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Abstract 

Coagulant dosing has played an essential role in urban water management for centuries. In fact, 

the first documented use of coagulant dosing for the production of drinking water dates back 

as far as 77 AD, where the Romans used aluminium sulfate to remove solids and colour from 

river water. The widespread use of coagulants for drinking water production started in the early 

1900’s. Rather surprisingly, not much has changed ever since. The majority of drinking water 

treatment plants (DWTPs) still heavily rely on coagulation and flocculation for the removal of 

turbidity, colour, natural organic matter (NOM) and pathogens. Amongst the various 

coagulants used at DWTPs, the most commonly used are aluminium sulfate (also known as 

alum) and iron salts (i.e. either in the form of ferrous/ferric chloride and/or sulfate).  

Iron salts also play an important role in other segments of our urban water 

infrastructure. First, they are the most commonly used chemicals to combat sulfide induced 

concrete corrosion and odour problems in sewer networks, a notorious and multibillion dollar 

problem for wastewater utilities worldwide. Second, the addition of iron salts is a prevalent 

approach for chemical phosphate precipitation in downstream wastewater treatment plants 

(WWTPs). Lastly, they are also dosed as a means to control hydrogen sulfide generation during 

anaerobic digestion. 

 A universal aspect of coagulation-flocculation processes is the generation of large 

amounts of an unavoidable by-product, namely drinking water sludge (DWS). To give an idea 

of the size of the problem, the generation of DWS for the United Kingdom and Netherlands 

alone exceeds 130,000 and 29,700 wet tons per year, respectively. Management of DWS incurs 

large costs and often comprises a substantial fraction of the operational expenditure of DWTPs, 

with landfilling often used as the ultimate disposal route. As we are entering the era of a circular 

economy, such a linear use of large amounts of chemicals will not suffice in the 21st century.  

Hence, to find a long-term sustainable solution to coagulant usage in our urban water 

infrastructure, there is an urgent need to develop a more circular management approach to 

coagulant usage. Therefore, this PhD thesis aimed to demonstrate the practical feasibility and 

economic potential of an ‘urban water infrastructure-wide’ iron salt dosing management 

approach achieving multiple reuse and ultimate recovery and direct reuse of iron in our urban 

water infrastructure. 

First, the practical feasibility and effectiveness of multiple beneficial reuse of iron salts 

were investigated by replacing in-WWTP alum dosing with upstream in-sewer FeCl2 dosing 
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through a year-long comprehensive testing at full-scale WWTP. The results showed that FeCl2 

dosed (at 160 kg Fe/day) in sewer network effectively controlled sulfide concentrations (up to 

93%) and was successfully reused for efficient phosphate removal in the activated sludge tanks 

of down-stream WWTPs. Moreover, the iron-phosphate rich sludge, when fed to the anaerobic 

digesters, was again re-used for sulfide control, thereby releasing part of the iron-bound 

phosphate. Importantly, in-sewer FeCl2 dosing did not negatively affect the biological nitrogen 

removal and UV effluent disinfection process. Finally, the above described benefits were 

accompanied by a reduction in overall chemical demand of 6%. The results clearly 

demonstrated that significant benefits in terms of wastewater treatment operation as well as 

chemical savings can be achieved by utilities by adopting such integrated iron salts dosing 

approach.  

While in-sewer iron salt dosing practically eliminates the need for additional iron 

dosing in WWTP and brings economic benefits to utilities, it is still based upon a linear 

management approach, with ultimately the iron ending up in the excess sludge. Therefore, in 

the second part of the thesis, a thorough investigation was conducted aiming to demonstrate 

the feasibility of a combined ‘iron recovery and reuse’ approach through long-term 

comprehensive laboratory testing over a period of 3 years. The results showed that both FeCl3 

and ferric iron-rich DWS (a waste by-product at DWTPs resulting from coagulation with 

FeCl3) dosing in sewer network results in similar performance in terms of sulfide control in 

sewers followed by successful reuse for phosphate removal and sulfide control in downstream 

wastewater treatment. More importantly, both type of iron forms a paramagnetic iron 

phosphate mineral called vivianite in the digested sludge and hence has the potentials for 

magnetic recovery. The results showed that about 92±2% of the in-sewer dosed Fe was bound 

in vivianite in digested sludge. A simple insertion of neodymium magnet allowed to recover 

11±0.2% and 15.3±0.08% of the vivianite formed in the digested sludge of the in-sewer dosed 

iron in the form of FeCl3 and Fe-DWS, respectively. More importantly, almost complete (i.e. 

98±0.3%) separation of Fe in the form of ferrihydrite (an amorphous ferric oxyhydroxide) was 

achieved from vivianite after alkaline washing. Subsequent batch experiments demonstrated 

that recovered ferrihydrite can be directly reused back to sewers for efficient sulfide control 

(achieving sulfide concentration of <0.5 mg S/L from 15 mg S/L within 1 hour of reaction by 

molar ferrihydrite-Fe:S dosing of 1.2:1). 

The produced DWS at DWTPs’ are stored on-site for an unspecified time ranging from 

weeks to months prior to its disposal in landfills. If the DWS is to be reused in sewers, the 
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impact of such storage time (i.e. aging) of DWS on iron speciation and morphology needs to 

be tested. Therefore, in the third part of the thesis, another comprehensive series of batch tests 

were conducted to investigate the aging effects on iron speciation and morphology of ferric 

chloride-based DWS and associated impact on sulfide removal in sewage followed by its 

regeneration by subsequent aeration for efficient P removal in activated sludge tanks. The 

results showed that akaganeite (β-FeOOH) is the main iron oxide species in the DWS, 

independent of sludge aging times. The sludge aging time had a clear impact on the akaganeite 

morphology, i.e. the crystallinity of akaganeite increased from 8±0.1% of total Fe (for ‘fresh’ 

DWS) to 76±3% of total Fe (for ‘aged’ DWS of 30 days). The degree of akaganeite crystallinity 

had a significant negative impact on the total sulfide removal capacity, but did not affect the 

reaction kinetics with most sulfide being removed within the first 10 minutes. Sulfide driven 

reductive dissolution of crystalline akaganeite followed by aeration in downstream activated 

sludge tanks ‘re-activates’ the akaganeite from a crystalline to a  highly amorphous iron oxide 

species, thereby achieving efficient phosphate removal with a capacity of 0.35±0.02 g P/g 

DWS-Fe which was found similar to FeCl3-Fe reactivation. A comprehensive industry survey 

revealed that the iron and organics concentrations of the DWS produced in this study through 

laboratory-scale jar testing were comparable with DWS from full-scale water treatment plants, 

highlighting the practical relevance of this study. 

In conclusion, this PhD thesis comprehensively investigated the feasibility of a ‘circular 

and closed-loop’ uses of iron in urban water management and successfully demonstrated the 

practical feasibility of this approach.  
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Chapter 1   Introduction 

 

1.1 Background 

Chemicals have played an essential role in urban water management for centuries. In fact, the 

first reported usage of chemicals to treat water dates back as far as 77 AD, where the Romans 

used aluminium sulfate (which is often called alum) for the production of drinking water [1]. 

The more widespread implementation of chemicals for the production of drinking water started 

in the beginning of the 20th century during a process called coagulation [2]. Coagulation in 

water treatment is defined as a “chemical process to promote the clumping of fine particles into 

larger flocs in order to easily separate them from water”. Chemicals used in the coagulation 

process are known as coagulants. During the coagulation process, coagulants combine 

suspended particles together in water to form larger conglomerates (also known as flocs) which 

are separated by sedimentation, flotation, or filtration processes [3]. The floc formation phase 

is called flocculation. Chemical flocculants (i.e. synthetic cationic polymers such as polyamine 

and polyethylenimine) can be added to enhance the flocculation process [4]. Ever since its 

widespread introduction in the early 20th century, not much has changed with nowadays most 

drinking water production plants (DWTPs) heavily relying on coagulation-flocculation 

processes for the removal of turbidity, colour, natural organic matter (NOM) and pathogens [5-

7]. Whilst various coagulants exist and can be used, the most commonly implemeneted by the 

water industry are aluminium- (i.e. alum or poly-aluminium chloride (PACl)) or iron- (i.e. 

ferrous/ferric chloride) based coagulants [8].  

In addition to its use during the production of drinking water, coagulants are also 

frequently used in other segments of the urban water infrastructure. For example, iron salts are 

the most commonly used coagulant to combat hydrogen sulfide induced sewer corrosion, a 

notorious and multibillion dollar problem globally [9]. Finally, both alum- and iron-based 

coagulants are also commonly used at downstream wastewater treatment plants (WWTPs) for 

chemical phosphate removal as well as to aid the sludge dewatering process. Iron salts have 

the advantage that they can also be used for sulfide control during anaerobic digestion [10, 11].  

Considering the widespread use of chemicals for overall urban water management, in 

the past significant research efforts aimed at optimizing the coagulation process as a means to 

maximize treatment performance while minimizing the chemical requirements. Importantly, 
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the majority of these studies aimed at optimizing the treatment performance for removing target 

pollutants within the technical sub-system of urban water infrastructure without taking 

potential positive or negative flow-on effects for the urban water infrastructure as a whole into 

account. Indeed, despite the growing importance and interest in integrated urban water 

management, in practice drinking water treatment plants, sewer management and wastewater 

treatment is managed separately. A good example, of the importance of considering flow-on 

effects is the finding that the choice of coagulants during the production of drinking water (i.e. 

alum versus ferric chloride) may have a substantial impact on the sewer corrosion potential by 

increasing the overall sulfate load to sewers [8]. The latter is a good example of the 

opportunities to improve the efficiency of chemical dosing in urban water infrastructure by 

adopting an integrated catchment-wide chemical management strategy. Finally, as we are 

entering the era of the circular economy, the water industry is under increasing pressure and 

has set forward the ambition to become completely circular and as such the current 

predominant linear usage of coagulants in urban water management will not suffice in the 21st 

century [12].  

1.2 Thesis objectives 

Considering the importance of coagulant dosing (currently as well as in the years ahead) at 

various places within urban water infrastructure, as well as the pressure for water and 

wastewater utilities to adopt to more cyclic water management strategies in order to fit within 

the emerging circular economy, this PhD thesis aims to develop and demonstrate the practical 

and economic feasibility of multiple reuse and subsequent recovery of iron salts in urban water 

infrastructure. More specifically, the fate, speciation, kinetics and reactivity of iron species is 

investigated through a combination of (i) laboratory-scale investigations using advanced 

characterization tools to fundamentally understand the evolution, speciation and morphology 

of iron oxides in various stages of water treatment, sewer management and wastewater 

treatment processes, (ii) short-term coagulation and adsorption experiments for evaluating the 

performance of iron-based coagulants for drinking water production and subsequent beneficial 

reuse of iron-rich drinking water sludge in downstream sewers and wastewater treatment, (iii) 

long-term reactor operation using a continuous flow laboratory-scale system simulating urban 

wastewater system, (iv) industry survey to assess the composition and variation in drinking 

water sludge from full-scale WTPs and its impact on potential reuse and (v) full-scale field 

studies to demonstrate the practical feasibility of integrated use of iron salts. 
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1.3 Organization of the thesis 

This PhD thesis comprises 7 chapters and 1 Appendix. A general introduction to the research 

background, overall thesis objectives and organization of the report is provided in Chapter 1. 

Chapter 2 provides a comprehensive literature review of the current knowledge and state-of-

the-art of coagulant dosing in the different technical sub-sections of urban water infrastructure 

(i.e. drinking water production, sewer management and municipal wastewater treatment). 

Moreover, this chapter discusses (i) the rationales behind coagulant choice, (ii) the production, 

management and beneficial reuse of drinking water sludge, (iii) iron-phosphate and iron-sulfide 

interactions at various stages of wastewater treatment and (iv) state-of-the-art of coagulant and 

phosphate recovery approaches. Chapter 3 provides a detailed overview of the overall thesis 

aims and specific research objectives. The main outcomes of the experimental work performed 

within this thesis are discussed in detail in chapters 4-6 incorporating the detailed knowledge 

gaps, research objectives, methodology used and key research outcomes addressing each 

research objective. Lastly, based upon the outcomes discussed in chapters 4-6, a general 

discussion, followed by the key conclusions and take home messages obtained within this 

thesis as well as a list of recommendations for future research are discussed in detail in Chapter 

7. 

There is often confusion regarding the terms between chemicals and coagulants. Chemical 

dosing is a broader term that applies the use of chemicals for processes including 

coagulation, chemical precipitation, chemical disinfection, chemical oxidation, advanced 

oxidation, ion exchange, and chemical neutralization. On the other hand, coagulant dosing 

is restricted to drinking water production process. In this PhD thesis, the focus is on 

establishing multiple beneficial reuse of iron salts (that is widely used as coagulants in 

DWTPs) for integrated urban water management. Therefore, the terms chemical dosing and 

coagulant dosing are interchangeably used throughout this thesis. 
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Chapter 2   Literature review 

 

2.1 The coagulation-flocculation process during the production of drinking water  

2.1.1 Fundamentals of coagulation 

The coagulation process is dynamic and goes through various mechanisms. These mechanisms 

are dictated by the interaction between the coagulant and the contaminants present in raw water 

and they occur simultaneously. In literature, four mechanisms have been identified, namely 

double-layer compression, charge neutralization, sweep coagulation and interparticle bridging 

[1, 2]. 

Double-layer compression: The theory of double-layer compression is based on the 

electrostatic repulsion among the similarly charged particles. This electric potential is reduced 

once the oppositely charged particles gather around. At a certain coagulant concentration, it is 

hypothesized that the double-layer will be compacted to a level (i.e. very close proximity) that 

would trigger an attractive force to hold the contaminant particles together in a mass [1]. 

Charge neutralization: Charge neutralization occurs when positively charged coagulants 

interact with negatively charged contaminant particles resulting in a destabilization of the 

contaminants [3]. It was highlighted that the negatively charged contaminant particles are 

destabilized by means of short-range adsorption forces (i.e. weak Van-der-Waals force) created 

by the presence of the coagulants [4, 5]. 

Sweep coagulation: Sweep coagulation refers to the ‘sweeping out’ of contaminant particles 

by means of solid precipitates or flocs upon the addition of coagulants [6]. This is a common 

mechanism with alum and ferric chloride coagulants. It is because the treated water becomes 

supersaturated (i.e. far beyond the solubility level of these metal salts) and generates a great 

extent of hydroxide precipitates [7]. With these salts, the formed precipitates are 𝐴𝑙(𝑂𝐻)3 (𝑠) 

and 𝐹𝑒(𝑂𝐻)3 (𝑠) onto which the dissolved contaminant particles get adsorbed. It is widely 

known that the contaminant particles are negatively charged which are electrostatically 

attracted towards the positively charged mass of those solid precipitates [1].  
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Interparticle bridging: Interparticle bridging is a concept of destabilizing contaminated 

particles that are electrostatically stabilized. This mechanism takes place when flocculants (i.e. 

polyelectrolytes) with high molecular weight (i.e. >106 atomic mass unit) are used in the 

coagulation process [1]. These polyelectrolytes are usually non-ionic and induce interactions 

between the functional groups on the polyelectrolytes and surface sites on the contaminant 

particles. Earlier studies [1, 8-12] found that a flux occurs between the contaminant particles 

and the polyelectrolytes which develops an affinity for the multivalent cations (released from 

alum and ferric chloride) and establishes a ternary bonding (contaminant-cation-

polyelectrolyte) towards an effective destabilization (i.e. turbidity removal). The mechanisms 

of coagulation process are summarized in Fig. 2.1. 

 

Figure 2.1 Mechanisms of coagulation-flocculation process, excerpted from [13]. 

2.1.2 Hydrolysis of alum and ferric chloride coagulants 

Coagulant addition induces complex hydrolysis reactions. The hydrolysis process can be 

defined as a progressive replacement of water molecules (in hydration shells) with hydroxyl 

groups [14]. The solubility and speciation of alum and ferric chloride coagulants depend on 

several aspects including: 

 pH: optimum pH levels for alum and ferric chloride are between 5-7.5 and 5-8.5, 

respectively [15];  
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 Natural organic matter (NOM): The presence of NOM lowers the optimum pH for turbidity 

removal and increases coagulant dosage [16, 17];  

 Fulvic acid: The presence of complexing ligands such as fulvic acid affects the charge 

neutralization process [18, 19];  

 Mixing: Efficient turbidity removal also depends on a proper combination of rapid and slow 

mixing [20].  

Hydrolysis of alum: Alum exhibits a complex and diverse chemistry in water by forming 

various hydrolysis species prior to final precipitation as aluminium hydroxide 𝐴𝑙(𝑂𝐻)3 (𝑠). 

When dissolved in water, aluminium forms a so-called aquo-metal ion (i.e. 𝐴𝑙(𝐻2𝑂)6
3+, which 

immediately reacts and forms various hydrolysis species such as 𝐴𝑙3+, 𝐴𝑙(𝑂𝐻)2+, 𝐴𝑙(𝑂𝐻)4
−, 

𝐴𝑙2(𝑂𝐻)2
4+ [20]. The typical formation time of these hydrolysis species is presented in Table 

2.1 that shows, while differences exist, from a practical perspective, all of the hydrolysis 

species are formed rapidly in the order of seconds or even less. 

𝐴𝑙(𝐻2𝑂)6
3+ + 𝐻2𝑂 ↔ 𝐴𝑙(𝐻2𝑂)5(𝑂𝐻)2+ + 𝐻+ (Eq. 2.1) 

𝐴𝑙3+ + 𝐻2𝑂 ↔ 𝐴𝑙(𝑂𝐻)2+ + 𝐻+ (Eq. 2.2) 

2𝐴𝑙3+ + 2𝐻2𝑂 ↔ 𝐴𝑙2(𝑂𝐻)2
4+ + 2𝐻+ (Eq. 2.3) 

𝐴𝑙(𝑂𝐻)3 (𝑠) ↔ 𝐴𝑙3+ + 3𝑂𝐻− (Eq. 2.4) 

𝐴𝑙(𝑂𝐻)3 (𝑠) + 𝐻2𝑂 ↔ 𝐴𝑙(𝑂𝐻)4
− + 𝐻+ (Eq. 2.5) 

Table 2.1 Formation time of alum hydrolysis species, excerpted from [21]. 

Hydrolysis species types Formation time (seconds) 

Monomers of alum < 0.1 

Polymers of alum 0.1 to 1 

𝐴𝑙(𝑂𝐻)3  precipitates 1 to 7 

It has been suggested that the positively charged species (i.e. 𝐴𝑙3+ and 𝐴𝑙(𝑂𝐻)2+) 

would interact with negatively charged colloids for charge neutralization. Some studies also 

suggested that the coagulation with alum results in a sulfato-complex or enmeshment of the 

colloids in the 𝐴𝑙(𝑂𝐻)3  precipitate by forming outer-sphere complexes such as 𝐴𝑙(𝐻2𝑂)𝑆𝑂4
+ 
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[22-24]. De Hek et al. [24] supported this theory by stating that such outer-sphere complexes 

reduce the energy barrier of the mass and act as a catalyst to enhance the precipitation as 

𝐴𝑙(𝑂𝐻)3 (𝑠).  

Hydrolysis of ferric chloride: Coagulation with ferric chloride works as a function of the 

hydrolysis speciation in water, as described in detail in various studies [3, 25-28]. The various 

hydrolysis reactions of ferric chloride in aqueous solutions are shown below [3, 4, 25]. Similar 

to 𝐴𝑙3+ described above, 𝐹𝑒3+ ions do not exist in simple ionic forms in aqueous solutions, but 

rather as aquo-complex species, such as 𝐹𝑒(𝐻2𝑂)6
3+ [2]. Usually, in the hydrolysis reaction 

equations the water molecules are not shown for simplicity.  

𝐹𝑒3+
+ 𝐻2𝑂 ↔ 𝐹𝑒(𝑂𝐻)2+ + 𝐻+       (Eq. 2.6) 

𝐹𝑒3+
+  2𝐻2𝑂 ↔ 𝐹𝑒(𝑂𝐻)2

+ + 2𝐻+        (Eq. 2.7) 

2𝐹𝑒3+
+ 2𝐻2𝑂 ↔  𝐹𝑒2(𝑂𝐻)2

4+ + 2𝐻+       (Eq. 2.8) 

3𝐹𝑒3+
+ 4𝐻2𝑂 ↔  𝐹𝑒3(𝑂𝐻)4

5+ + 4𝐻+       (Eq. 2.9) 

𝐹𝑒3+ + 3𝐻2𝑂 ↔  𝐹𝑒(𝑂𝐻)3 + 3𝐻+       (Eq. 2.10) 

These reactions can be generalized with the following expression [4]:  

𝑥𝐹𝑒3+ + 𝑦𝐻2𝑂 ↔  𝐹𝑒𝑥(𝑂𝐻)𝑦
(3𝑥−𝑦)+

+ 𝑦𝐻+      (Eq. 2.11) 

The key hydrolysis species (during ferric chloride coagulation) in equilibrium with 

𝐹𝑒(𝑂𝐻)3 (𝑠) are 𝐹𝑒3+, 𝐹𝑒(𝑂𝐻)2+ and 𝐹𝑒(𝑂𝐻)2
+. Charge neutralization occurs similar to alum 

coagulation (i.e. the positively charged hydrolysis species interact with negatively charged 

colloids).  

In addition, Tang and Stumm [4] proposed various reaction mechanisms for ferric chloride 

hydrolysis, which is called ‘hydrolysis-polymerization-precipitation.’ Such mechanisms are 

based on the previous propositions given by Dousma and de Bruyn, and Knight and Sylva [29, 

30] and consider rapid precipitation at low OH:Fe ratios as well as all possible chemical species 

that could evolve during various stages of the Fe hydrolysis process. In this proposed 
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mechanism, 4 types of solutions with various OH:Fe concentrations are mentioned and shown 

in Figure 2.2 [4]. 

 Type A: Solutions in this category contain monomers (i.e. 𝐹𝑒3+, 𝐹𝑒(𝑂𝐻)2+ and 

𝐹𝑒(𝑂𝐻)2
+), oligomers (i.e. a combination of the monomers), and various chloride 

complexes that evolve during the initial stages of hydrolysis with typical OH:Fe of ≥ 0.1 

M. 

 Type B: These solutions favour rapid precipitation at low OH:Fe of ≅ 0.01 M, which 

corresponds to sweep coagulation conditions. 

 Type C: These solutions are characteristic of polymerization with OH:Fe of < 0.005 M; and  

 Type D: These solutions allow the formation of high-level polymers with typical OH:Fe of 

< 0.0001 M. Often the species present in type D solutions lose their charges due to 

deprotonation, which leads to precipitation again with the characteristic of new solution 

referred as type E.  

 

Figure 2.2 Simplified schematic representation of hydrolysis-polymerization-

precipitation reactions, excerpted from [4]. ‘B’, ‘B*’ and ‘am’ refers to OH(added) /Fe(total), 

OH(bound) /Fe(total) and amorphous species of iron, respectively. 
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2.1.3 Effects of mixing  

Effective contact between the negatively charged contaminant particles and the coagulant 

hydrolysis species is achieved through rapid, rigorous and uniform mixing, which acts as a 

precondition for charge neutralization [20]. Rapid mixing is one of the most essential process 

parameters in order to achieve optimal process conditions and efficient coagulation. However, 

rapid mixing during the initial phase alone is not sufficient. The rapid mixing phases needs to 

be followed by a period of slow mixing in order to promote collisions between the solid 

hydroxide precipitates and the contaminant particles (i.e. colloids) present in water matrix. 

Such collisions may take place by means of three different mechanisms, namely Brownian 

motion, fluid motion and differential sedimentation [7]. Brownian motion occurs when there 

is a collision between two small particles (i.e. < 1 µm in diameter) whereas the collision 

between large and small particles (particularly the dense particles) occurs by differential 

sedimentation (i.e. collisions take place with different settling velocities of the particles). 

Mixing intensity does not control the collisions by these two mechanisms, rather allows the 

particles to stay in the suspension long enough to let the collisions occur. However, collisions 

by fluid motion occur between the particles of all sizes. The concept of flocculation is based 

on such collisions because they are directly affected by the mixing intensity and have no 

limitations from particle size point of view [7]. The frequency of these collisions and hence the 

growth of the flocs depend on several parameters such as temperature, concentration of 

contaminant particles and the nature of the slow-mixing operation (e.g. retention time, and 

mixing intensity). Therefore, both the rapid and slow mixing play a key role for an efficient 

coagulation-flocculation process. 

2.1.4 Coagulation performance: a literature survey 

There are a wide variety of coagulants available for drinking water production (as shown 

below), however, by far the most commonly used are the alum and ferrous/ferric chloride. In 

recent years, some synthetic cationic polymers (i.e. polyalkylene, polyamine, and 

polyethylenimine) have also gained interest due to their efficient NOM removal capacity [31]. 

However, they have found limited practical implementation so far due to the relatively higher 

costs compared to the conventional coagulants. An overview of the commonly used coagulants 

is outlined in Table 2.2. Such features need to be considered before selecting them as primary 

coagulant for drinking water production. 
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Table 2.2 Advantages and disadvantages of commonly used coagulants for water 

treatment, adapted from [31]. 

Category Coagulants Features 

H
y
d
ro

ly
zi

n
g
 m

et
al

 s
al

ts
 

Alum 

Ferric chloride 

Ferric sulfate 

 Efficiently removes inorganic suspended solids.  

 Optimum pH ranges for efficient coagulation with 

alum and iron salts are between 5.5 - 7.5 and 5.5 - 

8.5, respectively. 

 Alum increases the sulfate concentration in the 

treated water and often results in poor sludge 

dewaterability. 

 Alum is less efficient in water with low turbidity 

and more efficient in removing NOM than iron 

salts. 

 Iron salts are very corrosive and require careful 

handling and maintenance. 

P
re

-h
y
d
ro

ly
ze

d
  

m
et

al
 s

al
ts

 

PACl 

(poly-aluminium chloride) 

PAS 

(poly-aluminium sulfate) 

PIC 

(poly-iron chloride) 

 Effective within a wide pH range (i.e. 4.5 - 9.5). 

 Efficient for removing colors. 

 On-site production process is required. 

 Sludge dewatering is difficult. 

 Cannot be stored for longer periods. 

S
y
n
th

et
ic

  

ca
ti

o
n
ic

 p
o
ly

m
er

s 

EClhD 

(Epichlorohydrin dimethylamine) 

AmPAc 

(Aminomethyl polyacrylamide) 

Polyalkylene 

Polyamine 

Polyethylenimine 

 Effective in lower dosage and produces denser 

sludge. 

 Expensive and not widely used. 

 Can be used together with conventional metal salts 

to reduce overall coagulant dosage. 

Note. Synthetic cationic polymers are regarded as emerging coagulants for water treatment. 

However, their economic and other technical aspects need further validation [31]. 
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By far, alum and ferrous/ferric chloride are the most commonly used coagulants for drinking water production. Many studies have been 

conducted previously in order to assess the performance and efficiency of these coagulants for drinking water production. Table 2.3 below shows 

a summary of previous studies that compared the efficiency of both alum and iron-based coagulants. 

Table 2.3 Comparison between alum and ferric chloride coagulation performance.   

Coagulants used 

(dose and pH) 
Source of water 

Overview of water quality characteristics (% Removal) 
Refs. 

Turbidity (NTU) DOC (mg/L) UV254 (m-1) 

FeCl3 and Alum:  

40-80 mg/L, pH 5-6 
Alento constructed basin (Italy) 

FeCl3: 88% 

Alum: 80% 
FeCl3: 51% 

FeCl3: 80% 

Alum: 77% 
[32] 

FeCl3 and Alum: 

50-80 mg/L 
Drinking water reservoirs (Turkey) No data 

FeCl3: 48% 

Alum 44% 

FeCl3: 78% 

Alum: 77% 
[33] 

FeCl3: 12.98 mg/L, pH 7.4 

AlCl3: 8 mg/L, pH 7.4 
Yellow River (China) FeCl3: 79% No data FeCl3 and AlCl3: 27% [34] 

FeCl3: 8 mg/L, pH 8 

Alum: 16 mg/L, pH 6.5 
Deer Creek Reservoir (USA) 

FeCl3: 91% 

Alum: 90% 
No data No data [35] 

FeCl3: 10 mg/L, pH 5-6 

Alum: 20 mg/L, pH 7 
Simulated raw water (Iran) 

FeCl3: 99% 

Alum: 99% 
No data No data [36] 
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2.1.5 Choice between alum and iron based coagulants: industry perspectives 

In the paragraphs above, the performance of both alum and ferric chloride coagulants was 

discussed. It was found that both coagulants perform similarly, however the local price of these 

coagulants determines the choice between them. An overview of the most commonly used 

coagulants globally during drinking water production is summarized in Table 2.4.  

Table 2.4 Coagulant dosing in water utilities worldwide, adapted from [37]. 

Region Country Sample size Remarks Refs. 

Oceania 
Australia 77 DWTPs 56% use alum. [37] 

New Zealand 122 DWTPs 33% use alum. [38] 

North 

America 

USA 

225 Utilities 
70% use alum; 

6% use ferric sulfate. 
[39] 

47 Utilities 
53% use alum; 

12% use ferric sulfate. 
[40] 

Canada 

240 DWTPs 50% use alum. [41] 

17 DWTPs 
82% use alum; 

18% use PACl. 
[42] 

Asia 

China 35 cities 71% use alum. [43] 

India 42 DWTPs 98% use alum. [44] 

Singapore Most DWTPs Alum is the main coagulant. [44] 

Europe 

UK 
7 Utilities 57% use alum. [40] 

40 DWTPs 68% use alum. 

[45] 

Germany 7 DWTPs 57% use alum. 

Italy 8 DWTPs 38% use alum. 

Sweden 5 DWTPs 100% use alum.  

Switzerland 12 DWTPs 50% use alum. 

Belgium 2 DWTPs 100% use alum. 

Denmark 1 DWTP 100% use alum.  

Netherlands All DWTPs 
All DWTPs use ferric-based 

coagulants. 
[46] 

Ireland 2 DWTPs 100% use alum. [47] 
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It is clearly noticeable that overall alum is the most widespread used coagulant globally. 

However, in some countries, for example in the UK, iron-based coagulants are more 

predominantly used (i.e. 165,000 tons of iron-based coagulants per year compared to 107,000 

tons of alum, respectively) [40]. The latter is mainly due to the lower prices of iron-based 

coagulants in the UK compared to alum. The prices for FeCl2 and alum in Australia are 

$350/ton (29% solution) and $321/ton (28% solution), respectively (personal communication 

from Zhiguo Yuan, 2020). While the prices for both coagulants are in the similar range, it is 

critical to consider the ‘right’ coagulant that can have multiple benefits for overall water and 

wastewater treatment processes. Importantly, the DWS disposal costs can be further minimized 

by reusing Fe-DWS in the sewer network for sulfide removal as well as downstream phosphate 

removal and hydrogen sulfide control at WWTP. 

2.1.6 Rationale for switching to a different coagulant for drinking water production  

The selection of coagulants for drinking water production varies from one utility to another. 

Hence, it is important to understand the reasons behind such choice. At least 4 motivations 

were identified that convince the utilities towards choosing their primary coagulant or 

switching to a different coagulant [6], which are briefly described in the following paragraphs.  

Economic-based motivations: First and foremost, it is the most important reason for water 

utilities to choose their primary coagulant. Water utilities continually strive to reduce their 

operational costs. Costs of coagulants can be higher when the unit price and dose requirements 

are considered. Other factors to consider in this regard are the costs of chemicals for pH 

adjustment and coagulant aids.  

Regulatory-based motivations: Water utilities need to comply with their regional regulations 

on produced drinking water quality (subjected to change over time and vary from one utility to 

another), which is often related with the coagulants used for drinking water production. 

Examples of such regulations include controlling the disinfection by-products up to a certain 

limit, compliance with the Lead and Copper Rule (LCR) and controlling chlorine dioxide by-

products. Water utilities often choose their coagulants that help to comply with such 

regulations. 

Operations-based motivations: Water utilities may want to change their coagulant for further 

improving their existing operations such as handling and maintenance of coagulants on-site 

(e.g. iron-based coagulants are more corrosive than alum) and finding out the optimal plant 
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performance (e.g. coagulant dosage, pH adjustment). In such cases, coagulant switchover takes 

place that is suitable for their need.  

Residuals management-based motivations: Management of drinking water sludge is 

becoming an important aspect for water utilities. Coagulant changeover may take place in order 

to reduce the drinking water sludge generation as low as possible and also to minimize the 

disposal costs. 

It has to be emphasized that in most cases, the choice of coagulants is based on 

economic motivations of individual water utilities. An industry survey comprising the 

coagulant changeover practices during 2002-2003 in North American water utilities (n=50) is 

depicted in Fig. 2.3 [6]. The survey revealed that 86% of the utilities switched from alum to 

other coagulants (53 and 33% to PACl and ferric salt, respectively), while the remaining 

utilities switched from ferric salt to alum (7%), and ferric salt to PACl (7%). Information on 

the number of utilities that did not change their coagulant was not mentioned in that survey. 

 

Figure 2.3 Coagulant changeover practices observed in North American water utilities 

(n=50) during 2002-2003, adapted from [6].  

 

 

 

 

Alum to PACl 

(53%)

Alum to Ferric Salt 

(33%)

Ferric Salt to Alum 

(7%)

Ferric Salt to PACl 

(7%)

Coagulant changeover in North American water utilities
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2.2 Production and management of drinking water sludge  

Table 2.5 shows an overview of the global sludge generation during drinking water production.  

Table 2.5 Amounts of drinking water sludge generated in different countries. 

Region Country 
Drinking water sludge/year  

(×103 tonnes) 
Refs. 

Asia 

Bangladesh 27 [48] 

Japan 290 [49] 

Taiwan 120 [50] 

America 
USA 730,000 [51] 

Brazil 32 [52] 

Europe 

UK 180 [53] 

Ireland 18 

[50] 
Germany 125 

Netherlands 34 

Portugal 20 

Italy 750 [54] 

Oceania Australia 330 [55] 

Note. Actual sludge generation data are difficult to obtain due to insufficient research in this 

regard. Data presented above were collected from key review papers and most of them are quite 

old, which are subjected to change with time. Nevertheless, the data shows that the amount of 

drinking water sludge generated globally is enormous. 

Sludge disposal routes: Depending on the country/location, there are different sludge disposal 

routes, such as wastewater treatment facilities, landfills, on-site disposal, and building and 

construction facilities [50, 56]. In China, the untreated sludge is sometimes directly dosed to 

the sewer networks [57]. Two cities in Japan (i.e. Yokohama, and Kyoto) were also reported 

for discharging water treatment sludge to sewer networks as a part of their combined water 

treatment system. This approach was found to be more economic compared to the standalone 

treatment of sludge at individual drinking water production facilities [58]. Furthermore, the use 

of recovered coagulants from drinking water sludge with the aim of treating both drinking 

water and wastewater was reported in the UK [59].  
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However, the rationale to discharge the sludge into sewer networks was found to be 

purely economic. It is considered as the cheapest way to dispose of the sludge, while looking 

at the potential benefits in terms of reducing significant costs in purchasing raw chemicals for 

drinking water production as well as avoiding the burden of sludge disposal which often comes 

with high disposal costs [54, 56]. For example, the payout values in the UK are around 57 and 

11 million USD for annual coagulant dosing and sludge disposal, respectively. Also in Italy, 

the annual sludge disposal cost is estimated as 56 million USD, reflecting the importance of 

sludge management on global-scale [60]. 

2.2.1 Beneficial reuse of drinking water sludge 

In wastewater treatment: Drinking water sludge can be considered as a cheap source of 

coagulants that can be further reused in treating wastewater. Indeed, both alum and iron-rich 

drinking water sludge have been reported to remove phosphate and sulfide in wastewater, 

respectively [61-63]. 

As building and construction material: Alum-rich drinking water sludge has been reported 

as being used in cement manufacturing due to its high solids concentration and non-hazardous 

chemical composition that is similar to clay. In addition, alum-rich sludge was also used as 

materials for pavement and construction works such as fillers and also as landfill liners while 

iron-rich sludge was used for brick making [64-66]. 

As soil conditioning material: Alum-rich drinking water sludge has also been used for 

improving soil conditions by increasing particle stability, water retention capacity and soil 

basal respiration. They are also very effective for amending soil pH [67]. 

2.3 Chemical dosing in sewer management and municipal wastewater treatment 

Various methodologies have been applied so far by wastewater utilities to control sulfide in 

sewer network. Such methods are usually based upon continuous dosing of chemicals to 

prevent the formation of hydrogen sulfide in sewer environment or else to minimize its adverse 

effects after formation [68-70]. The chemicals used for controlling hydrogen sulfide in sewer 

network are oxygen or nitrate (for biological oxidation of sulfide), hydrogen peroxide and 

sodium hypochlorite (for chemical oxidation of sulfide), ferrous/ferric chloride (for 

precipitation as metal sulfide), magnesium hydroxide or caustic (for elevating the pH to > 9 to 

prevent the formation of sulfide) and free nitrous acid (for suppressing the activity of sulfate 

reducing bacteria). In general, iron salts (ferrous/ferric chloride) are the most commonly used 
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chemical to control sulfide in sewer network [71-73]. Indeed, an industry survey found that 

amongst various chemicals used to control sulfide in sewer network, iron salts comprise about 

66% in Australia as shown in Figure 2.4 [69]. When dosed to sewer network, iron salts remove 

sulfide effectively by precipitating as insoluble iron sulfide. 

 

Figure 2.4 Contribution of different chemicals to control sulfide in sewer network in 

Australian context, excerpted from [69]. 

Alum and iron salts (i.e. ferrous/ferric chloride) are the most commonly used chemical during 

municipal wastewater treatment. For example, iron salts are often dosed in the inlet works to 

mitigate odour problems and protect WWTP operators from elevated hydrogen sulfide levels. 

Both alum and ferrous/ferric chloride are often dosed in primary settling tanks for enhanced 

primary treatment as well as in aeration tanks for chemical phosphate removal [74-76]. With 

more stringent regulation being implemented requiring phosphate removal to very low levels, 

chemical P removal is expected to become even more important in the years ahead. 

Ferrous/ferric chloride are also used to control sulfide during anaerobic digestion step as well 

as for sludge dewatering [77, 78].  

2.4 Formation of various iron species in urban water infrastructure 

Iron species are reactive and may form miscellaneous chemical complexes in various technical 

sub-systems of our urban water infrastructure (i.e. DWTP, sewer network and WWTP) when 
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ferrous/ferric chloride are dosed for water treatment. Chemical complexes include a variety of 

iron oxide species (Fe‐O), iron sulfide species (Fe‐S), iron phosphate species (Fe‐P) and iron-

bound organic complexes (Fe-NOM). The knowledge on iron speciation is vital to understand 

the chemistry and mechanisms of various iron-bound complex formation. Fe-O species are 

important due to their structural properties (i.e. porosity, specific surface area, exposed surface 

sites, solubility and reducibility), which play a key role as an adsorption medium for phosphate 

during wastewater treatment [79]. At least 16 Fe-O species exist in nature (Table 2.6) which 

appear as oxides, hydroxides, and oxyhydroxide compounds [79, 80].  

It is also essential to understand the Fe‐P chemistry during wastewater treatment. 

Previous studies reported the presence of Fe‐P species in WWTP as two forms such as iron-

phosphate minerals and adsorption complexes. The latter results from the adsorption of 

orthophosphate onto iron oxides [79, 81-84]. A ferrous phosphate  mineral called vivianite 

(𝐹𝑒3(𝑃𝑂4)2 ∙ 8𝐻2𝑂) was identified in WWTP where iron salts were dosed for phosphorus 

removal [79, 84].  

At least 8 different forms of Fe-S species are found in nature (Table 2.6) [85] but with 

regard to wastewater, most studies reported the form as pyrite [86-88]. Contrarily, a study 

investigating the chemical speciation of simulated Fe‐S sludge found the presence of 

mackinawite in the fresh sludge and greigite as an intermediate species before it finally 

transforms to pyrite [89].   

Table 2.6 Iron species that may form during various stages of water treatment, adapted 

from [79, 80, 84, 85]. 

Fe-O species Fe-P species Fe-S species 

Geothite (𝜶 𝑭𝒆𝑶𝑶𝑯) Vivianite (𝑭𝒆𝟑(𝑷𝑶𝟒)𝟐 ∙ 𝟖𝑯𝟐𝑶) Mackinawite (𝑭𝒆𝑺) 

Akaganeite (𝜷 𝑭𝒆𝑶𝑶𝑯) Strengite (𝑭𝒆𝑷𝑶𝟒 ∙ 𝟐𝑯𝟐𝑶) Troilite (𝑭𝒆𝑺) 

Lepidocrocite (𝜸 𝑭𝒆𝑶𝑶𝑯) Lipscombite ((𝑭𝒆𝟐+𝑭𝒆𝟑+)𝟐(𝑷𝑶𝟒)𝟐(𝑶𝑯)𝟐) Pyrrhotite 

(𝑭𝒆𝟕𝑺𝟖 , 𝑭𝒆𝟏𝟎𝑺𝟏𝟏) 

Feroxyhyte (𝜹 𝑭𝒆𝑶𝑶𝑯) Beraunite ((𝑭𝒆𝟐+𝑭𝒆𝟑+)𝟓(𝑷𝑶𝟒)𝟒(𝑶𝑯)𝟓 ∙ 𝟔𝑯𝟐𝑶) Smythite (𝑭𝒆𝟗𝑺𝟏𝟏) 

High-pressure FeOOH (𝜺 𝑭𝒆𝑶𝑶𝑯) Rockbridgeite ((𝑭𝒆𝟐+𝑭𝒆𝟑+)𝟒(𝑷𝑶𝟒)𝟑(𝑶𝑯)𝟓) Greigite (𝑭𝒆𝟑𝑺𝟒) 

Schwertmannite (𝑭𝒆𝟏𝟔
𝟑+𝑶𝟏𝟔(𝑶𝑯)𝟏𝟐(𝑺𝑶𝟒)𝟐)  Pyrite (𝑭𝒆𝑺𝟐) 

Ferrihydrite (𝑭𝒆𝟓𝑯𝑶𝟖 ∙ 𝟒𝑯𝟐𝑶)  Marcasite (𝑭𝒆𝑺𝟐) 

Bernalite (𝑭𝒆(𝑶𝑯)𝟑)   
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Ferrous hydroxide (𝑭𝒆(𝑶𝑯)𝟐)   

Green rust (𝑭𝒆𝟑
𝟐+𝑭𝒆𝟑+(𝑶𝑯)𝟖𝑪𝒍 ∙ 𝑯𝟐𝑶)   

Hematite (𝜶 𝑭𝒆𝟐𝑶𝟑)   

Polymorphs of hematite (𝜷 𝑭𝒆𝟐𝑶𝟑, 

𝜺 𝑭𝒆𝟐𝑶𝟑) 

  

Maghemite (𝜸 𝑭𝒆𝟐𝑶𝟑)   

Magnetite (𝑭𝒆𝟑𝑶𝟒)   

Wustite (𝑭𝒆𝑶)   

Note. Symbols such as α, β, γ, and ε indicate the structural difference of the Fe-O minerals.   

2.4.1 Iron-sulfide-phosphate chemistry in wastewater treatment process 

Upon addition of ferrous/ferric chloride in sewer network, sulfide is precipitated as insoluble 

iron sulfide, either in the form of pyrite (𝐹𝑒𝑆2) or mackinawite (𝐹𝑒𝑆) [90]. Ferrous iron readily 

reacts with sulfide to form such iron sulfide species while ferric iron is reduced to ferrous in 

anaerobic sewer environment and subsequently participates in the precipitation reaction with 

sulfide. The reaction mechanism of sulfide precipitation with ferrous and ferric iron are shown 

below [90]. 

𝐹𝑒2
+ +  𝑆2

−  → 𝐹𝑒𝑆(𝑠) ↓ 
(Eq. 2.12) 

2𝐹𝑒3+ + 𝐻𝑆− → 2𝐹𝑒2+ + 𝑆(𝑠)
0 ↓ 

(Eq. 2.13) 

 

On the other hand, the phosphate removal by ferrous/ferric chloride in WWTPs depends 

on several factors such as the oxygen concentration (related to ferrous iron only), concentration 

of competing ions as well as organic matter, pH, alkalinity and the type of P present (i.e. 

orthophosphate and/or polyphosphate) [91]. However, the exact mechanisms of phosphate 

removal using either ferrous or ferric iron is not fully understood yet [92]. It has been suggested 

that when ferric iron is dosed, the hydrolysis of iron species happens fast (forming iron oxide 

species) and subsequently phosphate is adsorbed onto the surface of the iron oxides as ferric 

phosphate [93, 94].  

In case of ferrous iron dosing, the process becomes more complex since ferrous iron 

will be partly or fully oxidized to ferric iron in aerated activated sludge tanks and the oxidation 

strongly depends on the oxygen concentration and pH [95]. For example, a previous study 
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found that ferrous iron was oxidized by 50% (with oxygen concentration of 5 mg O2/L) in 45 

minutes at pH 7 while it took only 30 seconds at pH 8 to be oxidized to similar level [96, 97]. 

However, the complete mechanism of ferrous iron oxidation is not yet well-established. 

Recently it has been found that when the oxidation of ferrous iron is incomplete or if the ferric 

iron is reduced to ferrous during wastewater treatment, an iron-phosphate mineral called 

vivianite is formed [98, 99]. When the ferric phosphate containing sludge is further treated 

through anaerobic digestion, the ferric iron present in the sludge will again be reduced to 

ferrous iron in reducing conditions and will precipitate sulfide in the digester. To illustrate this, 

when ferric phosphate enters into an anaerobic digester, the ferric iron will be 

partially/completely reduced to ferrous iron. Part of the ferrous iron will react with sulfide 

while the rest of the ferrous iron will bind with phosphorus as vivianite. It has been estimated 

that about 70-90% of all phosphate  was bound in vivianite in the digested sludge when the 

molar Fe:P ratio was 2.5 [100].  

2.4.2 Characterizing iron speciation in urban water infrastructure 

A large number of analytical tools can be used to investigate the morphology and mineralogy 

of Fe‐O, Fe‐P, Fe‐S, and Fe‐NOM species that may form during various stages of water 

treatment [79]. Such characterization tools are important to understand the fate, reactivity, 

speciation and kinetics of iron species in our urban water infrastructure. Overall, the tools to 

characterize iron species can be divided into two groups, namely advanced imaging techniques 

and bulk techniques [85]. Advanced imaging techniques include optical microscopy, super-

resolution fluorescence microscopy and electron microscopy whereas bulk techniques are 

comprised of surface characterization and spectroscopic techniques. In terms of the expected 

outputs, these techniques can be further divided into two groups such as qualitative and 

quantitative [85]. The qualitative methods (i.e. various spectroscopic and imaging techniques) 

depict the results in a graphic way to evaluate the relationships and bonding characteristics of 

target elements (i.e. iron species) with other compounds while the quantitative techniques 

provide numeric values to evaluate similar features such as surface area and pore size 

distribution values. Characterization tools that were used in this PhD thesis are highlighted in 

Table 2.7 and described afterwards. 
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Table 2.7 Characterization tools used in this PhD thesis for determining iron speciation.  

Type of characterization Tools Applications 

 

X-ray identification 
XRD 

 Determination of iron-based mineral 

formation or existence. 

 Applicable for Fe-O, Fe-S, and Fe-P analysis 

for possible complexes. 

 

Electron microscopy 
SEM-EDS 

 Elemental analysis. 

 Morphological analysis. 

 Particle size analysis. 

NOM characterization EEM 
 Elemental analysis for NOM in water samples 

(Fe-NOM interactions). 

 

X-ray diffraction (XRD): XRD is a very popular technique for characterizing minerals [101] 

and their crystallinity in a wide variety of samples including drinking water sludge and sewage 

sludge [102]. This qualitative technique uses X-rays (electromagnetic waves with the 

wavelength order of 10-10 m) to interact with the electrons of target specimen which in turn 

release waves with the same incident wavelength and the resultant spectra are recorded in a 

detector in order to identify the species.   

Excitation-emission matrix fluorescence spectroscopy (EEM): EEM spectroscopy is a 

widely used technique for characterizing natural organic matter (NOM) in both water and soil 

matrices and could provide details on Fe-NOM speciation [103]. Being a heterogeneous 

mixture of aromatic and aliphatic organic compounds, NOM contains functional groups of 

carboxyl, phenol, alcohol, carbonyl, amine, and thiol. In the process of water treatment, NOM 

contributes to particle stability and transport, metal complexation as well as the production of 

disinfection by-products (DBPs) [103-106]. NOM is measured in the form of dissolved organic 

carbon (DOC) and the non-fractionated portion of NOM is characterized by analyzing 

molecular weight distributions and UV absorption spectra [107, 108]. This technique offers 

simplicity in sample preparation and when coupled with fluorescence regional integration 

(FRI), (an analytical approach that can estimate the fractionated portions of NOM) it can 

successfully measure a fluorescence spectrum which usually consists of 50 to >10,000 
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wavelength dependent fluorescence intensity data points and a successful interpretation can 

describe the associated heterogeneity of NOM [103].    

Scanning electron microscopy [93]: SEM is one of the most popular imaging/microscopy 

tools for elemental analysis in recent times. Some of its advantages are the excellent depth of 

field (10-50 µm) [109], large magnification range, multiple detection modes (i.e. primary, 

secondary or backscattered electron detection) and convenient environment for analysis, i.e. 

with minimum sample preparation as well as analyzing environmental samples in as-is 

conditions [110]. A high energy electron beam is used to perform SEM imaging which interacts 

with the sample surface that allows the capturing of backscattered electrons (for imaging 

purpose with relative atomic number contrast) and characteristic primary X-rays (for elemental 

analysis) [110]. With regard to iron-rich sludge analysis, it can be of great use to determine 

particle size and shape, crystal patterns, extent of agglomeration and most importantly the 

change in morphology of particles in the sample [110].  

Energy Dispersive X-ray Spectroscopy (EDS): EDS is often used in-line with SEM to 

identify and quantify the characteristic primary X-ray emissions, which are usually affected by 

the high electron beam voltage and specimen density in SEM [110]. In this technique, all the 

X-rays that are going to the detector are measured at the same time and hence the data 

acquisition is very fast [109]. EDS spectrometry can also be very useful in differentiating iron 

particles from filtration debris of a sample which often creates a confusion in the morphological 

analysis [110].   

2.5 State-of-the-art coagulant and P recovery approaches 

2.5.1 Coagulant recovery at drinking water treatment plants 

Various studies investigated the feasibility of coagulant recovery at drinking water treatment 

plants to avoid sludge handling and disposal issues as well as reducing overall coagulant 

demand for water treatment. Coagulants are usually recovered through acidification (i.e. pH < 

2) [111]. It is to be noted that the dissolved organic carbon (DOC) that is removed through 

coagulation process is mixed with the drinking water sludge and cannot be removed easily due 

to their similar pH solubility behaviour as of the coagulants [112]. Various methodologies have 

been applied so far to remove the DOC fraction from the recovered coagulants such as pressure-

filtration membranes [111], adsorbents [113], chemical precipitation [114] and ion-exchange 

[112] but all of these methods failed to completely remove the organic fraction that is trapped 
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within the recovered coagulants. Hence, there is a concern in reusing the recovered coagulants 

for drinking water production. However, they have potentials to be reused for phosphorus 

removal in downstream wastewater treatment [46]. In that case, the overall process economics 

would not be feasible compared with the direct reuse of the drinking water sludge.  

2.5.2 P recovery at wastewater treatment plants 

Phosphate recovery from wastewater treatment sludge has become increasingly attractive in 

recent times due to the finite availability of phosphorus resources in nature. Precipitating 

phosphate as struvite (in centrifuge liquor) and vivianite crystals (in the digested sludge) are 

the most commonly used methods for phosphate recovery at WWTP. Struvite is a magnesium 

phosphate mineral (𝑀𝑔𝑁𝐻4𝑃𝑂4 ∙ 6𝐻2𝑂) and its precipitation occurs at pH ~9 when the molar 

ratio of magnesium to phosphate is 1:1 [115]. On the other hand, vivianite is an iron phosphate 

mineral (𝐹𝑒3(𝑃𝑂4)2 ∙ 8𝐻2𝑂) that is formed in the digested sludge when ferrous/ferric chloride 

are dosed in the activated sludge tanks for chemical phosphate removal [99]. Vivianite is 

paramagnetic and hence can be potentially recovered from the digested sludge via magnetic 

separation [44].  

2.6 Opportunities to reduce the coagulant demand through integrated urban water 

management 

As highlighted in the previous sections, coagulants are separately dosed for the production of 

drinking water, to control hydrogen sulfide induced odour and corrosion problems in the sewer 

network and to remove phosphate and sulfide in down-stream WWTP. Such linear usage of 

large amount of coagulant dosing for urban water management will not suffice in the 21st 

century. Therefore, it is essential to explore the opportunities to reduce the overall coagulant 

demand in water and wastewater treatment by means of potential recovery and reuse of 

coagulants. In that regard, iron-based coagulants (i.e. ferrous/ferric chloride) are very 

promising since they are very effective in removing turbidity and NOM during drinking water 

production as well as removing both sulfide and phosphate in wastewater. It is important to 

investigate such opportunities in detail in order to establish a circular and closed-loop 

management of coagulants for urban water management. 
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Chapter 3   Research objectives 

 

The overall scope of this PhD thesis is to develop and demonstrate the practical feasibility of 

multiple beneficial reuse and recovery of iron salts in urban water management as a means to 

develop an integrated ‘closed-loop’ iron management strategy for the urban water cycle as a 

whole. In summary, the approach is based upon “three-time reuse” of iron followed by selective 

recovery from digested sludge. The first beneficial reuse of iron rich drinking water sludge is 

the addition to sewers as a means to combat hydrogen sulfide induced corrosion of concrete 

sewer pipes. The second beneficial reuse that can be achieved is phosphate removal in activated 

sludge tanks of down-stream wastewater treatment plants. The third and last beneficial reuse 

is sulfide control in anaerobic digesters. Finally, after “three-time reuse” of the iron, it can be 

recovered via magnetic separation in the form of vivianite. In particular, this thesis emphasized 

on gaining a fundamental understanding of the fate and speciation of iron when flowing 

through the different technical sub-sections of the urban wastewater infrastructure. In order to 

achieve the above, four specific research objectives were set forward. A summary of and the 

rationale behind each of these research objectives is outlined below. The detailed description 

and in-depth discussion of the objectives, knowledge gaps, methodology and research 

outcomes addressing each of these key research objectives summarized below are presented in 

chapter 4-6. 

Objective 1 – Replacing in-WWTP alum dosing with in-sewer FeCl2 in order to demonstrate 

multiple beneficial reuse of iron for sulfide control in sewer network followed by phosphate 

and sulfide control at full-scale Oxley Creek WWTP. 

So far, the treatment performance of iron salts dosing in urban water management has been 

predominantly centred around the benefits that can be achieved at the “point-of-dosing”, 

rather than considering the potential positive or negative impacts of its “flow-on effects”. 

Since iron-based coagulants possess the ability to remove both hydrogen sulfide and 

phosphate, it is crucial and of special interest to investigate the practical feasibility of 

reusing iron salts in our urban water infrastructure, specifically down-stream of the point of 

dosing.   



Chapter 3 

36 
 

This research objective aimed to demonstrate the beneficial impact of changing the type 

and location of coagulant dosing to improve the overall treatment performance in terms of 

sulfide control in sewer networks as well as sulfide control during anaerobic digestion and 

phosphate removal in activated sludge tanks through long-term testing under real-life 

conditions. To achieve this, a year-long full-scale field trials coupled with comprehensive 

monitoring campaigns were conducted at Oxley Creek WWTP (South East Queensland, 

Australia). As per the WWTPs regular operation, alum was dosed to the activated sludge tanks 

for phosphate removal. The upstream sewer network connected to the WWTP had severe odour 

problems due to excessive levels of hydrogen sulfide resulting in frequent complaints from the 

local community, creating an ideal situation to test the multiple beneficial reuse of iron salts 

under real-life conditions. Therefore, in this research objective, the in-WWTP alum dosing was 

replaced with in-sewer FeCl2 dosing with the aim to control sulfide in the sewer network and 

investigate whether the same iron can be reused multiple times in down-stream WWTP for 

phosphate removal in activated sludge tanks and sulfide control in anaerobic digester. Please 

refer to chapter 4 for a detailed description of the methodology used and findings of the research 

work.   

Objective 2 – Characterizing the fate and speciation of in-sewer dosed iron in digested sludge 

at downstream WWTP 

In research objective 1, the practical feasibility of multiple beneficial reuse of iron salts was 

successfully demonstrated at full-scale WWTP. However, the fate and speciation of the in-

sewer dosed iron in subsequent wastewater treatment sludges (i.e. activated sludge and 

digested sludge) was not studied. Such characterization of iron species is important since 

iron can form a variety of iron oxide complexes which may offer different routes for iron 

recovery and/or sludge reuse. It is also very important to investigate whether a different form 

of iron (i.e. ferric-based drinking water sludge) will perform similarly in terms of sulfide 

control capacity and speciation as an alternative for conventional iron salts if dosed to the 

sewer network. If successful, the latter is expected to bring significant benefits and can be 

seen as an important step for utilities towards a more circular use of iron coagulants in 

urban wastewater treatment. 

This research objective was aimed to deliver two different conceptual changes 

regarding the use of iron coagulant for an integrated urban wastewater treatment. First, whether 
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purchased ferric chloride coagulants can be successfully replaced with ferric-based DWS with 

the aim of similar level of efficient sulfide control in sewer network followed by multiple 

beneficial reuse in down-stream WWTP. The latter is promising and can bring significant 

positive impacts to utilities by utilizing a ‘waste by-product’ as a ‘valuable resource’ for real-

life applications. Recently, it was found that if iron salts (either ferrous or ferric) are dosed at 

WWTP for phosphate removal, an iron-phosphate mineral called vivianite is formed during 

anaerobic digestion of waste activated sludge. Vivianite is paramagnetic and hence, in theory, 

this may enable selective recovery of the coagulant from the mineral by magnetic separation. 

In this regard, the vivianite formation potential of in-sewer dosed iron is of great importance 

towards establishing an integrated use of iron salts within our urban wastewater management. 

More importantly, it is of special interest to know whether the in-sewer dosed ferric-based 

DWS will also form vivianite in the digested sludge. Therefore, in the second part of this 

research objective, a comprehensive laboratory-scale study was conducted to investigate the 

performance of ferric-based DWS for sulfide removal in sewers as well as the fate and vivianite 

formation potential of in-sewer dosed iron, either in the form of purchased FeCl3 or in the form 

of ferric-based drinking water sludge, in activated sludge and digested sludge of the down-

stream WWTP. Please refer to chapter 6 for a detailed description of the methodology used 

and findings of the research work.  

Objective 3 – Effects of aging of ferric-based drinking water sludge on its reactivity for 

sulfide and phosphate removal. 

In research objective 2, it was successfully demonstrated that both in-sewer ferric chloride 

and in-sewer ferric DWS dosing perform similarly in terms of sulfide control in sewer 

network and iron speciation in down-stream WWTP (i.e. forming vivianite in digested 

sludge). However, the effects of aging of the DWS (as in reality the DWS is stored on-site 

for an unspecified time period ranging from weeks to months) on its reactivity and overall 

capacity towards sulfide control in sewer networks and subsequent reuse in down-stream 

WWTPs for phosphate removal was not investigated in detail. 

Therefore, objective 3 aimed to thoroughly investigate the potential changes in 

reactivity of iron in the DWS upon various sludge aging times. To achieve this, a series of 

comprehensive batch tests were conducted using real-life raw influent to generate ferric DWS 

(subjected to aging for up to 30 days) and using it in real sewage to assess the reactivity and 
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capacity of sulfide removal with various aged DWS by maintaining circumneutral pH 

conditions (i.e. 6.5-7.5). Subsequently, the sulfide-mixed DWS was added to aerated activated 

sludge to assess the regeneration of the iron in DWS for phosphate removal. Please refer to 

chapter 5 for a detailed description of the methodology used and findings of the research work.  

Objective 4 – Recovery of in-sewer dosed iron from digested sludge at downstream treatment 

plants and its reuse potential.  

The results obtained in objective 2 clearly demonstrated that in-sewer iron dosing (either in 

the form of FeCl3 or ferric-based DWS) results in vivianite formation in the digested sludge 

at downstream WWTP. Despite of the positive impact of such network-wide coagulant dosing 

strategy, it is still a linear usage of iron coagulants. Therefore, objective 4 was aimed to 

investigate the possibility of iron recovery and reuse approach for an integrated urban 

wastewater treatment. 

Recently, it was found that selective recovery of phosphate can be achieved through 

magnetic separation of vivianite from digested sludge. However, the potential recovery (and 

reuse) of iron in the same process was not investigated in detail. It is also important to 

characterize the form of iron in the recovered fraction to identify its potentials for direct reuse 

within the urban water infrastructure. Therefore, this research objective aimed to 

comprehensively study the extent of recovery of in-sewer dosed iron, in the form of iron salts 

as well as ferric-based DWS, from digested sludge and its potential for direct reuse in the sewer 

network for sulfide control. Please refer to chapter 6 for a detailed description of the 

methodology used and findings of this research work.  
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4.1 Abstract 

Iron and aluminium based coagulants are used in enormous amounts and play an essential role 

in urban water management globally. They are dosed at drinking water production facilities for 

the removal of natural organic matter. Iron salts are also dosed to sewers for corrosion and 

odour control, and at wastewater treatment plants (WWTPs) for phosphate removal from 

wastewater and hydrogen sulfide removal from biogas. A recent laboratory study revealed that 

iron dosed to sewers is available for phosphate and hydrogen sulfide removal in the 

downstream WWTP. This study demonstrates for the first time under real-life conditions the 

practical feasibility and effectiveness of the strategy through a year-long full-scale 

investigation. Over a period of 5 months, alum dosing at ~190 kg Al/day to the bioreactor in a 

full-scale WWTP was stopped, while FeCl2 dosing at ~160 kg Fe/day in the upstream network 

was commenced. Extensive sampling campaigns were conducted over the baseline, trial and 

recovery periods to investigate sulfide control in sewers and its flow-on effects on phosphate 

in WWTP effluent, H2S in biogas, as well as on the WWTP effluent hypochlorite disinfection 

process. A plant-wide mass balance analysis showed that the Fe2+ dosed upstream was 

effectively used for P removal in the activated sludge tanks, with an effluent phosphate 

concentration comparable to that in the baseline period (i.e. with alum dosing to the bioreactor). 

Simultaneously, hydrogen sulfide concentration in biogas decreased ~43%, from 495±10 to 

283±4 ppm. No effects on biological nitrogen removal and disinfection processes were 

observed. Both effluent phosphate and H2S in biogas increased in the recovery period, when 

in-sewer dosing of FeCl2 was stopped. X-ray diffraction failed to reveal the presence of 

vivianite in the digested sludge, providing strong evidence that thermal hydrolysis prevented 

the formation of vivianite during anaerobic digestion. The latter limits the potential for 

selective recovery of Fe and P through magnetic separation. Overall, our study clearly 

demonstrates the multiple beneficial reuse of iron in a real urban wastewater system and urges 

water utilities to adopt an integrated approach to coagulant use in urban water management.  

4.2 Introduction 

Chemical coagulants are used in enormous amounts and play an essential role in urban water 

management globally [1-3]. Amongst the different coagulants dosed at various places within 

our urban water infrastructure, iron and aluminium based coagulants are the most commonly 

used [1, 4-6]. First, the majority of drinking water treatment plants (DWTPs) rely heavily on 

the use of iron or aluminium based coagulants for the removal of turbidity, colour, natural 
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organic matter (NOM) and pathogens [7, 8]. Secondly, the addition of iron based coagulants to 

sewer networks is the most commonly applied method to combat hydrogen sulfide induced 

concrete corrosion [4, 9, 10], a notorious and multi-billion dollar problem in sewer 

management [6, 11]. Third, both alum- and iron-based coagulants also play an important role 

in downstream wastewater treatment plants (WWTPs) with the majority of WWTPs still 

relying on chemical dosing for the removal of phosphate [12-14]. Finally, iron salts are also 

often dosed to anaerobic digesters for hydrogen sulfide control [15, 16].  

Significant research efforts have been conducted in the past decades aiming to minimize 

chemical dosing requirements while optimizing the removal efficiency of the target pollutants 

at the point of dosing [1]. To the authors’ best knowledge, a system-wide integrated coagulant 

management strategy that takes into consideration the fate of these chemicals and their potential 

negative or positive flow-on effects on downstream processes has attracted little attention. The 

latter is rather surprising, as the flow-on effects could potentially have a substantial impact on 

the overall chemical requirement and treatment performance for the urban water infrastructure 

at large. 

There are several reasons why the flow-on effects of iron-based coagulants are of 

special interest. First, iron based coagulants possess the ability to remove both phosphate and 

hydrogen sulfide [17]. Second, iron chemistry is complex and versatile, with a wide variety of 

iron oxides (e.g. magnetite, hematite, goethite, ferrihydrite), iron sulfide (e.g. pyrite, 

mackinawite, pyrrhotite, troilite and greigite) [18] and iron phosphate (e.g. vivianite and 

strengite) [19-21] species as well as iron-organic complexes [22, 23]. These iron species can 

undergo rapid changes in oxidation state from Fe2+ (very effective in removing sulfide) to Fe3+ 

(very effective in removing phosphate) and vice-versa, depending on prevalent anaerobic, 

anoxic and aerobic conditions. As sewage is subjected to different oxidation-reduction 

conditions when it flows through the different sub-sections of our urban water infrastructure, 

one iron molecule could potentially be reused several times for removal of both sulfide and 

phosphate by alteration of its oxidation state [20].  

Indeed, laboratory-scale experiments demonstrated that Fe3+, dosed as ferric chloride 

(FeCl3) for sulfide control in rising main sewers was reduced to Fe2+, thereby precipitating 

sulfide as FeS. Subsequently, when the effluent of the rising main was fed to an aerated primary 

settler, the Fe2+ was re-oxidized to Fe3+ resulting in efficient phosphate removal whereas the 

hydrogen sulfide was oxidized to sulfate [24]. Another laboratory-scale study demonstrated 
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that when activated sludge from a sequence batch reactor, to which Fe3+ was dosed in the form 

of FeCl3 for phosphate removal, is subjected to anaerobic digestion, the iron is reduced to Fe2+ 

and can effectively control hydrogen sulfide, thereby releasing the phosphate [25]. These 

studies clearly show the potential of multiple beneficial reuse paths of iron beyond removal of 

the target pollutants at the point of dosing. These benefits have been successfully demonstrated 

recently by [26] through the use of continuously operated laboratory-scale wastewater systems 

comprising sewers, wastewater treatment reactors and anaerobic sludge digesters.  

These above described laboratory-scale studies clearly highlight the potential to reduce 

the overall chemical footprint of water utilities by adopting a catchment-wide approach coupled 

with substantial improvements in terms of overall sulfide control performance and phosphate 

removal. However, it should be emphasized that these studies were conducted under controlled 

laboratory conditions (i.e. constant temperature, flow and HRT) using simplified 

configurations. In real-life situations, the flow (and thus HRT) is highly dynamic, whereas 

sewer networks typically comprise a complex system of large amounts of different sewer pipes 

consisting of a mixture of gravity sewers and rising mains with changing anaerobic and aerobic 

conditions. Full-scale field trials over a prolonged time period using a real-life full-scale sewer 

network and downstream WWTP are therefore essential to assess the practical feasibility of 

multiple reuse of iron salts. Therefore, this study aimed to evaluate the multiple beneficial reuse 

paths of iron salts in urban water management through full-scale field trials. To achieve this, 

we performed long-term analysis coupled with comprehensive monitoring campaigns at a full-

scale sewer network connected to the Oxley Creek wastewater treatment plant (South East 

Queensland, Australia). Such a study is considered essential before this integrated approach to 

coagulant use can be widely taken up by water utilities. Finally, we conducted XRD analyses 

to distinguish between amorphous and crystalline phases of iron compounds in sludges 

collected from various units in the treatment plant, to shed light on the transformation of iron 

compounds in the treatment plant. 

4.3 Materials and methods 

4.3.1 Process configuration of Oxley Creek WWTP 

The Oxley Creek WWTP is located in Brisbane (South East Queensland, Australia) and has a 

capacity of about 250,000 Population Equivalent (PE). Nitrogen removal is achieved through 

the traditional nitrification/denitrification process using a Bardenpho (capacity 12 ML/day, i.e. 

18% of the total hydraulic load) and carrousel (capacity 55 ML/day, i.e. 82% of the total 
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hydraulic load) configuration under dry weather flow conditions (see Figure 4.1a). Phosphate 

is removed by means of a combination of biological phosphate removal assisted with alum 

dosing, as described in more detail in section 4.3.2. The final effluent is disinfected by means 

of hypochlorite prior to final discharge onto surface water. The excess waste activated sludge 

(WAS) is thickened using a belt-filter press and mixed with the thickened sludge received from 

other WWTPs operated by Queensland Urban Utilities (QUU), reaching to a ratio of ~0.8:1 

(i.e. 120 wet tons WAS/day versus 150 tons imported wet sludge/day). The sludge is subjected 

to thermal hydrolysis treatment (CambiTM: 5 bar at 155 oC, for 30 minutes) prior to the 

anaerobic digestion step (SRT: 22-25 days). The digested sludge is dewatered by means of 

centrifugation and the centrate is recirculated back to the influent. A simplified diagram of the 

Oxley Creek WWTP is shown in Fig. 4.1a.   

4.3.2 Coagulant dosing at Oxley Creek WWTP 

Both aluminium sulfate (alum) and ferric chloride are dosed at several locations within the 

Oxley Creek WWTP (Fig. 4.1a). Alum, dosed for P removal, is added to activated sludge prior 

to entering the secondary clarifiers. Ferric chloride is dosed prior to the centrifugation as a 

dewaterability aid as well as to the centrate for odour control. The dosing rates of these 

chemicals are summarised in Table 4.1.   
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Figure 4.1 (a) The simplified process flow diagram of Oxley Creek WWTP and (b) The 

Oxley Creek catchment, showing the upstream sewer network and iron dosing locations. 

Table 4.1 Chemical dosing in the Oxley Creek sewer network and WWTP. 

Field trial 

periods 

(duration) 

Dosing in sewers Dosing in WWTP Total coagulants usage 

Location A 

kg-Fe/d 

Location B 

kg-Fe/d 

Centrifuge 

kg-Fe/d 

Centrate 

kg-Fe/d 

Bioreactors 

kg-Al/d 

Total Fe 

kg-Fe/d 

Total Al 

kg-Al/d 

Baseline 

(01/07/2016- 

24/10/2016) 

0 0 15 295 192 310 192 

Experimental 

(25/10/2016- 

09/03/2017) 

109 51 15 295 0 470 0 

Post-

experimental 

(23/05/2017- 

28/07/2017) 

0 23 15 295 0 333 0 

 

4.3.3 Experimental procedures 

To assess the potential multiple reuse of iron dosed in upstream sewer network, the experiments 

were divided into three periods, namely (i) baseline (i.e. no ferrous chloride dosing in upstream 

sewer network), (ii) experimental (i.e. ferrous chloride dosing in upstream sewer network at 
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160 kg Fe/day, and simultaneously, alum dosing at the treatment plant was stopped), and (iii) 

post-experimental (i.e. ferrous chloride dosing in upstream sewer network was reduced to 23 

kg Fe/day; not stopped because of odour control need). Ferrous chloride (13% w/w as Fe) was 

dosed at two different locations in the upstream sewer network, referred as location A and B 

from here onwards (Fig. 4.1b). These two locations were chosen in response to odour 

complaints from the local communities. The ferrous chloride dosing rate was 109 and 51 kg 

FeCl2-Fe/day for location A and B, respectively, giving an average Fe2+ concentration of ~31 

and ~82 mg Fe/L at the two locations. The hydraulic flows in these two sections are only 3.5 

ML/day (location A) and 0.62 ML/day (location B), representing 7.2% of the total sewage flow 

to the Oxley Creek WWTP (57 ML/day). Hence, the average Fe concentration in the sewage 

entering the plant is calculated to be 2.8 mg Fe/L. 

4.3.4 Monitoring and sampling  

4.3.4.1 Monitoring in upstream sewer network 

The impact of iron dosing on the gas phase hydrogen sulfide concentration was evaluated 

through online monitoring (during both baseline and experimental periods) in the sewer 

headspace of the manholes in both location A and B using a hydrogen sulfide gas sensor (App-

Tek Odalog® Logger L2). The hydrogen sulfide levels were recorded at a 1-minute interval 

over a period of 7 and 13 days for baseline and experimental periods in both locations, 

respectively. The pH during experimental period at these locations were also measured by grab 

sampling (n=5 for location A and n=12 for location B). 

4.3.4.2 Sampling campaigns at Oxley Creek WWTP 

Extensive short-term sampling campaigns were conducted during the baseline and the 

experimental period. Each campaign lasted for three-consecutive days under dry weather flow 

conditions. Samples were taken at 8 locations (see Fig. 4.1a). 24-hour flow-proportional 

composite samples were taken from influent and effluent by using auto-sampler. Sampling 

containers inside the auto-sampler were kept in ice buckets at all times. On each sampling day, 

three grab samples were taken between 9 am and 5 pm from bioreactors, thickened sludge, 

CambiTM, and anaerobic digesters. One additional sample point after the sludge centrifugation 

step (referred to as centrate before iron dosing, location S8 in Table A3 and Fig. A9) was added 

to the sampling campaign in the experimental period. Samples were collected with no 

headspace remaining in the containers and sealed with caps immediately afterwards. Samples 
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were immediately put into ice boxes in the field and transported back to the laboratory for 

analysis of P (total and soluble as well as PO4-P), nitrogen (ammonium and TKN), Fe and Al 

(total and soluble), TS/VS and TSS/VSS. In addition, XRD analyses were conducted on 

thickened waste activated sludge, CambiTM sludge and anaerobically digested sludge to 

distinguish between amorphous and crystalline phases of iron compounds in sludges. A 

complete overview of the analyses of the monitoring campaigns can be found in Table A2 and 

A3.    

4.3.4.3 Long-term monitoring at the Oxley Creek WWTP 

The influent and effluent nitrogen (ammonium and total Kjeldahl nitrogen-TKN) and 

phosphate (total P and phosphate-P) concentrations were measured by means of routine off-

line measurements by the operators of the Oxley Creek WWTP. The gaseous hydrogen sulfide 

concentration (ppm H2S) in the biogas as well as total biogas production (m3 biogas/day) was 

monitored using an online gas sensor (SWG 200-1 biogas measuring system).  

4.3.5 Mass balance analysis 

In addition to the long-term monitoring data, the impact of replacing alum dosing to the 

bioreactor (~190 kg Al/day) with FeCl2 dosing in the upstream network (~160 kg Fe/day) on 

the effluent P concentrations, hydrogen sulfide levels and overall biogas production during 

anaerobic digestion was evaluated through a plant-wide mass balance analysis based on the 

results from the comprehensive sampling campaigns. The plant-wide mass balance included 

the total and soluble aluminium, iron, phosphate, sulfur and nitrogen as well as the TS/VS and 

TSS/VSS mass flows (and concentrations) within the different process units of the Oxley Creek 

WWTP during both the baseline and experimental periods. We assumed that steady-state 

conditions in the activated sludge tanks and digesters to be obtained in each period after ≥3 

sludge retention times (SRTs). Hydraulic data of the flows within the WWTP was collected 

from the SCADA system of Queensland Urban Utilities (QUU). The mass balance calculations 

for baseline and experimental periods can be found in Fig. A8 and A9.  

4.3.6 Characterization of iron speciation using semi-quantitative X-ray diffraction 

analyses 

After collection, the sludge samples were immediately freeze-dried under vacuum conditions 

(-50 oC, 0.1 millibar) and subsequently grinded to powder form under anaerobic conditions in 

an enclosed cabinet sparged with N2. X-ray diffractograms were recorded with a D8 Bruker 
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diffractometer using a Cu Kα1 radiation at λ=1.55 Å. The diffractometer was equipped with a 

(θ, 2θ) goniometer and a position sensitive detector. Reflections were collected under ambient 

conditions within the [5–80o] 2θ range, with a step width of 0.02 and 1.2 seconds/step of 

collecting time. The resultant peaks at 2θ were obtained using Diffrac.Eva V-4 software and 

the peaks were identified by using the ICDD (The International Centre for Diffraction Data) 

PDF-4+ 2019 database. Semi-quantitative XRD analyses were conducted to identify the 

amorphous and crystalline phases by adding a known amount of α-phase corundum (α-Al2O3). 

The percent of amorphous and crystalline phases along with the mineral share within the 

crystalline phase were obtained using TOPAS V-4.2 software. All XRD and semi-quantitative 

XRD analyses were conducted in triplicate. 

4.3.7 Analytical methods 

Total and soluble Al, Fe, P, and S concentrations were analysed by means of Inductively 

Coupled Plasma Optical Emission Spectroscopy (ICP-OES) (Perkin Elmer Optima 7300 DV, 

Waltham, MA, USA). To measure the soluble concentrations, samples were immediately pre-

filtered using 0.22µm membrane filters (Millipore, Millex GP). Phosphate (PO4-P), ammonium 

(NH4-N), and total Kjeldahl nitrogen (TKN) were analysed using a Lachat Quickchem 8000 

(Lachat Instrument, Milwaukee, Wisconsin) flow injection analyser (FIA). Total and volatile 

solids (TS, VS) as well as their suspended solids fraction (TSS, VSS) were analysed according 

to standard methods [27]. 

4.4 Results  

4.4.1 Effect of FeCl2 dosing on sulfide control in the sewer network 

Figure 4.2 shows the 90th percentile of gaseous daily peak hydrogen sulfide concentrations 

during both the baseline and experimental periods measured in location A and B, respectively 

(see Fig. A1 and A2 for the complete datasets). It can be seen that there was a substantial 

difference in sulfide control efficiency between the two locations. At location A, with a ferrous 

chloride dosing of ~31 mg Fe/L, the peak H2S concentration decreased from 1041 to 557 ppm 

H2S (i.e. ~46% reduction). At location B, with a ferrous chloride dosing of ~82 mg Fe/L, the 

peak sulfide concentrations decreased from 80 to 6 ppm H2S (i.e. ~93% reduction). The lower 

sulfide control in location A can be attributed to the relatively low sewage pH levels (i.e. 

average pH 6.28±0.25 with levels at times as low as 6.0). It is well known that the iron sulfide 

precipitation reaction is highly pH dependent with significant lower removal efficiencies at 
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lower pH values. In contrast, the average pH at location B was one unit higher at 7.32±0.27. 

To illustrate this, a decrease in pH from 7 to 6.5 was found to result in an increase in iron dosing 

requirements of 200% in order to achieve the same effluent dissolved sulfide concentrations 

[28]. The low pH values were most likely caused by industrial trade waste entering the sewer 

in that sewer section, although the detailed source was yet to be determined. 

 

Figure 4.2 90th percentile of peak hydrogen sulfide levels at location A and B of the 

upstream sewer network during the baseline and experimental period.  

4.4.2 Phosphorus removal at the WWTP 

Figure 4.3 shows the long-term average phosphate removal in the activated sludge tanks of the 

downstream WWTP. The long-term average phosphate removal was found to be 9.44±0.53, 

9.61±0.32, and 6.43±0.33 mg PO4-P/L for the baseline, experimental and post-experimental 

period, respectively. These latter resulted in effluent phosphate concentrations for these periods 

of 0.71±0.19, 0.89±0.23, and 2.13±0.44 mg PO4-P/L, respectively. Hence, the phosphate 

removal was not negatively affected by replacing the Al3+ dosing at the WWTP with in-sewer 

Fe2+ dosing. This was further supported by the data from 24-hr flow-proportional composite 

samples obtained during the sampling campaigns with effluent phosphate concentrations of 

0.43±0.11 and 0.28±0.06 mg PO4-P/L for the baseline and experimental period, respectively. 

The three-day average concentrations of aluminium, iron and phosphorus at all sampling 

locations during baseline and experimental period are presented in Table A2 and A3, 

respectively. The long-term monitoring data revealed that reducing the in-sewer Fe dosing to 

14% in absence of alum dosing at the WWTP during the post-experimental period resulted in 

a significant decrease (p < 0.05) in average phosphate removal from 9.61±0.32 to 6.43±0.33 
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mg PO4-P/L (Fig. 4.3 and A3b). These observations strongly suggest the role of in-sewer dosed 

Fe2+ in downstream phosphate removal.  

 Importantly, besides the above described beneficial impact on phosphate removal in 

the activated sludge tanks and the hydrogen sulfide control in the biogas (see section 4.4.3), 

replacing alum dosing with in-sewer ferrous chloride dosing in the upstream sewer network 

did not negatively affect overall performance of the WWTP. Importantly, the biological 

nitrogen removal process was not affected with very high nitrogen removal efficiencies of 

>99% during both the baseline and experimental period (Fig A6 and A7). The latter resulted in 

very low nitrogen effluent concentrations in both periods (i.e. <0.5 mg NH4-N/L and <3 mg 

TKN/L, Table A2 and A3). Moreover, dosing Fe2+ in the sewer network did not affect the 

soluble iron concentrations in the effluent of the WWTP (i.e. below detection limit, see Table 

A3). The latter was found to be important for QUU as increased levels of soluble Fe have been 

associated with increased formation of disinfection by-products and increased dosing 

requirements [29].  

 

Figure 4.3 Average phosphate removal and average effluent phosphate concentrations at 

the WWTP during the baseline, experimental and post-experimental periods. Data 

presented are means ± standard error of means. 

4.4.3 Sulfide control and biogas production in anaerobic digester 

Figure 4.4 shows that the average H2S concentrations in the biogas decreased from 495±10 

ppm H2S during the baseline period to 283±4 ppm H2S during the experimental period, a 
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significant (p <0.05) decrease of ~43%. The mass balance analysis showed that the total iron 

that ultimately ended in the anaerobic digester increased from 341±4 kg Fe/day to 449±2 kg 

Fe/day (Fig. A8 and A9), an increase of ~24%. The resulting Fe concentrations in the anaerobic 

digester were 15.7±0.2 g Fe/kg TS to 22.2±0.1 g Fe/kg TS (Table A2 and A3).  The mass 

balance analysis also revealed that the total S concentrations in the digesters were 11.8±0.1 g 

S/kg TS and 11.08±0.05 g S/kg TS during the baseline and experimental period, respectively 

(Table A2 and A3). As the total S concentrations comprise a variety of sulfur species (i.e. 

sulfate, thiosulfate, sulfite, elemental sulfur and sulfide), it was not possible to determine the 

hydrogen sulfide production rate during both periods. However, despite that the total S 

concentrations were similar in both period, the hydrogen sulfide levels during experimental 

period were significantly lower (Fig. 4.4 and A4), providing strong evidence of the 

effectiveness of in-sewer iron dosing on sulfide control in the anaerobic digester. Indeed, 

during the post-experimental period, the H2S concentration in the biogas increased to values 

close to that of the baseline period, i.e. 451±6 ppm H2S.  It should be noted that  the Oxley 

Creek WWTP imports sludge from a number of smaller WWTPs that do not implement iron 

dosing (i.e. 120 wet tons WAS/day versus 150 tons imported wet sludge/day), thereby 

substantially diluting the beneficial impact of upstream iron dosing by 55.6%.  

Importantly, besides the beneficial impact on the hydrogen sulfide levels in the biogas, 

replacing alum dosing at the WWTP with ferrous chloride in the upstream sewer did not 

negatively affect (p > 0.05) the performance of the anaerobic digester with average biogas 

production rates of 2,768±25 and 2,786±33 m3 biogas/day during the baseline and the 

experimental period, respectively (Fig. 4.4 and A5). A slightly lower average biogas production 

was observed during the post-experimental phase with a biogas production rate of 2,683±44 

m3/day, a decrease of ~4%. This slight decrease was not significant (p > 0.05) and should not 

be related to in-sewer iron dosing (at 23 kg/day only), and was likely caused by other factors. 
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Figure 4.4 Average H2S concentrations in the biogas and daily biogas production during 

baseline, experimental and post-experimental periods. Data presented are means ± 

standard error of means. 

4.4.4 Determining iron speciation at the WWTP 

Figure 4.5 (a-c) shows the X-ray diffraction patterns of thickened waste activated sludge before 

and after thermal hydrolysis treatment and anaerobically digested sludge. Figure 4.5a shows 

the presence of vivianite in the thickened sludge from the activated sludge tank. This finding 

is in agreement with recent studies that also found vivianite is present in activated sludge prior 

to anaerobic digestion [19], with iron salts added to the treatment plant directly rather than in 

sewers. However, vivianite was not found in sludge after thermal hydrolysis (Fig. 4.5b) and 

the digested sludge (Fig. 4.5c). Since vivianite is a crystalline mineral, its presence in the sludge 

would be seen in the X-ray diffraction patterns. It is possible that vivianite was oxidized during 

the thermal hydrolysis process and transformed to amorphous ferric hydroxide phosphate 

(Fe(III)3[PO4]2(OH)3×5H2O) [30]. The fact that no vivianite was found after anaerobic 

digestion, contrarily to various previous studies [19, 21], suggests that the thermal hydrolysis 

(CambiTM) hindered vivianite formation during anaerobic digestion. This was further supported 

by the semi-quantitative XRD analyses which showed that the overall crystalline content of the 

inorganic fraction of the sludge was substantially reduced (i.e. from 100% to 26%) after the 

thermal hydrolysis step (Table A1; Figure 4.5d). After anaerobic digestion the crystallinity of 

the inorganic fraction of the sludge increased to 62%. Hematite (Fe2O3) was the only observed 

crystalline Fe species comprising about 4.3% of the total crystalline content (Table A1). 

Considering the above and a total Fe concentration in the digested sludge of 22.2 ± 0.1 g/kg 

TS (Table A3), it can be calculated that ~45% of the total Fe was present in the form of 

crystalline hematite. The remaining Fe must have been present in amorphous form. 
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Figure 4.5 X-ray diffraction patterns of sludge samples showing the mineralogical 

composition of (a) thickened waste activated sludge, (b) CambiTM sludge, (c) 

anaerobically digested sludge; and (d) Degree of crystallinity of inorganic fraction of 

Oxley Creek WWTP sludges. Digested sludge from Leeuwarden WWTP [21] is presented 

to show the impact of thermal hydrolysis on the crystallinity of the inorganic fraction of 

the sludge. 

4.5 Discussion 

We previously demonstrated the potential of multiple reuse of iron dosed as ferric chloride 

(Fe3+) in sewer networks as a sulfide control method for downstream phosphate removal and 

sulfide control during anaerobic digestion using continuous laboratory-scale urban wastewater 

systems under controlled conditions [26]. However, the applicability of these results obtained 

under controlled laboratory conditions (i.e. constant temperature, flow and HRT) to real-life 

systems remains far from being certain. Real-life wastewater systems (sewer networks and 

treatment plants) are far more complicated. In addition, the wastewater flow rate and 

composition are highly dynamic. Here, we evaluated the feasibility through full-scale field 

trials under real-life conditions using the Oxley Creek catchment and WWTP as a case study. 

The results obtained in this study confirmed our previous laboratory findings and demonstrated 
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that dosing of iron salts (i.e. ferrous chloride in this case) in sewer networks to combat hydrogen 

sulfide induced sewer corrosion and odour complaints can have multiple flow-on benefits, also 

for large, complex and highly dynamic real-life full-scale sewer networks connected to large 

downstream wastewater treatment plants.  

During the experimental period, the overall coagulant dosing reduced by ~6% (i.e. from 

502 kg to 470 kg per day) by replacing alum dosing at the WWTP (192 kg Al/day) with iron 

salts dosing (160 kg Fe/day) at two locations in the sewer network. Despite this slight decrease 

in overall chemical consumption and substantial reduction in chemical dosing at the WWTP 

from (502 kg/day to 310 kg/day, i.e. a reduction of ~39%) due to the fact that the alum dosing 

was completely ceased at the WWTP, the phosphate removal was not affected at all. Equally 

important, a significant increase in sulfide control (~43%) in the anaerobic digestion step 

during experimental period was achieved while maintaining similar biogas production. The 

decrease in hydrogen sulfide levels in the biogas was found to be extremely important for the 

water utility as the maximum allowable hydrogen sulfide concentration for cogeneration 

engines (often referred to as Combined Heat Power (CHP) units) operated at the WWTP to 

avoid issues with corrosion is restricted to maximum levels of 300 ppm H2S. Moreover, the 

presence of elevated levels of hydrogen sulfide in sewers and biogas comes with serious OH&S 

concerns for operators as hydrogen sulfide is a highly toxic, odorous and highly corrosive 

compound. It should be emphasized that at the Oxley Creek WWTP, 150 wet tons of dewatered 

sludge is daily imported from several other WWTPs operated by QUU. None of these WWTPs 

dosed iron coagulants in their treatment process. As the excess WAS production at the WWTP 

is only 120 wet tons per day, the iron concentration in the WAS is diluted by a factor of 2.25. 

It can thus be expected that (much) higher sulfide control efficiencies during the anaerobic 

digestion stage can be achieved in cases where the sludge is not mixed with imported dewatered 

sludge.  

In total, 470 kg Fe/day was added to the Oxley Creek Sewage Collection and Treatment 

System. The majority of the iron is dosed to the centrate stream (295 kg Fe3+/day) prior to being 

mixed back with the influent (Fig. 4.1a). The latter was implemented previously in order to 

reduce issues with struvite formation in the digester and to mitigate odour problems in the 

centrate buffer tank. Overall, only 34% (i.e. 160 kg out of 470kg Fe/day) of the chemicals 

dosed at the downstream WWTP was re-located at two locations upstream in the sewer network 

that were subjected to the most serious odour complaints by the surrounding community. The 

iron dosing at these two places within the sewer network only comprised ~7% of the total 
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hydraulic flow of the sewage entering the Oxley Creek WWTP, only resulting in a slight 

increase in Fe concentration at the WWTP of 2.8 mg Fe/L. In practice, the occurrence of 

hydrogen sulfide induced sewer corrosion often becomes apparent through odour complaints 

rather than internal assessment of the underground sewer pipe. In most sewer networks, the 

places at which sewer corrosion and issues with odour occur are plentiful. Hence, the amount 

of iron salts required could be much higher than the amount dosed in this study. In this case, 

both P removal from wastewater and H2S reduction in biogas are expected to be further 

enhanced. In this sense, more iron salt dosed at the treatment plant should be moved upstream 

to sewers, to further increase the overall sulfide control efficiency within the sewer network, 

thereby enhancing the protection of our critical sewer assets as well as increasing the 

community liveability. However, further research is needed to assess whether increased 

relocation of iron lasts to upstream sewers would negatively affect odour control in the 

dewatering process, which was not covered in this study.  

It is noted that the two dosing locations used in this study both sit at upstream reaches 

of the network, far from the treatment plant. The impact of these distances on the P removal 

and biogas H2S control is not assessed in this study, and requires further investigation. 

However, the choice of dosing locations should mainly be governed by sewer conditions. 

Network-wide simulations using advanced dynamic sewer models such as the Sewex Model 

[31, 32] are desirable for identifying ‘hotspots’ with high hydrogen sulfide concentrations and 

provide a robust assessment of the potential savings that can be achieved in terms of sewer 

asset management and community liveability. 

 In addition to hydrogen sulfide, sewer networks are also an important source of 

methane (a potent greenhouse gas with a GHG potential of 21-23 times that of CO2) emissions 

that can significantly contribute to the overall carbon footprint of wastewater utilities [33-35]. 

In fact, it has been estimated that methane emissions in sewers comprise as high as 20% of the 

combined GHG emissions in WWTPs. While beyond the scope of this study, previous 

laboratory scale studies revealed that iron dosing can inhibit the methanogenic activity of the 

sewer biofilms by about 50-80% [10, 36] and could thus provide another benefit that warrants 

further exploration. 

The Oxley Creek WWTP achieves nitrogen removal through the traditional 

nitrification/denitrification process. As the effluent nitrogen discharge limits are stringent (i.e. 

total N < 5 mg/L), there is no primary settling as all influent COD is needed for denitrification. 



Chapter 4 

55 
 

However, many WWTPs around the world have a primary settling step in place. Further 

research is needed to assess what fraction of the in-sewer dosed iron would be removed during 

primary settling (and which fraction will pass through the activated sludge tanks for P removal). 

The Fe that ends up in the primary sludge would not assist in P removal, albeit it would still 

have a beneficial impact on the sulfide control in anaerobic digestion.  

Recently, it was found that when iron salts are dosed at WWTPs for phosphate removal 

and subsequently subjected to anaerobic digestion, vivianite (Fe(II)3[PO4]2×8H2O) becomes 

the predominant Fe-P precipitation product  [19, 21]. The latter can be as high as 90% of all 

the phosphate present in digested sewage sludge with high iron content [19]. This is an 

important finding due to the paramagnetic properties of vivianite, which allows for selective 

recovery of vivianite from the digested sludge through magnetic separation [37, 38].  Our study 

clearly showed that thermal hydrolysis as a pre-treatment step for anaerobic digestion 

eliminated vivianite in the activated sludge, with no further formation of vivianite during 

anaerobic digestion. While further research is needed to fundamentally understand the 

mechanisms behind these observations, it is evident that the implementation of thermal 

hydrolysis as a pre-treatment step for anaerobic digestion would likely limit the selective 

recovery of iron and phosphate in the form of vivianite through magnetic separation. 

The above described opportunities and research needs for further optimization and 

additional benefits needs to be assessed through long-term full-scale trials coupled with life 

cycle assessment (LCAs). The overall economic benefits that can be achieved are expected to 

differ depending on the local conditions such as the type and size of sewer network, 

configuration of the downstream WWTP, effluent nutrients discharge standards, and the price 

and availability of alum- and iron-based coagulants, and would require careful consideration 

on a case-by-case basis. However, the costs associated with chemical change-over costs and 

location of dosing are expected to be much lower than the potential up-stream and downstream 

savings that can be achieved for e.g. expenditure for odour control and rehabilitation of sewer 

assets alone [6]. All of the above are required in order to quantify the potential savings that 

could be achieved from an economic, environmental and liveability perspective. 

4.6 Conclusions 

In this study, we investigated the feasibility of multiple reuse of iron salts dosed as a sulfide 

control method in a large full-scale sewer network for removal of phosphate and sulfide control 
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during anaerobic digestion in the downstream Oxley Creek wastewater treatment plant (South 

East Queensland, Australia) through full-scale field studies. The key findings of the work are: 

 FeCl2 dosing for sewer corrosion control in the upstream sewer network was beneficially 

reused for P removal in the activated sludge tanks and subsequently for control of 

hydrogen sulfide during anaerobic digestion process at the downstream WWTP, and  

does not negatively affect the overall treatment performance in terms of nitrogen 

removal, biogas production and disinfection process. 

 In-WWTP dosing of alum could be replaced with in-sewer dosing of iron salts, with 

significant economic and environmental benefits.  

 The thermal hydrolysis process prior to anaerobic digestion eliminated vivianite in the 

activated sludge, with no further formation of vivianite during anaerobic digestion. 

 Overall, the findings in this study show the urgent need for integrated water management 

and can be seen as a first step for water utilities towards more efficient coagulants usage 

through development of an integrated network-wide coagulant dosing management 

approach.  
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5.1 Abstract 

Recent studies demonstrated the practical potential of multiple beneficial reuse of ferric-rich 

drinking water sludge (ferric DWS) for sulfide and phosphate removal in wastewater 

applications. In practice, ferric DWS is often stored on-site for periods ranging from days to 

several weeks (or even months), which may affect its reuse potential through changes in iron 

speciation and morphology. In this study, we investigated for the first time the impact of ferric 

DWS ‘aging’ time on the iron speciation and morphology and its subsequent impact on its 

reactivity and overall sulfide and phosphate removal capacity. A series of coagulation tests 

were conducted to generate ferric DWS of a practically relevant composition by using raw 

influent water from a full-scale drinking water treatment plant. A comparison with ferric DWS 

from 8 full-scale WTPs confirmed the similitude. Akaganeite (β-FeOOH) was found to be the 

main iron oxide species in ferric DWS, independent of the DWS storage time. However, 

akaganeite crystallinity changed over time from a predominant amorphous ‘fresh’ DWS to a 

highly crystalline DWS after 30 days of storage. Subsequent adsorption tests showed that its 

sulfide removal capacity decreased significantly from 1.30 ± 0.02 mmol S/mmol Fe (day 1) to 

0.60 ± 0.01 (day 30), a decrease of 54 % (p < 0.05). The level of crystallinity however had no 

impact on sulfide removal kinetics, most sulfide being removed within 10 minutes. Upon 

aeration of sulfide-loaded ferric DWS in activate sludge, amorphous iron oxides species were 

formed independent of the initial DWS crystallinity. Importantly, the latter did result in 

efficient P removal at capacities similar to that of conventional FeCl3 dosing.  

5.2 Introduction 

The majority of drinking water treatment plants (DWTPs) rely on coagulation and flocculation 

for the removal of turbidity, colour, natural organic matter (NOM) and pathogens from raw 

water [1-3]. Amongst the various coagulants used at DWTPs, the most commonly used are 

aluminium sulfate (often refered to as alum) and ferric salts (i.e. either in the form of ferric 

sulfate or ferric chloride) [4]. An unavoidable by-product of coagulation-flocculation is the 

generation of large amounts of drinking water sludge (DWS) rich in aluminium or iron, 

depending on the type of coagulant used [5]. As examples showing the enormous amounts 

produced, DWS generated in the United Kingdom and The Netherlands exceeds 130,000 and 

29,700 wet tonnes, respectively per year [6, 7]. 

Management of DWS incurs large costs and often comprises a substantial fraction of the 

operational expenditure of DWTPs, with landfilling often used as ultimate disposal route [8, 
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9]. Therefore, significant research efforts have been made focussing on coagulant recovery, 

purification and direct reuse within the drinking water treatment process. The benefits of such 

an approach are twofold as it results in a reduced chemical demand in terms of ‘fresh’ coagulant 

as well as in a reduced DWS production [8, 10]. While the practical feasibility of various 

approaches  including Donnan dialysis [11], liquid ion exchange [12] and ion exchange with 

cation resin [13] has been successfully demonstrated, the relatively low coagulant prices make 

selective recovery and purification approaches economically challenging [14]. Moreover, 

direct reuse within the drinking water treatment process comes with certain technical 

challenges as the purification process needs to adhere to stringent regulatory requirements in 

terms of product quality in order to safeguard human health [8].   

Considering the above described limitations of direct reuse within the drinking water 

treatment process, there is a general interest in low-cost and low risk coagulant recovery 

approaches. In this context, the reuse of ferric based DWS in a sewer context is of special 

interest. Iron salts are the most commonly used chemicals to combat hydrogen sulfide induced 

sewer corrosion, a notorious and costly problem for utilities globally [4]. Considering the high 

iron content of ferric based DWS, it has the potential to be reused in sewers for sulfide control. 

Indeed, the effective reuse of ferric based DWS for efficient sulfide control in laboratory scale 

rising main sewer reactors was demonstrated previously [15]. Importantly, in a very recent 

study, the feasibility of the multiple reuse of iron-rich DWS for sulfide control in sewers, 

followed by phosphate removal in wastewater treatment and sulfide control during anaerobic 

digestion at the downstream wastewater treatment plant (WWTP) was demonstrated through 

long-term continuous experiments using a laboratory scale reactor system mimicking the urban 

wastewater system [16]. It was found that DWS achieved similar treatment performance 

compared with FeCl3 dosing in sewers in terms of sulfide control and phosphate removal [16].  

While the above described studies clearly highlight the potential of beneficial reuse of ferric 

DWS in sewers and downstream WWTPs, the detailed characterization and potential 

transformation of iron species prior to reuse was not investigated in detail. Such information is 

essential as iron chemistry is complex with potential changes in iron speciation and 

morphology that may occur over time during storage from amorphous (i.e. more reactive 

species such as ferrihydrite and akaganeite) to more crystalline (i.e. less reactive species such 

as goethite and hematite) [17]. As in a practical situation DWS is often stored on-site from days 

up to several weeks, such transformation may thus occur, with a potentially negative impact on 

the reuse ability of DWS. Therefore, this study aimed to determine the impact of the storage 
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time on the physicochemical changes of ferric DWS, and subsequently its reactivity and 

capacity in sulfide removal in sewers and in phosphorus removal in the downstream wastewater 

treatment plant. For this purpose, a series of laboratory scale jar tests were conducted to 

generate DWS using real influent from a local water treatment plant (Capalaba WTP, South-

East Queensland). Importantly, to confirm that the produced ferric DWS was of a similar 

composition with that obtained in real-life applications, we conducted an industry survey of 

ferric DWS originating from 8 full-scale DWTPs (with ferric chloride as coagulant in their 

treatment process). We also conducted coagulation experiments using both alum and ferric 

chloride to confirm that changing from alum to ferric chloride would not affect the drinking 

water quality.  

The produced Fe-DWS was characterized with XRD (combined semi-quantitative) and 

SEM-EDS analyses in order to investigate and quantify any changes in iron speciation and 

morphology in the DWS at increasing sludge aging times over a period of 30 days. The impact 

on sulfide removal in sewers and phosphate removal in activated sludge tanks was assessed 

through comprehensive batch sorption experiments using the produced ferric DWS at different 

sludge aging times.  

5.3 Materials and methods 

5.3.1 Coagulation experiments for the production of ferric DWS 

Coagulation experiments were conducted to produce ‘fresh’ ferric DWS. In order to produce 

Fe-DWS with a composition similar to that obtained in a practical situation, surface water 

originating from a dam used as raw influent for a main water treatment plant in South-East 

Queensland, Australia was used in all coagulation experiments. Moreover, ferric chloride 

(FeCl3·6H2O) was added at a typical dosing rate commonly applied for coagulation of surface 

water. Finally, an industry survey was conducted to confirm that the Fe-DWS produced in this 

study is similar to that of Fe-DWS from full-scale plants (see Table 5.1). 

All coagulation experiments were conducted by means of jar tests using a flocculator 

(Velp Scientific, USA). The jar tests were conducted at ambient temperatures (22.2±1 oC) 

following a standard coagulation protocol. Prior to the jar tests, simple titration experiments 

were performed to evaluate the volume of NaOH (as 1% solution) needed to adjust the pH to 

the desired values of 5.9±0.1 (for alum) and 5.5±0.3 (for FeCl3) at the dosing rates applied 

(data not shown). Subsequent jar tests were conducted using 6 beakers filled with 1.5 L 

untreated surface water to which the amount of NaOH determined by the titration experiments 
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was added, while the solution was mixed at a speed of 120 rpm using the height adjustable 

overhead stirrers attached to the flocculator. Immediately afterwards, the coagulant was added 

with rapid mixing continued for 60 seconds. The initial rapid mixing to promote coagulation 

was followed by a period of slow mixing at 20 rpm for a duration of 20 minutes. Finally, the 

solutions were allowed to settle for 30 minutes. 

The first set of experiments was conducted to confirm that a change from alum to ferric 

chloride would not affect the treatment performance of the coagulation process (n=3). To do 

so, alum was dosed at a concentration of 8.62 mg Al3+/L (equivalent to 0.32 mmol/L or 95 

mg/L as Al2(SO4)3·14H2O), similar to the dosing rate applied at the full-scale WTP. Ferric 

chloride was dosed at a rate of 17.87 mg Fe3+/L (equivalent to 0.32 mmol/L or 86 mg/L as 

FeCl3·6H2O) to obtain equal molar dosing rates for Al3+ and Fe3+. Samples were taken for 

analyses of dissolved organic carbon (DOC), UV254, specific UV absorbance (SUVA), natural 

organic matter (NOM), total and soluble Fe, Al and P concentrations before and after jar testing 

in order to assess the treatment performance of the coagulation process. The obtained water 

quality parameters are presented in Table A4. 

 The second set of experiments was conducted to generate sufficient Fe-DWS for the 

detailed characterization and aging studies followed by sulfide and phosphate removal 

experiments. At the end of each coagulation experiment, the produced ferric DWS was 

collected in 50 mL centrifuge tubes and immediately centrifuged at 3750 × g for 20 minutes 

to produce thickened sludge with a dry solids content of 65±2.7 g/L. Subsequently, the 

headspace of the tubes containing the thickened ferric DWS was sparged with N2 and 

immediately closed with a lid to ensure anaerobic conditions and stored at ambient 

temperatures (i.e. 22±1 oC) over a period of 30 days. 

Table 5.1 Comparison of produced ferric DWS characteristics with real-life ferric DWS 

from full-scale WTP (n=8, obtained from industry survey). Data presented are mean ± 

standard deviation. 

Parameters 
Ferric DWS composition 

obtained in this study (n=3) 

Ferric DWS composition from 

full-scale drinking water 

treatment plants (n=8) 

Fe (mg/g TS) 392±4 311±38  

Total COD (mg COD/g TS) 139±0.5 140±2.5  

Al (mg/g TS) 2±0.02 2±0.6 
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P (mg/g TS) 0.6±0.01 1.5±0.2 

S (mg/g TS) 3±0.04 No data 

Mn (mg/g TS) 1±0.2 1.5±0.4 

Pb (mg/g TS) 0.2±0.01 0.2±0.1 

Cu (mg/g TS) 0.4±0.01 0.3±0.1 

Zn (mg/g TS) 0.06±0 0.1±0.06 

Ni (mg/g TS) 0.07±0 0.03±0.02 

 

5.3.2 Sludge characterization 

Samples were taken at different sludge aging times from the Fe-DWS storage container and 

stored at -18 oC followed by subsequent freeze-drying (-50 oC, 0.1 millibar). The freeze-dried 

samples were ground to thin powder under anaerobic conditions and subsequently 

characterized through X-ray Diffraction (XRD) (qualitative and semi-quantitative) and 

Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDS) analyses.  

XRD analyses was conducted using a D8 Bruker diffractometer equipped with a (θ, 2θ) 

goniometer and a position sensitive detector (Cu Kα1 radiation at λ=1.55 Å). Reflections were 

collected within the [5–80o] 2θ range, with a step width of 0.02 and 1.2 seconds/step of 

collecting time. The resultant 2θ peaks were analysed with the XRD software Diffrac.Eva 

(version 4) and matched with the ICDD PDF-4+ 2019 database.  

Semi-quantitative XRD analyses were conducted to evaluate the degree of crystallinity 

of the Fe-DWS as a function of the sludge aging time as well as to determine the amount of 

different types of iron oxide in the Fe-DWS using TOPAS V-4.2 software. For this purpose, 

corundum (α-Al2O3) was used as an internal standard for all semi-quantitative measurements 

following a procedure described previously [18].  

The morphology and elemental composition of Fe-DWS were characterized by means 

of SEM-EDS analysis. A high-resolution Scanning Electron Microscope (JEOL JSM-6610) 

was used to obtain secondary electron micrographs at an applied accelerating voltage of 15 kV. 

The SEM was equipped with an X-ray detector for elemental analysis (Oxford Instruments/50 

mm2 X-MAX SDD X-ray detector). Samples were placed on stubs attached with high-purity 

conductive double-sided adhesive carbon tapes. The samples were subsequently carbon coated 
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using a Quorum Q150T Turbo-Pumped Sputter Coater as a means to avoid charge build-up 

and to improve secondary electrons signal. 

5.3.3 Adsorption experiments 

Batch adsorption tests were conducted using sewage under anaerobic conditions in gas-tight 

PerspexTM cylindrical reactors with a working volume of 0.5 L. The sewage was collected on 

a weekly basis from a local pumping station wet well (Brisbane, Queensland) and immediately 

stored at 4 oC. Prior to use, the sewage was filtered to remove any solids (Whatman glass 

microfiber filters (GF/A: 1.6 μm), Sigma-Aldrich), sparged with N2 for 30 minutes to ensure 

anaerobic conditions and heated up to ambient temperature at 22.1±1 o C. The sewage contained 

sulfate at concentrations of 8.5±0.8 mg S/L, sulfide at 2.9±0.4 mg S/L, phosphate at 6.1±0.6 

mg PO4-P/L, ammonium at 41.6±5.9 mg NH4-N/L and a total and soluble COD at 397.2±28.3 

and 245.7±10.8 mg COD/L, respectively. Prior to each experiment, sulfide and phosphate were 

spiked to the sewage to reach an initial concentration of ~20 mg/L for both sulfide-S and PO4-

P using standard reagent grade salts (Na2S·9H2O and KH2PO4, from Sigma-Aldrich). The 

produced Fe-DWS was mixed with deoxygenated demineralized water to make a slurry with a 

Fe concentration of ~2.7 g Fe/L. The slurry was added to the reactor to reach Fe concentrations 

ranging between 17.5 mg to 70 mg Fe/L, depending on the experiment conducted. The latter 

concentration equalled to Fe:S molar ratios of 0.5:1 and 2:1, respectively. The pH levels were 

monitored online using a pH sensor probe (pH-110 Digital Industrial pH/ORP Sensor 

Electrode. All experiments were conducted as triplicates and at a constant pH of 7.1±0.1, unless 

specified otherwise. 

The batch adsorption tests were divided into 4 different sets of experiments. The first 

set of experiments was conducted to determine the impact of sludge aging time on sulfide 

removal efficiency. For this purpose, Fe-DWS subjected to different aging times (i.e. 1, 3, 7, 

10, 15 and 30 days) were dosed to sewage at an Fe:S molar ratio of 0.5:1. This Fe:S dosing 

ratio was chosen to ensure sulfide is in excess so that the sulfide removal capacity of the ferric 

DWS can be determined. The second set of experiments was conducted to investigate the 

impact of different pH levels towards sulfide control in sewage, within a range typically 

observed in sewage (i.e. pH 6.5, 7.0 and 7.5). For this purpose, ‘fresh’ Fe-DWS (day 1) was 

dosed to sewage at Fe:S molar ratio of 0.5:1. The third set of experiments was conducted to 

confirm that complete sulfide removal can be achieved by dosing Fe-DWS (day 1) at a Fe:S 
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molar ratio of 2:1. Each of the batch tests described above was conducted over a 1 hour period 

to ensure that stable dissolved sulfide concentrations were reached. 

The fourth set of experiments was conducted to investigate the feasibility of 

regenerating in-sewer dosed Fe-DWS (of different sludge ages, i.e. 1, 15 and 30 days) as a 

sulfide control method aiming to achieve efficient P removal in aerated activated sludge tanks 

of down-stream WWTPs. For this purpose, experiments were carried out in a 150 mL beaker 

where 50 mL of Fe-DWS mixed sewage (sulfide and phosphate spiked sewage similar as above 

with Fe:S ratios of 0.48:1, 0.68:1 and 1:1 for Fe-DWS of 1, 15 and 30 days, respectively) was 

mixed with 50 mL of activated sludge. The activated sludge was collected from a laboratory-

scale Sequence Batch Reactor (SBR) fed with domestic sewage [16] and typically contained 

phosphate at concentrations of 7.34±1.09 mg PO4-P/L and sulfate at 17.90±5.07 mg S/L. 

Immediately after mixing the sludge, air was supplied by means of a gas frit. The experiment 

was conducted over a 2 hour period and in triplicates to ensure that stable phosphate 

concentrations were reached. 

5.3.4 Chemical analyses 

pH and temperature were measured using a handheld meter (SPER Scientific). Turbidity was 

measured using a portable turbidity meter (TN400, Watertest Systems, Australia). UV 

absorbance was measured by a Cary 50 UV spectrometer in a 1 cm quartz cuvette. Prior to 

analysis, samples were pre-filtered with 0.22 μm membrane filters (Millipore, Millex GP). 

SUVA (specific ultraviolet absorbance) was calculated according to [19]. Dissolved organic 

carbon (DOC) was measured using a Shimadzu TOC-L CSH Total Organic Carbon Analyser 

with a TNM-L TN unit. Dissolved sulfur species (i.e. sulfide, sulfate, sulfite and thiosulfate) 

were measured using an Ion Chromatograph (IC) coupled with a UV and conductivity detector 

(Dionex ICS-2000). Samples were immediately filtered after collection (0.22 µm, Millipore, 

Millex GP) and preserved with a sulfide anti-oxidant buffer (SAOB) solution, according to 

(Keller-Lehmann et al., 2006). Total and soluble Al, Fe, P, and S concentrations were analysed 

by means of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) (Perkin 

Elmer Optima 7300 DV, Waltham, MA, USA). Phosphate (PO4-P) concentrations were 

analysed using a Lachat Quickchem 8000 (Lachat Instrument, Milwaukee, Wisconsin) flow 

injection analyser (FIA). Total and soluble COD concentrations were measured by means of 

COD cuvette tests (Merck, range 25-1500 and 500-10000 mg/L). Total solids (TS) and volatile 

solids (VS) were analysed according to standard methods [20]. 
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5.4 Results and discussion 

5.4.1 The impact of aging on the iron speciation and morphology of ferric DWS  

Figure 5.1A shows the X-ray diffraction patterns of the ferric DWS at various aging times. It 

can be seen that akaganeite (β-FeOOH), a ferric oxyhydroxide mineral, was the main iron oxide 

species present in the sludge. In addition to akaganeite, the DWS also contained between 4-

10% of silica (SiO2) in the inorganic fraction, a concentration within the range typically 

observed in drinking water sludge [21].  

While akaganeite was the predominant iron species present independent of the DWS 

aging time, Fig. 5.1A clearly shows the change in the morphology of akaganeite from a more 

amorphous (day 1) to a more crystalline phase (day 30). Subsequent semi-quantitative XRD 

revealed that crystalline akaganeite comprised 7±0.1%, 24±0.4% and 76±3% of the total Fe 

content of the DWS at a sludge age of 1, 14 and 30 days, respectively (Fig. 5.1B). 
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Figure 5.1 (A) X-ray diffraction patterns of ferric DWS showing the gradual increase in 

akaganeite (β-FeOOH) crystallinity with increasing aging times and (B) calculated 

fraction of crystalline akaganeite-bound Fe within the DWS at different sludge age.  

While it was beyond the scope of this study to elucidate the mechanisms causing the 

gradual increase in akaganeite crystallinity over time, interestingly, it has been reported that 

natural organic matter (NOM) plays an important role in inducing akaganeite crystallization 

[22]. Since NOM (i.e. humic and fulvic acid-like substances) was removed during the 

coagulation process and captured within the Fe-DWS matrix (see Fig. A10), the presence of 

NOM may have induced the crystallization process. Further research is warranted to 

fundamentally understand the potential impact of NOM on the aging of Fe-DWS. 

5.4.2 Impact of sludge aging on sulfide removal from sewage 

Figure 5.2A shows the impact of sludge aging time (and thus the level of crystallinity of the 

Fe-DWS) on the sulfide removal efficiency at a constant dosing ratio of 0.5 Fe-DWS:sulfide-

S. The figure shows that the sludge aging time had a significant impact on the sulfide removal 

efficiency with a decrease in dissolved sulfide removed from 13.66±0.41 to 6.34±0.51 mg S/L 

at sludge ages of 1 and 30 days, respectively (p < 0.05). The latter equalled to sulfide removal 

capacities of 1.30±0.02 mmol sulfide-S/mmol Fe (day 1) and 0.60±0.01 mmol sulfide-S/mmol 

Fe (day 30) (see Fig. 5.2B), a decrease of 53.7±1.5%. Interestingly, in a recent study in which 

aged Fe-DWS from a full-scale drinking water treatment was added to a lab-scale sewer reactor 
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very similar sulfide removal capacities were observed (i.e. 0.61 mmol sulfide-S/mmol Fe) [16]. 

Equally important, the sulfide removal capacity obtained using ‘fresh’ Fe-DWS (i.e.  day 1) 

was only slightly less than the theoretical sulfide removal capacity for conventional FeCl3 

dosing (see Fig. 5.2B).  

Overall, the results highlight a strong relation between the degree of akaganeite 

crystallinity and overall sulfide removal capacity, albeit not affecting the fast reaction kinetics. 

Sulfide removal was found to be fast with most of the sulfide being removed within 10 minutes, 

independent of the sludge aging time (Fig. 5.2A). It has been postulated that the reaction of 

sulfide with ferric oxide species is a surface controlled process [17, 23]. Since it is commonly 

accepted that amorphous iron oxides have higher surface areas than crystalline iron oxides [24-

26], this strongly supports our finding that the sulfide removal capacity decreased at increasing 

sludge aging times. Furthermore, the reaction of sulfide with ferric oxide species involves 

multiple steps. In the first step, chemical adsorption of hydrogen sulfide onto the ferric oxide 

surface takes place. The chemi-sorbed sulfide subsequently reacts with the ferric oxide, thereby 

reducing it to soluble ferrous ions while the sulfide is oxidized to elemental sulfur [27-31]. The 

kinetics of this so-called sulfide induced reductive dissolution of iron process highly depends 

on the type of ferric oxides, and is reported to be in the order of minutes for more reactive 

species such as amorphous akaganeite [29, 30]. Subsequently the formed Fe2+ rapidly reacts 

with any dissolved sulfide present in solution to form insoluble FeS. Indeed, analysis of the 

iron concentrations confirmed that the soluble iron concentrations were negligible throughout 

the duration of the experiments (data not shown).  
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Figure 5.2 (A) Impact of aging of ferric DWS on dissolved sulfide removal with molar 

DWS-Fe:sulfide-S dosing of 0.5:1 and (B) sulfide removal capacity of ferric DWS at 

various aging times. Data presented are mean ± standard deviation (n=3). 

During conventional FeCl3 dosing, the sewage pH has a significant impact on the iron 

dosing requirements to achieve the desired level of sulfide control, especially around the 

circumneutral pH values often observed in sewers. Therefore, we conducted an additional set 
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of experiments in which we assessed the impact of the pH on the sulfide removal efficiency 

using ‘fresh’ DWS (day 1) at a Fe-DWS:sulfide-S dosing ratio of 0.5:1. Figure 5.3 shows that 

the amount of sulfide removed decreased from 14.45±0.4 at pH 7.5 to 12.21±0.3 mg S/L at pH 

6.5. The latter equalled to theoretical sulfide removal capacities of 1.32±0.01 and 1.11±0.02 

mmol sulfide-S/mmol Fe for pH 7.5 and 6.5, respectively, a significant (p < 0.05) reduction of 

15.2±0.6%. Previous studies investigating the impact of the pH on sulfide precipitation in 

sewage using conventional iron salt dosing showed a more profound impact of the pH [32, 33]. 

For example, Nielsen et al., (2008) found that at pH levels below 7, less than 40% of the iron 

salts dosed was used for sulfide removal. While both the pH and sludge age affect sulfide 

removal efficiency, our results show that the increase in crystallinity of akaganeite due to aging 

of the DWS had a more profound impact. Finally, an additional experiment at a DWS-

Fe:sulfide-S dosing ratio of 2:1 confirmed that complete sulfide removal can be achieved (see 

Fig. A12).  

 

 

Figure 5.3 Impact of pH on sulfide removal from sewage by ‘fresh’ DWS (day 1). Data 

presented are mean ± standard deviation (n=3). 
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5.4.3 The impact of aging of DWS on down-stream phosphate removal in activated 

sludge tanks 

Figure 5.4A shows the P removal efficiency at different Fe-DWS dosing ratios and aging times 

in aerated activated sludge. P removal kinetics were lower for the ‘fresh’ Fe-DWS sludge. The 

latter was most likely due to the lower Fe:P molar ratios and lower initial P concentration. A 

similar observation was made in a study of Gutierrez et al., (2010), in which FeCl3 dosed in 

sewers was fed to aerated activated sludge like in this study [34]. Importantly, independent of 

the Fe-DWS dosing ratios and aging time, the overall phosphate removal capacity in aerated 

activated sludge remained constant (p < 0.05) (see Fig.5.4B). 

Figure 5.4C shows the X-ray diffraction patterns of Fe-DWS at an aging time of 30 

days before and after being subjected to aeration in the presence of active sludge. A distinct 

change in morphology of the Fe-DWS changed from a more crystalline phase to a complete 

amorphous phase can be observed. As discussed in more detail in section 5.4.1, the reaction of 

sulfide with ferric oxides species is a surface controlled process that over time results in the 

formation of elemental sulfur and FeS. FeS, often referred as mackinawite is a poorly 

crystalline iron sulfide species. Moreover, previous studies showed that oxidation of Fe(II) 

results in the formation of amorphous Fe(III) oxyhydroxides [30, 35, 36]. Thus, upon aeration 

of sulfide-loaded Fe-DWS in the activated sludge, amorphous ferric oxyhydroxide species 

would be formed and subsequently react with phosphate. The latter strongly supports our 

finding that the P removal capacities was constant independent of the initial DWS sludge age. 

Finally, upon aeration P uptake would be accompanied with release  and oxidation of sulfide 

to sulfate [34], which was confirmed by IC analysis (Fig. A15). 
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Figure 5.4 (A) Batch experiments for the aeration of sulfide loaded Fe-DWS in activated 

sludge for P removal, (B) P removal capacities (g P/g Fe-DWS) of Fe-DWS in aerated 

activated sludge at different aging times and dosing rates and (C) X-ray diffraction 

patterns of Fe-DWS before and after aeration in activated sludge. 

5.4.4 Implications for practice 

In this study, we investigated the impact of aging on the capacity of ferric DWS as a sulfide 

control method in sewers. To do so, a series of coagulation tests were conducted to generate 

ferric DWS using raw influent water from a full-scale drinking water treatment plant. The 

composition of the produced ferric DWS was compared with analysis from 8 full-scale WTPs 

through an industry survey. That latter confirmed that the ferric DWS produced in this study 
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was similar to that of ferric DWS produced in full-scale situations, strongly supporting the 

practical relevance of our findings.  

It was found that the iron oxide speciation remained constant with akaganeite (β-

FeOOH) being the predominant iron oxide species present in the ferric DWS, independent of 

sludge aging time. On the other hand, the sludge aging time had a significant impact on the 

iron oxide morphology. A clear change from a highly amorphous structure for freshly produced 

ferric DWS (day 1) to a more crystalline form after 30 days of storage time was observed. 

Importantly, this change was accompanied with a significant decrease in sulfide removal 

capacity (p < 0.05), most likely due to a decrease in available surface sites for adsorption at 

increasing crystallinity [25, 26]. This finding is important with respect to real-life 

implementation of ferric DWS addition to sewers as a sulfide control method. Ideally, ‘fresh’ 

ferric DWS produced at the drinking water treatment plant is directly fed into the surrounding 

sewer via a dedicated pipeline to ensure the highest sulfide removal capacity of the sludge, 

thereby minimizing overall ferric DWS requirements. Alternatively, ferric DWS can be stored 

on site and transported to nearby ‘hotspot’ of sewer corrosion and odour complaints, albeit with 

a decrease in sulfide removal capacity on a per unit Fe basis at increasing storage times. 

The reaction kinetics were not affected, with most sulfide being removed within 10 

minutes, independent of the Fe-DWS storage time. Considering typical HRTs in sewers are in 

the order of several hours (i.e. 2-6 hours), the addition of Fe-DWS is thus very suitable in a 

sewer context. The practical relevance is further supported by the fact that discharge of drinking 

water sludge is adopted in various parts of the world. For example, about 9% and 25% of the 

total drinking water sludge produced in the USA and United Kingdom is discharged into sewers 

[10, 37]. However, it is important to note that this often involves the discharge of aluminium 

DWS and is done simply because it is the cheapest DWS disposal route in these situations [38]. 

It has been found that aluminium DWS removes phosphate when dosed to sewers [39]. 

 Another important observation is that aeration of less reactive crystalline ferric DWS 

in the activated sludge tank of the downstream WWTPs significantly changes the morphology 

from crystalline akaganeite to highly amorphous iron oxide species, independent of the sludge 

aging time. Importantly, the obtained P removal capacities were very similar to that obtained 

with FeCl3 dosing (i.e. 0.35±0.02 g P/g Fe in this study versus 0.36±0.01 g P/g Fe for FeCl3 

dosing, respectively [40]. 
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 Alum and ferric chloride are the most commonly used coagulants for the production of 

drinking water. The process economics, determined by the local coagulant price, is the key 

factor determining the choice for water utilities between ferric chloride and alum rather than 

treatment performance, with both coagulants meeting desired treatment performances in terms 

of removal of NOM, turbidity and colour [41].The latter was also confirmed in this study in 

which we showed that a change from alum to FeCl3 did not affect the treatment performance 

of the coagulation step (Table A4). The fact that Fe-DWS can be beneficially reused in sewers 

for sulfide control may bring economic benefits for water utilities by reducing the costs for 

DWS management and disposal costs. It also reduces the chemical demand for wastewater 

treatment for chemical P removal in activated sludge tanks and sulfide control in digesters. 

However, there could also be increased costs in wastewater treatment such as to increased 

sludge handling and disposal costs and aeration costs in wastewater treatment plants due the 

increased solids and COD load due to DWS dosing [15, 16]. All of the above requires careful 

consideration and should be evaluated through long-term field trials. Finally, cross-sectional 

collaboration between the water and wastewater utilities will be essential in order for creating 

awareness of the benefits that an integrated catchment-wide coagulant dosing strategy can 

bring for both drinking water and wastewater systems.  

5.5 Conclusions 

In this study, we investigated the impact of aging of ferric-rich drinking water sludge (DWS) 

on its reactivity and capacity for sulfide removal in sewers and phosphate removal in 

downstream wastewater treatment plants. The key findings of the work are: 

 Akaganeite (β-FeOOH) was found to be the main iron oxide species in the DWS, 

independent of the sludge aging time.  

 The sludge aging time had a clear impact on the akageneite morphology from a 

predominant amorphous phase for ‘fresh’ DWS (7 ± 0.1% crystallinity) to a more 

crystalline phase (76 ± 3% crystallinity) at a sludge aging time of 30 days. 

 The increase of fraction of crystalline akaganeite was associated with a significant 

decrease in the total sulfide removal capacity, but did not affect the reaction kinetics 

with most sulfide being removed within the first 10 minutes. 

 Sulfide driven reductive dissolution of crystalline akaganeite followed by aeration in 

downstream activated sludge tanks changed the akaganeite from a crystalline to a 

highly amorphous iron oxide species, thereby achieving efficient phosphate removal. 
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6.1 Abstract 

Iron-based coagulants are dosed in enormous amounts and play an essential role in various 

segments of our urban water infrastructure. In order for the water industry to become circular, 

a closed-loop management strategy for iron needs to be developed. In this study, we have 

demonstrated for the first time that in-sewer dosed iron, either in the form of FeCl3 or ferric-

based drinking water sludge (Fe-DWS) as a means to combat sewer corrosion and odour, can 

be recovered in the form of vivianite in digested sludge in down-stream wastewater treatment 

plants. Importantly, about 92±2% of the in-sewer dosed Fe was estimated to be bound in 

vivianite in digested sludge. A simple insertion of Neodymium magnet allowed to recover 

11±0.2% and 15.3±0.08% of the vivianite formed in the digested sludge of the in-sewer dosed 

iron in the form of FeCl3 and Fe-DWS, respectively. The purity of recovered vivianite ranged 

between 70±5% and 49±3% for in-sewer dosed FeCl3 and DWS, respectively. Almost 

complete (i.e. 98±0.3%) separation of Fe in the form of ferrihydrite was achieved from 

vivianite after alkaline washing. Subsequent batch experiments demonstrated that the 

recovered ferrihydrite can be directly reused for efficient sulfide control in sewers. At a 

ferrihydrite-Fe:S molar ratio of 1.2:1, sewage dissolved sulfide concentrations was reduced 

from ~15 mgS/L to below 0.5 mgS/L within 1 hour of reaction. Overall, the results obtained in 

our study flag a first step for utilities towards a closed-loop iron-based coagulant management 

approach.  

6.2 Introduction 

Iron salts are dosed in enormous amounts and play a key role in wastewater treatment [1-4]. 

They are the most commonly used sulfide control chemicals to combat concrete corrosion and 

odour problems in sewer networks [1, 5, 6]. Moreover, the addition of iron salts is a prevalent 

approach for removing phosphate [7-9] and for controlling sulfide during anaerobic digestion 

in downstream wastewater treatment plants (WWTPs) [10, 11]. 

We recently demonstrated that by adopting a catchment-wide iron salts dosing strategy, the 

overall iron consumption can be reduced, while increasing the overall treatment performance 

in terms of sulfide control and phosphate removal [12, 13]. Through both comprehensive 

laboratory-scale testing and long-term field studies, it was found that ferrous (or ferric) chloride 

dosed to sewer networks to control hydrogen sulfide emissions is reused multiple times in 

downstream wastewater treatment plants for the removal of phosphate as well as hydrogen 

sulfide control during anaerobic digestion [12, 13]. The latter can be considered as a major step 
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forward for the water industry as significant benefits can be achieved in terms of treatment 

performance for the overall urban water infrastructure by simply replacing the chemical dosing 

location to the upstream sewer network [13].  

Iron salts are also often used as coagulant during drinking water production for the removal 

of natural organic matter, turbidity, colour and pathogens [14, 15]. Management of iron-rich 

drinking water sludge often incurs substantial operational expenditure [16, 17]. Due to the fact 

that iron based drinking water sludge is relatively low in organics and high in iron content [18], 

it has the potential to be beneficially reused for sulfide control in sewer networks as well as in 

the down-stream WWTP for phosphate removal and sulfide control during anaerobic digestion 

similar to that of conventional iron salt dosing. Indeed, recent studies demonstrated that ferric-

chloride based drinking water sludge can effectively control sulfide in sewers [19, 20], and 

effectively reused in downstream WWTPs for phosphate removal and sulfide control during 

anaerobic digestion (Rebosura et al., 2019). While these above described studies clearly 

demonstrated the practical feasibility of multiple iron reuse, the iron species and potential 

changes in its speciation in the sewer network, activated sludge tank and anaerobic digester has 

not been investigated in detail yet.  

Iron chemistry is complex and can undergo rapid transformations between ferrous (Fe(II)), 

ferric (Fe(III)) and mixed forms in wastewater due to variations in prevalent redox potentials. 

Moreover, microbial induced oxidation/reduction processes in aerobic and anaerobic zones can 

also occur [21, 22]. As iron speciation may affect the reaction stoichiometry and kinetics, it is 

important to determine the speciation and fate of sewer-dosed iron in the downstream WWTP. 

Equally important, such information is also essential to identify opportunities to recover iron 

from the sludge at the downstream WWTPs after multiple usage. 

Recently, various studies reported on the formation of vivianite (i.e. an iron phosphate 

mineral, Fe(II)3(PO4)2·8H2O) at WWTPs where iron salts (either ferrous or ferric) are dosed 

for phosphate removal [23, 24]. More recently, laboratory scale experiments showed that 

vivianite formed in digested sludge can be recovered using a magnetic separator [25]. While it 

was found that further research is needed to improve the vivianite recovery efficiency, this 

finding is important as it clearly highlighted the potential for selective recovery of iron from 

digested sludge.  

To the authors’ best knowledge, the fate of in-sewer dosed iron, either in the form of iron 

salts or iron rich drinking water sludge, in the downstream wastewater treatment plants has not 
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been investigated in detail yet. Therefore, this study aimed to investigate the iron speciation 

and vivianite formation potential of in-sewer dosed iron, either in the form of ferric chloride 

and iron-rich drinking water sludge through comprehensive long-term testing using continuous 

flow laboratory-scale systems used to simulate an urban wastewater system over a period of 31 

months. Combined semi-quantitative in-depth XRD and SEM-EDS analyses were used to 

investigate iron speciation and to quantify the amount of vivianite formed in waste activated 

sludge and digested sludge. We also evaluated the practical feasibility of an interesting 

alternative valorisation route, not focusing on the recovery of P, but on the recovery and direct 

reuse of separated Fe in the form of ferrihydrite as an effective sulfide control method in sewer 

networks.  

6.3 Materials and methods 

6.3.1 Laboratory scale urban wastewater system  

Two previously reported laboratory-scale systems were used in this study, one of which was 

used as the experimental line and the other as the control line. Each line compromised two 

sewer reactors, a Sequence Batch Reactor (SBR) for biological COD (Chemical Oxygen 

Demand) and nitrogen removal, a sludge thickener and an anaerobic sludge digester for biogas 

production. The sewer reactors were fed with 10 L of raw sewage per day, divided into four 

pumping events of 2.5 L every 6 hours. With a working volume of 8.5 L, the SBR was 

maintained with a cycle time of 6 hours (2 hours of anoxic mixing, 3 hours of aerobic mixing, 

45 minutes of settling and 15 minutes of decanting). 2.5 L of wastewater was fed to the SBR 

in the first 8 minutes of the anoxic phase. The SBR was operated at a sludge retention time of 

16 days. The sludge thickener (with a volume of 3 L) was intermittently stirred at 2 rpm to 

produce the thickened sludge. The anaerobic sludge digesters had a working volume of 1 L and 

a headspace of 300 mL. The digesters were fed with 50 mL of thickened sludge per day 

resulting in a HRT of 20 days. 50 mL of digested sludge was taken out from the reactor at the 

same time. The domestic wastewater in the experiments was collected from a residential area 

in Brisbane, as described in detail elsewhere [12, 19].  

6.3.2 Reactor operation and sampling protocol 

The experiments were conducted over a period of 31 months and divided into four phases; (1) 

baseline phase (months 0-13), (2) experimental phase I with in-sewer ferric chloride dosing 

(months 14-18) to the experimental line, (3) recovery phase without any chemical dosing 
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(months 19-26) and (4) experimental phase II with in-sewer dosing of iron-rich drinking water 

sludge (referred to as DWS here onwards) (months 27-31) to the new experimental line (the 

control line in phase I). During the baseline phase, the two systems were operated identically 

without any chemical dosing until comparable performance was obtained in terms of biological 

nutrient and COD removal performance (i.e. pseudo steady-state). In total, this baseline period 

lasted for 13 months. In experimental phase I, ferric chloride (FeCl3·6H2O) was added to the 

sewer reactor of the experimental line for a duration of 5 months. Throughout the duration of 

5 months, the dosing rate was maintained constant at a dosing rate of 10 mg Fe3+/L [12]. In 

the recovery phase, which lasted for 8 months, ferric chloride dosing was stopped and the two 

lines were operated identically for the two lines to achieve similar performance. In the 

experimental phase II, DWS was added to the sewer reactor of the new experimental line (the 

previous control line) for another 5 months. The iron-rich drinking water sludge used in this 

study originated from the Cascade drinking water treatment plant operated by Sydney Water 

in New South Wales, Australia. A more detailed characterization of the DWS can be found in 

Table A6. The DWS was dosed to the sewer reactor in the form of a slurry in order to obtain 

iron concentrations of 10 mg Fe3+/L, similar to the experimental phase I. 

Thickened waste activated sludge (15-20 mL) and digested sludge (50 mL) samples 

were collected from both the control and experimental lines at the end of months 1, 3 and 5 in 

both experimental phases as well as in the recovery phase. The samples were collected in sterile 

screw cap containers, flushed with nitrogen and immediately stored in a freezer at -18 oC.  

Afterwards, the samples were freeze-dried and ground to powder form in anaerobic conditions 

for subsequent XRD (combined with semi-quantitative), SEM-EDS and ICP-OES analyses for 

detailed characterization and elemental composition (see section 6.3.5 and 6.3.6). 

6.3.3 Magnetic separation of vivianite and iron recovery via alkaline washing 

The sludge samples of the anaerobic digester at the end of both experimental phases were 

subjected to a two-step approach as a means to selectively recover and reuse the iron from the 

digested sludge (n=6). In the first step, vivianite, as discovered by the XRD (combined with 

semi-quantitative) and SEM-EDS analyses, was separated from the sludge via the magnetic 

separation experiments. For this purpose, neodymium magnets (36 mm diameter and 8 mm 

thickness) with a pull force of 48 kg were submerged into 200 mL of digested sludge liquor. 

The solution was gently mixed using an overhead stirrer at a rate of 15 rpm. In each magnetic 

separation experiment, the neodymium magnet was submerged for 3 hours and subsequently 
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thoroughly rinsed with sufficient force with demineralized water to separate any material from 

the magnet and collected in a beaker. This procedure was repeated three times. The solid and 

liquid fraction of the obtained solution, as well as the initial sludge sample, were subsequently 

analysed for total and soluble Fe and P concentrations to assess the vivianite recovery 

efficiency, followed by direct reuse of the recovered Fe for sulfide control in sewage (see 

section 6.3.4). 

In the second step, the obtained solution was subjected to alkaline conditions (pH ~13) 

for a duration of 1 hour by adding 1M NaOH in order to separate the vivianite into a solid 

fraction rich in iron (obtained through centrifugation of the iron precipitates) and a liquid 

fraction rich in P, similar to [25]. Total and soluble Fe and P as well as PO4-P before and after 

alkali addition was measured to quantify the recovery potential using this basic separation 

method. The iron-rich solid fraction was ground into a powder under anaerobic conditions and 

subsequently analysed employing X-ray diffraction (XRD) and Scanning Electron 

Microscopy/Energy Dispersive Spectroscopy (SEM-EDS) (see section 6.3.5). 

6.3.4 Sulfide removal experiments using recovered iron from digested sludge  

Sulfide removal experiments (n=12) were conducted using domestic wastewater under 

anaerobic conditions in gas-tight cylindrical reactors made of PerspexTM with a working 

volume of 500 mL. Domestic sewage was collected from a local pump station and immediately 

stored in a cold room at 4 oC. Prior to use, the sewage was filtered to remove any solids and 

heated up to ambient temperature. The filtered sewage was sparged with N2 in order to maintain 

anaerobic condition during the experiment. Sulfide was spiked to the sewage to an initial 

concentration of ~15 mg S/L using standard reagent grade salt (Na2S·9H2O, Sigma-Aldrich). 

The obtained iron-rich solid fraction (see section 6.3.3) was mixed with deoxygenated 

demineralized water to make a slurry. 5.1 and 13.7 mL of the slurry was added to the reactor 

in order to obtain a Fe concentration of ~30 and ~90 mg Fe/L, leading to a Fe:S molar ratio of 

1.2:1 and 3.5:1, respectively. All experiments were conducted at a constant pH of 7.1±0.1 and 

ambient temperature (22.1±0.2 oC). 

6.3.5 Sludge characterization 

After collection, all samples were immediately stored (at -18 oC) and subsequently freeze-dried 

under vacuum conditions (-50 oC, 0.1 millibar). Afterwards, the freeze-dried samples were 
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ground under anaerobic conditions. The samples were subsequently characterized by means of 

XRD and SEM-EDS.  

X-ray diffractograms were obtained with a D8 Bruker diffractometer equipped with a 

(θ, 2θ) goniometer and a position sensitive detector (Cu Kα1 radiation at λ=1.55 Å). Reflections 

were collected within the [5–80o] 2θ range, with a step width of 0.02 and 1.2 seconds/step of 

collecting time. The resultant 2θ peaks were analysed with Diffrac.Eva V-4 software and 

matched with the ICDD PDF-4+ 2019 database. Semi-quantitative XRD analyses were 

conducted to obtain the degree of crystallinity and to quantify the amount of vivianite in the 

samples using TOPAS V-4.2 software. Corundum (α-Al2O3) was used as an internal standard 

for all semi-quantitative measurements. All XRD and semi-quantitative XRD analyses were 

conducted in triplicate. In order to verify the amount of vivianite obtained from semi-

quantitative XRD analyses, synthetic vivianite was prepared [26] and added to sludge samples 

with different quantities. A more detailed description and results of these tests can be found in 

Table A7. 

Morphology and elemental composition of the samples were investigated by SEM-

EDS. Secondary electron images were obtained at 15 kV accelerating voltage using a high-

resolution Scanning Electron Microscope (JEOL JSM-6610) equipped with an X-ray detector 

for elemental analysis (Oxford Instruments/50 mm2 X-MAX SDD X-ray detector). Samples 

were mounted on stubs attached with high-purity conductive double-sided adhesive carbon 

tapes and subsequently carbon coated using a Quorum Q150T Turbo-Pumped Sputter Coater. 

The latter was done to avoid charge build-up on the sample to obtain better secondary electron 

signals. 

6.3.6 Chemical analyses 

The concentrations of dissolved sulfur species (i.e. sulfide, sulfate, sulfite and thiosulfate) were 

measured using Ion Chromatography (IC) equipped with a UV and conductivity detector 

(Dionex ICS-2000). Prior to analysis, samples were immediately filtered after collection (0.22 

µm, Millipore, Millex GP) and preserved with a sulfide anti-oxidant buffer (SAOB) solution 

[27]. Total and soluble Al, Fe, P, and S concentrations of the sludge solids were analysed by 

means of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) (Perkin 

Elmer Optima 7300 DV, Waltham, MA, USA). Phosphate concentrations were measured using 

a Quickchem 8000 (Lachat Instrument, Milwaukee, WI, USA) flow injection analyser (FIA). 

Samples were immediately filtered using 0.22 µm membrane filters (Millipore, Millex GP) 
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prior to analyse phosphate and soluble ion concentrations. Total and volatile solids (TS, VS) 

were analysed according to standard methods [28]. The pH and temperature were measured 

using a handheld meter (SPER Scientific). 

6.4 Results and discussion 

6.4.1 Long-term monitoring of vivianite formation in thickened SBR and AD sludge 

In both cases of in-sewer FeCl3 and ferric DWS dosing at 10 mg Fe/L, the dissolved sulfide 

concentrations were substantially reduced in the sewer reactors (i.e. 48±4% and 38±2%). 

Furthermore, the Fe was reused for down-stream P removal in the SBR  (41±6% and 59±6%) 

as well as sulfide control in the anaerobic digester (88±1% and 92±1%) throughout the long-

term operation of the laboratory system [12, 19]. 

Figure 6.1AB shows the evolution of vivianite formation, obtained from the semi-

quantitative XRD analyses, in both thickened SBR sludge and AD sludge originating from in-

sewer dosed ferric chloride and DWS, respectively. The degree of crystallinity of the inorganic 

fraction of the sludge samples increased over time. Importantly, the figure shows that, whether 

purchased ferric chloride coagulant or DWS is dosed in the sewer reactor for sulfide control, 

similar amounts of vivianite were formed in the downstream thickened SBR sludges and AD 

sludges after the reactor operation has reached a steady-state condition. After 5 months, 

vivianite comprised 46±2% (ferric chloride) and 40±1 % (DWS) of the inorganic fraction in 

thickened SBR sludge. The amount of vivianite of the inorganic fraction in AD sludge fraction 

was substantially higher with value of  68±2% and 60±2% for ferric chloride and DWS dosing, 

respectively. The latter is not suprising as vivianite can be readily formed under reducing 

conditions, and is in agreement with previous studies [23, 24]. The addition of different 

amounts of pure vivianite to the sludge samples, confirmed the accuracy of the vivianite 

quantification via semi-quantitative XRD analysis (see Table A7).  
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Figure 6.1 Long-term monitoring of the vivianite formation potential in thickened SBR 

and AD sludge receiving (A) in-sewer FeCl3 and (B) in-sewer iron rich drinking water 

sludge. Data presented are obtained from semi-quantitative XRD analyses with the 

standard errors (n=3). 

Figure 6.2 shows the amount of in-sewer dosed iron and phosphate present in the 

sewage that ultimately ends up in the form of vivianite in the digested sludge. The majority of 

the in-sewer dosed iron is bound in the digested sludge in vivianite. In total, 92±3% and 92±2% 

of the in-sewer dosed ferric chloride and DWS was bound in vivianite in the digested sludge, 

respectively. The lower obtained values for the P fraction of P bound in vivianite (i.e. 54±2% 

and 49±1% for FeCl3 and DWS, respectively) can be explained by the fact that in our 

experiments, the molar ratio of Fe:P in the digested sludge equalled to 0.87-0.88. As such, there 

was not sufficient Fe dosed to capture the P in the form of vivianite as this would require a 

Fe:P molar ratio of 1.5:1. It can be expected that at increasing Fe:P dosing rates, higher 
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percentages of P would be present in the form of vivianite. Indeed, in a recent study, it was 

reported that about 70-90% of P was captured as vivianite in the digested sludge at  a molar 

Fe:P ratio of 2.5:1 [24]. 

 

Figure 6.2 The fraction of in-sewer does FeCl3 and DWS bound in vivianite in the digested 

sludge. Samples were taken from the digested sludge at the end of each experimental 

period (months 5).  

6.4.2 Magnetic separation of vivianite and recovery of Fe via alkaline treatment 

Simple insertion of a neodymium magnet allowed to recover between 11±0.2% and 

15.3±0.08% of the vivianite formed in the digested sludge. Such low recovery rates have also 

recently been reported by at laboratory scale and are expected to be much higher in an industrial 

scaled-up process [25]. Furthermore, it is to be noted that vivianite is not a ‘ferro-magnetic’ 

mineral, it is ‘paramagnetic.’ Therefore, it cannot be readily extracted using a neodymium 

magnet. 

XRD analysis of the magnetically separated solid fraction confirmed the presence of 

vivianite and its predominant crystalline nature (Fig. 6.3A) which was also observed in SEM-

EDS analyses with abundance of crystalline vivianite aggregates (Fig. A19). Subsequent semi-

quantitative XRD revealed that vivianite fraction ranged between 49±3% and 70±5% of the 

inorganic fraction of the magnetically separated solids for in-sewer dosed DWS and FeCl3, 

respectively (Table A8). These findings are in line with a previous study where similar values 

(i.e. ~52-62%) were reported [25].  
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Figure 6.3 X-ray diffraction patterns of magnetically extracted particles from digested 

sludge (A) before and (B) after alkaline washing at pH ~13.  

Figure 6.3B shows the X-ray diffraction patterns of the magnetically separated fraction 

after the alkaline washing procedure. The alkaline washing protocol clearly changed the highly 

crystalline nature of the vivianite to an amorphous composition. Moreover, the X-ray 

diffraction patterns strongly suggested that iron was separated from the vivianite and 

precipitated as ferrihydrite, an amorphous hydrous ferric oxide mineral Fe(III)2O3·0.5H2O) [29, 

30], which was also observed visually with distinct change in colour from colourless to rusty 

brown common for ferric hydroxides (Fig. A20). SEM-EDS analyses of the separated 

ferrihydrite was shown in Fig. A21. The alkaline washing step was found to be very effective 

in separating the Fe from vivianite, with Fe recovery efficiencies of 97±1.3% (in-sewer dosed 

FeCl3) and 98±0.3% (in-sewer dosed DWS). Equally important, 90±0.3% (in-sewer dosed 
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FeCl3) and 87±1% (in-sewer dosed DWS) of vivianite bound P was released into the solution, 

respectively (Table A9). 

6.4.3 Reuse of recovered Fe from vivianite for efficient sulfide control in sewage 

Figure 6.4 shows that the addition of 5.1 and 13.7 mg amorphous ferrihydrite-Fe/L, equalling 

to a Fe:S molar ratio of 1.2:1 and 3.5:1, respectively resulted in effective sulfide precipitation. 

The dissolved sulfide concentrations decreased from ~15 mg S/L to below 0.2 mg S/L within 

60 minutes after dosing. Figure 6.4 also shows that the kinetics of the reaction was fast, with 

required HRTs to reach sulfide levels below 0.5 mg S/L of 30 and 60 minutes for ferrihydrite 

recovered from in-sewer dosed FeCl3 and DWS, respectively. The pre-equilibrium phase 

adsorption of sulfide at the oxide surface of ferrihydrite likely caused the rapid decrease in 

sulfide concentration during the first minute of the reaction [31-33]. Previous studies 

investigating the reactivity of ferrihydrites with sulfide under reducing conditions in marine 

sediments found that the main mechanism for rapid sulfide precipitation was the reduction of 

ferrihydrite to form iron sulfide compounds (FeSx and complete removal of dissolved sulfide 

can be achieved if enough ferrihydrite is present. The obtained results in this study suggest that 

the same mechanism occurred in the reducing sewer environment [31-33]. This hypothesis was 

further supported by XRD and SEM-EDS analyses of the ferrihydrite after the end of the 

experiments, which showed the presence of FeS compounds on the surface (Fig. A22). 

Moreover, the colour of the sewage turned black, which is a typical phenomenon in situations 

where iron sulfide is formed. 

 



Chapter 6 

93 
 

 

Figure 6.4 Dissolved sulfide concentrations after direct reuse of recovered ferrihydrite in 

sewage at molar Fe:S ratios of 1.2:1 and 3.5:1. Data presented are mean ± standard errors 

(n=3). 

6.4.4 Implications for practice 

Many wastewater utilities have set forward the ambition to transition into a circular 

management strategy for our urban wastewater management. Rather surprisingly, despite the 

fact that coagulants play an important role in drinking water production and wastewater 

treatment and, moreover, are dosed in large amounts, their role and importance in order for 

urban water management to fit within the circular economy has not received a lot of attention 

yet. The use of coagulants is expected to further increase in the coming years due to a 

combination of factors including population growth, stricter regulation and the need to protect 

existing urban water infrastructure [34]. Hence, for our urban water infrastructure to become 

‘circular’, a complete revisiting of current coagulant management practice is desirable. In this 

study, we demonstrate for the first time a viable solution for selective recovery and reuse of 

iron, targeting efficient sulfide control in sewers. This is a first step towards a closed loop 

management strategy for iron-based coagulants.  

Through long-term experiments, it was demonstrated that by dosing iron-based DWS 

and therefore substituting iron salt dosage in sewers, a waste product generated during drinking 

water production can be turned into a valuable resource. Our approach also contributes to P 

recovery by forming vivianite in downstream WWTPs as an intermediate product, towards 
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further reuse of both iron and phosphorus. Importantly, over 90% of the iron in the DWS added 

in the sewer was bound in vivianite in the digested sludge, very similar to the value found for 

in-sewer dosing of ‘virgin’ coagulant in the form of FeCl3. In our study, vivianite was separated 

from digested sludge (15.3±0.08% efficiency) by simple insertion of a neodymium magnet in 

the sludge liquor. In order to become a full-scale viable and mature technology it is essential 

to further increase vivianite recovery. For this purpose, vertically pulsating high-gradient 

magnetic separators, commonly used in the metallurgic industry, can be used. Further research 

is warranted conducting long-term testing at pilot and full-scale to assess the maximum 

vivianite recovery efficiencies.  

Alkali addition to the separated vivianite was found very effective in separating the iron 

bound in crystalline vivianite, thereby forming ferrihydrite. This is important as it is known 

that ferrihydrite is an effective iron oxide adsorbent owing to their highly amorphous nature 

and higher surface areas [22, 35-37]. Indeed, through sulfide precipitation experiments using 

real sewage, we demonstrated that the ferrihydrite separated from vivianite can be directly 

reused in sewage for effective sulfide control achieving dissolved sulfide levels well below 1 

mg S/L, similar to conventional dosing of iron salts to sewers for sulfide control [21, 38].  

6.5 Conclusions 

In this study, we investigated the recovery and reuse potential of in-sewer dosed iron, in the 

form of ferric chloride or iron rich drinking water sludge. The latter was achieved through long-

term testing using continuous flow laboratory-scale systems mimicking our urban wastewater 

infrastructure, coupled with batch experiments for selective recovery of iron via a combination 

of magnetic separation and alkaline washing and subsequent sulfide precipitation tests using 

the recovered iron. The key findings of the work are: 

 In-sewer iron dosing resulted in efficient vivianite formation in digested sludge with 

over 90% of the in-sewer dosed iron bound in vivianite in digested sludge.    

 The type of iron dosed, namely ‘virgin’ coagulant or ferric-based drinking water sludge, 

did not affect the vivianite formation potential in the digested sludge.  

 Alkaline treatment of the recovered vivianite was very effective in selective separation 

of iron bound in vivianite in the form of ferrihydrite achieving near complete recovery 

efficiencies (98±0.3%). 

 Direct reuse of the recovered ferrihydrite was found very effective in controlling 

dissolved sulfide in sewage to levels well below 1 mg S/L. 
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 Overall, the findings in this study can be seen as a first step for water utilities towards 

a closed loop management strategy for iron-based coagulants. 
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Chapter 7 

General discussion, conclusions and future recommendations 

This PhD thesis aimed to investigate the practical feasibility of a closed-loop management of 

iron coagulants in our urban water infrastructure. The outcomes are very promising to push 

utilities towards considering a change in their traditional way of coagulants dosing for overall 

urban water management. In this PhD, the potentials of a closed-loop management of iron 

coagulants for real-life implementation was comprehensively tested at both full-scale WWTP 

as well as in the laboratory-scale systems. In this chapter, the overall key findings of the thesis, 

challenges and limitations towards translating the outcomes into potential real-life 

implementation as well as the perspectives for future research opportunities are described. 

7.1 General discussion 

7.1.1 Achieving multiple beneficial reuse of iron coagulants by changing the dosing 

location at full-scale WWTP 

Results of chapter 4 of this PhD thesis demonstrated that in real-life, iron coagulants (i.e. 

FeCl2), if dosed in upstream sewer networks as a means to control sulfide, can be beneficially 

reused multiples times at down-stream WWTP for phosphate removal at activated sludge tanks 

and sulfide control during anaerobic digestion. The full-scale WWTP tested in this PhD dosed 

alum as regular operation (192 kg Al/day) to activated sludge tanks for chemical phosphate 

removal while the upstream sewer networks had higher hydrogen sulfide concentrations 

resulting in frequent odour complaints from the nearby community. Therefore, it created an 

ideal situation to test the hypothesis that changing the ‘type’ and ‘location’ of coagulant dosing 

(i.e. from in-WWTP alum to in-sewer FeCl2 (160 kg Fe/day)) can bring multiple benefits in 

real-life application of wastewater treatment. The results showed that, in-sewer FeCl2 dosing 

was very effective in controlling sulfide in the sewer networks and the same iron was 

beneficially reused at the down-stream WWTP for phosphate removal at activated sludge tanks 

followed by efficient sulfide control during anaerobic digestion. The latter is very important 

for utilities because elevated levels of hydrogen sulfide in biogas increases the OH&S risks for 

plant operators as well as potentially corrodes the co-generation units. After in-sewer FeCl2 
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dosing, the H2S concentrations in the biogas reached the desired limit of 280 ppm of H2S that 

was set by the WWTP. 

 While dosing FeCl2 in sewer networks was successful, it is to be noted that the WWTP 

had no primary settling. In case of a primary settling step, the sewer dosed iron is expected to 

end up in the digested sludge and hence will not contribute to phosphate removal at WWTP. 

On the other hand, many WWTPs around the world do not have the anaerobic digestion step 

in their wastewater treatment process. Moreover, the hydrogen sulfide induced sewer pipe 

corrosion and odour problems take place in random locations of the vast sewer network. In 

such cases, advanced dynamic sewer models such as the Sewex Model [1, 2] can be used as a 

sophisticated tool to  identify ‘hotspots’ in the sewer networks that are subject to high hydrogen 

sulfide concentrations. Furthermore, the distance between the iron dosing locations in sewer 

networks and the WWTP inlet may a have positive or negative impacts on multiple reuse of 

iron, which was not investigated in this PhD thesis. Therefore, dosing iron coagulants in the 

sewer network for an integrated wastewater treatment may not be ideal for all WWTPs, rather 

needs to be assessed on a case by case basis. 

7.1.2 Additional benefits not assessed in this thesis 

Dosing iron coagulants in sewer network also brings additional benefits by controlling methane 

(that has about 23 times higher GHG potential than CO2) emissions from sewers [3-5]. To 

illustrate the importance, it was estimated that methane emissions from sewers comprise 20% 

of the total carbon footprint of wastewater utilities [3]. Moreover, various studies have reported 

on the inhibitory effect of iron dosing on the sulfide production rate in sewage. It was 

highlighted in previous studies that in-sewer iron dosing can suppress the activity of sulfate-

reducing bacteria (SRBs) of the sewer biofilms as well as the methanogenic activity by 50-80% 

[6, 7], thereby potentially providing unintended benefits to utilities by reducing the overall 

carbon footprint. 

7.1.3 Replacing fresh iron coagulant with ferric DWS for beneficial reuse 

Long-term laboratory-scale testing showed that in-sewer ferric DWS dosing performs similar 

to the fresh FeCl3 coagulant in terms of sulfide control in sewers followed by multiple 

beneficial reuse of iron for phosphate and sulfide control in down-stream wastewater treatment. 

This finding is very important with regard to ‘circular coagulant management’ approach since 

it is expected that the use of coagulants in the future will further increase due to population 
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growth and stringent effluent discharge regulations [8]. More importantly, the beneficial reuse 

of DWS will help drinking water treatment plant operators with a viable sludge disposal route. 

 However, assessing the practical feasibility of dosing ferric DWS at pilot-scale in long-

term is very important because laboratory-scale urban wastewater systems were operated under 

controlled conditions (i.e. constant temperature, flow and HRT) and hence the obtained results 

are often not directly applicable for real-life implementation. In addition, the impact of primary 

settling on reusing ferric DWS in sewer networks for subsequent flow-on benefits were not 

investigated in this PhD thesis. Moreover, it is equally important to experimentally determine 

any detrimental effects of increased solids loads and odour problems due to DWS addition to 

sewer networks (i.e. clogging of sewer pipes) as well as the additional COD loads on overall 

wastewater treatment. Therefore, long-term pilot-scale studies are required in order to establish 

the practical feasibility of reusing ferric DWS for beneficial purpose. 

7.1.4 The impact of WWTP configuration on multiple beneficial reuse 

P recovery at WWTP: P recovery from wastewater treatment plants is a hot topic in some 

regions in the world as it is a non-renewable resource, currently sourced from China, USA and 

Morocco [9]. The results of chapter 6 showed that dosing either FeCl3 or ferric DWS in the 

sewer network will result in vivianite (an iron phosphate mineral) formation in digested sludge 

(up to 68%). This is an important finding since vivianite is paramagnetic in nature and hence a 

magnetic separation of the mineral from the sludge is possible. Indeed, a very basic magnetic 

separation procedure (i.e. simply inserting a neodymium magnet into sludge liquor) allowed to 

recover about 15% of vivianite from digested sludge. Long-term pilot-scale studies are needed 

to achieve an optimized P recovery process. However, many WWTPs around the world solely 

relies on biological P removal. In such cases, iron coagulants do not offer significant benefits. 

In addition, some WWTPs have CambiTM configuration for enhanced biogas production which 

is operated under a high temperature and pressure (e.g. 155 oC and 5 Bar). The experimental 

work conducted on a full-scale WWTP in this PhD thesis showed that the CambiTM process 

hinders vivianite formation in the digested sludge. The mechanisms of suppressed vivianite 

formation in digested sludge after CambiTM process are not well-understood yet. Therefore, 

further investigations are needed in this regard.  

Coagulant recovery and reuse at WWTP: Recovering iron coagulant at WWTP is critically 

important in order to establish a ‘closed-loop’ management of coagulants in urban wastewater 
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treatment. It was found that over 90% of the in-sewer dosed iron (either in the form of FeCl3 

or ferric DWS) is bound in vivianite in the digested sludge. By means of an alkaline treatment, 

magnetically extracted vivianite was separated into precipitated Fe-fraction (up to 98%) and a 

soluble P-fraction (up to 90%). Iron was precipitated as ferrihydrite (i.e. an amorphous ferric 

oxide) which was found to be very effective for sulfide removal in sewage, similar to fresh iron 

coagulant. This finding is a first step forward for utilities to consider a ‘closed-loop’ coagulant 

use for urban wastewater treatment by utilizing a ‘waste by-product’ of drinking water 

treatment (ferric DWS) as a ‘source of iron coagulant’ to sewer network for multiple beneficial 

reuse by removing phosphate and sulfide at downstream wastewater treatment and finally 

recovering the iron as ferrihydrite and reusing back to sewer network.  

7.2 Conclusions 

The objective of this thesis was to demonstrate the practical feasibility of an “urban water 

cycle-wide” coagulant dosing strategy aiming to create a closed-loop use of iron-based 

coagulants. The latter was achieved through a combination of full-scale field trials, 

comprehensive laboratory-scale systems as well as using advanced characterization tools to 

identify iron speciation in various stages of water/wastewater treatment. Overall, the main 

conclusions that can be derived from the experimental work conducted are as follows: 

7.2.1 Changing the type and location of coagulant dosing 

In-sewer FeCl2 dosing successfully controlled sulfide in the sewer network (up to 93%). The 

same iron was beneficially reused for P removal (similar to that of WWTPs’ regular alum 

dosing) in down-stream WWTP thereby eliminating the need for additional/separate coagulant 

dosing for chemical P removal at WWTP. It was calculated that in-sewer FeCl2 dosing 

minimized the total coagulant usage in the full-scale WWTP by 6% of. Finally, the third-time 

reuse of the iron was confirmed by a significant decrease in sulfide (up to 43%) during 

anaerobic digestion. Importantly, in-sewer iron coagulant dosing did not negatively affect the 

overall treatment performance in terms of nitrogen removal, biogas production and disinfection 

process (please refer to chapter 4 for detailed experimental design, results and discussion on 

the findings).  
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7.2.2 Waste-to-Value: ferric DWS as a viable alternative to ‘virgin’ FeCl3 

As an alternative to purchased iron coagulants, ferric-based DWS (a waste by-product of 

drinking water treatment) can be directly dosed to sewer networks to achieve efficient sulfide 

control followed by multiple beneficial reuse in the down-stream WWTP similar to that of in-

sewer FeCl3 dosing. Long-term laboratory-scale study showed that both ‘virgin’ FeCl3 and 

ferric DWS, when dosed to sewer networks at a concentration of 10 mg Fe/L, resulted in an 

efficient sulfide control in the sewer networks (up to 48%), and beneficially reused for 

phosphate removal (up to 59%) in SBR followed by sulfide control in anaerobic digestion step 

(up to 92%) in down-stream wastewater treatment process (please refer to chapter 6 for detailed 

experimental design, results and discussions on the findings).   

7.2.3 On-site storage of ferric DWS and its reuse potential 

The performance of ferric DWS in terms of its reactivity towards sulfide control in sewer 

network was tested under various sludge aging times (i.e. 1-30 days of anaerobic storage). The 

key iron species in ferric DWS was found to be akaganeite (β-FeOOH, a ferric oxide hydroxide 

mineral), regardless of the aging times. The capacity of ferric DWS for sulfide control in 

sewage significantly decreased with increasing aging times (i.e. from 1.3 (on day 1) to 0.6 (on 

day 30) mmol-S/mmol-Fe, respectively). Such decrease in sulfide removal capacity of ferric 

DWS was associated with the increase in akaganeite crystallinity (i.e. from 8 (on day 1) to 76% 

(on day 30), respectively) which was confirmed by XRD (combined with semi-quantitative 

measurements) analyses. Importantly, the aging of ferric DWS did not affect its further reuse 

for phosphate removal in down-stream WWTP, achieving an efficient phosphate removal 

capacity of 0.35 g P/g Fe regardless of the sludge aging times between 1-30 days (please refer 

to chapter 5 for detailed experimental design, results and discussions on the findings). 

 It is to be noted that the storage condition of ferric DWS (i.e. N2 encapsulation) in this 

thesis was chosen to mimic the real-life sludge storage conditions at the WTP. As a waste by-

product, the thickened DWS is stored at the treatment plant in a pile which creates an anaerobic 

blanket surrounding the sludge surface. Since, the volume of the laboratory-produced DWS is 

very low compared to WTP, therefore the decanted sludge was stored with N2 encapsulation 

so the sludge is not exposed to air and also resembles the real-life DWS. Akaganeite was found 

to be the main iron oxide species in the DWS with such storage conditions. Although it is 
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beyond the scope of this thesis, further research is warranted to investigate whether aerobic 

storage of ferric DWS would behave in a similar manner or not.  

7.2.4 Vivianite as the predominant end-product in digested sludge allowing the recovery 

of in-sewer dosed iron 

Both forms of iron dosing in sewer networks (i.e. virgin FeCl3 and ferric DWS) results in 

efficient vivianite formation (up to 68%) in the digested sludge of down-stream WWTP, with 

over 90% of the in-sewer dosed iron bound in vivianite. Up to 98% of vivianite-bound Fe was 

recovered in the form of ferrihydrite (i.e. an amorphous ferric oxide) through alkaline 

treatment. The latter removed sulfide in sewage very efficiently (i.e. achieved sulfide 

concentration of < 0.2 mg S/L, within 60 minutes of reaction at molar Fe:S dosing of 1.2:1) 

thereby demonstrating a successful ‘iron recovery and reuse’ approach towards establishing a 

closed-loop coagulant management strategy in our urban water infrastructure (please refer to 

chapter 6 for detailed experimental design, results and discussions on the findings). 

7.3 Recommendations and opportunities for further research 

7.3.1 Reusing DWS and increased solids handling at WWTP 

The impacts of increased solids load in down-stream WWTPs due to reusing ferric DWS in 

sewer network was not covered in this PhD thesis, while this may potentially (or not) affect the 

sludge dewatering process. Hence, further research is warranted in this regard. 

7.3.2 Switching coagulant from alum to ferric chloride in DWTP 

In order to achieve an integrated closed-loop coagulant management strategy for the urban 

water cycle as a whole, the importance and opportunities to use ferric chloride as coagulant for 

drinking water production was clearly demonstrated in this PhD thesis. However, the potential 

positive or negative impact of switching coagulants from alum to ferric chloride on the drinking 

water distribution system was not investigated. In this regard, not only corrosion of sewers is 

a notorious and costly problem for utilities, also the corrosion of drinking water pipes is 

considered as a major challenge [10]. In fact, it recently got significant attention through the 

‘Flint’ disaster. Flint, a post-industrial city in Michigan (USA) had experienced a disastrous 

lead [11] leaching event into drinking water due to change in source water that had high 

chloride concentrations (from Lake Huron to Flint river) in 2014. It was highlighted that 
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‘chloride to sulfate mass ratio’ (CSMR) plays a key role in Pb leaching into household tap 

waters and if the ratio exceeds the value of 0.5, it can be considered as a serious concern for 

Pb corrosion [12-15]. In addition to the CSMR, the Pb leaching phenomena is also dependent 

on various parameters such as the source water pH, alkalinity, orthophosphate concentration, 

temperature, total dissolved solids concentration, dissolved oxygen, residual chlorine and 

NOM [10, 16]. Therefore, switching to chloride-based coagulants for drinking water 

production needs further investigation. 

7.3.3 Impact of primary settling on multiple reuse of sewer dosed iron 

The impact of primary settling in WWTP on the multiple beneficial reuse of sewer dosed iron 

was not covered in this PhD thesis. It is expected that a part of iron will end up in primary 

sludge and will not contribute for phosphate removal in WWTP, however, will be available for 

sulfide control in anaerobic digester. Therefore, a systematic iron dosing in sewer network is 

recommended for an optimized and efficient reuse of iron for both phosphate and sulfide 

control at down-stream WWTP. Further research is needed in this regard to experimentally 

demonstrate the amount of sewer dosed iron that will be trapped in primary sludge and its 

impact on overall wastewater treatment.  

7.3.4 Fundamental understanding of the vivianite formation mechanism 

Vivianite is a ferrous iron phosphate mineral that ideally forms in activated sludge and digested 

sludge of the WWTP. From a fundamental point of view, vivianite should readily form in the 

digested sludge only, because dosing either FeCl2 or FeCl3 directly to the digester will finally 

form Fe2+. However, in this PhD study as well as in previous studies, the formation of vivianite 

was also observed in the activated sludge where the end form of either FeCl2 or FeCl3 dosing 

will be Fe3+ due to the aeration in the activated sludge tanks. It was highlighted in previous 

studies that some microbial reduction of Fe3+ occurs in activated sludge favouring the 

conditions for vivianite formation [17]. However, the exact mechanisms of such microbial iron 

reduction are not well-understood yet and hence requires further in-depth investigations to 

fundamentally understand such process in order to maximize the vivianite formation potential, 

which will help in efficient P recovery at WWTP in future. 
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7.3.5 Use of sophisticated characterization tools 

The determination of iron speciation in this PhD thesis was done by carrying out extensive 

XRD (combined with semi-quantitative measurements) and SEM-EDS analyses. While these 

tools are very helpful to identify the iron speciation during various phases of water/wastewater 

treatment, they also have several limitations, for example, fundamentally understanding the 

formation iron-sulfide and iron-phosphate minerals in sludge samples. In theory, many of the 

reactions involving the interactions of iron-sulfide-phosphate occur very rapidly, while in 

reality, some fractions of the reacted iron may be oxidised during sample preservation, 

preparation and analysis. More sophisticated characterization tools such synchrotron X-ray 

analysis and Mossbauer spectroscopy can be very useful in this regard. Synchrotron X-ray 

provides high energy beams that can penetrate deeper of the sample surface and could reveal 

tiny features such as bonding of iron atoms in the minerals formed. Moreover, synchrotron 

beams can be made high-frequency which allows to investigate the reactions of very short time-

scale (i.e. iron-sulfide reactions) [18]. On the other hand, Mossbauer spectroscopy allows to 

quantitatively determine the valence states of iron in minerals thereby contributing to the 

understanding of various iron species formation [19, 20]. 

7.3.6 Impact of elemental composition of ferric DWS on potential reuse 

Ferric DWS can be seen as a valuable source of iron coagulant because they are high in iron 

but low in organic concentrations. However, a detailed metal composition of ferric DWS is 

needed prior to its beneficial reuse because higher concentrations of metals such as cadmium, 

chromium, copper, nickel, lead and zinc in the DWS will limit the land-based applications of 

digested sludge as indicated in a previous study [21].  

7.3.7 Use of recovered ferrihydrite versus ferric DWS for sulfide removal in sewers 

The results from experimental work of chapter 5 and 6 in this thesis demonstrated that both 

recovered ferrihydrite (from vivianite) and ferric-rich DWS can be successfully reused in the 

sewers for efficient sulfide control. However, the preference of choosing ferrihydrite over Fe-

DWS or vice-versa should be determined through detailed experimental work and case-by-case 

basis. In a general view, it is clear that obtaining ferrihydrite from vivianite requires further use 

chemicals and procedures (i.e. alkaline washing using NaOH), while Fe-DWS is a waste by-

product in drinking water treatment plants (where FeCl3 is used as coagulant) and is readily 
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available. Therefore, reusing Fe-DWS directly to the sewers for controlling sulfide is more 

promising when the process economics and availability are considered. 

   On the other hand, the production of ferrihydrite is a multi-step process (i.e. magnetic 

separation of vivianite, separating Fe-fraction via alkaline washing followed by filtration and 

storage) while Fe-DWS is an unavoidable by-product of drinking water production process 

using Fe coagulants. The thesis clearly shows that Fe-DWS can successfully replace Fe 

coagulants in wastewater treatment process, however, a full-scale trial of Fe-DWS is necessary 

to be considered on a practical-scale implementation. 

7.3.8 Opportunities for ground water iron sludge 

In various regions in the world, groundwater is contaminated with dissolved ferrous iron. In 

order to meet the drinking water quality standards, the ferrous iron needs to be removed.  A 

commonly used and very simple method is through aeration, thereby forming insoluble ferric 

oxide sludge [22]. Data obtained from full-scale WTPs (n=34, not shown in this PhD thesis) 

showed that the aerated ferric sludge is comprised of high iron content (i.e. 380 mg/g of TS) 

with only low levels of organics [23]. Therefore, aerated ferric sludge is promising for 

beneficial reuse compared to ‘coagulated sludge’ owing to its potentially ‘clean’ nature in terms 

of less impurities and elevated metal concentrations. 

7.3.9 Impact of sewer dosed iron on anaerobic digestion process 

There is a conjecture in literature about the negative impact of iron in anaerobic digestion 

process. While other studies highlighted the beneficial impacts of iron dosing to anaerobic 

digesters, several studies also highlighted that higher concentrations of iron reduced the biogas 

production by suppressing the metabolic activities of the microorganisms during the digestion 

process. This could also be associated with microbial-induced vivianite formation in the 

digested sludge [24], which was not fundamentally investigated in this PhD thesis. However, 

the full-scale WWTP that was studied in this PhD did not show any negative impacts on overall 

biogas production after commencing iron dosing in the upstream sewer network. Therefore, 

further research is needed in this area to identify the positive or negative impacts of sewer-

dosed iron in the anaerobic digestion process. 
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7.3.10 Integrated catchment-wide modelling 

An integrated catchment-wide modelling is recommended in order to assess the amount of 

DWS that can be dosed to sewers for beneficial reuse purpose without affecting the regular 

solids handling process at WWTP. It is also important to find other alternative reuse pathways 

of DWS to avoid potential solids generation problems at WWTP. 

7.3.11 Fe-cycling at WWTP 

As indicated earlier, iron dosing to sewer is critical only to the ‘hotspots’ where hydrogen 

sulfide concentrations are higher. Therefore, potentially less affected regions in sewer network 

do not require additional iron dosing. In that case, ferric DWS can be reused in activated sludge 

tanks for enhanced chemical phosphate removal followed by its reuse for sulfide control in 

digesters. Reusing ferric DWS directly at WWTP was not covered in this PhD thesis and hence 

requires further investigations about the feasibility of such practice.  

7.3.12 Close collaboration and understanding between water utilities, sewer management 

and wastewater utilities 

In reality, the management of different technical sub-units of our urban water infrastructure is 

done separately (i.e. DWTP, sewer network and WWTP are operated separately). A close 

collaboration between drinking water production and wastewater treatment utilities is desired 

in order to establish an integrated management of our urban water by adopting a more ‘circular’ 

and ‘closed-loop’ use of iron coagulants.  
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Figure A1. H2S concentration profile in the sewer headspace in location A during (a) baseline 

period (i.e. no iron dosing) and (b) experimental period (i.e. iron dosing as 109 kg Fe/day). The 

dosing of 109 kg Fe/day equalled to a Fe2+ concentration of ~31 mg Fe/L. 
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Figure A2. H2S concentration profile in the sewer headspace in location B during (a) baseline 

period (i.e. no iron dosing) and (b) experimental period (i.e. iron dosing as 51 kg Fe/day). The 

dosing of 51 kg Fe/day equalled to a Fe2+ concentration of ~82 mg Fe/L. 
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Figure A3. Long-term concentration profile of (a) total P and (b) phosphate in the influent and 

effluent for the baseline, experimental and post-experimental period.  
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Figure A4. Long-term H2S concentration profile in biogas for the baseline, experimental and 

post-experimental period. (Note. The H2S readings could not be taken every day over this 

timeframe as well as for extended period since June 2017 due to unexpected failure and shutdown 

events of cogen engine).  

 

Figure A5. Long-term biogas production profile of each digester for baseline, experimental and 

post-experimental period. 
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Figure A6. Influent and effluent ammonium concentrations during the baseline and 

experimental period. Data presented are mean ± standard error of means. 

 

Figure A7. Influent and effluent total nitrogen (mg TKN/L) concentrations during the baseline 

and experimental period. Data presented are mean ± standard error of means.
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Table A1. Results of semi-quantitative XRD and VS analyses of digested sludge expressed as % of the total solids. 

Minerals 

composition 

Brushite 

(%) 

Hematite 

(%) 

Troilite 

(%) 

Quartz 

(%) 

Struvite 

(%) 

Vivianite 

(%) 

XRD 

amorphous 

(%) 

Organic 

fraction 

(VS) 

(%) 

Inorganic 

fraction 

(TS-VS) 

(%) 

Crystallinity 

of inorganic 

fraction (%) 

Thickened waste 

activated sludge 
3 - 1 4 14 1 77 77 23 100 

After CambiTM - - - 3 4 - 93 73 27 26 

Digested sludge 3 1 1 6 12 - 77 63 37 62 

Digested sludge [1] - - - 21 11 6 63 62 38 100 
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Table A2. Baseline monitoring campaign measurements at the full-scale WWTP (17-19 October 2016). Data presented are mean ± standard error of 

means. Sampling consists of flow-proportional 24-hr composite samples (S1-S2) and 8-hr grab samples (S3-S7; n=9).  

Sampling points 
Influent  

(S1) 

Effluent   

(S2) 

Bioreactorsa 

(S3) 

Bioreactorsb 

(S4) 

DWAS binc 

(S5) 

CambiTM c 

(S6) 

Anaerobic digesterc 

(S7) 

Total Al (mg/L) Below detection limit Below detection limit 25.4±0.2 31.4±1 9.5±0.8 10.3±0.7 15.7±0.2 

Total Fe (mg/L) 4.7±0.6 Below detection limit 64.4±0.6 45.6±1.4 11±0.4 10.3±0.2 15.7±0.2 

Total P (mg/L) 16.7±0.8 0.6±0.1 216±3.4 182±2.1 41.5±0.5 41.7±0.4 57.4±0.8 

Total S (mg/L) 24.3±1.3 26.7±0.3 54.5±0.4 48.3±0.9 8±0.07 8.3±0.1 11.8±0.1 

TKN (mg/L) 92.9±7.6 2.8±0.1 266±9.5 260±19.9 8901±199 5758±113 5831±160 

PO4-P (mg/L) 11.9±0.8 0.4±0.1    939±35 1021±6 

NH4-N (mg/L) 64.3±3.9 0.5±0.1    596±52 2977±11 

Soluble Al (mg/L) Below detection limit Below detection limit      

Soluble Fe (mg/L) Below detection limit Below detection limit      

Soluble P (mg/L) 11.5±0.7 Below detection limit      

Soluble S (mg/L) 21.5±0.6 25.6±0.4      

TSS (g/L) 0.43±0.01  4.5±0.05 3.7±0.1    

VSS (g/L) 0.40±0.01  3.9±0.09 3.2±0.1    

TS (g/kg)     120±0.8 75.6±1.1 51.9±0.4 

VS (g/kg)     91.5±0.9 59.5±1 33.4±0.4 

Q (ML/d)d 57.94 0.58 (QWAS) 4.50 (QWAS) 0.26 (outflow) 0.42 (outflow) 0.42 (outflow) 

Reactor volume (m3)   14,398 70,000  360 10,636 

SRT (days)   25 16 1.4  25 

a) Bardenpho configuration; b) Oxidation ditch configuration; c) The concentrations of total Al, Fe, P and S (highlighted in the dark grey area) are measured in 

g/kg TS units; d) Daily total flow and reactor volume information were collected from SCADA data.  
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Table A3. Experimental monitoring campaign measurements at the full-scale WWTP (active iron dosing in sewers, 1-3 February 2017). Data presented 

are mean ± standard error of means. Sampling consists of flow-proportional 24-hr composite samples (S1-S2) and 8-hr grab samples (S3-S8; n=9).  

Sampling points 
Influent 

(S1) 

Effluent 

(S2) 

Bioreactorsa 

(S3) 

Bioreactorsb 

(S4) 

DWAS binc 

(S5) 

CambiTM c 

(S6) 

Anaerobic 

digesterc  

(S7) 

Centrate before iron 

dosing 

(S8) 

Total Al (mg/L) Below detection limit Below detection limit 22±0.7 19.8±0.6 9.4±0.6 6.9±0.2 10.8±0.2 80.4±17.7 

Total Fe (mg/L) 7.2±0.05 Below detection limit 114±1.1 93±0.8 15.2±1 18±0.5 22.2±0.1 218±30.4 

Total P (mg/L) 13.8±0.7 0.4±0.07 153±4.6 143±5.3 36.2±1 39.2±0.6 48.9±0.1 807±32.9 

Total S (mg/L) 28.8±0.9 25.9±0.9 59.1±0.6 55.2±0.4 8.9±0.1 8.4±0.06 11.1±0.05 151±10.2 

TKN (mg/L) 78.9±0.9 1.7±0.2 229±12.4 217±13.3 8063±285 4990±135 5005±119 2969±47 

PO4-P (mg/L) 8.4±0.3 0.3±0.06    845±16 827±5 485±2 

NH4-N (mg/L) 52.2±2.6 0.1±0.04    643±33 2304±22 1956±20 

Soluble Al (mg/L) Below detection limit Below detection limit      <DL 

Soluble Fe (mg/L) Below detection limit Below detection limit      5.1±0.07 

Soluble P (mg/L) 7.5±0.4 Below detection limit      563±4.8 

Soluble S (mg/L) 25.9±1.2 26±1.2      84.8±0.7 

TSS (g/L) 0.3±0.07  4.3±0.04 3.8±0.07    12.6±0.8 

VSS (g/L) 0.3±0.05  3.3±0.06 3.2±0.05    8.8±0.5 

TS (g/kg)     125±0.7 73.8±0.7 54.8±0.5  

VS (g/kg)     96±0.6 53.9±0.5 34.5±0.3  

Q (ML/d)d 56.20 0.85 (QWAS) 4.4 (QWAS) 0.23 (outflow) 0.37 (outflow) 0.37 (outflow) 0.36 (outflow) 

Reactor volume (m3)   14,398 70,000  360 10,636  

SRT (days)   17 16 1.6  22  

a) Bardenpho configuration; b) Oxidation ditch configuration; c) The concentrations of total Al, Fe, P and S (highlighted in the dark grey area) are measured in 

g/kg TS units; d) Daily total flow and reactor volume information were collected from SCADA data.  
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Figure A8. Plant-wide mass balance during baseline period monitoring at the full-scale WWTP. Data shown are means ± standard error of means. 



Appendix 

A10 
 

 

Figure A9. Plant-wide mass balance during experimental period monitoring at Oxley Creek WWTP. Data shown are means ± standard error of 

means.
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The water quality obtained after batch coagulation tests using ferric chloride and alum 

are presented in Table A4. Alum is extensively used in majority of the drinking water treatment 

plants in Australia. The purpose of conducting standard jar tests comparing the water treatment 

efficiency between ferric chloride and alum salts was to establish a proof of concept in 

Australian context that ferric chloride also performs ‘similar’ or ‘well’ in producing drinking 

water. With this aim, raw water was collected from a local water treatment plant in Brisbane 

where alum is dosed at a concentration of 95 mg-alum/L. In the experiments, an equivalent 

concentration of ferric chloride at 86 mg-ferric chloride/L was dosed, followed by testing the 

key water treatment parameters such as dissolved organic carbon (DOC), turbidity, UV254, 

specific UV absorbance (SUVA), and humic and fulvic acid-like substances. The obtained 

results of the jar tests (shown in Table A4) confirmed that both ferric chloride and alum 

coagulants perform well to produce drinking water. Such confirmation is crucial towards 

convincing and encouraging the local utilities to adopt ferric chloride coagulants in drinking 

water treatment process, which will create the opportunity to ‘reuse’ the ferric-rich drinking 

water sludge in subsequent wastewater treatment processes. 

The obtained water quality parameters using both coagulants are well within the 

practically obtained levels thereby indicating the feasibility of using ferric chloride as a 

coagulant for drinking water production which can be beneficially reused further in 

downstream wastewater treatment processes.  

Table A4. Water quality parameters before and after coagulation studies. 

Parameter Unit 
Raw influent 

characteristics 

Water quality achieved 

86 mg-

FeCl3.6H2O/L 

95 mg-

Al2(SO4)3.14H2O/L 

pH --- 6.45±0.12 5.5±0.03 5.9±0.01 

DOC mg/L 13.11±0.1 4.94±0.05 5.19±0.02 

Turbidity NTU 0.57±0.01 0.24±0.01 0.14±0.00 

UV254 cm-1 0.39±0.00 0.12±0.00 0.10±0.00 

SUVA L.mg-1.m-1 2.97 2.43 1.93 

Fulvic acid-like mg/L 5.89±0.07 2.22±0.01 2.42±0.08 
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Humic acid-like mg/L 2.85±0.03 0.94±0.00 0.98±0.04 

PO4-P mg/L <DL 0.02±0 0.02±0 

Soluble-Fe mg/L <DL <DL <DL 

Soluble-Al mg/L <DL <DL <DL 

 Rapid mix: 120 rpm (1 minute); Slow mix: 20 rpm (20 minutes); Settling time: 30 minutes. 

 Data represents means ± standard deviation (n=3). 

 <DL: below detection limit. 
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The dissolved organic matter present in the water samples were analysed by means of 

fluorescence excitation-emission matrix (EEM) using a PerkinElmer LS-55 luminescence 

spectrometer (PerkinElmer, Australia coupled with Winlabs software) in a 1 cm quartz cuvette. 

A detailed description of the procedures used can be found  elsewhere [2]. In brief, the 

fluorescence intensity was recorded at excitation wavelengths from 200 nm to 400 nm (at steps 

of 5 nm) and emission wavelengths ranging from 280 nm to 500 nm (at steps of 0.5 nm), 

resulting a 3-dimensional fluorescence EEM. To limit the second-order Raleigh scattering, a 

290 nm cut-off was used. Excitation and emission scan slits were set at 7 nm at a scan speed 

of 1200 nm/min with the photo multiplier voltage operated in automatic mode. Prior to 

analysis, samples were conditioned to ambient temperatures to minimize the temperature 

effect. Samples were diluted to avoid the interference of pH and the metal concentrations in 

the fluorescence output. Raman normalization followed by a blank subtraction was applied for 

all the fluorescence spectra obtained, according to [3]. Furthermore, fluorescence regional 

integration (FRI) was used to identify the contribution of different DOM regions to the spectra, 

as described in detailed in [4]. 

Table A5. Delimited fluorescence EEM regions, according to [2]. 

Fluorescence 

regions 
Excitation [5] Emission [5] 

Region I 300-325 375-405 

Region II 320-350 405-440 

Region III 230-260 380-470 
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Figure A10. Typical fluorescence EEM of the raw influent (top), ferric chloride (left 

bottom) and alum (right bottom) treated water. 
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Akaganeite (β-FeOOH) particles in ferric DWS were observed as ‘chunky’ and of 

various shapes (i.e. rectangular and rod like) with a size range between 100-200 μm (Fig. A11-

AB), regardless of sludge aging. Similar morphology of akaganeite was reported in a previous 

study [6]. Figure A11-C shows the EDS spectra with elemental analysis of the overall area of 

akaganeite (Fig. A11-A) and confirms that the mineral is an iron oxyhydroxide. 

  

 

 

 

Figure A11. (A-B) Morphology of akaganeite particles in ferric DWS and (C) EDS spectra 

of akaganeite (inset showing with EDS elemental analysis). Data presented are mean ± 

standard deviation (n=3). 

 

 

 

 

(B) (A) 

(C) EDS elemental analysis (atomic %) 

O - 53.96 ± 0.16 

Fe - 44.98 ± 0.11 

Cl - 1.06 ± 0.24 
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Figure A12 shows the sulfide removal efficiency at a ferric DWS dosing rate of Fe:S 

of 2:1 on a molar basis. The figure shows that near complete sulfide removal was achieved 

with obtained dissolved sulfide concentrations of 0.2 mg sulfide-S/L within 10 minutes of 

reaction. In addition to near complete sulfide removal, it can be seen that phosphate was also 

partly removed. The phosphate concentrations decreased by 7.56±0.6 mg-P/L, a reduction of 

43±0.5%. 

 

Figure A12. Complete removal of sulfide in sewage by ferric DWS achieved at a molar 

Fe:S dosing of 2:1 (under pH 7.1). Data presented are mean ± standard deviation (n=3).  
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(C) EDS of the overall 

area (atomic %) 

O 57.96 ±0.62 

Fe 19.58 ± 0.48 

P 1.97 ±0.15 

S 16.85 ±0.40 

Na 1.59 ±0.30 

Ca 1.21 ±0.09 

Si 0.83 ± 0.08 
 

 

 

Figure A13. (A) SEM micrograph of ferric DWS showing a smooth surface before dosing 

to sewage, (B) SEM micrograph of ferric DWS showing a rough surface after reacting 

with dissolved sulfide in sewage, (C-D) EDS elemental analysis of the FeS sludge (overall 

area of Fig. A13-B). Data presented are mean ± standard deviation (n=3). 

 

 

 

 

 

(A) (B) 

(D) 
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(B) EDS of the overall area (atomic %) 

Elements Atomic % Elements Atomic % 

O 68.51 ±0.16 Cl 0.97 ± 0.11 

Fe 13.52 ± 0.22 Ca 3.24 ±0.09 

P 9.63 ± 0.09 Si 0.83 ± 0.08 

S 3.35 ±0.08 K 0.78 ± 0.09 

 

 

Figure A14. (A) SEM micrograph of ferric DWS after P removal in aerated activated 

sludge. The rough surface with irregular particle deposition on sludge surface indicates 

the amorphous nature of the sludge caused by aeration, (B-C) EDS elemental analysis of 

the sludge (overall area as shown in Fig. A14-A) after P removal in aerated activated 

sludge. Data presented are mean ± standard deviation (n=3).  

 

 

 

 

(C) 

(A) 
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Figure A15. Results of batch FeS re-oxidation tests in aerated activated sludge showing 

the sulfate profiles. Sulfide concentrations were negligible at all times (data not shown).  

  



Appendix 

A20 
 

 

  

  

Figure A16. X-ray diffraction patterns showing the formation of vivianite along with other minerals in thickened SBR sludge and AD sludge after long-

term (A-B) in-sewer FeCl3 and (C-D) in-sewer ferric DWS dosing. 
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Table A6. Characteristics of DWS obtained from full-scale WTP, adapted from [7]. 

Parameter Units 
Concentration 

mean ± std. error 

Total suspended solids (TSS) g Solids L-1 16.3 ± 1.8 

Volatile suspended solids (VSS) g Solids L-1 9.2 ± 0.4 

Total COD g COD L-1 9.2 ± 0.3 

Soluble COD g COD L-1 0.5 ± 0.0 

Fe mg Fe/g Solids 157.87 ± 3.05 

Al mg Al/g Solids 7.69 ± 0.54 

Mn mg Mn/g Solids 4.82 ± 0.06 

Ni mg Ni/g Solids 0.03 ± 0.01 

Pb mg Pb/g Solids 0.19 ± 0.04 

Zn mg Zn/g Solids 0.14 ± 0.00 

Cu mg Cu/g Solids 0.07 ± 0.00 

Cd mg Cd/g Solids 0.01 ± 0.00 

P mg P/gSolids 1.16 ± 0.06 

S mg S/g Solids 2.24 ± 0.11 
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(B) EDS of the overall area  

(atomic %) 

O 59.49±0.36 

Fe 26±0.20 

Al 2±0.07 

Si 5.27±0.19 

Cl 1.11±0.03 

Ca 6.13±0.19 
 

 

 

Figure A17. SEM-EDS characterization of ferric DWS showing the (A) morphology of the DWS particles, (B) elemental analysis obtained from 

EDS analysis (n=5) and (C) EDS spectrum. 

(A) 

(C) 
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In order to quantify the amount of vivianite formed in the sludge, semi-quantitative XRD 

analyses were conducted by adding a known amount of α-Al2O3 (i.e. corundum, internal standard) to 

the sludge, followed by obtaining the diffraction patterns of the sludge with the standard. Afterwards, 

each of the mineral structures (found in the qualitative XRD such as vivianite, corundum and other 

minerals) were matched with data from PDF 4+ database (2019) and manually appended into TOPAS 

V-4.2 software. The operational parameters (i.e. goniometer radii, equatorial convolutions, axial 

convolutions, peak shift and intensity corrections) were then defined in the software, specifying the 

amount of corundum (wt%) added to the sludge. Subsequently, the simulation for each sludge was run 

following similar procedures and the amount of vivianite in the sludges was obtained with standard 

errors. In order to test the amount of vivianite obtained through the above procedure, synthetic vivianite 

was prepared in the lab [8] and added to the sludge. Table A7 shows the results of the standard vivianite 

addition tests and the data obtained from addition. 

 

Table A7. Verification of the accuracy of semi-quantitative XRD for vivianite quantification by 

standard vivianite addition (n=8). 

Sample types 
Initial vivianite in 

samples (%) 

Standard addition of 

vivianite (%) 

Vivianite according 

to semi-quantitative 

XRD (%) 

Control line  

AD sludge 
0 

4.5±0.1 4.23±0.63 

25±0.2 27±1.53 

Experimental line 

AD sludge 
16±1.3 

6±0.1 19±1.2 

20±0.3 33±2.3 
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Figure A18. Recovery efficiency (%) of vivianite from digested sludge via simple insertion of 

neodymium magnet (n=3). 
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The digested sludge liquor (receiving in-sewer FeCl3 and DWS dosing) was collected after 5 months of operation (i.e. with the highest amount 

of vivianite formed) in order to test the potential of vivianite recovery from the sludge by simply inserting neodymium magnets. Table A8 below shows 

the purity of the recovered vivianite obtained by means of semi-quantitative XRD analyses.  

 

Table A8. Results of semi-quantitative XRD analyses of the magnetically separated solids (n=3). 

Composition of 

magnetically separated 

solids 

Magnetite 

(%) 

Pyrite 

(%) 

Quartz 

(%) 

Struvite 

(%) 

Vivianite 

(%) 

XRD 

amorphous 

(%) 

Organic 

fraction 

(%) 

Inorganic 

fraction 

(%) 

Vivianite in 

inorganic 

fraction (%) 

in-sewer FeCl3 2±0.7 3±1 8±1.7 7±3.9 60±3.8 20±7.5 15±1.9 86±1.9 70±4.5 

in-sewer ferric DWS 1±0.3 2±0.5 2±0.6 3±1.7 35±2 57±3.3 28±4.7 72±4.7 49±2.8 
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EDS elemental analysis (atomic %) 
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EDS elemental analysis (atomic %) 
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Figure A19. SEM-EDS analyses showing (A) the aggregation of crystalline vivianite particles of synthetic vivianite prepared in the lab, 

(B) recovered vivianite from in-sewer FeCl3 dosed AD sludge  and (C) recovered vivianite from in-sewer DWS dosed AD sludge. Elemental 

composition of the samples are presented as mean ± standard deviation (n=10).

(A) (B) (C) 
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Figure A20. Visual representation of the recovery of Fe and P from vivianite via alkaline 

washing. The figure shows the magnetically extracted vivianite solution (A) before (Fe-P 

bound as vivianite) and (B) after the treatment (Fe released and precipitated while P in 

the suspension). 

(A) (B) pH ~7.1 pH ~13 
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Figure A21. SEM-EDS analyses of recovered Fe from vivianite showing (A-B) micrographs, (C) elemental composition obtained from EDS analyses 

(n=5) and (D) EDS spectrum.    

  

(C) EDS of the overall area (atomic %) 

O 61±1.8 

Fe 24±1.2 
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Table A9. Elemental analyses of vivianite solution (obtained through in-sewer FeCl3 and DWS 

dosing) before and after alkali treatment. Data presented are mean ± standard deviation (n=3). 

Parameters 

Vivianite solution  

before alkaline treatment 

(pH ~7.1) 

Vivianite solution  

after alkaline treatment 

(pH ~13) 

Ferric chloride dosing 

Fe-fraction 

Total-Fe (mg/L) 46.4±0.4 44.5±0.9 

Total-Fe (mg/g TS) 194.5±3.1 189.9±1.8 

Soluble-Fe (mg/L) 0.14±0 0.11±0 

P-fraction 

Total-P (mg/L) 31.4±0.2 29.5±0.2 

Total-P (mg/g TS) 114±1.8 11.7±1.1 

PO4-P (mg/L) 2.1±0.04 23.9±0.3 

Recovery 

(%) 

%Fe precipitated NA 97±1.3 

%P solubilized NA 90±0.3 

Ferric drinking water sludge dosing 

Fe-fraction 

Total-Fe (mg/L) 53.3±0.3 51.5±0.9 

Total-Fe (mg/g TS) 221.7±2.6 218.9±1.1 

Soluble-Fe (mg/L) 0.11±0 0.09±0 

P-fraction 

Total-P (mg/L) 24.3±0.2 28.6±0.3 

Total-P (mg/g TS) 107±2 14±1.2 

PO4-P (mg/L) 1.1±0.02 20.2±0.94 

Recovery 

(%) 

%Fe precipitated NA 97.6±0.3 

%P solubilized NA 87±1 
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(C) EDS of the selected area  

(atomic %) 

O 59±1.1 

Fe 22±1.4 

P 4±0.5 

S 11±0.9 

Ca 4±0.7 

  

Figure A22. Detailed characterization of ferrihydrite after direct reuse in real sewage; 

(A) X-ray diffraction patterns, (B) secondary electron image, (C) elemental composition 

obtained from EDS analyses (n=5) and (D) EDS spectrum. 

(D) 

(B) 

(A) 
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