventions need to be 
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targeted primarily at children, males, and farmers, in areas where there is a convergence 

of a high proportion of the population engaged in subsistence farming and poverty in 

tropical and sub-tropical regions in southwestern and southern China. These vulnerable 

populations may benefit from interventions aimed at improving disease awareness and 

personal hygiene practices. This could be done by providing adequate health education to 

improve disease awareness and by providing basic services—such as safe water, 

sanitation and hygiene (WASH) and animal vaccination—in addition to poverty alleviation 

programs. For example, interventions to reduce morbidity in children could be carried out 

through aschool-based platform by incorporating health education packages in school 

curricula. Such an approach has been demonstrated in prevention programs for other 

diseases and it has proven to significantly improve children’s knowledge about a disease 

and to help in reducing infections, such as worm infections (Bieri et al., 2013; Al-Delaimy 

et al., 2014). A cluster-randomised intervention trial conducted by Bieri et al. (2013) at 

Chinese schools in Hunan province, for instance, showed that the health education 

packages (e.g. workshops, video, pamphlet, classroom discussions) successfully 

increased students’ knowledge about STHs, resulting in an improvement  in hand-washing 

behaviour and a reduction in the incidence of infection by 50%. In the leptospirosis 

context, there are examples from La Reunion Islands and French Polynesia of 

leptospirosis awareness materials (e.g., leaflets, posters) being distributed in schools in 

addition to providing general hygiene education (Goarant, 2016). 

To reduce morbidity among farmer communities, interventions—in addition to providing 

chemoprophylaxis (doxycycline) to prevent infections among farmers which is already 

being done (Xu and Ye, 2017)—can be focused on reducing the risk of zoonotic 

transmission through animal vaccinations and improving farmer biosecurity practices (e.g. 

promoting the use of personal protective equipment). Farmer communities may receive 

great benefit from One-Health intervention measures—which synergistically target 

potential sources of transmission in animals and the environment. One measure that could 

be considered is the scaling-up of livestock vaccination. Livestock vaccination has both 

economical and public health implication as it is not only beneficial for improving livestock 

productivity and farmer’s economy, but also in preventing potential zoonotic infection in the 

human population. Vaccination has the potential to reduce urinary shedding and renal 

carriage in livestock; although the rate of efficacy varies among studies range from 0–

100% (Allen et al., 1982; Hodges et al., 1985; Vallée et al., 2016). Moreover, a study in 

New Zealand has shown that a campaign for vaccination of livestock has helped to reduce 
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more than 80% of leptospirosis incidence among dairy farmers (Marshall, 1987). An 

integrated strategy to control leptospirosis in livestock by combining extensive biosecurity 

measures, vaccination, and chemoprophylaxis has successfully reduced the outbreak at 

farm level (Mughini-Gras et al., 2014; Pimenta et al., 2019).  

Leptospirosis risk could also be reduced by promoting the use of personal protective 

equipment (PPE), such as boots, gloves, goggles, and clothes, among farmers. While 

there is discrepancy in the effectiveness of PPE on preventing leptospirosis (Dreyfus et al., 

2015; Pittavino et al., 2017), studies have demonstrated the benefits of using PPE to 

prevent leptospirosis infection (Phraisuwan et al., 2002; Tomcyzk et al., 2014). A meta-

analysis conducted by Tomcyzk et al (2014) showed that using footwear is a strong 

protective measure for leptospirosis infection (OR = 0.59; 95% CI: 0.37–0.94). In this 

context, the role of public health veterinarians is therefore critical.  

 

9.3.3 Enhancement of surveillance system through the development of local specific 

spatial-decision support tools and early-warning system  

While mapping leptospirosis and the use of spatial analytic tools in this field has been 

increasingly documented (as evidenced in Chapter 4), its full potential in supporting 

decision-making processes and in improving health systems to directly support 

leptospirosis control has not been well recognised. Operationalising intervention programs 

in the field can be challenging and costly without adequate information on specific 

locations as to where and when interventions are most needed. Thus, the development of 

operational tools—such as maps and prediction models to support strategic decision-

making and guide the interventions, which is one of the priorities identified by the WHO-

LERG (WHO, 2010; 2011)—is essential.  

The program of research outlined in this thesis has demonstrated the utilisation of GIS/RS 

and spatial analytics, which has helped lay the foundation for further development of a 

spatial decision support system (SDSS) for guiding leptospirosis control and elimination 

strategies in China. My research findings clearly demonstrate that leptospirosis risk is 

significantly heterogenous geographically. Therefore, it is important to incorporate a 

geographical component to the existing health information system in order to achieve 

effective management of leptospirosis control locally within residual high-risk areas. To 

support effective implementation of leptospirosis control and the transition from control to 

elimination, robust health information and surveillance systems are essential as these will 
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guarantee the effective delivery of scaled-up interventions (Abdussalam et al., 1972; 

WHO, 2010, 2011). The effective use of a SDSS in a public health context has been 

demonstrated in elimination programs for vector-borne diseases such as malaria in several 

countries (Wangdi et al., 2016; Kelly et al., 2011). A SDSS is a user-friendly computerised 

system incorporating geographical or spatial data, disease notification data, and other data 

(e.g. resources, demographics). It provides automated analyses to generate enriched and 

interactive visual graphics or maps and tables to guide decision-making for planning and 

implementation of interventions.  

Based on the results of my program of research presented in this thesis, I propose a 

framework for a STDSS—a localised support system—which can be applied to support 

leptospirosis control in China also in other endemic countries (Figure 9-1). The STDSS 

consists of three main/broad components: inputs, processes, and expected outputs. Based 

on the findings of the research outlined in Chapter 6, Chapter 7 and Chapter 8, in addition 

to routine passive human leptospirosis notification data, data inputs could be enriched by 

adding (i) data about animal leptospirosis cases from local animal health agencies; (ii) 

various high-resolution spatial data, including environmental (e.g. NDVI, MNDWI, LST, 

LULC, livestock density), weather (rainfall, humidity, temperature) and socioeconomic data 

(population, GDP) obtained from a GIS/RS database similar to what I have used; and (iii) 

survey or census data when available (e.g. individual/household level risk factors). For 

effective implementation, monitoring, and evaluation of targeted controls and preventions 

in high-risk countries, geographical reconnaissance (GR) may be needed prior to the 

development of a STDSS. For instance, all households, farms and clinics in Yilong County 

or Mengla County could be geo-referenced by using a device such as a GPS to provide 

high-resolution spatial data. In addition, data for individual/household-level risk factors and 

socio-environmental data (e.g. occupation, household size, presence of animals, access to 

safe WASH, etc.) could be also collected during the survey. Based on the GR, the 

proportion of a population at-risk and resources (e.g. number of clinicians, vaccines, 

antibiotic required) can be also estimated.  

Once all these data are available, a set of algorithms / commands can be used in the 

spatial-temporal analyses as outlined in this thesis—visualization/mapping (Chapter 5 – 

Chapter 7), exploration (e.g., cluster detection module) (Chapter 6), spatial modelling 

(Chapter 7) and outbreak detection models (Chapter 8). These can be embedded into the 

system to automatically run the analysis and generate outputs—such as tables, graphs, 

and maps—in an interactive way. The main outputs of the STDSS would range from 
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simple positive case distribution or incidence/burden maps (Chapter 5), risk (hotspots) 

maps (Chapter 6) to predictive risk maps and maps of uncertainty (Chapter 7). These 

maps and/or tables would provide an evidence-base for decision-making processes. All 

parties (e.g. health workers, veterinarians, etc.) should be involved in the decision-making 

processes to ensure control and prevention at optimum level. A more localised STDSS 

that accounting for local heterogeneities in leptospirosis epidemiology and risk factors 

would help enhance the operationalisation of targeted intervention in every stage, 

including planning (e.g., allocating diagnostic resources, antibiotics, rodent control), 

surveillance, and monitoring (e.g., active surveillance, interventions coverage), during the 

identified epidemic period. The variables incorporated in the STDSS can be adjusted 

depending on the local epidemiological conditions. For instance, in urban areas, data 

including flooding risk indicators and socioeconomic factors (e.g., population density) and 

rodent abundance (if available) in addition to climate variables can be incorporated in the 

system.  
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Figure 9-1 Framework of spatial-temporal decision support system (STDSS) for 
leptospirosis control and prevention 
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9.4  General limitations  

9.4.1 Publication bias 

The literature captured by the systematic search in Chapter 4 originated from a limited 

number of countries with most studies reported from the American continent. This is 

inconsistent with the distribution of the global burden of leptospirosis as suggested by 

Torgerson et al (2015). This limited number of studies focusing on spatial-temporal 

analyses may be explained by the challenges facing most endemic countries, especially 

those in developing countries. The challenges include the availability of high-quality 

epidemiological data (e.g. poor reporting systems, variation in case ascertainment and 

surveillance systems) and inadequate technical capacity (Faine et al., 1999; Musso and La 

Scola, 2013; Schreier et al., 2013, Costa et al., 2012, Goarant, 2016).  

In the systematic review detailed in Chapter 4, I only considered published refereed, 

original research articles indexed in selected databases. Despite this, the evidence 

presented in my systematic review is the most comprehensive and recent in the field. The 

review has added to current knowledge on how spatial epidemiological approaches have 

been applied in past studies to inform leptospirosis control in humans and animals; and it 

has provided a general guideline for future medical geography studies into leptospirosis in 

different settings.  

 

9.4.2 Case ascertainment 

The leptospirosis notification dataset that I used was based on passive surveillance which 

means that the findings presented in this thesis only represent leptospirosis cases that 

ended-up being reported to health facilities around China. Thus, the incidence and DALY 

estimates presented in Chapter 5 might not represent the actual level of exposure to 

Leptospira occurring in China. Variation in surveillance capacity and limited diagnostic 

capacity, especially in remote rural areas, may introduce reporting biases into my results. 

Moreover, the major problem in leptospirosis confirmation is that it commonly exhibits a 

wide spectrum of clinical symptoms, making it difficult to be recognise under conventional 

diagnostic tests, leading to misdiagnosis (Bharti et al., 2003). People who lack awareness 

about the disease and live in areas where point-of-care is inadequate are less likely to 

seek medical care, which potentially leads to under-reporting (Wu et al., 2017).  

The research detailed in Chapter 5 (see Table 5-1) indicates that the proportion of 

laboratory-confirmed cases was significantly lower (31%) compared with the clinically 
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diagnosed (69%) leptospirosis cases. Moreover, an additional analysis found that the 

proportion of laboratory-confirmed cases was also varied among provinces (see Appendix 

C Table C.1) which may suggest heterogeneity in diagnostic capacity across provinces 

within China. As discussed in Chapter 5, it is important to note that the surveillance system 

in China is primarily hospital-based, but the capacity to diagnose leptospirosis through 

MAT, ELISA, or PCR varies across hospitals. However, there was no change in the 

diagnostic tests used for leptospirosis over the period studied. 

 

9.4.3 Uncertainty in DALY estimation 

Although the research detailed in Chapter 5 was able to quantify DALY estimates of 

leptospirosis in China, these DALY estimates were based on all notified 

suspected/probable and confirmed leptospirosis cases. This was done to allow 

comparison with the official government reports and local studies.  

Other important limitations to consider are estimates of disability weights used in DALY 

calculation. Since there was no detailed data available on patient’s clinical presentations in 

the dataset, I was not able to accurately determine the severity of illness. To address this, I 

used the general assumptions developed by Torgerson et al. (2015) in estimating the 

disability weight (DW) which is detailed in Section 5.3.4. Despite these limitations, my 

study in Chapter 5 has contributed to the recent sub-national heterogeneity in leptospirosis 

DALY estimates in China.  

 

9.4.4 Ecological approach and regression dilution  

Among potential limitations, I acknowledge that the research studies detailed in Chapter 5 

through to Chapter 8 are purely ecological. One of the major limitations of such an 

ecological approach to data analysis is the difficulty in establishing causal inferences 

(Morgenstern et al., 1995). However, my ecological approach to leptospirosis modelling 

allowed the exploration of the broad-scale epidemiology and potential risk factors of 

leptospirosis. This also has helped in generating hypothetical mechanisms of leptospirosis 

transmission and risk factors at different spatial scales, from national to local level across 

China. The overall purpose of the program of research detailed in this thesis was to use 

spatial analytical tools to identify and quantify the effects of ecological and socioeconomic 

factors on the geographical and temporal distribution of leptospirosis. Despite its limitation, 

the findings outlined in this thesis have shed light into the epidemiology of leptospirosis 
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and the value of spatial analytical tools in providing evidence to better inform leptospirosis 

control.  

Another important limitation is regression dilution bias. Although I used high-resolution 

remote-sensed data, the resolution of the data was not completely perfect. I estimated and 

used the areal mean value of each remote-sensed covariate as a proxy for the actual 

exposures. However, this technique could lead to regression dilution bias due to imprecise 

exposure estimation, which may in turn underestimate the observed effects (Frost and 

Thompson, 2000; Hutcheon et al., 2010). Additionally, findings presented in the thesis may 

be also influenced by the accuracy of remote-sensed data. Poor atmospheric conditions 

such as cloud cover is likely to alter the satellite images, which in turn may under or 

overestimate the values of environmental data. To address this issue, however, I carefully 

selected best available cloud-free images over the period of study.  

 

9.4.5 Confounding factors 

A significant reduction in the leptospirosis notification data (incidence and mortality) and 

the geographical distribution of its incidence as shown in this thesis may not only be 

affected by changes in social and environmental conditions (e.g. urbanisation, agricultural 

modernisation, land use change) (Deng et al., 2015; Long et al., 2018) but also may be 

confounded by the changes in the quality of the surveillance system and case 

ascertainment (Yang et al., 2011), and by the effects of the implementation of disease 

control, such as health education programs, water sanitation and hygiene (WASH) 

improvement, and vaccination programs (Hu et al., 2014; Xu and Ye, 2018), which may 

affect the diversity of reservoirs and circulating serovars in the country. However, such 

data were not available at county level for the entire sequence of studies within this thesis.  

 

9.5 Future directions 

In the light of limitations discussed above, there are number of research opportunities that 

can be done in the future. These include: 

1. The findings provided in Chapter 5 have given important insight into the plausible 

effects of environmental and social change on the epidemiological transition of 

leptospirosis morbidity. Using data presented in this thesis, further investigation 

could be carried out to better understand the associations between socioecological 
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changes and leptospirosis. For instance, when the data are available, further 

studies could be directed to investigate the effects of land-use changes and WASH 

improvement on the spatial distribution of the burden of leptospirosis.  

2. Researchers could examine the association between climate change and the 

spatial-temporal distribution of leptospirosis and develop spatial and temporal 

predictive maps by taking into account emission scenarios /representative 

concentration pathways (RCPs) as the incidence of leptospirosis is expected to 

increase due to climate change and urbanisation (Lau et al. 2010). Additionally, 

leptospirosis data with finer temporal resolution (daily or weekly), reservoir animal 

data (e.g., rodent density) or Leptospira concentration in the environment should be 

included into the models. 

3. Further research could be focused on the development of a spatial decision support 

system (SDSS) to aid leptospirosis elimination. SDSS is an integrated computer-

based system that utilises available routine health databases (e.g. diseases, 

resources), GIS and spatial statistics which allow health authorities to organise, 

visualise and analyse data for decision making (Eisen and Eisen, 2011). Several 

studies have been employed to develop SDSS to help control zoonotic diseases 

(Beard et al., 2018) but so far none of these studies have been aimed at designing 

SDSS for leptospirosis. SDSS for leptospirosis could incorporate data, including 

epidemiological (e.g. human and animal infection, serovars, vaccination), 

environmental (e.g. rodent/livestock density, farm location, flood risk index) and 

socioeconomic (e.g. population, health services) data.       

4. Local-scale population-based epidemiological studies in the identified high-risk 

counties could lead to better understanding of the associated risk factors—

individual, environmental, and socioeconomic—and the dynamics of leptospirosis 

infections in both humans and animals. Additionally, studies aiming at assessing 

knowledge, attitude and practices (KAPs) among the high-risk populations identified 

in this thesis (e.g., small-scale subsistence farmers) are also warranted.    

5. Lastly, implementation or interventional research is needed with focus on: (i) 

assessing the effectiveness of integrated disease-control strategies on reducing the 

morbidity of leptospirosis, (ii) the impact of school-based interventions on the 

morbidity of leptospirosis in children and (iii) the effectiveness of One-Health 

collaborative actions on leptospirosis control.   
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9.6  Conclusions 

This thesis contributes the first comprehensive review on the use of spatial analytical 

methods for both human and leptospirosis studies. The review I presented highlights the 

urgency of taking into account case ascertainment, spatial dependency, and uncertainties 

and of carefully defining the type of data, covariates, geographical unit of analysis, and 

type of analysis, so that it can be reliably and effectively operationalised to support 

leptospirosis control in the communities. To guide future studies and to enhance the 

usefulness and validity of the cartographic outputs, this thesis provides the first general 

framework for the application of spatial analytical tools for combating leptospirosis, with the 

potential application for combating other diseases of interest. This thesis extends current 

knowledge on the use of spatial epidemiological analysis in the field of leptospirosis. 

This thesis adds new knowledge in that it provides the first evidence of the burden of 

leptospirosis in terms of DALYs at the sub-national level within China. The research in 

Chapter 5 demonstrates that males and children under 19-years old are the most affected 

by leptospirosis. From a public health perspective, the findings suggest the need for 

strengthening public health interventions towards improving awareness among these 

populations about the risks of leptospirosis. Furthermore, the study also revealed that the 

geographical distribution of DALYs is strongly heterogeneous within China, signaling the 

variation in demographical, environmental, and socioeconomic determinants. Research in 

Chapter 6 implies that whilst there has been a substantial reduction in the morbidity and 

burden of leptospirosis in China over the past years, the residual high-risk counties 

remain, suggesting that transmission is continuously occurring locally. These high-risk 

counties are characterised by a larger share of farmers, rural landscapes, lower cattle 

density but high pig density, and lower GDP, and are situated in moderate elevation and 

receive higher monthly rainfall. In terms of implications for public health, improved 

interventions should be directed towards these identified high-risk counties, especially in 

the tropical and subtropical regions in the south of China.  

In this thesis, I emphasize taking into consideration the local sociodemographic and 

environmental conditions when designing and implementing interventions. Research in 

Chapter 7 and 8 has shown that the role of climate, environmental, and socioeconomic 

factors are geographically heterogeneous within the country. The study in Chapter 7 

reveals significant variation in the effects of environmental factors on the spatial 

heterogeneity of leptospirosis incidence in the UYRB and the PRB. The study in Chapter 8 

confirmed that weather and environmental indicators, such as biomass and floods, 
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significantly explained the temporal variability of incidence of leptospirosis at local level; 

thus, such parameters can be used as predictors for the emergence of leptospirosis 

outbreaks. Together, these findings call for the need of local-specific control and 

intervention programs. 

Finally, this thesis generates evidence on how spatial analytical approaches can be used 

for a better understanding of the epidemiology and potential factors driving leptospirosis 

distribution, and for identifying areas most at-risk and estimating populations-at-risk. This 

thesis lays the foundation for further development of an integrated spatial-temporal 

decision support system (STDSS) for leptospirosis control to support health authorities in 

planning and implementing effective and timely spatially targeted public health 

interventions in identified residual high-risk regions.  
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Appendix B. Chapter 4 Supplementary information 

Table B-1. Keyword combinations used in the selection process for the systematic review 

Database Search string 

Scopus (1960–2018) ( TITLE-ABS-KEY ( "remote sens*" )  AND  TITLE-ABS-KEY ( leptospir* ) )  OR  ( TITLE-ABS-KEY ( predict* )  AND  TITLE-ABS-KEY ( 
outbreak )  AND  TITLE-ABS-KEY ( leptospir* ) )  OR  ( TITLE-ABS-KEY ( mapping )  AND  TITLE-ABS-KEY ( leptospir* ) )  OR  ( 
TITLE-ABS-KEY ( "geographic information system" )  AND  TITLE-ABS-KEY ( leptospir* ) )  OR  ( TITLE-ABS-KEY ( spati* )  AND  
TITLE-ABS-KEY ( leptospir* ) )  OR  ( TITLE-ABS-KEY ( "remote sens*" )  OR  ( TITLE-ABS-KEY ( cluster* ) )  AND  TITLE-ABS-KEY ( 
leptospir* ) )  OR  ( TITLE-ABS-KEY ( "GIS" )  AND  TITLE-ABS-KEY ( leptospir* ) ) 

EMBASE (1930–2018) (mapping OR 'geographic information system'/exp OR spati* OR 'remote sens*' OR cluster* OR 'gis' OR 'outbreak prediction') AND 
leptospir*:ab 

Pubmed (1930–2018) (((((((((((leptospirosis[MeSH Terms]) OR leptospira[MeSH Terms])) AND (spati*[Title/Abstract] OR "geographic information 
system"[Title/Abstract] OR "spatial analysis"[Title/Abstract] OR "remote sens*"*[Title/Abstract] OR map*[Title/Abstract] OR cluster*[Text 
Word] OR map*[Text Word] OR "geographic information system[MeSH Terms] OR 'outbreak prediction'[Title/Abstract] OR 'spatial 
analysis'[MeSH Terms])))) Sort by: Relevance 

Web of science Core Collection (1900–
2018) 

TS=("outbreak prediction" AND leptospir*) OR TS=(map* AND leptospir*) OR TS=("geographic information system" AND leptospir*) OR 
TS=(spati* AND leptospir*) OR TS=("remote sens*" AND leptospir*) OR TS=(cluster* AND leptospir*) OR TS=("GIS" AND leptospir*) 

ScieLO (1930–2018) TS=("outbreak prediction" AND leptospir*) OR TS=(map* AND leptospir*) OR TS=("geographic information system" AND leptospir*) OR 
TS=(spati* AND leptospir*) OR TS=("remote sens*" AND leptospir*) OR TS=(cluster* AND leptospir*) OR TS=("GIS" AND leptospir*) 

Zoological Record (1930–2018) TS=("outbreak prediction" AND leptospir*) OR TS=(map* AND leptospir*) OR TS=("geographic information system" AND leptospir*) OR 
TS=(spati* AND leptospir*) OR TS=("remote sens*" AND leptospir*) OR TS=(cluster* AND leptospir*) OR TS=("GIS" AND leptospir*) 
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Table B-2. Summary of the characteristics of studies included in the systematic review (N = 115) 

Reference Location Study scale Data sources Leptospirosis 
diagnosis methods 

Case 
definitions 
described 

Study 
design 

Spatial/Temporal 
analysis 

Human studies (n=66)        

Lau et al. (2016) Fiji National  Survey MAT, ELISA Y CS V+M 

Lau et al. (2012c) American Samoa National  Survey MAT Y CS V 

Lau et al. (2012b) American Samoa National  Survey MAT Y CS V+M 

Lau et al. (2012a) American Samoa National  Survey MAT Y CS V+E+M 

Robertson et al. (2012) Sri Lanka National Notification Suspect cases  Y CS V+E+M 

Sanchez-Montes et al. (2015) Mexico National Notification ELISA/MAT Y CS V+M 

Schneider et al. (2012) Nicaragua National Notification ELISA Y CS V+M 

Stevens et al. (2011) Palau National (Island) Notification n.d N CS V 

van Alphen et al. (2015) Denmark National Notification MAT Y CS V 

Zhao et al. (2016) China National Notification n.d N CS V+M 

Lau et al. (2015) Australia Sub-national Notification MAT, PCR, CAAT Y CS V 

Sulistyawati et al. (2016) Indonesia Sub-national Notification n.d N CS V+E 

Barcellos & Sabroza (2000) Brazil Sub-national Notification n.d N CS V+M 

Barcellos & Sabroza (2001) Brazil Sub-national Notification MAT N CS V+M 

Barcellos et al. (2003) Brazil Sub-national Notification n.d N CS V 

Tassinari et al. (2004) Brazil Sub-national Notification n.d N CS V 

Reis et al. (2008) Brazil Sub-national Survey MAT Y PC V+M 

Tassinari et al. (2008) Brazil Sub-national Notification Culture/Isolation/ MAT Y CS V+E+M 

Garcia-Ramirez et al. (2015) Colombia Sub-national Notification n.d. N CS V 

Soares et al. (2010) Brazil Sub-national Notification Culture/Isolation/ 
ELISA/ MAT 

Y CS V+E+M 

de Melo et al. (2011) Brazil Sub-national Notification ELISA, MAT N CS V 

Sunaryo & Widiastuti (2012) Indonesia Sub-national Survey and 
notification 

Lateral flow N CS V 

Widayani et al. (2016) Indonesia Sub-national Notification n.d. N CS V+M 

Dozsa et al. (2016) Brazil Sub-national Notification n.d. N CS V+M 

Goncalves et al. (2016) Brazil Sub-national Notification n.d. N CS V+M 

Gracie et al. (2014) Brazil Sub-national Notification MAT N CS V+E+M 

Hagan et al. (2016) Brazil Sub-national Survey MAT Y PC V+M 

Hassan & Tahar (2016) Malaysia Sub-national Notification n.d N CS V+E 

Suwanpakdee et al. (2015) Thailand Sub-national Notification Latex agglutination/ 
MCAT/lateral 
flow/RDT/MAT/IFA/ 
ELISA/PCR/culture 

Y CS V+E+M 

Suryani et al. (2016) Indonesia Sub-national Medical records Serological test (n.d) N CC E+M 

Schneider et al. (2015) Brazil Sub-national Survey IgM ELISA, MAT Y CS V+M 

Coelho & Massad (2012) Sao Paolo, Brazil Sub-national Notification n.d N CS, TS TM 

Chadsuthi et al. (2012) Thailand National Notification n.d N CS, TS TM 

Desvars et al. (2011) Reunion Island National (Island) Notification Culture 
(blood)/MAT/PCR 

Y CS, TS TM 

Weinberger et al. (2014) New Caledonia National (Island) Notification Culture/MAT/PCR Y CS, TS TM 
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Reference Location Study scale Data sources Leptospirosis 
diagnosis methods 

Case 
definitions 
described 

Study 
design 

Spatial/Temporal 
analysis 

Bennett & Everard (1991)  Barbados National Medical records n.d N CS E 

Chaiblich et al. (2017) Brazil Sub-national Notification n.d N CS V 

Cook et al. (2017) Kenya Sub-national Survey IgM ELISA, N CS V+E+M 

Herbreteau et al. (2006) Thailand Sub-national Notification n.d N CS V 

Joshi et al. (2017) Korea National Notification n.d N CS TM 

Ko et al. (1999) Brazil Sub-national Active surveillance MAT Y PC V 

Ledien et al. (2017) Cambodia Sub-national Active surveillance IgM ELISA N PC M 

Massenet et al. (2015) Futuna Island National (Island) Surveillance IgM ELISA, MAT, PCR Y CS V+E+TM 

Mišić-Majerus (2014) Croatia National Active surveillance MAT N PC V 

Myint et al. (2007) Cambodia Sub-national Medical records IgM ELISA, MAT Y CS V 

Jansen et al. (2005) Germany National Notification Culture/PCR/ 
MAT/ELISA 

Y CS V 

Schneider et al. (2017) Latin America Regional Notification MAT/ELISA Y CS V 

Slack et al. (2007) Australia National Notification Culture (blood), IgM 
ELISA, MAT, PCR 
(gyrB), CAAT 

Y CS V 

Slack et al. (2006) Australia Sub-national Notification Cultures, IgM ELISA, 
MAT, CAAT 

Y CS V 

Vega-Corredor & Opadeyi (2014) Trinidad and Tobago Sub-national Notification n.d N CS V+M 

Shi et al. (1995) China National Notification n.d N CS V 

Rood et al. (2017) Netherlands National Notification Culture/IgM 
ELISA/MAT/ELISA 

N CS V+E+M 

Mohammadinia et al. (2017) Iran Sub-national Medical records ELISA N CS V+E+M 

Gonwong et al. (2017) Thailand National Serum repository IgG IgM ELISA Y CS V 

Mohd Radi et al. (2018) Malaysia Sub-national Notification ELISA, MAT Y CS V+E+M 

Rahayu et al. (2018) Indonesia Sub-national Notification n.d N CS V 

Deshmukh et al. (2019) India Sub-national Hospital-based 
surveillance 

IgM ELISA, MAT Y PC, TS V+E+TM 

Mayfield et al. (2018a) Fiji National Survey MAT, ELISA Y CS V+E+M 

Matsushita et al. (2018) Philippines Sub-national Hospital-based 
surveillance 

n.d (as most cases 
were diagnosed 
clinically) 

Y CS,TS TM 

Gutierrez & Martinez-Vega (2018) Colombia National Notification MAT, IgM ELISA, 
Culture, or PCR 

Y CS V+E 

Koffi SK et al. (2018) Côte d’Ivoire, Africa Sub-national Serum repository ELISA, MAT Y CS V 

Baquero & Machado (2018) Brazil National Notification n.d n.d CS V+M 

Mayfield et al. (2018b) Fiji National Survey MAT, ELISA Y CS V+M 

Dhewantara et al. (2018) China National Notification MAT, ELISA, PCR Y CS V 

Le Turnier et al. (2018) French Guiana National Hospital admission 
report 

IgM ELISA, PCR, MAT Y CS V 

        

Animal studies (n=39)        

Gautam et al. (2010) USA National Laboratory database MAT Y CS V+E 

Ward (2002a) USA, Canada National Medical records n.d N CC E 

Filho et al. (2014) Brazil Sub-national Survey MAT Y CS V 

Dobigny et al. (2015) Niger Sub-national Survey PCR (rrs) n.a CS V 
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Reference Location Study scale Data sources Leptospirosis 
diagnosis methods 

Case 
definitions 
described 

Study 
design 

Spatial/Temporal 
analysis 

Ayral et al. (2015) France Sub-national Survey PCR (rpoB), MST n.a CS V 

Hesterberg et al. (2009) South Africa Sub-national Survey MAT N CS V 

Ghneim et al. (2007) USA Sub-national Medical records, 
Survey 

MAT Y CC V+M 

Grayzel & DeBess (2016) Canada Sub-national Medical records MAT Y CS V 

Hennebelle et al. (2013) USA Sub-national Medical records MAT, IHC Y CC V+E 

Raghavan et al. (2012) USA Sub-national Medical records Culture + MAT Y CC V+E+M 

Raghavan et al. (2011) USA Sub-national Medical records Culture + MAT Y CC V+M 

Raghavan et al. (2013) USA Sub-national Medical records Culture + MAT Y CC V+M 

Ward et al. (2004) USA Sub-national Medical records Culture + MAT Y CC V+M 

White et al. (2017) USA Sub-national Laboratory database MAT Y CS V+M 

Bier et al. (2013) Brazil Sub-national Survey MAT Y CS V+M 

Himsworth et al. (2013) Canada Sub-national Survey PCR (lipL32) n.a CS V+E+M 

Nicolino et al. (2014) Brazil Sub-national Survey MAT Y CS V+E 

Bier et al. (2012) Brazil Sub-national Survey MAT Y CS V 

Alton et al. (2009) Canada Sub-national Laboratory database MAT Y CS E+M 

da Silva et al. (2006) Brazil Sub-national Laboratory database MAT Y CS V+E 

Elder et al. (1986) Australia Sub-national Laboratory database MAT Y CS V+M 

Elder & Ward (1978) Australia Sub-national Laboratory database MAT Y CS V+M 

Hashimoto et al. (2015) Brazil Sub-national Survey MAT Y CS V+M 

Ivanova et al. (2012) Cambodia Sub-national Survey Culture + PCR (rrs) n.a CS V+M 

Koizumi et al. (2008) Japan Sub-national Survey Culture, MAT, PCR 
(flaB) 

N CS V 

Lee et al. (2014) United States Sub-national Laboratory database MAT Y CS TM 

Machado et al. (2016) Brazil Sub-national Survey MAT Y CS V 

Magalhães et al. (2006) Brazil Sub-national Survey MAT Y CS V 

Major et al. (2014) Switzerland National Laboratory database MAT Y CS V 

Paixão et al. (2016) Brazil Sub-national Survey MAT Y CS V 

Scolamacchia et al. (2010) Cameroon Sub-national Laboratory database ELISA Y CS V+E 

Shearer et al. (2014) Canada Sub-national Survey Culture, PCR, IHC n.a CS V 

Suwancharoen et al. (2016) Thailand National Survey Culture, LAMP Y CS V 

Thompson et al. (2006) Brazil Sub-national Survey MAT Y CS M 

Ward (2002b) United States National Medical records n.d N CS TM 

Wongbutdee & Jittimanee (2016) Thailand Sub-national Survey PCR (lipL32, rrs) n.a CS V 

Hartman (1984) Netherlands National Notification MAT, ELISA Y CS V 

Miyama et al. (2018) Japan Sub-national Survey IgG ELISA  Y CS V+E+M 

Silva et al. (2018) Teresina, Brazil Sub-nationalurvey MSA Y CS V 

        

Human and animal studies (n=11)        

Chadsuthi et al. (2017) Thailand National Passive surveillance 
report 

MAT Y CS V+M 

Assenga et al. (2015) Tanzania Sub-national Survey Culture+MAT Y CS V 

Villanueva et al. (2014) Philippines Sub-national Survey Culture, PCR (rrl. flaB, 
gyrB), PFGE 

n.a CS V 
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Reference Location Study scale Data sources Leptospirosis 
diagnosis methods 

Case 
definitions 
described 

Study 
design 

Spatial/Temporal 
analysis 

Widiastuti et al. (2016) Indonesia Sub-national Survey and 
notification 

Culture, PCR (rpoB) n.a CS V 

Cipullo & Dias (2012) Brazil Sub-national Notification n.d N CS V+E 

Fonzar & Langoni (2012) Brazil Sub-national Survey and 
notification 

MAT N CS V 

Della Rossa et al. (2016) Thailand Sub-national Survey and 
notification 

Culture + PCR (lipL32, 
B-actin, rrs, secY) 

N CS V+E+M 

Biscornet et al. (2017) Seychelles Sub-national Survey Culture, PCR (rrs), 
MLST (adk, icdA, 
lipL23, lipL41, rrs2, 
secY) 

Y CS V+M 

Hurd et al. (2017) Germany Sub-national Survey Culture, PCR (hap1) n.a (animal); 
N (human) 

CS V 

Pijnacker et al. (2016) Netherlands National Passive surveillance Culture, IgM-IgG ELISA Y CS V 

Sumanta et al. (2015) Indonesia Sub-national Survey and 
notification 

Lateral flow n.a CS V+E 

Abbreviations: n.d, not described; n.a, not applicable (as study used molecular detection); Study design: CS, cross-sectional; CC, case-control; PC, prospective 
cohort; TS = time-series; MAT, microscopic agglutination test; MSA, microscopic serum agglutination; Spatial/temporal analysis: V, visualisation; E, exploration; M, 
modelling; TM, temporal modelling 
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Table B-3 Summary of studies on mapping human leptospirosis (N=56) 

Study area Outcome(s) Data source Reference 

Regional (n=1)    

South America Incidence map Notification Schneider et al. (2017) 

    

National (n=23)    

Denmark Incidence maps Notification van Alphen et al. (2015) 

Nicaragua Incidence maps, risk maps Notification Schneider et al. (2012) 

Sri Lanka Incidence maps Notification Robertson et al. (2012)   

American Samoa Seroprevalence maps, predictive seroprevalence maps Serological survey Lau et al. (2012a) 

American Samoa Seropositivity maps Serological survey Lau et al. (2012b) 

Palau  Incidence map Notification Stevens et al. (2011) 

China Incidence map, suitability map Notification Zhao et al. (2016) 

Thailand Risk maps Notification Suwanpakdee et al. (2015) 

Mexico Case distribution map, suitability map Notification Sanchez-Montes et al. (2015) 

American Samoa Seropositivity maps Serological survey Lau et al. (2012c) 

Fiji Seroprevalence map Serological survey Lau et al. (2016) 

Futuna Island Incidence map Notification Massenet et al. (2015) 

Germany Incidence map Notification Jansen et al. (2005) 

Australia Distribution map (serovar) Notification Slack et al. (2007) 

China Incidence map Notification Shi et al. (1995) 

Netherlands Kernel density map, incidence map, residual incidence 
map 

Notification Rood et al. (2017) 

Thailand Seroprevalence map Serological survey Gonwong et al. (2017) 

Fiji Predicted probability infection maps, hotspots maps Serological survey Mayfield et al. (2018a) 

Colombia Cluster map Notification Gutierrez and Martinez-Vega (2018) 

Brazil Predictive risk maps Notification Baquero and Machado (2018) 

Fiji Predictive risk (seroprevalence) maps Survey Mayfield et al. (2018b) 

China Disability-adjusted life-years (DALY) distribution maps Notification Dhewantara et al. (2018) 

French Guiana Case distribution map Hospital admission report 
(notification) 

Le Turnier et al. (2018) 

    

Sub-national (n=32)    

Rio Grande do Sul, Brazil Incidence maps Notification Schneider et al. (2015) 

Rio Grande do Sul, Brazil Incidence maps Notification Barcellos et al. (2003) 

Queensland, Australia Incidence maps (serovar-specific) Notification Lau et al. (2015) 

Coffee-triangle region, Colombia Incidence maps Notification Garcia-Ramirez et al. (2015)  

Indonesia Distribution map  Notification Sulistyawati et al. (2016) 

Rio de Janeiro, Brazil Incidence map, distribution map Investigation (active surveillance) Barcellos and Sabroza (2000) 

Rio de Janeiro, Brazil Distribution map Investigation (active surveillance) Barcellos and Sabroza (2001) 

Rio de Janeiro, Brazil Smoothed Kernel density distribution map Notification Tassinari et al. (2004) 
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Study area Outcome(s) Data source Reference 

Rio de Janeiro, Brazil Distribution map Notification Tassinari et al. (2008) 

Pau da Lima communities, 
Salvador, Brazil 

Smoothed Kernel density of seropositivity Notification Reis et al. (2008) 

Sao Paolo, Brazil Incidence map Notification Soares et al. (2010) 

Aracaju, Brazil Kernel density map Notification de Melo et al. (2011) 

Semarang, Indonesia Distribution map Notification + survey Sunaryo and Widiastuti (2012) 

Rio de Janeiro, Brazil Incidence maps Notification Gracie et al. (2014) 

Pau da Lima communities, 
Salvador, Brazil 

Risk maps Cohort Hagan et al. (2016) 

Petailing district, Malaysia Risk maps Notification Hassan and Tahar (2016) 

Bantul district, Indonesia Risk maps Notification Widayani et al., (2016) 

Curitiba, Brazil Distribution map, risk maps  Notification Dozsa et al., (2016) 

Belem, Para, Brazil Distribution map, risk maps  Notification Goncalves et al. (2016) 

Rio de Janeiro, Brazil Kernel smoothed density (incidence) map (based on 
empirical Bayes estimate) 

Notification Chaiblich et al. (2017) 

Lake Victoria Basin Region, Kenya Kernel smoothed density (risk) map Serological survey Cook et al. (2017) 

Phrae Province, Thailand Incidence map Notification Herbreteau et al. (2006) 

Sao Paolo, Brazil Incidence map Active hospital-based surveillance Ko et al. (1999) 

Koprivnica-Krizevci, Croatia Incidence map Cohort (active hospital-based 
surveillance) 

Mišić-Majerus (2014) 

Kamphaeng Phet, Thailand Incidence map (serovar) Cohort (active hospital-based 
surveillance) 

Myint et al. (2007) 

Australia Distribution map Notification Slack et al. (2006) 

Trinidad & Tobago Kernel map of standardized incidence rate (SIR) Notification Vega-Corredor and Opadeyi (2014) 

Iran Incidence map, risk maps Notification Mohammadinia et al. (2017) 

Malaysia Distribution map, Kernel density map, incidence map Notification Mohd Radi et al. (2018) 

Indonesia Distribution map Notification Rahayu et al. (2018) 

India Predicted infection maps, hotspots map Cohort (active hospital-based 
surveillance) 

Deshmukh et al. (2019) 

Côte d’Ivoire, Africa Distribution map anti-Leptospira antibodies Serum repository Koffi et al. (2018) 
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Table B-4 Summary of studies on mapping animal infection and both animal and human infection data  

Study area Outcome(s) Animal hosts Data source Reference 

Animal infection (n=32)     

     

National (n=4)     

USA Distribution map, predictive probability MAT-
positive maps 

Dogs Medical records White et al. (2017) 

Switzerland Distribution map Dogs Laboratory database Major et al. (2014) 

Thailand Uroprevalence map  Uroprevalence survey Suwancharoen et al. (2016) 

Netherlands Distribution map (serovar) Dogs Laboratory database Hartman (1984) 

     

Sub-national (n=28)     

USA Seropositivity map  Dogs Medical records Gautam et al. (2010) 

Kansas and Nebraska, USA Case-control location map Dogs Medical records Raghavan et al. (2012) 

Kansas and Nebraska, USA Distribution map  Dogs Medical records Raghavan et al. (2011) 

Kansas and Nebraska, USA Prevalence map Dogs Medical records Raghavan et al. (2013) 

KwaZulu-Natal, South Africa Case-control location map Livestock (cattle) Serological survey Hesterberg et al. (2009) 

North California, USA Seropositivity map Dogs Medical records Ghneim et al. (2007) 

USA Case-control location map, cluster map Dogs Medical records Ward et al (2004) 

North California, USA Distribution map Dogs Medical records Hennebelle et al. (2013) 

Oregon, USA Seropositivity map Dogs Medical record, survey Grayzel & DeBess (2016) 

Vila Pantanal, Curitiba, Parana, Brazil Seropositivity map, clusters map Dogs Serological survey Bier et al. (2012) 

Vancouver, Canada Seropositive map, risk map Rodents Serological survey Himsworth et al. (2013) 

Vila Pantanal, Curitiba, Parana, Brazil Seropositive map, risk map Dogs Serological survey Bier et al. (2013) 

Brejo Paraibano, Brazil Distribution map (serovar), prevalence map, 
Kernel density map 

Horse Serological survey Filho et al. (2014) 

Sete Lagoas, Minas Geras, Brazil Serostatus for anti-leptospiral distribution  Livestock (dairy 
cattle) 

Serological survey Nicolino et al. (2014) 

Niamey, Niger Suitability map of rodents Rodents Serological survey Dobigny et al. (2015) 

Lyon, France Seropositivity map Rodents Serological survey Ayral et al. (2015) 

Sao Paolo, Brazil Serostatus for anti-leptospiral distribution 
map 

Dogs Serological survey da Silva et al. (2006) 

Queensland, Australia Seroprevalence maps  Livestock (cattle, 
pigs) 

Serological survey Elder et al. (1986) 

Queensland, Australia Seroprevalence maps  Livestock (cattle, 
pigs) 

Serological survey Elder & Ward (1978) 

Parana, Brazil Kernel density map Livestock (cattle) Serological survey Hashimoto et al. (2015) 

Veal Renh and Kaev Selma, Cambodia Trapping locations map  Rodents Animal survey (rodent) 
 

Ivanova et al. (2012) 

Miyazaki Prefecture, Japan Distribution map Rodents Animal survey 
 

Koizumi et al. (2008) 

Pernambuco state, Brazil Prevalence map, distribution map Livestock (sheep) Serological survey Machado et al. (2016) 
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Study area Outcome(s) Animal hosts Data source Reference 

Minas Gerais, Brazil Distribution map (serovar), seropositivity 
map, risk map 

Dogs Animal survey (dog) Magalhães et al. (2006) 

Adamawa, Cameroon Seroprevalence map Livestock (cattle) Serological survey Scolamacchia et al. (2010) 

Ontario, Canada Seropositivity map Wildlife Wild animal survey  Shearer et al. (2014) 

Tohoku, Japan Seropositive map, disease cluster map Livestock (dairy 
cattle) 

Bulk milk survey (serological 
survey) 

Miyama et al. (2018) 

Teresina, Brazil Seropositive map Dogs Serological survey Silva et al. (2018) 

     

Human-animal infection (n=9)     

National (n=9)     

Thailand Seroprevalence maps Livestock 
(buffaloes, cattle, 
pigs) 

Human and livestock passive 
surveillance programs 

Chadsuthi et al. (2017) 

Seychelles Distribution maps  Rodents, dogs, 
cats 

Cohort (human) and animal 
sampling  

Biscornet et al. (2017) 

Netherlands Distribution map (autochthonus and imported 
cases)  

Dogs Notification (human and 
animal) 

Pijnacker et al. (2016) 

Tanzania Serogroup distribution map Rodents Survey and animal sampling  Assenga et al. (2015) 

Luzon, Philippines Serogroup distribution map (human and rats) Rodents Human passive surveillance 
and animal sampling  

Villanueva et al. (2014) 

Maringa, Parana, Brazil Distribution map Dogs Animal sampling   Fonzar & Langoni (2012) 

Sao Paolo, Brazil Distribution map  Dogs Notification Cipullo & Dias (2012) 

Sindon and Jeron village, Boyolali, 
Indonesia 

Distribution map Rodents Animal sampling, notification 
(human) 

Widiastuti et al. (2016) 

Tha Wang Pha and Pua, Nan, Thailand Distribution map  Rodents Animal sampling, medical 
records (human) 

Della Rossa et al. (2016) 

Lower Saxony, Germany Muskrats smoothed prevalence map 
(empirical Bayes estimates) 

Rodents Animal sampling and 
notification (human) 

Hurd et al. (2017) 

Indonesia Distribution map (human), seropositivity map 
(rodent) 

Rodents Animal sampling and 
notification (human) 

Sumanta et al. (2015) 
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Table B-5 Summary of reviewed studies that explored spatial patterns or spatial autocorrelation of leptospirosis (N=34) 

Country Spatial scale Objectives Methods Reference 

Human leptospirosis (n=20) 

Thailand National To analyse spatial-temporal pattern of leptospirosis; to test the association of 
flooding and animal census data on leptospirosis incidence 

Getis Ord local G Suwanpakdee et al. 
(2015) 

American 
Samoa 

National  To detect spatial clustering of seropositive and seronegative cases Kulldorf’s Bernoulli spatial scan 
statistics, semivariogram 

Lau et al. (2012a) 

Sri Lanka National To detect spatial-temporal clusters of cases during outbreak of suspected 
leptospirosis 

Kulldorf’s Poisson space-time scan 
statistics 

Robertson et al. (2012) 

Brazil Sub-national To identify spatial clusters of outbreaks; to estimate the effect of 
socioeconomic with prevalence of Leptospira antibodies 

Kulldorf’s spatial and space-time 
scan statistics 

Tassinari et al. (2008) 

Malaysia Sub-national To identify hot spot, cold spot and spatial outlier; to identify spatial risk factors 
for leptospirosis 

Getis Ord local G Hassan & Tahar (2016) 

Brazil Sub-national To identify the role of environmental and socioeconomic factors on 
leptospirosis 

Moran Goncalves et al. (2016) 

Brazil Sub-national To test spatial autocorrelation during epidemic and endemic period, to identify 
environmental and socioeconomic determinants associated with the 
occurrence of leptospirosis at different geographical scale 

Moran Gracie et al. (2014) 

Brazil Sub-national To analyse spatial pattern of cases Global Moran, local Moran Soares et al. (2010) 

Indonesia Sub-national To identify disease pattern and risk factors leptospirosis in Yogyakarta from 
2011 to 2013 

Average nearest neighborhood, 
Moran 

Suryani et al. (2016) 

Indonesia Sub-national To identify spatial pattern of cases Kulldorf’s spatial scan statistics 
(Multinomial model) 

Sulistyawati et al. (2016) 

Barbados National  To examine the space-time clustering of leptospirosis Knox Bennett & Everard 
(1991) 

Kenya Sub-national To investigate seropositivity and associated risk factors among 
slaughterhouse workers 

Moran’s I Cook et al. (2017) 

Futuna Island National To describe epidemiology of leptospirosis, to test the link of rainfall and 
leptospirosis cases, to map incidence, and to identify spatial clusters 

Kulldorf’s Poisson space-time scan 
statistics 

Massenet et al. (2015) 

Iran Sub-national To compare effectiveness of fixed and adaptive kernels in modelling human 
leptospirosis using GWR 

Moran’s I Mohammadinia et al. 
(2017) 

Netherlands National To map and to investigate spatial variation in morbidity of leptospirosis, to 
quantify the role of biotic and abiotic environmental factors on the incidence of 
leptospirosis 

Moran’s I, Local Indicators of 
Spatial Association (LISA) 

Rood et al. (2017) 

Thailand Sub-national To investigate the environmental factors associated with human leptospirosis 
incidence 

Moran’s I statistic Della Rossa et al. (2016) 

Brazil Sub-national To identify risk factors associated with human infection Spatial scan Cipullo & Dias (2012) 

Malaysia Sub-national To compare spatial-temporal pattern of leptospirosis before and after 
outbreak 

Average Nearest Neighborhood, 
global Moran’s I, LISA 

Mohd Radi et al. (2018) 

India Sub-national To describe the epidemiology of leptospirosis and examine the role of climatic 
factors on leptospirosis incidence 

Kulldorf’s Poisson spatial scan 
statistics 

Deshmukh et al. (2019) 
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Country Spatial scale Objectives Methods Reference 

Fiji National To assess hotspots and coldspots of predicted probability leptospirosis 
infection  

Getis-Ord Gi* test Mayfield et al. (2018a) 

Colombia National To examine the the association of climatic variability with spatiotemporal 
clusters of leptospirosis 

Kulldorf’s space-time permutation Gutierrez & Martinez-
Vega (2018) 

     

Animal leptospirosis (n=13) 

USA National To identify space and space-time clusters of seroreactivity on dogs to MAT 
over the country during 2000–2007 

Kulldorf’s Poisson space-time scan 
statistics 

Gautam et al. (2010) 

USA Sub-national To identify clustering among cases and controls locations Cuzick-Edwards Kth neighbor test Raghavan et al. (2012) 

USA and 
Canada 

National to determine clustering of leptospirosis cases among dogs Kulldorf’s Poisson space-time scan 
statistics 

Ward (2002) 

Brazil Sub-national To detect spatial clustering of seropositive and seronegative in herds Kulldorf’s Bernoulli spatial scan 
statistics 

Nicolino et al. (2014) 

Canada Sub-national to identify spatial clusters of high and low rate on L.interogans infection 
among trapped Norway rats 

Kulldorf’s Bernoulli spatial scan 
statistics 

Himsworth et al. (2013) 

USA Sub-national to identify global and local area clustering of cases in space, time, and space-
time on dogs with Leptospira 

Cuzick-Edwards Kth neighbor, 
Kulldorf’s Bernoulli spatial scan 
statistics, Poisson space time 
permutation 

Hennebelle et al. (2013) 

Canada Sub-national To examine spatial clustering of infected dogs; to assess risk factors  Empirical Bayes Index Modification 
Moran’s I statistic, empirical 
semivariogram, Binomial spatial 
scan statistic 

Alton et al. (2009) 

Brazil Sub-national To assess the risk factor of seropositivity on dogs and to identify its spatial 
distribution 

Kulldorf’s Poisson spatial scan 
statistics 

da Silva et al. (2006) 

Cameroon Sub-national To identify spatial distribution of herd prevalences, to test spatial clustering of 
Leptospira seropositive herds 

Cuzick-Edwards’ k-nearest 
neighbour 

Scolamacchia et al. 
(2010) 

USA Sub-national To assess dogs’ urban vs. rural address locations and different land cover 
types from two disparate land cover datasets, within 2500 m as potential risk 
factors for canine leptospirosis in Kansas and Nebraska. 

Empirical variogram Raghavan et al. (2011) 

USA Sub-national To test if varying spatial extents (MAUP) changed the types and statistical 
significance of environmental risk factors of canine leptospirosis derived from 
land cover/land use datasets. 

Empirical variogram Raghavan et al. (2013) 

Indonesia Sub-national To examine distribution pattern and clustering of Leptospira bacteria in rats, 
water, soil 

Kulldorf’s spatial scan statistics Sumanta et al. (2015) 

Japan Sub-national To detect spatial clustering of L. Hardjo seropositivy in dairy herds Kulldorf’s spatial scan statistics Miyama et al. (2018) 

Human-animal infection (n=1) 

Germany Sub-national To investigate the spatial pattern of leptospirosis in muskrats and association 
with human infection 

Global Moran’s I, Geary’s C test, 
semi-variogram, Kulldorf’s Poisson 
spatial scan statistics, flexibly 
shaped spatial scan test 
(FleXScan). 

Hurd et al. (2017) 
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Table B-6 Summary of studies on quantifying risk and modelling on leptospirosis  

Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Human infection 

Suwanpakde et al. 
(2015) 

Thailand 2010-2012 National To examine the 
correlation of spatial-
temporal of leptospirosis 
incidence and flooding  

Y Y N Y N Negative binomial (NB) regression 
model, univariate analysis, Z test, 
multivariate analysis, variance 
inflation factor, stepwise selection 

Schneider et al. (2015) Brazil 2008-2012 Sub-
national 

To identify potential 
drivers of leptospirosis 
considering the One 
Health approach 

Y N N Y N Multivariable regression, negative 
binomial regression (NB), 
univariate analysis, Variance 
inflation factors, two-way 
interaction, deviance performance, 
zero-inflated negative binomial 
(ZINB), chi-squared, Vuong 
statistics, Akaike information 
criteria, Poisson regression 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Lau et al. (2016) Fiji September - 
December 
2013 (4 
months) 

National 
(Island 
country) 

To characterize the 
epidemiology and risk 
factors for human 
leptospirosis in Fiji 

Y N N Y N Multivariable logistic regression 
model, multilevel hieararchical 
model, Intracluster correlation 
coefficients, Hosmer-Lemeshow 
test, AUC, Akaike information 
criterion, Bayesian information 
criterion 

Lau et al. (2012a) American 
Samoa 

May-July 
2010 

National 
(Island 
country) 

To estimate leptospirosis 
seroprevalence at 
geographic locations 
based on environmental 
factors, produce a 
predictive disease risk 
map for American 
Samoa, and assess the 
accuracy of the maps in 
predicting infection risk 

Y Y Y Y Y Logistic regression, multivariable 
logistic regression model, spatial 
autocorrelation, semi-variograms, 
Akaike information criterion, AUC 

Lau et al. (2012b) American 
Samoa 

May-July 
2010 

National 
(Island 
country) 

To identify risk factors 
associated with infection 

Y N N Y N Chi-square, Fischer exact test, 
univariate analysis, multivariable 
logistic regression model 

Robertson et al. (2012) Sri Lanka 2005-2010 National To characterize risk 
factors of leptospirosis; 
to examine the role of 
rainfall in the outbreak 

Y Y N Y N Cross-correlation function, log-
linear regression, space-time scan 
statistic, Monte-Carlo 
randomization, logistic regression 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Sanchez-Montes et al. 
(2015) 

Mexico 2000-2010 National To determine the 
potential leptospirosis 
distribution 

Y N N Y Y Ecological Niche Model 
(ENM)/Maxent model, Genetic 
Algorithm for Rule-set Production 
(GARP), chi-square, recursive 
partitioning analysis, classification 
and regression tree, non-
parametric regression 

Schneider et al. (2012) Nicaragua 2008-2012 National To stratify the risk and 
identify “critical areas” for 
leptospirosis outbreaks 
in Nicaragua, and to 
perform an exploratory 
analysis of potential 
“drivers” 

Y N N Y N Pearson correlation, t-test, one-way 
ANOVA, multinomial logistic model. 
Poisson regression, binary logistic, 
lagged cross-correlation analysis 

Zhao et al. (2016) China 2010-2014 National To identified 
environmental and 
socioeconomic factors 
associated with 
leptospirosis; forecast 
potential risk area of 
leptospirosis 

Y N N Y Y Ecological Niche Model 
(ENM)/Maxent model; logistic 
regression, receiver operating 
characteristic  
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Gracie et al. (2014) Brazil 1996-1999 Sub-
national 

To assess the 
relationships among 
various environmental 
and socioeconomical 
factors and leptospirosis 
incidence using different 
geographical scales and 
units of analysis 

Y Y N Y N spatial autocorrelation, non-
parametric Spearman's rank 
correlation 

Barcellos et al. (2000) Brazil February-
March 1996 

Sub-
national 

To characterized 
environmental conditions 
associated with 
leptospirosis  

Y N N Y N ANOVA 

Barcellos et al. (2001) Brazil February-
March 1996 

Sub-
national 

to analyze the spatial 
distribution of leptosirosis 
cases based on the 
location of defined risk 
factors 

Y N N Y N Chi-squared 

Dozsa et al. (2016) Brazil 2014 Sub-
national 

to investigate the regions 
with highest risk of 
leptospirosis and 
flooding in the city of 
Curitiba 

Y Y N Y N semivariogram, kriging 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Hagan et al. (2016) Brazil 2003-2007 Sub-
national 

to identify risk factors 
and to quantify the role 
on leptospirosis; to 
examine the spatial-
temporal distribution of 
random effects to assess 
the unexplained variation 
in the pattern 

Y N N Y N generalized estimating equations, 
generalized additive model, Akaike 
information criterion, Stochastic 
Partial Differential Equations; 
Integrated Nested Laplace 
Approximation (INLA), deviance 
information criterion, multivariable 
mixed effect models 

Reis et al. (2008) Brazil 2003-2004 Sub-
national 

To evaluate the 
association of 
environmental and 
socioeconomic variables 
with the risk of acquiring 
Leptospira antibodies; to 
estimate the effect of 
demographic, 
socioeconomic, 
household and 
workplace-related factors 
on the prevalence of 
Leptospira antibodies.  

Y N N Y N Chi-square, Wilcoxon rank sum 
test, Kernel density estimation, 
Generalized Additive Models, 
Poisson regression, Bayesian 
inference, standard non-
informative, multivariate analysis, 
univariate analysis, Spearman 
correlation coefficient 

Soares et al. (2010) Brazil 1998-2006 Sub-
national 

To identify potential 
ecological and social 
components of 
Leptospira transmission 

Y Y N Y N Spearman correlation 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Suryani et al. (2016) Indonesia 2011-2013 Sub-
national 

To explore the spatial 
distribution of 
leptospirosis case and 
risk factors   

Y Y N Y N Bivariate analysis 

Tassinari et al. (2008) Brazil 1997-2002 Sub-
national 

To evaluate the spatial 
and temporal influence of 
rainfall and spatial 
influence of 
socioeconomic and 
environmental 
characteristics on the 
risk of a leptospirosis 
case belonging to a 
cluster vs. noncluster  

Y Y N Y N Voronoi tassellation, Bartlett's test, 
spatial scan statistics, space-time  
scan statistics, generalized linear 
mixed model, logistic multilevel 
analysis, Variance partition 
coefficient (VPC), Akaike's 
corrected information criterion 

Widayani et al. (2016) Indonesia 2009-2011 Sub-
national 

To determine local and 
global risk factors for 
leptospirosis, to develop 
vulnerability map of 
leptospirosis 

Y Y N Y Y Geographical Weighted Regression 
(GWR) 

Goncalves et al. (2016) Brazil 2007-2013 Sub-
national 

To identify spatial 
correlations between 
social and environmental 
risk factors and 
leptospirosis in Belém in 
the State of Pará from 
2007 to 2013 

Y Y N Y N Chi-square, kriging, spatial 
autocorrelation 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Cook et al. (2017) Kenya 2011-2012 Sub-
national 

To investigate 
seropositivity and 
associated risk factors 
among slaughterhouse 
workers 

Y Y N Y N Multilevel logistic regression, 
correlation analysis, multilevel 
mixed effect regression model, 
Akaike information criterion, 
variance inflation factors, intraclass 
correlation coefficient, Moran's I 

Ledien et al. (2017) Cambodia 2007-2009 Sub-
national 

To examine best 
remotely-sensed flooding 
indicators for better 
predict leptospirosis 
incidence 

Y N N Y N Chi-square test, generalized linear 
model (GLM), logistic regression 
model, Akaike information criteria 
(AIC), Area Under Cover (AUC), 
boosted regression tree (BRT), 
cross-validation 

Vega-Corredor et al. 
(2014) 

Trinidad 
Tobago 

1998-2008 National 
(Island 
country) 

To assess the spatial 
variation in risk of 
leptospirosis associated 
with hydrological factors 

Y N N Y Y non-parametric global Poisson 
regresssion, Geographically 
Weighted Poisson Regression, 
Akaike information criterion  

Gonwong et al. (2017) Thailand 2007-2008 National To understand the 
distribution of 
leptospirosis incidence in 
young Thailand 
population 

Y N N Y N Spearman Correlation 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Mohammadinia et al. 
(2017) 

Iran 2009 Sub-
national 

To compare 
effectiveness of fixed 
and adaptive kernels in 
modelling human 
leptospirosis using GWR 

Y Y N Y N Geographical Weighted Regression 
(GWR), Inverse Diverse Weighting 
(IDW), Kernel, Spatial 
autocorrelation test (Moran's), 
Jarque-Bera statistics, Variance 
inflation factor, Akaike Information 
Criterion, Bayesian Information 
Criterion, Cross Validation, 
Bisquare-Gaussian weighting 
function 

Rood et al. (2017) Netherlan
ds 

1995-2012 National To investigate spatial 
variations in leptospirosis 
incidence and to identify 
associations with 
environmental variables 

Y Y Y Y Y Simultaneous Auto Regression 
(SAR), Akaike information criterion 
(AIC), spatial autocorrelation test in 
the residuals 

Radi et al. (2018) Malaysia 2014 Sub-
national 

To investigate spatial-
temporal pattern of 
leptospirosis associated 
with major outbreak 

Y Y Y Y N Average Nearest Neighborhood, 
Global Moran's I, LISA, Kernel 
density, geographical weighted 
regression, Poisson GLM 

Desmukh et al. (2018) India 2015-2016 Sub-
national 

To describe the 
epidemiology of 
leptospirosis and 
examine the role of 

Y N Y Y N Kriging, Kernel density, Poisson 
spatial scan statistics, Time-series 
Poisson regression 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

climatic factors on 
leptospirosis incidence 

Mayfield et al. (2018b) Fiji 2013 National To determine drivers of 
leptospirosis 
transmission under 
different scenarios of 
environmental and 
livestock exposures 

Y N N Y Y Spatial Bayesian Networks 

Boquero et al. (2018) Brazil 2000-2016 National To model spatiotemporal 
pattern of morbidity and 
lethality, to examine the 
effects of environmental 
and socioecomic factors 
linked with leptospirosis 

Y N Y Y Y Besag, York, Mollie (BYM), INLA, 
Pearson correlation 

Mayfield et al. (2018a) Fiji 2013 National To compare the 
performance of GWLR 
model with standard 
aspatial regression; by 
using GWLR, to 
described the eco-
epidemiology of 
leptospirosis and identify 
potential interventions  

Y N Y Y Y geographically logistic weighted 
regression (GWLR), Getis-Ord G* 
 
 
 
 
 
 
 
 
 
  

Animal infection 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Ghneim et al. (2007) USA 1998-2000 Sub-
national 

To investigate landscape 
and land use aspects 
that link with canine 
leptospirosis 

Y N N Y N Chi-square test of homogeneity, 
unconditional logistic regression 
model 

Raghavan et al. (2011) USA 2002-2009 National To determine the 
association of land cover 
characteristics and dogs 
infection 

Y N Y Y N Multivariable logistic regression 
model, variance inflatation factor, 
Akaike information criterion, chi-
square goodness-of-fit, ROC, 
spatial autocorrelation, empirical 
variogram of residuals and spatial 
envelopes 

Raghavan et al. (2013) USA 2002-2009 National To identify the effect of 
spatial extents (buffer) 
on the risk factors for 
canine leptospirosis 

Y N Y Y N Multivariable logistic regression 
model, variance inflatation factor, 
Akaike information criterion, chi-
square goodness-of-fit, ROC, 
spatial autocorrelation, empirical 
variogram of residuals and spatial 
envelopes 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Raghavan et al. (2012) USA 2002-2009 National To investigate urban 
characteristics that 
associated with canine 
leptospirosis 

Y N Y Y N Multivariable logistic regression 
model, variance inflatation factor, 
Akaike information criterion, chi-
square goodness-of-fit, ROC, 
spatial autocorrelation, empirical 
variogram of residuals and spatial 
envelopes 

Ward et al. (2004) USA 1997-2002 Sub-
national 

To identify environmental 
risk factors for canine 
leptospirosis 

Y N N Y N Logistic regression, stepwise 
analysis, classification tables 

White et al. (2017) USA 2000-2014 National To identify environmental 
and socioeconomic 
factors associated with 
canine leptospirosis; to 
produce predictive maps 

Y N N Y Y Boosted Regression Tree (BRT) 

Bier et al. (2013) Brazil 2009-2010 Sub-
national 

To identify spatial 
distribution of 
seroreagent in dogs; to 
identify risk factors of 
canine leptospirosis 

Y N N Y N Generalized additive model, Monte-
Carlo simulation, Akaike's 
information criterion 

Bier et al. (2012) Brazil 2010 Sub-
national 

To identify spatial pattern 
and risk factors 
associated with dogs 
leptospirosis 

Y N N Y N Decision tree analysis, training-
testing, confusion matrix, Kappa 
index 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Himsworth et al. (2013) Canada 2011-2012 Sub-
national 

To characterize the 
prevalence and 
distribution of L. 
interrogans amongst 
Norway rats and the 
degree to which season 
and population 
characteristics influence 
the ecology of this 
bacterium 

Y Y N Y N Logistic regression, multiple logistic 
regression, Spearman's rank 
correlation, Akaike's information 
criterion, generalized linear model 

Alton et al. (2009) Canada 1998-2006 Sub-
national 

To describe the 
epidemiology of canine 
leptospirosis, to assess 
factors associated with 
infections, to detect 
cluster of canine 
infection 

Y Y N Y N Logistic regression, Akaike 
information criterion (AIC), chi-
squared goodnees-of-fit, 
generalized linear mixed models, 
Penalized Quasi-likelihood, 
Empirical Bayes Index Modification 
of Moran's I, semivariogram, spatial 
scan test  
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Elder et al. (1986) Australia 1972-1983 Sub-
national 

To assess the 
environmental factors 
associated with bovine 
leptospirosis 

Y N N Y N Linear regression, quadratic 
regression model, Mallow's Cp 
statistics 

Elder and Ward (1978) Australia 1973-1976 Sub-
national 

To investigate trends in 
the spatial distribution of 
L. pomona and L. hardjo 
infection in bovine; to 
test association of rainfall 
and Leptospira 
prevalence 

Y N N Y N Spearman rank correlation 

Ivanova et al. (2012) Cambodia 2008-2009 Sub-
national 

To test the role of 
climate, vegetation, and 
habitat on rodents 
infection rate 

Y N N Y N Generalized linear models (GLM), 
Akaike information criterion (AIC) 

Biscornet et al. (2017) Seychelle
s 

2014-2015 National To describe the burden 
and epidemiological links 
between animal and 
human infection, to 
investigate the biotic and 
abiotic determinants of 
transmission 

Y N N Y N Generalized Linear Model (GLM), 
Fisher's exact test 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Miyama et al. (2018) Japan 2014-2015 Sub-
national 

To estimate 
seroprevelance and risk 
factors of Hardjo 
infection in dairy herds 

Y N Y Y N Univariate analysis, GLM, Hosmer-
Lemeshow test, Akaike information 
criterion (AIC) 

Silva et al. (2018) Brazil 2014 Sub-
national 

To examine anti-
Leptospira antibodies in 
dogs, distribution and 
risk factors 

Y N N Y N Univariate analysis, Logistic 
regression, Chi-square, Fischer 
exact, Monte Carlo test, Goodman 
test 

Major et al. (2014) Switzerlan
d 

2003-2012 National To describe the 
epidemiology of canine 
leptospirosis, to assess 
the effect of climatic 
factors on incidence 

Y N N Y N Linear regression 
 
 
 
  

Both human & animal infection 

Chadsuthi et al. (2017) Thailand 2010-2015 National To identify the cross-
correlation of serovars 
amongst species and/or 
regions; to investigate 
seropositivity with regard 
to species and regions 

Y N N Y N GLM with binomial function, 
Spearman with Banferroni 
adjustement, logistic regression, 
Akaike information criterion, Chi-
squared 
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Reference Study site Data Period 
Study 
scale 

Objectives 

Spatial analytical method 

Statistical methods 

M
a

p
p

in
g

 

Exploration Modelling 

Disease 
global 
clustering 
tests (first-
order) 

Spatial 
autocorre
lation 
tests 
(second-
order, 
local 
test) 

Model 
parameter 
estimates 

Spatial 
prediction 

Hurd et al. (2017) Germany 2007-2009 National To investigate the spatial 
pattern of leptospirosis in 
muskrats and 
association with human 
infection 

Y Y N Y N Poisson regression models, spatial 
autocorrelation tests 

Della-Rossa et al. 
(2016) 

Thailand 2003-2012 Sub-
national 

To identify environmental 
factors linked with 
leptospira infection in 
rodents and human 

Y Y N Y N Generalized Linear Model (GLM), 
Akaike information criterion, 
negative binomial, spatial 
autocorrelation 

Note: Y = Yes; N = No;  
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Table B-7 Summary environmental and socioeconomic predictors used on the risk modelling studies  

Reference Study site 

Covariates 

Findings 

Environment 
  

Climate 
  

Socioeconomic 
  

Demographical 
  

Human infection  

Suwanpakde et al. (2015) Thailand 3,4       Flooding was not directly associated with 
leptospirosis; differents drivers (e.g., 
agriculture and animal farming) might have 
contributed to the variation in space-time 
pattern of incidence across regions 

Schneider et al. (2015) Brazil 1,2,6,9 3 2,3   Four possible drivers were associated with 
leptospirosis incidence: landscape, Neossolo 
Litolitico soil type, and rice and tobacco 
production  

Lau et al. (2016) Fiji 1,2,4,5,6,9 3 2,3 1-5,7 Seroprevalence was 19.4%; serovar Pohnpei 
was the dominant serovar.  Based on 
statistical tests, gender, ethnicity, community 
type, water availability, work location, 
poverty, lived <100m from river, pigs in 
community, high cattle density, high rainfall 
intensity, were linked with the presence of 
Leptospira antibodies 

Lau et al. (2012a) American 
Samoa 

1-9 1 1,3 2,3,5 Leptospirosis was associated with 
environmental (soil type, altitude, vegetation, 
piggeries) as well as individual-level (gender, 
job) factors. Predictive maps accuracy was 
84.5% 
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Reference Study site 

Covariates 

Findings 

Environment 
  

Climate 
  

Socioeconomic 
  

Demographical 
  

Lau et al. (2012b) American 
Samoa 

2-4,6,7 1 1,3 2,3,5 Living at lower altitude and having higher 
number of piggeries around the home is 
associated with infection 

Robertson et al. (2012) Sri Lanka 1,6 1 1,2   Proportion of farms <0.2ha and average 
distance to rivers within <400m are 
associated with leptospirosis prevalence. No 
significant spatial autocorrelation identified in 
residuals 

Sanchez-Montes et al. (2015) Mexico   1,3     The cases were more closely related with 
temperature than precipitation. The cases 
were widespread through central and 
southern Mexico 

Schneider et al. (2012) Nicaragua 1,2,4,9 1 1-3 4 Four variables as the most important: 
percentage of Cambisol and Andosol soil 
type, minimum precipitation, average rainfall 
in the two months with more precipitation, 
and percentage of rural population 

Zhao et al. (2016) China 1,4,6 1,3 1,3   Annual mean temperature (Bio1) and annual 
total 
precipitation (Bio12) were the two most 
important variables governing the geographic 
distribution of leptospirosis in China. Seven 
provinces in China identified as high-risk 
areas for leptospirosis 
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Reference Study site 

Covariates 

Findings 

Environment 
  

Climate 
  

Socioeconomic 
  

Demographical 
  

Gracie et al. (2014) Brazil 1,3,5,7,8   1 4 At municipal level, the connection of poverty, 
sanitation and leptospirosis were evident 
while at state level, environmental factors 
were showed significant associations. 
Flooding was the best predictor for 
leptospirosis at the local level 

Barcellos et al. (2000) Brazil 3,5,7,8   1,3   Access to water, waste collection services, 
and sewer system were associated with 
leptospirosis risk 

Barcellos et al. (2001) Brazil 3,8   1   The incidence rate inside the flood risk area 
were two-fold higher than outside; incidence 
rate decreased with increasing distance from 
waste accumulation sites 

Dozsa et al. (2016) Brazil 3       Leptospirosis cases were higher in the area 
with highly intense flood events 

Hagan et al. (2016) Brazil 1,2,4,7,8   3 1-5,7 Environmental factors related to topology 
such as household elevation and inadequate 
sewage drainage systems increased the risk 
of transmission in the slum microenvironment 

Reis et al. (2008) Brazil 1,2,4,7,8   3 1-4,7 Risk factors for acquiring Leptospira 
antibodies were associated with exposures in 
the household environment. Leptospira 
transmission was due to the interaction of 
factors associated with climate, geography 
and urban poverty 

Soares et al. (2010) Brazil 5,7 1 1,3 4 The incidence and lethality rates correlated 
with the socioeconomic conditions 
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Reference Study site 

Covariates 

Findings 

Environment 
  

Climate 
  

Socioeconomic 
  

Demographical 
  

Suryani et al. (2016) Indonesia 3,5-8     3,5 The various risk factors like mudpuddle, 
water ditches, flood history, waste refusal, 
occupational, and skin lesions were potential 
risk factors for leptospirosis in Yogyakarta 
city 

Tassinari et al. (2008) Brazil 3,5,7 1 1,3 1,2,4 Rainfall was a significant risk determinant for 
leptospirosis cases belonging to a cluster vs. 
non-cluster event. Threshold of mean daily 
rainfall >4 mm was significantly associated 
(OR 3.71; 95% CI 1.83–7.51) with 
leptospirosis cluster events 

Widayani et al. (2016) Indonesia 1,3   2,4 2 At local scale, flood risk, health facility, 
proportion of residential area and age 25-
50yrs were associated with higher risk of 
leptospirosis; at global level, proportion of 
paddy field was the main risk factors 

Goncalves et al. (2016) Brazil 2,3,5,7,8       The highest concentrations of the disease 
were in the Guamá and Jurunas 
neighborhoods in lower lying areas near 
canals and poor environmental conditions 

Cook et al. (2017) Kenya 4,5,6     1,3,5 The likelihood of leptospirosis infection was 
determined by personal hygiene factors. 
Water sources might play role in leptospirosis 
tranmission 

Ledien et al. (2017) Cambodia 1,2,6 1 1 1,2 Modified Normalized Difference Vegetation 
Index (MNDWI) could be used as proxy for 
flooding and predict leptospirosis incidence in 
Cambodia 
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Reference Study site 

Covariates 

Findings 

Environment 
  

Climate 
  

Socioeconomic 
  

Demographical 
  

Vega-Corredor et al. (2014) Trinidad 
Tobago 

2,6,9 1     Rainfall, imperfect soil drainage and 
topographic wetness were significantly 
associated with the spatial variation in 
leptospirosis incidence. 

Gonwong et al. (2017) Thailand 1       Higher seroprevalence was found in the 
north and south regions contrary to reported 
morbidity and potentially associated with 
environments such as forested and rural 
areas 

Mohammadinia et al. (2017) Iran 1,2 1,2,3     Adaptive kernel performed appears to be 
superior compared to fixed model for 
modelling leptospirosis in Gilan Province. 

Rood et al. (2017) Netherlands 1,6,9   1,2 1 Leptospirosis incidence was linked with soil 
characteristics, land-use, and spatial 
configurations  

Radi et al. (2018) Malaysia 1,3,6,8 1,2,3 1 1,2,3,7 Living near to water bodies increased risk of 
infection. Disease was clustered after 
flooding and associated with garbage 
collection sites and meteorological factors. 

Desmukh et al. (2018) India   1,2,3     Relative humidity in the month and rainfall in 
the previous month was the determinants of 
leptospirosis incidence in a given month 

Mayfield et al. (2018b) Fiji 1,4,5 1 1,3 3,4 Commericial dairy farm, presence of pig, and 
poverty rate could explain the variation of 
predicted risk (seroprevalence) in urban and 
rural areas. 
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Reference Study site 

Covariates 

Findings 

Environment 
  

Climate 
  

Socioeconomic 
  

Demographical 
  

Boquero et al. (2018) Brazil 8,9 1,3 1,3 4 Soil moisture, precipitation, poverty, and 
proportion of urban population associated 
with spatiotemporal relative risk of 
leptospirosis morbidity 

Mayfield et al. (2018a) Fiji 1,4,6 1 3   GWLR was useful technique for predicting 
spatial heterogeneity of risks and 
leptospirosis infection. GWLR was more 
efficient than common logistic regression and 
can address non-stationarity.  

Animal infection  

Ghneim et al. (2007) USA 1,7 1     Hydrographic density was positively linked 
with infection in dogs 

Raghavan et al. (2011) USA 1       Dogs lived in urban areas were more likely to 
acquire Leptospira infection  

Raghavan et al. (2013) USA 1       Risk factors varied as the spatial extents 
around case/control locations increased  

Raghavan et al. (2012) USA 1,4,5   1,3   Poverty status among people in 18–64 years 
age group, houses that lack plumbing 
facilities, and proximity to public parks, 
college/universities, and newly urbanized 
areas were risk factors for canine 
leptospirosis in Kansas and Nebraska 

Ward et al. (2004) USA 1,4,5,7,8 1   1,2 Dogs in periurban areas were at greater risk 
of leptospirosis 

White et al. (2017) USA 1,4 1,3 3 1,2 Suburban areas or areas with deciduous 
forest, precipitation and temperature were 
predictors for positive MAT results   
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Reference Study site 

Covariates 

Findings 

Environment 
  

Climate 
  

Socioeconomic 
  

Demographical 
  

Bier et al. (2013) Brazil 1,2,3,4,5,7,8     1,2,5,7 Animal, owner, and environmental factors 
correlated with leptospirosis risk in the areas  

Bier et al. (2012) Brazil 3,4,7,8     5,7 The occurrence of sewer, rats, rubbish and 
access to street determine seropositivity of 
dogs 

Himsworth et al. (2013) Canada   1   2,6 Clusters of high and low L. interrogans 
prevalence were detected and associated 
with weight, fat, and bite wounds 

Alton et al. (2009) Canada 1     1,2,7 Dogs in urban areas were more likely to have 
higher risk than dogs in rural areas. No 
disease cluster have been detected. 

Elder et al. (1986) Australia 1,4,9 1,2,3     The main ecological determinants vary for 
each serovar-specific infection. L pomona 
prevalence determined by low relative 
humidity, Typic Torrerts clays, the presence 
of feral pigs and the mean maximum 
temperature. While. L. hardjo infections 
closely related with presence of beef cattle, 
mean minimum temperature, alkaline soils, 
grey Typic Torrert, and the absence of Typic 
Pellustert clays.  

Elder and Ward (1978) Australia   1     A negative correlation between rainfall 
categories and L. pomona antibodies in beef 
cattle, total cattle and pigs. No significant 
correlation between the prevalence of L. 
hardjo antibodies in cattle and rainfall 
categories. 
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Reference Study site 

Covariates 

Findings 

Environment 
  

Climate 
  

Socioeconomic 
  

Demographical 
  

Ivanova et al. (2012) Cambodia 1,2 1   1,2 Wet season, rain-fed fields, and proximity to 
forest increased the Leptospiral infection on 
rodents 

Biscornet et al. (2017) Seychelles 1 1   6,7 Higher prevalence of Leptospira in rats was 
found during the humid season and in urban 
areas. Genotype data informed that rats are 
not the primary reservoir for human infection. 

Miyama et al. (2018) Japan 4,10       Larger herd, cattle introduction and intensive 
farming areas were associated with 
leptospirosis in dairy herds 

Silva et al. (2018) Brazil 1,3,4,5,7,8,9 1 3 1,2,3,4,7 Dogs with access to the street and resided in 
anthropized areas were at high risk. Low 
income of dog owners was associated with 
risk of leptospirosis in dogs.  

Major et al. (2014) Switzerland   1,3     Seasonal pattern of canine leptospirosis was 
associated with temperature and rainfall. 

Both human & animal infection  

Chadsuthi et al. (2017) Thailand 1 
  

7 The distribution of serovars across Thailand’s 
regions were found to be similar in pattern for 
cattle but not for buffaloes. In humans, the 
serovar distribution in the south differed from 
other regions. In comparison with the central 
region, higher seropositivy was associated 
with northern, northeastern, and southern 
regions. 
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Reference Study site 

Covariates 

Findings 

Environment 
  

Climate 
  

Socioeconomic 
  

Demographical 
  

Hurd et al. (2017) Germany 2 1,3 1 
 

No relationships between muskrats, 
leptospirosis prevalence and human cases. 
Temperature was a good predictor for 
muskrats infection  

Della-Rossa et al. (2016) Thailand 1,2,6 
 

1 
 

Temporally, different environmental factors 
played a role in infection in rodent and 
humans. Associations between rodents and 
human infections remained unclear. 

Code for covariates: 

Environment: Land use/land cover (1), slope/elevation (2), flood (3), reservoirs (4), housing/sanitation/WASH (5), hydrological (6), sewerage system (7), waste 
disposal (8), soil type/pH (9), farms/biosecurity (10) 

Climate: rainfall (1), relative humidity (2), temperature (3) 

Socioeconomic: population (1), agricultural production/output (2), poverty/income (3), health system (4) 

Demographical: age (1), gender (2), occupation (3), education/literacy (4), KAP/behaviour (5), morphological (animal) (6), ethnicity (human) or breed/species 
(animal) (7) 
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Table B-8 Characteristics of studies that used RS data for leptospirosis epidemiology (N=25) 

No
. 

Reference(s) Study area Leptospirosis 
data 

Study 
scale 

Environmental/Socioeconomic data retrieved from RS 
technology 

Environ
mental 

data 
from 
other 

sources 

Source(s) Key findings 

Physical 
environmental/
climatic data  

Source(s) Socio-
econo

mic 
data 

Source(s) 

 
Human 
leptospirosis 
(n=16) 

          

1 Schneider et al. 
(2015) 

Brazil Confirmed 
human 
leptospirosis 
data 
(notification) 

Sub-
national 

Hydrology, 
altitude  

USGS-EROS 
HYDRO1k, 
Digital Elevation 
Model (DEM) 
Global 30-Arc 
Second 
Elevation 
(GTOPO30) 

- - Temperat
ure, 
rainfall 

WorldClim Altitude-slope interaction and 
precipitation showed to be 
significantly related 
to higher number of cases of 
leptospirosis in the univariate 
analysis. None of these 
variables has significant 
association with leptospirosis 
case count in the final model 

2 Gracie et al. 
(2014) 

Brazil Suspected and 
confirmed 
human 
leptospirosis 
data 
(notification) 

Sub-
national 

Land use, 
altitude  

Landsat 7 - - - - Leptospirosis incidence rate 
was positively correlated with 
urban land-use. 

3 Lau et al. (2016) Fiji Human 
Leptospira 
seroprevalenc
e (MAT-based 
survey) 

National Land use/cover,  
elevation, soils,  
roads, hydrology 

n.d 
  

Temperat
ure, 
rainfall 

n.d MAT seropositivity was 
associated with distance 
between home and the 
closest river or major creek 
(<100m) and  maximum 
rainfall in the wettest month.  

4 Lau et al. (2012a) American 
Samoa 

Human 
Leptospira 
seroprevalenc
e (MAT-based 
survey) 

National Altitude, 
vegetation type, 
soil type  

USGS-National 
Elevation 
Dataset (NED) 
(7.5-minute 
Digital Elevation 
Model (DEMs)) 

- - - - Living below the median 
altitude of a village (OR 1.58, 
95%CI 1.00-2.49), living in 
clay loams soils (OR 2.72; 
1.08-6.85), and agricultural 
areas (OR 2.09; 1.12-3.89) 
were associated with 
Leptospira seropositivity 

5 Lau et al. (2012b) American 
Samoa 

Human 
Leptospira 
seroprevalenc
e (MAT-based 
survey) 

National Altitude USGS-National 
Elevation 
Dataset (NED) 
Digital Elevation 
Model 

- - - - In univariate model, living 
below median altitude of a 
village was associated with 
Leptospira seropositivity (OR 
1.53; 95%CI 1.03-2.28). 
Different environmental 
exposures were differently 
linked with each serovars 
infection 



 
  

300 

 

No
. 

Reference(s) Study area Leptospirosis 
data 

Study 
scale 

Environmental/Socioeconomic data retrieved from RS 
technology 

Environ
mental 

data 
from 
other 

sources 

Source(s) Key findings 

Physical 
environmental/
climatic data  

Source(s) Socio-
econo

mic 
data 

Source(s) 

6 Zhao et al. (2016) China Confirmed 
human 
leptospirosis 
data 
(notification) 

National Land cover, pig 
density 

GlobCover Land 
Cover v2.3 
(ENVISAT 
MERIS), 
Gridded 
Livestock of the 
World (FAO) 

Populat
ion 
density 

Gridded 
human 
population 
density 
data 

Annual 
mean 
temperat
ure, 
temperat
ure 
seasonali
ty, 
annual 
precipitati
on and 
precipitati
on 
seasonali
ty 

WorldClim Based on Maxent model, 
annual mean temperature 
(Bio1) and annual total 
precipitation (Bio12) were 
the most influential factors 
driving the spatial distribution 
of human leptospirosis in 
China 

7 Sunaryo  & 
Widiastuti (2012) 

Indonesia Human 
leptospirosis 
cases 
(notification) 

Sub-
national 

Land use Quickbird - - - - Leptospirosis cases were 
found in irregular settlement 
(e.g., high density with poor 
infrastructures and 
sanitation) and in low 
vegetation index (-0.38-
0.095). Remote sensing can 
be used to identify 
environmental risk factors of 
leptospirosis. 

8 Reis et al. (2008) Brazil Human 
Leptospira 
seroprevalenc
e (MAT-based 
survey) 

Sub-
national 

Topographic, 
location open 
sewage and 
rainwater 
drainage 
systems  

Aerial 
photograph 

- - - - The risk of acquiring 
Leptospira antibodies was 
associated with 
environmental conditions 
including living in flood-risk 
areas with open sewers 
(prevalence ratio [PR] 1.42, 
95%CI 1.14–1.75) and near 
to accumulated waste (1.43, 
1.04–1.88) 

9 Hagan et al. 
(2016) 

Brazil Human 
Leptospira 
seroprevalenc
e (MAT-based 
survey) 

Sub-
national 

Elevation Aerial 
photograph 

    
Lower household elevation 
was an environmental risk 
factor for infection 

10 Suwanpakdee et 
al. (2015a) 

Thailand Suspected and 
confirmed 
human 
leptospirosis 

National Flood coverage RADARSAT-1, 
RADARSAT-2, 
COSMO-

- - - - Flooding was not a direct risk 
factor for leptospirosis 
incidence 
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No
. 

Reference(s) Study area Leptospirosis 
data 

Study 
scale 

Environmental/Socioeconomic data retrieved from RS 
technology 

Environ
mental 

data 
from 
other 

sources 

Source(s) Key findings 

Physical 
environmental/
climatic data  

Source(s) Socio-
econo

mic 
data 

Source(s) 

data 
(notification) 

SkyMed-
4,THEOS 

11 Goncalves et al. 
(2016) 

Brazil Suspected and 
confirmed 
human 
leptospirosis 
data 
(notification) 

Sub-
national 

Land use 
(canals), altitude 

SPOT 5 - - - - The highest concentrations 
of the disease in the Guamá 
and Jurunas neighborhoods 
in lower lying areas near 
canals. 

12 Vega-Corredor et 
al. (2014) 

Trinidad 
Tobago 

Confirmed 
human 
leptospirosis 
data 
(notification) 

National Wet Index 
(derived from 
upslome flow 
accumulation 
and topographic 
slope 

Digital Elevation 
Model (DEM) 

- - - - Rainfall, imperfect drainage 
soil and topographic wetness 
index affect the transmission 
of human leptospirosis 

13 Mohammadinia 
et el. (2017) 

Iran Confirmed 
human 
leptospirosis 
data (medical 
records) 

Sub-
national 

Elevation, slope, 
NDVI 

Digital Elevation 
Model (DEM)-
SRTM, MODIS 

- - - - The adaptive kernel 
performed superior to a fixed 
one; Bisquare was selected 
as weighting function that 
concludes more reliable 
results in comparison to 
Gaussian; no clear 
conclusion on the effect of 
environmental variables on 
leptospirosis risks 

14 Ledien et al. 
(2017) 

Cambodia Cohort survey Sub-
national 

Near Infrared 
Red (NIR), 
NDVI, EVI, 
NDWI, NDII, 
MNDWI, altitude 

MODIS Terra 
MOD09A1, 
DEM-SRTM 

Populat
ion 
density 

National 
census 
(100m 
spatial 
resolution) 

- - MNDWI is good flooding risk 
indicator that can support 
early warning system for 
leptospirosis  

15 Rahayu et al. 
(2018) 

Indonesia Notification 
data (case 
definition did 
not describe) 

Sub-
national 

Land use, River, 
Road, contour, 
altitude, soil 
texture, flood 
history, tidal 
flood, 
vegetation, 
waste disposal, 
rainfall 

Quickbird 
    

Based on risk scoring 
approach, three types of 
vulnerable zones of 
leptospirosis transmission 
was identified in Demak. 
High-risk zone was 
characterized by dense 
housing close to river and 
paddy field. 

16 Boquero et al. 
(2018) 

Brazil Notification National     Soil 
moisture, 
precipitati
on, 
temperat
ure 

TerraClim
ate 

Soil moisture, precipitation, 
poverty and the proportion of 
urban households 
associated with the 
spatiotemporal risk pattern of 
leptospirosis 



 
  

302 

 

No
. 

Reference(s) Study area Leptospirosis 
data 

Study 
scale 

Environmental/Socioeconomic data retrieved from RS 
technology 

Environ
mental 

data 
from 
other 

sources 

Source(s) Key findings 

Physical 
environmental/
climatic data  

Source(s) Socio-
econo

mic 
data 

Source(s) 

             
Animal 
leptospirosis 
(n=9) 

          

1 Raghavan et al. 
(2011) 

USA PCR-tested 
canine 
leptospirosis 
data 
(notification) 

National Land cover/Land 
use 

USGS NLCD 
2001 Land 
Cover. Kansas 
Gap Analysis 
Program (GAP) 
(Landsat ETM+ 
and DEM) 

- - - - Canine leptospirosis 
incidence in Kansas and 
Nebraska were higher in 
medium intensity developed 
urban areas. 

2 Raghavan et al. 
(2013) 

USA PCR-tested 
canine 
leptospirosis 
data 
(notification) 

National Land cover/Land 
use 

USGS NLCD 
2001 Land 
Cover. Kansas 
Gap Analysis 
Program (GAP) 
(Landsat ETM+ 
and DEM) 

- - - - Risk factors are varies as the 
spatial extents around 
case/control locations 
increased  

3 Raghavan et al. 
(2012) 

USA PCR-tested 
canine 
leptospirosis 
data 
(notification) 

National Water-bodies 
features, strealm 
flowline, flood 
risk, wetland 
areas, soil-
hydrologic 
(flooding and 
ponding 
frequency, 
drainage class of 
soils) 

USGS National 
Hydrography 
Dataset (NHD), 
USDA Natural 
Resources 
Conservation 
Service (NRCS) 
Soil Survey 
Geographic 
database (Web 
Soil Survey), 
FWS National 
Wetland 
Inventory 
datasets 

- - - - Infection in dogs caused by 
the proximity to water 
features, hydrologic density 
and regularly flooded areas 
within 2.5km of dog's homes 

4 Ghneim et al. 
(2007) 

USA PCR-tested 
canine 
leptospirosis 
data 
(notification) 

National Land use, 
hydrological 
features 

USGS NLCD 
2001 Land 
Cover. Kansas 
Gap Analysis 
Program (GAP) 
(Landsat ETM+ 
and DEM), 
USGS National 
Hydrography 
Dataset (NHD) 

- - - - At closer spatial range from 
the dogs’ homes (radius ≤ 
0.5 km) hydrographic density 
was  positively associated 
with cases; while at larger 
distances (radius ≥ 5 km) 
leptospirosis cases were 
correlated with percent of 
wetlands or public open area 
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No
. 

Reference(s) Study area Leptospirosis 
data 

Study 
scale 

Environmental/Socioeconomic data retrieved from RS 
technology 

Environ
mental 

data 
from 
other 

sources 

Source(s) Key findings 

Physical 
environmental/
climatic data  

Source(s) Socio-
econo

mic 
data 

Source(s) 

5 Dobigny et al. 
(2015) 

Niger PCR-tested 
Leptospira-
infected 
Norway rats 

Sub-
national 

Land cover SPOT satellite 
imagery 

- - - - Suitable areas for 
Leptospira-carrying rodent 
species in Niamey clearly 
correspond to intra-city 
agricultural zones, especially 
those along the Niger River 
and the Gountou Yéna wadi 

6 Ward et al. 
(2004) 

USA Canine 
leptospirosis 
diagnosed by 
MAT 

Sub-
national 

Hydrological 
features, 
wetland, land 
use 

USDA Natural 
Resources 
Conservation 
Service (NRCS) 
Soil Survey 
Geographic 
database (Web 
Soil Survey), 
FWS National 
Wetland 
Inventory 
datasets 

- - - - Dogs in periurban areas are 
at greater risk of 
leptospirosis 

7 White et al. 
(2017) 

USA Canine 
leptospirosis 
diagnosed by 
MAT 

National Land cover, 
precipitation and 
temperature 

USGS NLCD 
2011 Land 
Cover dataset, 
PRISM Spatial 
Climate dataset 

- - - 
 

The variation in canine 
leptospirosis risk in specific 
counties and regions of 
the USA appears to be 
mainly influenced by 
environmental (precipitation, 
temperature) and land use 
factors (deciduous forest, 
shrubland, scrubland, and 
low density developed land) 

8 Ivanova et al. 
(2012) 

Cambodia Rodents and 
shrews 
infection tested 
by PCR 

Sub-
national 

Land cover 
(NDVI), slope, 
elevation 

SPOT 5 satellite 
imagery, SRTM-
DEM 

- - - - Rodents lived in low-slope 
locations, paddy fields, and 
near to to forested areas is 
likely to be infected 

9 Silva et al. (2018) Brazil Dogs 
(seropositivity 
tested by 
MSA) 

Sub-
national 

Land use Landsat-7/ETM+ - - - - Higher seropositive dogs 
were found in the 
anthropized area and during 
wet season 

n.d = not defined 
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Appendix C. Chapter 5 Supplementary information 

Table C-1 Temporal distribution of reported leptospirosis incidence in four regions in China by province, 2005–2015  

Region Province 
Number of reported cases (Cases per 100 000 population) Total No of 

cases (% 
confirmed)* 

Annual 
 IR 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

A 

Guangdong 65 (0.07) 69 (0.08) 64 (0.07) 83 (0.09) 60 (0.06) 59 (0.06) 59 (0.06) 43 (0.04) 53 (0.05) 30 (0.03) 34 (0.03) 619 (53) 0.06 

Guangxi 72 (0.15) 66 (0.14) 62 (0.13) 86 (0.18) 66 (0.14) 56 (0.12) 28 (0.06) 36 (0.08) 24 (0.05) 28 (0.06) 19 (0.04) 543 (40) 0.10 

Hainan 7 (0.08) 5 (0.06) 4 (0.05) 4 (0.05) 4 (0.05) 3 (0.03) 4 (0.05) 5 (0.06) 3 (0.03) 6 (0.07) 2 (0.02) 47 (11) 0.05 

Sub-total 144 (0.10) 140 (0.09) 130 (0.08) 173 (0.11) 130 (0.08) 118 (0.07) 91 (0.06) 84 (0.06) 80 (0.05) 64 (0.05) 55 (0.03) 1,209 (45) 0.07 

B 

Jiangsu 13 (0.02) 6 (0.01) 7 (0.01) 5 (0.01) 1 (0.00) 1 (0.00) 4 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 37 (54) 0.00 

Zhejiang 14 (0.03) 8 (0.02) 53 (0.11) 9 (0.02) 6 (0.01) 17 (0.03) 8 (0.01) 2 (0.00) 6 (0.01) 7 (0.01) 8 (0.01) 138 (43) 0.02 

Anhui 25 (0.04) 18 (0.03) 56 (0.09) 55 (0.09) 32 (0.05) 47 (0.08) 24 (0.04) 19 (0.03) 9 (0.01) 18 (0.03) 7 (0.01) 310 (8) 0.05 

Fujian 40 (0.11) 26 (0.07) 33 (0.09) 43 (0.12) 53 (0.15) 49 (0.13) 45 (0.12) 47 (0.12) 59 (0.16) 54 (0.14) 53 (0.14) 502 (47) 0.12 

Henan 0 (0.00) 3 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 3 (0) 0.00 

Jiangxi 89 (0.21) 54 (0.13) 58 (0.13) 61 (0.14) 47 (0.11) 27 (0.06) 30 (0.07) 17 (0.04) 19 (0.04) 17 (0.04) 2 (0.00) 421 (5) 0.09 

Hubei 38 (0.07) 22 (0.04) 54 (0.09) 97 (0.17) 17 (0.03) 19 (0.03) 15 (0.03) 9 (0.02) 6 (0.01) 6 (0.01) 13 (0.02) 296 (11) 0.05 

Hunan 74 (0.12) 92 (0.15) 150 (0.24) 79 (0.12) 39 (0.06) 41 (0.06) 33 (0.05) 41 (0.06) 30 (0.05) 36 (0.05) 41 (0.06) 656 (16) 0.09 

Chongqing 56 (0.20) 13 (0.05) 20 (0.07) 28 (0.10) 24 (0.08) 13 (0.05) 8 (0.03) 10 (0.03) 7 (0.02) 6 (0.02) 15 (0.05) 200 (10) 0.06 

Sichuan  792 (0.96) 155 (0.19) 218 (0.27) 237 (0.29) 203 (0.25) 255 (0.31) 73 (0.09) 145 (0.18) 98 (0.12) 110 (0.14) 66 (0.08) 2352 (6) 0.26 

Guizhou 56 (0.15) 45 (0.12) 42 (0.11) 31 (0.08) 16 (0.04) 18 (0.05) 14 (0.04) 30 (0.09) 7 (0.02) 8 (0.02) 24 (0.07) 291 (12) 0.07 

Yunnan 114 (0.26) 130 (0.29) 135 (0.30) 109 (0.24) 87 (0.19) 109 (0.24) 77 (0.17) 82 (0.18) 110 (0.24) 226 (0.48) 129 (0.27) 1,308 (86) 0.26 

Sub-total 1,311 (0.18) 572 (0.09) 826 (0.13) 754 (0.12) 525 (0.08) 596 (0.09) 331 (0.05) 402 (0.06) 351 (0.06) 488 (0.08) 358 (0.06) 6,514 (28) 0.09 

C 

Beijing 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.01) 1 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 2 (50) 0.00 

Shandong 1 (0.00) 2 (0.00) 0 (0.00) 0 (0.00) 1 (0.00) 5 (0.01) 2 (0.00) 2 (0.00) 0 (0.00) 5 (0.01) 2 (0.00) 20 (65) 0.00 

Hebei 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.00) 0 (0.00) 0 (0.00) 1 (0.00) 1 (0.00) 3 (33) 0.00 

Shanxi 1 (0.00) 0 (0.00) 2 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 3 (33) 0.00 

Inner 
Mongolia 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 

 
1 (100) 0.00 

Liaoning 1 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0) 0.00 

Jilin 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 2 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 2(100) 0.00 

Shaanxi 0 (0.00) 0 (0.00) 1 (0.00) 0 (0.00) 2 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.00) 0 (0.00) 0 (0.00) 4 (25) 0.00 

Sub-total 3 (0.00) 2 (0.00) 3 (0.00) 1 (0.00) 4 (0.00) 5 (0.00) 5 (0.00) 3 (0.00) 1 (0.00) 6 (0.00) 3 (0.00) 36 (55) 0.00 

D  

Gansu 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.00) 0 (0.00) 1 (100) 0.00 

Qinghai 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.02) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0) 0.00 

Xinjiang 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 2 (0) 0.00 

Sub-total 0 (0.00) 0 (0.00) 0 (0.00) 2 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.00) 0 (0.00) 1 (0.00) 0 (0.00) 4 (25) 0.00 

Morbidity 1,458 (0.11) 714 (0.05) 959 (0.07) 930 (0.07) 659 (0.05) 719 (0.05) 427 (0.03) 490 (0.04) 432 (0.03) 559 (0.04) 416 (0.03) 7,763 (31) 0.05 

* number of cases; per cent of reported laboratory-confirmed cases (in parenthesis) 
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Table C-2 Reported leptospirosis cases and confirmed cases (in per cent) by type of occupation, China, 2005–2015 

Occupation 
No. of reported cases (% confirmed cases) Total (% 

confirmed 
cases) 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Farmer 1119 
(7.5) 

500 
(28.2) 

721 
(24.5) 

725 
(21.8) 

527 
(23) 

571 
(26.6) 

312 
(36.2) 

387 
(31.5) 

311 
(49.2) 

460 (55) 304 
(54.3) 

5937 (27.6) 

Cadre 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 5 (60) 3 (100) 8 (75) 

Commercial service 0 (0.0) 1 (100) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 8 (87.5) 14 (85.7) 23 (87) 

Fisherman 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 3 (66.7) 1 (100) 4 (75) 

Herdsman 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (0.0) 0 (0.0) 2 (0.0) 

Seaman 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (100) 0 (0.0) 1 (100) 

Medical/Nurse 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (100) 2 (100) 4 (100) 

Teacher/Student 246 (6.9) 115 
(17.4) 

135 
(14.8) 

99 (26.3) 76 
(17.1) 

48 (33.3) 29 (13.8) 28 (17.9) 16 (50) 17 (70.6) 17 (35.3) 826 (17.8) 

Retiree 8 (0.0) 11 (54.5) 14 (57.1) 8 (62.5) 4 (50) 7 (71.4) 5 (100) 12 (66.7) 17 (70.6) 3 (66.7) 9 (66.7) 98 (60.2) 

Other 82 (23.2) 88 (67) 81 (72.8) 89 (61.8) 46 
(45.7) 

89 (62.9) 73 (74) 63 (77.8) 90 (71.1) 51 (72.5) 57 (64.9) 809 (63) 

Not working 10 (0.0) 2 (0.0) 7 (42.9) 8 (50) 6 (33.3) 3 (0.0) 4 (50) 1 (0.0) 2 (0.0) 4 (50) 4 (25) 51 (27.5) 

 TOTAL 1465 
(8.2) 

717 
(31.7) 

958 
(27.9) 

929 
(26.8) 

659 
(24) 

718 
(31.9) 

423 
(42.1) 

491 
(37.4) 

436 
(54.3) 

556 
(57.7) 

411 
(56.7) 

7763 (31) 
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Table C-3 Case fatality-rates (CFR) of leptospirosis across two regions in China, 2005–2015 

Region  Province 
Case fatality-rates (%) Annual  

CFR 

95% CI 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Lower Upper 

A 

Guangdong 4.69 2.99 6.06 5.95 1.69 0.00 1.75 0.00 1.92 0.00 0.00 2.28 0.88 3.67 

Guangxi 12.50 0.08 0.06 0.02 0.04 0.02 0.00 0.03 0.00 0.04 0.00 1.16 -1.06 3.38 

Hainan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CFR by region 8.39 5.15 6.02 4.07 3.05 0.83 1.12 1.16 1.27 1.56 0.00 2.97 1.41 4.52 

B  

Jiangsu 0.00 0.00 14.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.30 -1.25 3.84 

Zhejiang 14.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 1.31 -1.23 3.85 

Anhui 4.00 5.56 1.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03 -0.13 2.19 

Fujian 0.00 0.00 0.00 4.55 1.89 0.00 0.00 0.00 1.69 0.00 0.00 0.74 -0.12 1.60 

Jiangxi 3.37 1.85 5.17 1.64 2.13 3.70 0.00 0.00 0.00 0.00 0.00 1.62 0.54 2.71 

Henan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Hubei 10.53 4.55 1.85 2.06 5.88 0.00 0.00 0.00 0.00 0.00 7.69 2.96 0.78 5.14 

Hunan 8.11 3.26 7.33 2.53 2.56 2.44 3.03 4.88 0.00 0.00 0.00 3.10 1.47 4.73 

Chongqing 5.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 -0.47 1.44 

Sichuan 0.76 0.00 0.92 1.27 1.48 3.14 2.74 0.00 0.00 1.85 0.00 1.10 0.44 1.77 

Guizhou 17.86 11.11 23.81 6.45 6.67 0.00 7.14 6.67 42.86 25.00 0.00 13.41 5.77 21.06 

Yunnan 0.88 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 -0.05 0.35 

CFR by region 2.75 2.11 3.51 1.59 1.53 1.68 1.21 0.99 1.14 1.04 0.27 1.62 1.09 2.15 

Note: No death cases reported from region C and D. 
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Table C-4 Temporal distribution of leptospirosis mortality in two regions in China, by province, 2005–2015 

Region Province 
Number of reported death (per 100,000 population) 

Total 
Annual  

Mortality Rate 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

A Guangdong 3 (0.03) 2 (0.02) 4 (0.04) 5 (0.05) 1 (0.00) 0 (0.00) 1 (0.01) 0 (0.00) 1 (0.01) 0 (0.00) 0 (0.00) 17 0.01 

Guangxi 9 (0.19) 5 (0.11) 4 (0.08) 2 (0.04) 3 (0.06) 1 (0.02) 0 (0.00) 1 (0.02) 0 (0.00) 1 (0.00) 0 (0.00) 26 0.05 

Total 12 (0.08) 7 (0.05) 8 (0.05) 7 (0.03) 4 (0.01) 1 (0.01) 1 (0.01) 1 (0.01) 1 (0.01) 1 (0.01) 0 (0.00) 43 0.02 

B Jiangsu 0 (0.00) 0 (0.00) 1 (0.01) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 0.001 

Zhejiang 2 (0.04) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.02) 0 (0.00) 3 0.005 

Anhui 1 (0.02) 1 (0.02) 1 (0.02) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 3 0.005 

Fujian 0 (0.00) 0 (0.00) 0 (0.00) 2 (0.05) 1 (0.03) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.03) 0 (0.00) 0 (0.00) 4 0.01 

Jiangxi 3 (0.07) 1 (0.02) 3 (0.07) 1 (0.02) 1 (0.02) 1 (0.02) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 10 0.02 

Hubei 4 (0.07) 1 (0.02) 1 (0.02) 2 (0.03) 1 (0.02) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.02) 10 0.02 

Hunan 6 (0.09) 3 (0.04) 11 (0.16) 2 (0.03) 1 (0.01) 1 (0.01) 1 (0.01) 2 (0.03) 0 (0.00) 0 (0.00) 0 (0.00) 27 0.04 

Chongqing 3 (0.10) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 3 0.01 

Sichuan 6 (0.07) 0 (0.00) 2 (0.02) 3 (0.04) 3 (0.04) 8 (0.10) 2 (0.02) 0 (0.00) 0 (0.00) 2 (0.02) 0 (0.00) 26 0.03 

Guizhou 10 (0.29) 5 (0.14) 10 (0.29) 2 (0.03) 1 (0.03) 0 (0.00) 1 (0.03) 2 (0.06) 3 (0.09) 2 (0.06) 0 (0.00) 36 0.09 

Yunnan 2 (0.04) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 2 0.004 

Total 37 (0.06) 11 (0.02) 29 (0.05) 12 (0.01) 8 (0.01) 10 (0.02) 4 (0.01) 4 (0.00) 4 (0.01) 5 (0.01) 1 (0.00) 125 0.02 

National Mortality 49 (0.004) 18 (0.001) 37 (0.003) 19 (0.002) 12 (0.001) 11 (0.001) 5 (0.00) 5 (0.00) 5 (0.00) 6 (0.00) 1 (0.00) 168 0.001 

Note: No death cases reported from region C and D 

 

 

Table C-5 Reported deaths due to leptospirosis based on case classification in China, 2005–2015  

Case classification 
Number of reported deaths 

TOTAL 
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Suspected 4 3 4 1 1 0 0 0 0 0 0 13 

Clinically-diagnosed 40 12 31 16 10 10 3 3 2 4 0 131 

Confirmed 5 3 2 2 1 1 2 2 3 2 1 24 

TOTAL 49 18 37 19 12 11 5 5 5 6 1 168 
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Table C-6 Number of counties in China that reported leptospirosis each year and new counties that reported leptospirosis during 2005–
2010 and 2011–2015   

Region Province 
No. of counties that reported   

t 
  
P value* 

No. of new counties 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2005-2010 2011-2015 

A 

Guangdong 29 32 37 46 33 40 31 27 31 23 25 2.792 .021 31 11 

Guangxi 35 38 39 37 35 32 20 26 16 22 15 7.557 .000 38 7 

Hainan 5 4 4 3 3 1 4 5 3 4 1 -.077 .941 5 4 

Total 69 74 80 86 71 73 55 58 50 49 41   74 22 

B 

Jiangsu 9 6 7 5 1 1 4 0 0 0 0 2.467 .036 21 2 

Zhejiang 8 6 11 7 6 11 6 2 4 7 7 2.176 .058 14 5 

Anhui 8 8 10 11 8 9 9 6 5 8 6 2.514 .033 16 5 

Fujian 18 17 19 24 15 23 20 16 29 24 26 -1.413 .191 13 8 

Jiangxi 24 21 27 22 23 13 16 10 12 8 2 4.044 .003 24 5 

Henan 0 3 0 0 0 0 0 0 0 0 0 .905 .389 3 0 

Hubei 15 11 13 13 9 6 8 6 3 2 6 3.485 .007 18 2 

Hunan 29 40 49 32 23 28 18 23 17 18 21 3.220 .010 40 16 

Chongqing 20 10 9 13 11 10 6 7 5 6 4 3.467 .007 16 5 

Sichuan 69 43 46 40 34 38 20 28 26 30 27 3.228 .010 37 9 

Guizhou 23 15 16 14 8 14 7 13 5 5 11 2.593 .029 20 6 

Yunnan 12 9 9 8 9 8 8 8 8 14 11 -.498 .630 12 12 

Total 235 189 216 189 147 161 122 119 114 122 121   234 75 

C 

Beijing 0 0 0 1 1 0 0 0 0 0 0 1.430 .186 2 0 

Hebei 0 0 0 0 0 0 1 0 0 1 1 -2.714 .024 0 3 

Shanxi 1 0 2 0 0 0 0 0 0 0 0 1.324 .218 3 0 

Inner Mongolia 0 0 0 0 0 0 0 1 0 0 0 -1.108 .297 0 1 

Liaoning 1 0 0 0 0 0 0 0 0 0 0 .905 .389 1 0 

Jilin 0 0 0 0 0 0 2 0 0 0 0 -1.108 .297 0 2 

Shaanxi 0 0 1 0 2 0 0 0 1 0 0 .717 .492 3 1 

Shandong 1 2 0 0 1 5 2 1 0 0 0 .980 .353 5 6 

Total 3 2 3 1 4 5 5 2 1 1 1   14 13 

D  

Gansu 0 0 0 0 0 0 0 0 0 1 0 -1.108 .297 0 1 

Qinghai 0 0 0 1 0 0 0 0 0 0 0 .905 .389 1 0 

Xinjiang 0 0 0 1 0 0 0 1 0 0 0 -.129 .900 1 1 

Total 0 0 0 2 0 0 0 1 0 1 0     2 2 

TOTAL (all region) 307 265 299 278 222 239 182 180 165 173 163 6.206 .000 324 112 

*test of average number of counties reported between two periods: 2005–2010 and 2011–2015 
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Table C-7 Disability-adjusted life-years (DALYs) estimates of leptospirosis in China, by sex, age, and year 

Characteristics 
DALYs estimate 

Total 
Annual 
DALY 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Female 

0-9 0.71 1.90 81.92 0.71 1.42 0.47 0.47 0.00 0.00 0.71 0.47 88.81 8.07 

10-19 157.45 220.72 440.97 71.73 75.66 2.85 1.19 143.13 0.71 1.42 1.66 1,117.51 101.59 

20-29 192.84 201.93 72.57 68.89 67.94 3.56 3.09 3.32 3.80 8.55 3.32 629.83 57.26 

30-39 185.59 11.87 66.89 61.46 9.26 9.02 4.99 4.75 5.70 7.60 6.89 374.03 34.00 

40-49 21.14 10.69 107.78 58.51 88.92 53.25 9.26 10.45 10.45 9.97 7.12 387.55 35.23 

50-59 153.33 9.50 82.86 51.35 12.11 14.49 6.65 41.91 8.31 9.97 6.41 396.90 36.08 

60-69 29.42 3.09 4.51 6.41 25.47 36.65 4.27 5.46 5.22 7.84 4.27 132.63 12.06 

70-79 0.47 0.71 1.19 2.14 18.23 1.66 1.42 2.14 1.66 2.61 1.19 33.43 3.04 

80-89 0.00 0.00 0.24 0.47 0.00 0.00 0.00 0.24 0.47 0.47 0.47 2.37 0.22 

90+ 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.47 0.04 

Total 740.96 460.41 859.17 321.69 299.03 121.96 31.35 211.41 36.34 49.16 32.06 3,163.54 287.59 

Male 

0-9 90.09 4.75 83.30 82.11 2.85 1.90 1.42 0.95 1.19 0.71 0.24 269.51 24.50 

10-19 839.13 306.58 377.76 94.99 16.15 9.50 153.83 75.30 78.93 4.27 3.56 1,960.01 178.18 

20-29 587.81 142.38 149.34 22.80 185.79 69.59 6.41 66.27 124.47 70.51 7.36 1,432.75 130.25 

30-39 261.28 75.65 276.79 181.31 17.34 22.09 10.69 11.16 6.89 167.17 8.07 1,038.44 94.40 

40-49 206.24 62.27 189.03 67.50 62.04 26.12 92.72 19.47 14.72 63.46 57.04 860.63 78.24 

50-59 172.58 121.69 229.99 133.90 56.36 117.17 17.34 14.25 13.54 46.75 16.15 939.71 85.43 

60-69 64.25 35.31 40.92 85.95 40.86 141.29 31.01 14.49 66.11 12.11 15.44 547.75 49.80 

70-79 3.32 20.76 4.27 39.17 3.56 4.75 3.32 5.46 3.80 2.61 4.75 95.80 8.71 

80-89 0.24 0.00 1.19 0.47 0.24 0.00 0.71 0.47 0.47 0.71 0.24 4.75 0.43 

90+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.24 0.02 

Total 2,224.94 769.39 1352.60 708.21 385.19 392.42 317.47 207.83 310.37 368.33 112.85 7,149.59 649.96 

DALYs (both sexes) 2,965.90 1,229.80 2,211.77 1,029.91 684.22 514.37 348.82 419.24 346.71 417.49 144.91 10,313.13 937.56 
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Table C-8 Years of life lost (YLL) estimates for leptospirosis in China, by sex, age, and year 

Characteristics 
YLLs 

Total Annual YLLs 
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Female 

0-9 0.00 0.00 79.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 79.31 7.21 

10-19 143.68 215.02 435.03 69.36 72.34 0.00 0.00 141.71 0.00 0.00 0.00 1,077.14 97.92 

20-29 177.40 196.23 66.40 63.43 63.43 0.00 0.00 0.00 0.00 0.00 0.00 566.89 51.54 

30-39 155.90 0.00 52.17 48.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 256.71 23.34 

40-49 0.00 0.00 88.54 43.79 80.85 41.85 0.00 0.00 0.00 0.00 0.00 255.03 23.18 

50-59 138.13 0.00 68.61 37.10 0.00 0.00 0.00 33.36 0.00 0.00 0.00 277.20 25.20 

60-69 25.15 0.00 0.00 0.00 20.72 27.86 0.00 0.00 0.00 0.00 0.00 73.73 6.70 

70-79 0.00 0.00 0.00 0.00 17.28 0.00 0.00 0.00 0.00 0.00 0.00 17.28 1.57 

80-89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

90+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total 640.26 411.25 790.06 262.32 254.62 69.71 0.00 175.07 0.00 0.00 0.00 2,603.29 236.66 

Male 

0-9 81.30 0.00 78.31 78.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 237.92 21.63 

10-19 788.78 286.39 353.77 74.33 0.00 0.00 147.66 69.36 76.32 0.00 0.00 1,796.61 163.33 

20-29 550.05 128.84 130.82 0.00 174.63 58.67 0.00 58.67 117.35 62.44 0.00 1,281.47 116.50 

30-39 210.22 54.51 251.62 153.76 0.00 0.00 0.00 0.00 0.00 154.35 0.00 824.46 74.95 

40-49 174.18 39.95 161.72 39.95 40.90 0.00 78.95 0.00 0.00 39.95 44.69 620.29 56.39 

50-59 138.14 101.03 197.45 99.23 36.17 92.71 0.00 0.00 0.00 30.60 0.00 695.33 63.21 

60-69 48.58 26.05 27.86 70.99 24.24 124.90 22.46 0.00 52.10 0.00 0.00 397.18 36.11 

70-79 0.00 18.15 0.00 34.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 52.81 4.80 

80-89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

90+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total 1991.25 654.92 1201.55 551.23 275.94 276.28 249.07 128.03 245.77 287.34 44.69 5,906.07 536.92 

YLLs (both sexes) 2,631.51 1,066.17 1,991.61 813.55 530.56 345.99 249.07 303.10 245.77 287.34 44.69 8,509.36 773.58 
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Table C-9 Years of life lost (YLLs) estimates for leptospirosis in China, by region, sex, and age group during both  periods, 2005–2010 
and 2011-2015  

Region Age group 
2005–2010 2011–2015 2005–2015 

Males Females Both sexes Males Females Both sexes Males Females Both sexes 

A 

0-9 0 0 0 0 0 0 0 0 0 

10-19 74.33 215.02 289.35 0 68.38 68.38 74.33 283.4 357.73 

20-29 484.64 123.68 608.32 61.45 0 61.45 546.09 123.68 669.77 

30-39 150.23 53.34 203.57 52.17 0 52.17 202.4 53.34 255.74 

40-49 248.32 126.54 374.86 0 0 0 248.32 126.54 374.86 

50-59 243.82 37.1 280.92 0 0 0 243.82 37.1 280.92 

60-69 21.6 0 21.6 22.46 0 22.46 44.06 0 44.06 

70-79 52.81 0 52.81 0 0 0 52.81 0 52.81 

80-89 0 0 0 0 0 0 0 0 0 

90+ 0 0 0 0 0 0 0 0 0 

Total 1,275.75 555.68 1,831.43 136.08 68.38 204.46 1,411.83 624.06 2,035.89 

B 

0-9 237.92 79.31 317.23 0 0 0 237.92 79.31 317.23 

10-19 1,428.94 720.41 2,149.35 293.34 73.33 366.67 1,722.28 793.74 2,516.02 

20-29 558.37 443.21 1,001.58 118.34 58.67 177.01 676.71 501.88 1,178.59 

30-39 519.88 203.37 723.25 102.18 0 102.18 622.06 203.37 825.43 

40-49 208.38 128.49 336.87 163.59 0 163.59 371.97 128.49 500.46 

50-59 420.91 206.74 627.65 30.6 33.36 63.96 451.51 240.1 691.61 

60-69 301.02 73.73 374.75 52.1 0 52.1 353.12 73.73 426.85 

70-79 0 17.28 17.28 0 0 0 0 17.28 17.28 

80-89 0 0 0 0 0 0 0 0 0 

90+ 0 0 0 0 0 0 0 0 0 

Total 3,675.42 1,872.54 5,547.96 760.15 165.36 925.51 4,435.57 2,037.9 6,473.47 

Total (A+B) 4,951.17 2,428.22 7,379.39 896.23 233.74 1,129.97 5,847.4 2,661.96 8,509.36 
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Table C-10 Years-lived with disability (YLD) estimates for leptospirosis in China, by sex, age, and year 

Characteristics 
YLDs 

Total 
Annual 
YLDs 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Female 

0-9 0.71 1.90 2.61 0.71 1.42 0.47 0.47 0.00 0.00 0.71 0.47 9.50 0.86 

10-19 13.77 5.70 5.94 2.37 3.32 2.85 1.19 1.42 0.71 1.42 1.66 40.37 3.67 

20-29 15.44 5.70 6.17 5.46 4.51 3.56 3.09 3.32 3.80 8.55 3.32 62.94 5.72 

30-39 29.69 11.87 14.72 12.82 9.26 9.02 4.99 4.75 5.70 7.60 6.89 117.32 10.67 

40-49 21.14 10.69 19.24 14.72 8.07 11.40 9.26 10.45 10.45 9.97 7.12 132.52 12.05 

50-59 15.20 9.50 14.25 14.25 12.11 14.49 6.65 8.55 8.31 9.97 6.41 119.70 10.88 

60-69 4.27 3.09 4.51 6.41 4.75 8.79 4.27 5.46 5.22 7.84 4.27 58.90 5.35 

70-79 0.47 0.71 1.19 2.14 0.95 1.66 1.42 2.14 1.66 2.61 1.19 16.15 1.47 

80-89 0.00 0.00 0.24 0.47 0.00 0.00 0.00 0.24 0.47 0.47 0.47 2.37 0.22 

90+ 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.47 0.04 

Total 100.70 49.16 69.11 59.37 44.41 52.25 31.35 36.34 36.34 49.16 32.06 560.25 50.93 

Male 

0-9 8.79 4.75 4.99 3.80 2.85 1.90 1.42 0.95 1.19 0.71 0.24 31.59 2.87 

10-19 50.35 20.19 23.99 20.66 16.15 9.50 6.17 5.94 2.61 4.27 3.56 163.40 14.85 

20-29 37.76 13.54 18.52 22.80 11.16 10.92 6.41 7.60 7.12 8.07 7.36 151.28 13.75 

30-39 51.06 21.14 25.17 27.55 17.34 22.09 10.69 11.16 6.89 12.82 8.07 213.98 19.45 

40-49 32.06 22.32 27.31 27.55 21.14 26.12 13.77 19.47 14.72 23.51 12.35 240.34 21.85 

50-59 34.44 20.66 32.54 34.67 20.19 24.46 17.34 14.25 13.54 16.15 16.15 244.38 22.22 

60-69 15.67 9.26 13.06 14.96 16.62 16.39 8.55 14.49 14.01 12.11 15.44 150.57 13.69 

70-79 3.32 2.61 4.27 4.51 3.56 4.75 3.32 5.46 3.80 2.61 4.75 42.99 3.91 

80-89 0.24 0.00 1.19 0.47 0.24 0.00 0.71 0.47 0.47 0.71 0.24 4.75 0.43 

90+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.24 0.02 

Total 233.69 114.47 151.05 156.98 109.25 116.14 68.40 79.80 64.60 80.99 68.16 1,243.52 113.05 

YLDs (both sexes) 334.39 163.63 220.16 216.36 153.66 168.38 99.75 116.14 100.94 130.15 100.22 1,803.77 163.98 
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Table C-11 Geographical distribution of YLD, YLL, and DALY estimates during both periods in China, 2005–2010 and 2011–2015 

    YLD TOTAL 
YLD  

(2005-
2015) 

%change 

YLL 
Total YLL (2005-

2015) 
%change 

DALY 

Total DALY (2005-
2015) 

%change 

    2005-2010 2011-2015 
2005-2010 2011-2015 

2005-2010 2011-2015 

Region A     
 

  
  

   
 

Guangdong  91.44 51.54 142.97 -43.64 629.51 83.91 713.42 -86.7 720.95 135.45 856.39 -81.21 

Guangxi  91.20 31.59 122.78 -65.36 1201.92 120.55 1,322.47 -90.0 1,293.12 152.14 1,445.25 -88.23 

Hainan  6.41 4.75 11.16 -25.90 0 0 0.00 0.0 6.41 4.75 11.16 -25.90 

Total 189.04 87.87 276.92 -53.52 1831.43 204.46 2,035.89 -88.8 2,020.47 292.33 2,312.81 -85.53               
Region B              
Jiangsu  7.60 0.95 8.55 -87.50 30.60 0 30.60 -100.0 38.20 0.95 39.15 -97.51 

Zhejiang  24.94 7.12 32.06 -71.43 69.53 30.60 100.13 -56.0 94.47 37.72 132.19 -60.07 

Anhui  54.62 18.29 72.91 -66.52 168.19 0 168.19 -100.0 222.81 18.29 241.10 -91.79 

Fujian  56.76 61.51 118.27 8.37 106.46 26.05 132.51 -75.5 163.22 87.56 250.78 -46.35 

Jiangxi  77.42 20.19 97.61 -73.93 487.59 0 487.59 -100.0 565.01 20.19 585.20 -96.43 

Henan  0.71 0.00 0.71 -100.00 0.00 0.00 0.00 0.0 0.71 0.00 0.71 -100.00 

Hubei  56.52 11.40 67.92 -79.83 387.76 44.69 432.45 -88.5 444.28 56.09 500.37 -87.38 

Hunan  107.11 42.27 149.38 -60.53 1,239.91 131.98 1,371.89 -89.4 1,347.02 174.25 1,521.27 -87.06 

Chongqing  35.86 10.92 46.79 -69.54 148.15 0.00 148.15 -100.0 184.01 10.92 194.94 -94.06 

Sichuan  436.52 115.90 552.41 -73.45 900.02 213.52 1,113.54 -76.3 1,336.54 329.42 1,665.95 -75.35 

Guizhou  42.75 17.81 60.56 -58.33 1,893.39 478.67 2,372.06 -74.7 1,936.14 496.48 2,432.62 -74.36 

Yunnan  161.97 148.20 310.17 -8.50 116.36 0.00 116.36 -100.0 278.33 148.20 426.53 -46.76 

Total 1,062.79 454.57 1,517.36 -57.23 5,547.96 925.51 6,473.47 -83.3 6,610.75 1,380.08 7,990.83 -79.12               
Region C              
Beijing  0.47 0.00 0.47 -100.00 0 0 0.00 0 0.47 0.00 0.47 -100.00 

Hebei  0.00 0.71 0.71 71.25 0 0 0.00 0 0.00 0.71 0.71 71.25 

Shanxi  0.71 0.00 0.71 -100.00 0 0 0.00 0 0.71 0.00 0.71 -100.00 

Inner Mongolia 0.00 0.24 0.24 24.00 0 0 0.00 0 0.00 0.24 0.24 24.00 

Liaoning  0.24 0.00 0.24 -100.00 0 0 0.00 0 0.24 0.00 0.24 -100.00 

Shandong  2.14 2.61 4.75 22.22 0 0 0.00 0 2.14 2.61 4.75 22.22 

Jilin  0.00 0.47 0.47 47.50 0 0 0.00 0 0.00 0.47 0.47 47.50 

Shaanxi  0.71 0.24 0.95 -66.67 0 0 0.00 0 0.71 0.24 0.95 -66.67 

Total 4.27 4.28 8.55 0.06 0 0 0.00 0 4.27 4.28 8.55 0.06               
Region D              
Gansu  0.00 0.24 0.24 23.75 0 0 0.00 0 0.00 0.24 0.24 23.75 

Qinghai  0.24 0.00 0.24 -100.00 0 0 0.00 0 0.24 0.00 0.24 -100.00 

Xinjiang  0.24 0.24 0.47 0.00 0 0 0.00 0 0.24 0.24 0.47 0.00 

Total 0.47 0.47 0.95 0.00 0 0 0.00 0 0.47 0.47 0.95 0.00 

TOTAL (A+B+C+D) 1,256.58 547.19 1,803.77 -56.45 7,379.39 1,129.97 8,509.36 -84.7 8,635.97 1,677.16 10,313.13 -80.58 
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Appendix D. Chapter 6 Supplementary Information 

Table D-1 Yearly notified human leptospirosis cases, proportion of laboratory confirmed cases and number of counties that reported, 
2005-2016  

 

 

Year No. of cases (n=8158) Incidence rate (1/100,000) % confirmed cases No. of counties reported 

2005 1465 0.11 8.2 307 

2006 717 0.05 31.7 265 

2007 958 0.07 27.9 299 

2008 929 0.07 26.8 278 

2009 659 0.05 24 222 

2010 718 0.05 31.9 239 

2011 423 0.03 42.1 182 

2012 491 0.04 37.4 180 

2013 436 0.03 54.3 165 

2014 556 0.04 57.7 173 

2015 411 0.03 56.7 163 

2016 395 0.03 58.2 171 
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Appendix E. Chapter 7 Supplementary information 

Table E-1. Data used in the study 

Data Description Sources 

Epidemiological data 

Human leptospirosis 

case in Upper 

Yangtze River Basin 

(UYRB) and Pearl 

River Basin (PRB) 

Notification data (2005–2016) containing information on age, 

gender, code of county, county’s coordinates, case classification 

(suspected, probable, confirmed). 

China Center for Disease Control and Prevention 

Environmental variables 

Precipitation Gridded precipitation data (1-km x 1-km). Values were sampled at 

county-level using ArcGIS software. 

WorldClim (https://www.worldclim.org/) 

Land surface 

temperature (LST) 

Raster data with 1-km spatial resolution. Monthly LST for each 

county for period of 2005–2016 is sampled using ArcGIS software. 

Values were sampled at county-level using ArcGIS software. 

MODIS Terra, MODIS11A2 8-day, 1 km spatial 

resolution 

(https://modis.gsfc.nasa.gov/data/dataprod/mod11.php) 

Normalized 

difference vegetation 

index (NDVI) 

Monthly NDVI value for each county for period of 2005–2016 were 

sampled using ArcGIS software. The NDVI value ranges from -1 to 

1.  

MODIS Terra 13Q1 v006 Vegetation Indices 16-Day L3 

Global, 250 meter spatial resolution 

(https://lpdaac.usgs.gov/products/mod13q1v006/) 

Normalized 

difference water 

Index (NDWI) 

Monthly NDWI value for each county for period of 2005–2016 were 

sampled using ArcGIS software. MNDWI calculated by using 

formula (RGREEN-RSWIR) / (RGREEN + RSWIR). The value of the index 

ranges from -1 to 1.  

MODIS Terra MOD09A1.V6 8-day, 500 m spatial 

resolution 

(https://modis.gsfc.nasa.gov/data/dataprod/mod09.php) 

Elevation GTOPO30 Digital elevation model (DEM), 1-km (30-arc seconds) 

spatial resolution. Values are sample at county level using ArcGIS 

software 

https://www.usgs.gov/centers/eros/science/usgs-eros-

archive-digital-elevation-global-30-arc-second-elevation-

gtopo30?qt-science_center_objects=0#qt-

science_center_objects 

https://www.worldclim.org/
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://lpdaac.usgs.gov/products/mod13q1v006/
https://modis.gsfc.nasa.gov/data/dataprod/mod09.php
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30?qt-science_center_objects=0#qt-science_center_objects
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Data Description Sources 

Slope Slope was calculated from the SRTM-DEM elevation data by using 

ArcGIS toolbox. The mean slope values for each county were 

sampled. 

 

Land cover Land cover types for 2005 and 2015. Reclassified into 6 categories: 

cultivated land (1), forested land (2), grassland (3), waterbodies (4), 

artificial surfaces (5), and bare land 

Data Center for Resources and Environmental Sciences, 

Chinese Academy of Sciences (RESDC) 

(http://www.resdc.cn/) 

Hydrological features  Yangtze River Basin and Pearl River Basin boundaries and streams  HYDRO1k - USGS 

https://gcmd.nasa.gov/records/GCMD_HYDRO1k.html;  

 

World Bank. Major River Basins of the World 

https://datacatalog.worldbank.org/dataset/major-river-

basins-world 

 

Gassert, F., T. Luo, T. Shiao, and M. Luck. 2013. 

“Yangtze River Basin Study.” Working Paper. 

Washington, DC: World Resources Institute. 

https://www.wri.org/resources/data-sets/yangtze-river-

basin-study 

Livestock density 

(Pig and Cattle 

density) 

Gridded pigs and cattle density with year of reference is 2010. Cell 

resolution 0.00833 (1-km x 1-km). Values are sample at county level 

using ArcGIS software. 

FAO-GeoNetwork model of  livestock density (GLW 

2.01) (http://www.fao.org/geonetwork/srv/en/main.home) 

Urban/rural Raster data for urban or rural classification with a 5x5 km resolution. A 5x5 km resolution rural/urban surface derived from the 

Global Rural-Urban Mapping Project (GRUMP), 

(http://sedac.ciesin.columbia.edu/data/set/grump-v1-

urban-extents).  

Socioeconomic variables 

Population Annual population data by county (2005–2015) for incidence 

estimation. For spatial modelling, raster (gridded) population data  

(in people per hectare) of 2010 and 2015 for China at the resolution 

of 100 m were used. 

China National Bureau of Statistics  

(http://www.stats.gov.cn/english/) 

WorldPop database 

(https://www.worldpop.org/project/categories?id=3). 

http://www.resdc.cn/
https://gcmd.nasa.gov/records/GCMD_HYDRO1k.html
https://datacatalog.worldbank.org/dataset/major-river-basins-world
https://datacatalog.worldbank.org/dataset/major-river-basins-world
https://www.wri.org/resources/data-sets/yangtze-river-basin-study
https://www.wri.org/resources/data-sets/yangtze-river-basin-study
http://www.fao.org/geonetwork/srv/en/main.home
http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents
http://sedac.ciesin.columbia.edu/data/set/grump-v1-urban-extents
http://www.stats.gov.cn/english/
https://www.worldpop.org/project/categories?id=3
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Data Description Sources 

Population density Gridded (raster) population density map with 1-km spatial resolution 

based on UN WPP-Adjusted Population Density, v4.10 (2010, 2015)  

Socioeconomic data and application centers (SEDAC) – 

Center for  International Health Science Information 

Network (CIESIN) 

(http://sedac.ciesin.columbia.edu/data/set/gpw-v4-

population-density-adjusted-to-2015-unwpp-country-

totals-rev10/data-download) 

Farmland/crop 

production 

Raster data for crop production 2010 (in kg per ha) with 1-km spatial 

resolution. Values were sampled at county-level using ArcGIS 

software. 

Resource and Environmental Science Data Center of 

the Chinese Academy of Sciences (http://www.resdc.cn)  

Gross Domestic 

Product (GDP) 

Raster map of 2010 Gross Domestic Product (GDP) of China with 1-

km resolution. Values are sampled at county-level using ArcGIS 

software. 

Global change research data publishing and repository  

(http://www.geodoi.ac.cn/weben/doi.aspx?Id=125) 

 

 

 

 

 

 

 

 

 

http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev10/data-download
http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev10/data-download
http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev10/data-download
http://www.resdc.cn/
http://www.geodoi.ac.cn/weben/doi.aspx?Id=125
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Table E-2. Quarterly leptospirosis notifications in Upper Yangtze River Basin (UYRB) and Pearl River Basin (PRB), 2005–2010 and 
2011–2016 

Region Characteristics 2005–2010   2011–2016 

Q1 Q2 Q3 Q4 Total Q1 Q2 Q3 Q4 Total 

UYRB Sex Female 0 12 695 64 771   2 9 186 28 225 

Male 3 44 1510 166 1723   2 20 411 65 498 

Age 
group 

Under 
19 years 

0 7 399 34 440   0 1 44 2 47 

 19 
years 

3 49 1806 196 2054   4 28 553 91 676 

Occup Non-
farmer 

0 13 380 36 429   3 5 67 9 84 

Farmer 3 43 1825 194 2065   1 24 530 84 639 

Total 3 56 2205 230 2494   4 29 597 93 723 

                            

PRB gender Female 18 58 150 52 278   10 39 62 31 142 

Male 46 140 355 98 639   29 68 206 111 414 

Age 
group 

Under 
19 years 

6 30 109 18 163   0 13 39 6 58 

 19 
years 

58 168 396 132 754   39 94 229 136 498 

Occup Non-
farmer 

37 83 168 54 342   21 46 100 51 218 

Farmer 27 115 337 96 575   18 61 168 91 338 

Total 64 198 505 150 917   39 107 268 142 556 
Abbreviations: URYB, Upper Yangtze River Basin; PRB, Pearl River Basin; Q, quarter. 
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Table E-3. Spearman’s correlation between covariates, Upper Yangtze River Basin (UYRB) 

 Prec NDVI MNDWI LST Elev Slope Landcov Cattle Pig Urban Crop Pop GDP 

Precipitation 1             

NDVI 0.06 1            

MNDWI 0.26 -0.62 1           

LST -0.48 0.04 -0.65 1          

Elevation -0.28 0.51 -0.65 0.29 1         

Slope -0.22 0.47 -0.43 0.11 0.88* 1        

Land cover -0.02 0.32 -0.38 0.09 0.71 0.62 1       

Cattle density -0.23 0.10 0.17 -0.28 -0.10 -0.07 -0.13 1      

Pig density 0.12 -0.42 0.46 -0.22 -0.77 -0.81* -0.66 0.20 1     

Urban/Rural 0.03 0.41 -0.12 0.03 0.04 0.03 -0.26 0.04 0.06 1    

Crop production 0.11 -0.60 0.39 0.12 -0.70 -0.75 -0.63 -0.31 0.65 0.06 1   

Population density 0.005 -0.57 0.28 -0.07 -0.22 -0.21 0.10 0.009 0.12 -0.82* 0.11 1  

GDP 0.05 -0.58 0.24 -0.0004 -0.19 -0.19 0.10 -0.12 0.06 -0.73 0.16 0.73 1 

Abbreviations: Prec, precipitation; NDVI, normalized difference vegetation index; MNDWI, modified normalized difference water index; LST, land surface 
temperature; Elev, elevation; Landcov, land cover; Pop, population density; GDP, gross domestic product 
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Table E-4. Spearman’s correlation between covariates, Pearl River Basin (PRB) 

 Prec NDVI MNDWI LST Elev Slope Landcov Cattle Pig Urban Crop Pop GDP 

Precipitation 1             

NDVI -0.28 1            

MNDWI 0.15 -0.28 1           

LST 0.14 0.22 0.08 1          

Elevation -0.67 0.40 -0.20 -0.17 1         

Slope -0.23 0.53 -0.15 -0.09 0.66 1        

Land cover 0.02 -0.23 0.05 0.04 -0.004 -0.06 1       

Cattle density -0.43 0.35 -0.20 -0.05 0.42 0.30 -0.09 1      

Pig density -0.06 0.008 0.03 0.05 -0.17 -0.17 0.06 0.27 1     

Urban/Rural 0.36 -0.64 0.22 0.05 -0.47 -0.54 0.51 -0.41 -0.03 1    

Crop production -0.10 -0.04 -0.01 0.07 -0.31 -0.47 -0.45 0.04 0.19 -0.11 1   

Population density 0.18 -0.47 0.17 0.05 -0.30 -0.36 -0.16 -0.16 -0.002 0.72 -0.16 1  

GDP 0.36 -0.69 0.22 0.06 -0.49 -0.59 0.44 -0.41 0.004 0.94* -0.08 0.63 1 

Abbreviations: Prec, precipitation; NDVI, normalized difference vegetation index; MNDWI, modified normalized difference water index; LST, land surface 
temperature; Elev, elevation; Landcov, land cover; Pop, population density; GDP, gross domestic product 
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Table E-5. Results of non-spatial multivariable analysis between environmental, socioeconomic factors, and leptospirosis count, 
Upper Yangtze River Basin 

 Coefficient 95% CI P-value 

Lower Upper 

Environment     

Precipitation -0.00007 -0.0001 -0.00003 <0.001 

LST -0.065 -0.070 -0.06 <0.001 

NDVI -9.31 -9.60 -9.03 <0.001 

NDWI -7.04 -7.24 -6.83 <0.001 

Cattle density 0.012 0.0125 0.0128 <0.001 

Pig density 0.0036 0.003 0.004 <0.001 

Land cover -0.416 -0.431 -0.400 <0.001 

Elevation -0.0004 -0.0003 -0.0003 <0.001 

Socioeconomic     

Crop production -0.0002 -0.00022 -0.00021 <0.001 

GDP -0.001 -0.0002 -0.00021 <0.001 

Urban -4.801 -5.170 -4.432 <0.001 

     

Quarter     

1 Ref    

2 -0.567 -0.697 -0.436 <0.001 

3 0.380 0.254 0.505 <0.001 

4 0.326 0.200 0.451 <0.001 

     

Year     

2005-2010 Ref    

2011-2016 -0.035 -0.042 -0.028 <0.001 

     

Constant 14.64 14.21 15.07 <0.001 
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Table E-6. Results of non-spatial multivariable analysis between environmental and socioeconomic factors and leptospirosis count, 
Pearl River Basin 

 Coefficient 95% CI P-value 

Lower Upper 

Environment     

Precipitation 0.0003 0.0002 0.0004 <0.001 

LST -0.051 -0.056 0.047 <0.001 

NDVI 2.911 2.759 3.064 <0.001 

NDWI 0.442 0.377 0.507 <0.001 

Cattle density -0.027 -0.028 -0.026 <0.001 

Pig density 0.002 0.002 0.003 <0.001 

Land cover -0.037 -0.039 -0.035 <0.001 

Elevation 0.001 0.0011 0.0013 <0.001 

Socioeconomic     

GDP 0.00003 0.0002 0.0004 <0.001 

     

Quarter     

1 Ref    

2 0.066 -0.002 0.135 0.059 

3 0.140 0.063 0.216 <0.001 

4 -0.593 -0.650 -0.536 <0.001 

     

Year     

2005-2010 Ref    

2011-2016 0.195 0.169 0.220 <0.001 

     

Constant 2.863 2.676 3.050 <0.001 
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Figure E-1. Temporal variation of incidence of leptospirosis in UYRB, by quarter, 
2005-2016.  

 

 

 

Figure E-2. Temporal variation of incidence of leptospirosis in PRB, by quarter, 
2005-2016 
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Figure E-3. Maps of standard deviation of predicted incidence of human 
leptospirosis (top), spatially-structured random effect (center), and probability of non-
zero case of leptospirosis (bottom) in Upper Yangtze River Basin  
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Figure E-4. Maps of standard deviation of predicted incidence of human 
leptospirosis (top), spatially-structured random effect (center), and probability of non-
zero case of leptospirosis (bottom) in Pearl River Basin  
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BUGS code for the spatial ZIP-CAR model 

 

model 
{ 
for(i in 1:N){ 
O[i]~dpois(eta[i]) 
eta[i] <- zeros[i]*lambda[i] 
zeros[i] ~ dbern(p[i]) 
logit(p[i]) <- alpha[1]+alpha[2]*cov1[i]+alpha[3]*cov2[i]+ 
…+alpha[16]*q2[i]+alpha[17]*q3[i]+alpha[18]*q4[i]+alpha[19]*year[i]+s[i] 
 
log(lambda[i]) <-beta[1]+beta[2]*cov1[i]+beta[3]*cov2[i]+ … 
+beta[16]*q2[i]+beta[17]*q3[i]+beta[18]*q4[i]+beta[19]*year[i]+s[i] 
 
zdp[i] <- 1-p[i]+p[i]*exp(-lambda[i]) 
} 
mzdp <- mean(zdp[]) 
 
s[1:N] ~ car.normal(adj[], weights[], num[], tau.s); 
for (k in 1:sumNumNeigh){ 
weights[k] <-1 
} 
 
for (i in 1:z) { 
beta[i] ~ dnorm(0,0.01) 
alpha[i] ~ dnorm(0,0.01) 
} 
 
tau.s ~ dgamma(2,0.05) 
sigma<-1/tau.s  
} 
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Appendix F. Chapter 8 Supplementary information 

Table F-1 Remotely-sensed indicators used in the study 

Variables Product Temporal 

resolution 

Spatial 

resolution 

Descriptions 

NDVI MOD09A1 8-day 500 m [NIR-Red]/[NIR+Red] 

MNDWI MOD09A1 8-day 500 m [Green-

SWIR]/[Green+SWIR] 

LST MOD11A2 8-day 1-km Daylight temperature 

Abbreviations: NDVI, normalized difference vegetation index; MNDWI, modified normalized difference 
water index; LST, land surface temperature. 

 

 

Table F-2 Spearman correlation between explanatory variables in Mengla County, 
Xishuangbanna, Yunnan and Yilong County, Nanchong, Sichuan, China  

Note: NDVI, LST, MNDWI indicate normalized difference vegetation index, normalized difference 
water index, modified normalized difference water index, respectively; * indicates P < 0.05; ** P < 

0.01. No strong correlation (r|0.8|) observed among variables in both counties. 
 

 

 

 

 

 

 

 

 

 

Study site Variables  Rainfall RH NDVI LST MNDWI 

Mengla County Rainfall 1.00     

RH 0.311** 1.00    

NDVI -0.530** -0.102 1.00   

LST 0.553** -0.170 -0.431**   

MNDWI 0.634** 0.376** -0.681** 0.345** 1.00 

Yilong County Rainfall 1.00     

RH -0.076 1.00    

NDVI 0.452** -0.343** 1.00   

LST 0.725** -0.445** 0.598** 1.00  

MNDWI -0.084 0.300** -0.520** -0.242** 1.00 
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Table F-3 Cross-correlation coefficients between leptospirosis cases and lagged 
climatic and remote sensed environmental variables  

Lag Mengla County Yilong County 

Rain RH NDVI LST MNDWI Rain RH NDVI LST MNDWI 

Lag 0 0.416* 0.264* -0.285 0.248* 0.340* 0.144 0.124 0.006 0.085 -0.051 

Lag 1 0.432* 0.082 -0.245* 0.419* 0.253* 0.227* -0.002 0.245* 0.241* -0.038 

Lag 2 0.321* -0.109 -0.256* 0.421* 0.163 0.544* -0.069 0.283* 0.276* 0.039 

Lag 3 0.077 -0.326* -0.139 0.330* -0.025 0.133 -0.020 0.130 0.245* -0.064 

Lag 4 -0.197* -0.374* 0.009 0.108 -0.155 0.063 -0.129 0.074 0.231* 0.250* 

Lag 5 -0.334* -0.332* 0.172 -0.072 -0.240* -0.050 -0.200* -0.018 0.130 0.003 

Lag 6 -0.430* -0.286* 0.222 -0.317* -0.323* -0.130 -0.200* -0.079 -0.043 -0.067 

Lag 7 -0.406* -0.147 0.278* -0.411* -0.324* -0.169 0.051 -0.214* -0.237* 0.048 

Lag 8 -0.282* 0.083 0.201* -0.355* -0.167 -0.201* 0.087 -0.207* -0.353* 0.103 

Note: RH, NDVI and LST, MNDWI indicate relative humidity, normalized difference vegetation index, 
land surface temperature and modified normalized difference water index, respectively; * indicates P 
< 0.05. 
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Table F-4 Correlation analysis among lagged climatic and environmental factors and 
collinearity test of the final multivariable model for Mengla County, Yunnan 

 

Variable Spearman’s rho VIF 

Rainfall0 LST0 Rainfall6 LST0 

Rainfall6  -0.549**  1.000 

LST0 -0.549**  1.000  

  * indicates significant at P < 0.05; ** P < 0.01 

 

 

Table F-5 Correlation analysis among lagged climatic and environmental factors and 
collinearity test of the final multivariable model for Yilong County, Sichuan 

 

Variables Spearman’s rho VIF 

Rainfall1 NDWI5 LST3 Rainfall1 NDWI5 LST3 

Rainfall1 1.000   1.000   

NDWI5 0.199* 1.000  1.277 1.000  

LST3 0.468** -0.153 1.000 1.041 1.041 1.000 

  * indicates significant at P < 0.05; ** P < 0.01 
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Figure F-1 Seasonal decomposition plot of leptospirosis cases in Mengla County, 
Xishuangbanna, Yunnan (left) and Yilong County (right), Nanchong, Sichuan, 2006–
2016 
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