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Abstract

The mass of the top quark is measured in lepton+jets top-quark pair events

with an experimental technique exploits the semileptonic decay of b hadrons.

An invariant mass is constructed between the lepton from the W -boson

decay and a soft muon originating from a b-hadron decay. A binned-template

likelihood fit is performed to the invariant mass distribution yielding the

most precise ATLAS measured value of the top-quark mass of mt = 174.44±

0.76 (stat+syst)GeV. Measurements of differential cross-sections of top-quark

pair production are performed as a function of several observables related to

the decay of the W boson and b hadron. These measured cross-sections are

compared to various predictions.
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Chapter 1

Introduction

The Standard Model of Particle Physics provides an wonderful description of the universe,

providing extremely accurate predictions of many phenomena. Quantum Electrodynamics,

which is part of the Standard Model, is frequently referred to as “the most precisely tested

theory in the history of science” due to the, almost impossibly, precise measurement of the

anomalous magnetic coupling of the electron, g [2]. In this measurement, g is measured to 11

decimal places, all of which match exactly with the prediction from Quantum Electrodynamics.

Although the Standard Model offers impressive predictions, it is clear that it is not the full

picture. For example, the Standard Model only describes three of the four fundamental forces

of the universe and there is no explanation for why the universe is dominated by matter instead

of anti-matter.

In order to find the cracks in the Standard Model, broadly two approaches can be taken. One is

to search for signs of new particles not predicted by the Standard Model by finding unexpected

bumps in invariant mass spectra. Finding such a bump would be considered a smoking gun that

something new had been found. The other, and slightly more subtle, method, is to measure

the parameters of the Standard Model to such precision that it becomes over-constrained and

therefore, the self-consistency of the theory potentially becomes questionable.

One such parameter is the mass of the top quark, which is not predicted by the Standard Model.

In this thesis a measurement of the top-quark mass is presented using a novel technique that
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1 Introduction

utilises a partial reconstruction of the top-quark decay products using an observable constructed

from the kinematics of associated leptons.

Precision measurement of Standard Model parameters requires a sound modelling of the physics

processes involved. In order to improve simulation of Standard Model physics processes,

measurements of well-understood differential cross-sections are used to inform the optimisation

of simulation parameters. A differential cross-section measurement is also presented in this

thesis using the same event selection and objects that are used for the top-quark mass extraction.

The differential cross-sections presented in this thesis show observables sensitive to the b-quark

fragmentation that have been measured in LHC data for the first time.

The layout of this thesis is as follows. Chapter 2 presents a brief overview of the Standard Model

and discusses in more detail the top quark and the motivation for top-quark mass measurements.

Chapter 3 gives an overview of the LHC accelerator complex and ATLAS experiment; the

simulation of physics processes and how they manifest in the ATLAS detector are outlined

in Chapter 4. Chapters 5 to 8 describe the event selection, data and simulation samples and

systematic uncertainties that are common to both the top-quark mass measurement and the

differential cross-section measurement. The extraction of the top-quark mass is detailed in

Chapter 9 and the results are discussed. Then in Chapter 10, the motivation for measuring

differential cross-sections, which stems from the top-quark mass measurement, is introduced

and the measurements of the differential cross-sections are presented. Finally, in Chapter 11,

the conclusions of both analyses are presented and a brief discussion of future work is outlined.
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Chapter 2

Theoretical foundations

In the following chapter, the theoretical foundations of particle physics are outlined. The top

quark is introduced and the motivation for studying its mass is discussed. Finally, an outline of

the top-quark mass measurement presented in this thesis is detailed.

2.1 The Standard Model

The Standard Model of particle physics (SM) is a theory that offers a description of the

observable Universe at the smallest scales. It encapsulates how the elementary particles

(quarks and leptons) interact with each other via the fundamental forces (electromagnetic, weak

and strong)1 and allows for precise calculations of properties of the Universe. These precise

calculations can then be tested with experimental data from a plethora of different experiments.

The SM is a quantum field theory (QFT) [3] and can be described by a Lagrangian density2.

Furthermore, the SM is what is known as a gauge theory, whereby the Lagrangian is invariant

under local transformations for certain symmetry groups. To demonstrate this, consider a

Lagrangian for free spin one-half particle particles,

L = Ψ̄(i/∂ −m)Ψ, (2.1)

1Gravity is not included in the SM however, it is described by the general theory of relativity.
2Shortened to Lagrangian in this thesis.
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2 Theoretical foundations 2.1 The Standard Model

where Ψ is the spinor field, /∂ is the derivative and m is the mass. For the one-dimensional

unitary symmetry group, U(1), the following local transformation can be defined,

Ψ(x)→ e−α(x)Ψ(x), (2.2)

where α(x) is a real function of x. In this case, Equation 2.1 is not invariant. In order to force

the Lagrangian to be invariant under the U(1) symmetry group, additional terms must be

included. By making the following substitution,

∂µ → Dµ ≡ ∂µ + iqAµ, (2.3)

where a new vector field, A, has been introduced that couples to the field Ψ with a coupling

strength q. This additional field is known as a gauge field. The Lagrangian obtained by

imposing invariance to U(1) transformations is in fact that of Quantum Electrodynamics, which

is discussed further in Section 2.1.2.

Another important property of gauge theories is that they are renormalisable. This means that

when infinities arise in calculations, normally from loop diagrams, there exists a method to

remove the divergences above some renormalisation scale, µR. This is an important property

which is discussed further in Section 2.1.2.

The full SM Lagrangian can be summarised as,

LSM = LGauge + LFermion + LHiggs + LYukawa. (2.4)

Each of the four parts will be discussed in more detail in the following sections. These sections

are based on Refs. [4–6].
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2 Theoretical foundations 2.1 The Standard Model

2.1.1 Fermion fields

All matter in the observable Universe is made up of fermions. Fermions are spin-1
2 particles

and are split into quarks and leptons. Protons and neutrons are made up of two types of quark,

up and down. With the addition of a lepton, the electron, nuclei can be formed which make

up most of the everyday world. The field responsible for fermions, is expressed in the fermion

term of the SM Lagrangian,

LFermion = iΨ̄ /DΨ, (2.5)

as Ψ. The symbol /D represents the covariant derivative, which arises as a consequence of

imposing a gauge symmetry. The covariant derivative dictates the interaction of the fermion

field with the gauge fields. In the case of the SM, the gauge fields propagate the strong, weak

and electromagnetic forces, which are discussed in Section 2.1.2.

In total there are 12 fermions (plus another 12 anti-particle counterparts) in the SM, six quarks

and six leptons. Both the quarks and leptons are arranged in three generations. In the quarks,

each generation has an up- and a down- type quark. They are differentiated by whether they

have a positive or negative charge. Each fermion also has a “handedness”. This is known as

chirality and can be either “left-handed” or “right-handed”. The quarks carry electric, weak

and coloured charges, which allow them to interact with all of the gauge fields. Within an

quark type, all generations of quarks are identical in electric, weak and colour charges; the only

thing that differs is their mass.

The leptons are arranged similarly into three generations. Again, there are two types per

generation and they differ by charge. Each electrically charged lepton has an electrically neutral

counterpart known as a neutrino.

In the SM, neutrinos are generally treated as massless. This is because, unlike the other

fermions, right-handed neutrinos have not been experimentally observed. However, it has been

shown experimentally that they have mass through the observation of neutrino oscillations.

Neutrino oscillations are the process by which a neutrino is produced as a given flavour and is
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Name Mass Charge Coloured?
u 2.16+0.49

−0.26 MeV +2
3 Yes

d 4.67+0.48
−0.17 MeV −1

3 Yes
c 1.27± 0.02 GeV +2

3 Yes
s 93+11

−5 MeV −1
3 Yes

t 173.34± 0.76 GeV +2
3 Yes

b 4.18+0.03
−0.02 GeV −1

3 Yes
e− 0.511± 3.1× 10−9 MeV −1 No
νe < 2 eV 0 No
µ− 105.66± 2.4× 10−6 MeV −1 No
νµ < 0.19 MeV 0 No
τ 1.77± 1.2× 10−4 GeV −1 No
ντ < 18.2 MeV 0 No

Table 2.1 List of the SM fermions and their properties [7].

later detected as another. This requires an extension to the SM whereby the neutrinos’ mass

eigenstate is different to the flavour eigenstate. The neutrinos interact with weak processes

in their flavour eigenstates but propagate through space in the mass eigenstates. The flavour

eigenstates are linear combinations of the mass eigensates and because each neutrino has a

different mass, the quantum mechanical phase of the mass eigensates will oscillate at different

rates as the neutrinos propagate through space. Once the neutrino is then absorbed by some

other weak process, the mass eignstates will be different to when it was emitted and therefore

the linear comnbination that makes up the flavour eigenstate will also be different.

As in the quarks, each lepton generation is identical to the others except for mass although,

currently, the mass hierarchy of the neutrinos is unknown. The leptons are colourless objects

so do not interact via the strong force. A list of the fermions in the SM is shown in Table 2.1.

.
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Name Mass [GeV] Charge Spin
W± 80.4 ±1 1
Z0 91.2 0 1
γ 0 0 1
g 0 0 1

Table 2.2 List of the SM gauge bosons and their properties [7].

2.1.2 Gauge fields

The SM is constructed as a quantum field theory that is invariant under the symmetry group,

SU(3)C ⊗ SU(2)L ⊗U(1)Y . (2.6)

Here, U(n) is the unitary group and SU(n) is the special unitary group of dimension n. These

symmetries are related to some conserved currents by Noether’s theorem [8]. The conserved

currents for the SM symmetry group are the colour C, the weak isospin L and the weak

hypercharge Y . As previously mentioned, in order to to satisfy the gauge invariance, each

symmetry in the symmetry group introduces additional gauge fields. The kinetic and self

interaction terms of the gauge fields is described by

LGauge = 1
4FµνF

µν . (2.7)

Here, FµνFµν is the scalar product of the gauge fields and the bosons which these fields give

rise to are summarised in Table 2.2.

Electroweak interaction Originally, electromagnetic and weak interactions were developed

independently. The electromagnetic interaction is described by a theory know as Quantum

Electrodynamics (QED) and is responsible for governing the interactions between electrically

charged particles via the photon. In QED, the photon is massless and the electromagnetic

interaction can propagate over an infinite range. The electromagnetic interaction has a coupling
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2 Theoretical foundations 2.1 The Standard Model

constant, ge, which is often expressed as αe = g2
e/4π = 1/137. The fact that αe is less than one

means that QED calculations can be computed perturbatively by expanding in powers of αe.

Often calculations will be described as leading order (LO) or next-to-leading order (NLO). At

LO the calculation has been expanded to first order of the coupling constant and at NLO the

second order. The weak interaction acts on left-handed fermions which carry the weak isospin

quantum number via the weak bosons. The weak bosons are massive and therefore the range

of the weak interaction is short.

Due to the difference in the ranges of the two interactions, it seems that the electromagnetic and

weak interactions are completely separate processes. However, Glashow, Salam and Weinberg [9–

11] were able to show that a gauge invariant theory, which combined both the electromagnetic

and weak interactions, could be constructed. This is what is referred to as electroweak unification

and the resulting electroweak interaction is described by the SU(2)L ⊗U(1)Y symmetry group.

Imposing the electroweak gauge symmetry requires the introduction of four gauge fields, W k
µ

where, k ∈ 1, 2, 3 and Bµ. These fields do not have a physical state, however; there instead

exists linear combinations of these fields that represent the physical fields associated with

bosons that can be observed. These are

Aµ = +Bµ cos θW +W 3
µ sin θW, (2.8)

Zµ = −Bµ sin θW +W 3
µ cos θW, (2.9)

W±µ = 1√
2

(W 1
µ ∓ iW

2
µ), (2.10)

where Aµ is the field of the photon, Zµ is the filed of the Z boson and W±µ are the fields of

the charged W± bosons. Here, the W bosons carry the weak charge and the Z boson and

photon carry the electric charge. The gauge symmetry requires the W± and Z bosons to be

massless, although experimentally these bosons are observed to be massive. In order to explain

this theoretically, another field must be introduced, the Higgs field, which will be discussed

further in Section 2.1.3. The quantity, θW, is known as the weak mixing angle. This relates the

masses of the W and Z bosons, as cos θW =
mW
mZ

.
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In the weak sector, the weak eigenstates are not the same as the mass eigenstates for quarks,

as is the case for neutrinos. The mixing is parameterised by the Cabbibo-Kobayashi-Maskawa

(CKM) matrix [12, 13]

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


. (2.11)

Each element in the CKM matrix, Vij represents the coupling between the quark i and j. The

magnitudes of the CKM matrix are [7]

|Vij | =


0.9738 0.2272 0.0040

0.2271 0.9730 0.0422

0.0081 0.0416 0.9991


. (2.12)

The W bosons that are generated by the linear combinations of the B and W 3 fields mediate

the weak charge. This means interactions involving fermions and W bosons will have different

flavours for the incoming and outgoing fermions.

Quantum Chromodynamics The SU(3)C symmetry describes Quantum Chromodynamics

(QCD), which governs the strong interaction. In QCD, colour charge is the conserved quantity.

The strong force is mediated by the gluon which is the boson associated with the gauge field.

Due to the SU(3)C having eight generators, this means there are also eight associated gauge

bosons, in this case the gluons. The gluons can carry one unit each of colour and anticolour

charge and are electrically neutral. Unlike the weak bosons, they are also massless.

The strength of the strong interaction is determined by the strong coupling constant, αs.

Contrary to the name, αs is not actually constant but instead is dependent on energy [14]

(referred to as the running of the coupling constant). In QCD, due to the gluons being colour

charged they have a self-interaction unlike photons in QED. The strong coupling constant can
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be expressed as

αs(Q2, µ2
R) = αs(µ2

R)

1 + αs(µ
2
R)

12π (11nc − 2nf ) ln(Q2/µ2
R)
, (2.13)

where Q2 is the energy scale of the interaction, the renormalisation scale, µR, nc is number of

colours and nf is the number of flavours of quark involved. At low energies, where Q2 → 0, the

coupling constant increases. A consequence of this is that at low enough energies, the coupling

constant has a value greater than one and therefore a perturbative expansion in αs will no

longer converge. Equation 2.13 can be rearranged into

αs(Q2, µ2
R) = 12π

(11nc − 2nf ) ln(Q2/Λ2
QCD(µ2

R))
, (2.14)

where Λ2
QCD(µ2

R) is the scale at which the perturbation series no longer converges. Below this

scale, QCD is said to be non-perturbative. Conversely, at high energies, the coupling constant

tends to zero. This process is known as asymptotic freedom.

A further result of the running of the strong coupling constant is that due to the larger coupling

constant at low energies, quarks must be bound in a colour neutral state. This phenomenon is

known as quark confinement and prevents quarks being found in isolation.

2.1.3 Higgs mechanism

As discussed in Section 2.1.2, the W± and Z0 bosons do not nominally have mass when imposing

the SM symmetry group on the Lagrangian. To allow these bosons to be massive, as they have

been confirmed to be experimentally, an additional scalar field must be introduced. This idea,

now known as the Brout-Englert-Higgs mechanism was proposed by three groups independently

in 1964 [15–18]. Each of the papers detailed the idea known as spontaneous symmetry breaking.

The proposed mechanism was to introduce a new scalar field φ and a potential of the form

V (φ) = µ2φ†φ+ λ(φ†φ)2, (2.15)
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where µ and λ are free parameters. Taking the case where λ > 0 and µ2 < 0, non-zero minima

occur at V (φ) = −µ2/2λ ≡ v. This value, v, is known as the vacuum expectation value which

is shown in in Figure 2.1. It can be seen that there is a plane in φ when the field is at a

minimum. When the field takes a value of φ that is located at the minimum, the field has a

non-zero value, which leads to the symmetry being spontaneously broken. Due to this symmetry

breaking, the W± and Z0 bosons gain mass terms in the Lagrangian, while maintaining gauge

invariance. There is also now an additional degree of freedom, which is the mass of the excitation

of this Higgs field, known as the Higgs boson (H ). The mass of the H boson is defined as

mH =
√

(λ/2)v where λ corresponds to the self-coupling of the H boson and v ≈ 246 GeV.

The gauge bosons will interact with the Higgs field through the following term, which is added

to the SM Lagrangian density:

LHiggs = (|Dµφ|
2 − V (φ)). (2.16)

The H boson was the final piece of the SM to be discovered when, in 2012, the ATLAS [19] and

CMS [20] Collaborations announced they had seen a particle whose properties were consistent

with those of a H boson. Although a mechanism for giving mass to bosons has been introduced,

the fermions also require a mechanism to allow them to be massive, while retaining gauge

invariance.

2.1.4 Yukawa coupling

In a SM without the Higgs field, the fermions must be massless to ensure gauge invariance. To

generate a mass for a field Ψ, quadratic terms of the form

mf Ψ̄Ψ (2.17)

are required. Under the SU(2)L ⊗U(1)Y electroweak symmetry, these terms are not invariant

and therefore the mass must be set to zero. The addition of the Higgs field results in the
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IM(φ)RE(φ)

V (φ)

Figure 2.1 Visualisation of the Higgs potential. The expectation value of the Higgs field, v, occurs at

any point on the plane of the minimum.

addition of terms of the form

LYukawa = ΨiyijΨjφ+ h.c.. (2.18)

These describe the interaction between the fermions and the Higgs field. Here, Ψ are the

fermion fields, φ is the Higgs field and yij is the given element of the Yukawa matrix, which

represents the strength of each interaction. The fermion mass, mf , is found to be proportional

to the vacuum expectation value of the Higgs field through the following relation

mf = yf
v√
2
. (2.19)

For the Yukawa coupling to work for neutrinos, a fine tuning down to extremely small values

would be required. Additional mechanisms have been proposed in order to generate the neutrino

masses such as the seesaw mechanism [21].
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2.2 Top quark physics

The top quark was first hypothesised by Kobayashi and Maskawa [12] in 1973 in order to explain

the observation of CP -violation in neutral Kaons. At the time there were only two generation

of fermions and their solution was to add a third. After the discovery of third generation

fermions, the τ lepton [22], and the bottom quark [23] in 1975 and 1977m respectively, the

discovery of the top quark seemed likely. However, it was not discovered until 1995, 22 years

after it was first proposed, by the CDF [24] and D0 [25] experiments at the Tevatron collider.

The top quark is the heaviest of the SM particles with a mass of around 173 GeV [26], around

that of a gold atom. The next largest particle is the Higgs, which has a mass of around 125

GeV [19] and the down-type counterpart of the top quark, the bottom quark, has a mass of

only 4.18 GeV [27]. Its large mass, both in absolute terms and relative to the other quark

masses, make the top quark interesting to investigate. Firstly, the large mass means that the

Yukawa coupling for the top quark is yt ∼ 1, suggesting that the top quark may play some

role in the Higgs mechanism. Secondly, the large mass means that the top quark has a very

short lifetime before it decays. The lifetime is τt ≈ 10−25 s [28], which is an order of magnitude

shorter than the average time taken for a quark to hadronise (10−24 s). This means that the

top quark decays before it has a chance to form a bound state and therefore allowing for the

study of a “bare” quark. By studying the decay products of the top quark, information about

its original state, such as spin correlations, can be inferred because the process of hadronisation

cannot have altered the top quark’s state.

2.2.1 Top quark production

2.2.1.1 Top quark pair-production

Generally at the LHC, top quarks are produced in pairs via the strong interaction. At LO, top

quarks can be produced via gluon-gluon fusion or quark-antiquark annihilation as shown in

Figure 2.2. At the LHC at a centre-of-mass energy of 14 TeV, around 90% of top-quark pairs

are produced via gluon-gluon fusion and 10% from quark-antiquark annihilation. This fraction
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t

t

(a) gg → tt

q

q

t

t

(b) qq → tt

Figure 2.2 Examples of production channels for top quark pair-production.

depends on the particles being collided and the centre-of-mass energy of the collisions,
√
s. The

LHC collides protons (pp) whereas the Tevatron collided protons with anti-protons (pp̄). In

pp̄ collisions, the annihilation process is more likely to happen because the anti-quarks can be

from the valence quarks of the anti-proton whereas in pp collisions the anti-quarks must come

from the quark sea. The other difference is that the higher
√
s the smaller the fraction of the

protons energy, x, is needed to reach the tt production threshold. These two effects can be

summarised in Figure 2.3, which shows the parton distribution function (PDF) of the proton.

The PDF describes the probability density for finding a particle of momentum fraction x and

at a resolution scale Q2. At low x, the gluon carries has a much larger probability density than

the quarks, as can be seen in Figure 2.3. This effect becomes more pronounced as
√
s increases.

2.2.1.2 Single top quark production

Top quarks can also be produced singly at the LHC, although this happens much less often than

tt production. Single top production is a weakly initiated process and therefore has a lower

cross-section than tt production. At the LHC, at LO, there are three single top production

channels; s-channel, t-channel and Wt-channel. The Feynman diagrams for each of these can

be seen in Figure 2.4.

2.2.2 Top quark decay

The top quark decays into a b quark and a W boson over 95% of the time [28]. The W boson

can decay either hadronically into two quarks or leptonically into a lepton and its corresponding
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Figure 2.3 The MSTW group 2008 NLO PDF for the proton as a function of the momentum fraction

x and at resolution scale Q2 = 10GeV2 (left) and Q2 = 104GeV2 (right) [29].

q
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q’

t

W

(a) The t-channel.

q

q

t
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W

(b) The s-channel.

b

g

W

t

(c) The Wt-channel.

Figure 2.4 The leading order channels for single top quark production.
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neutrino. The hadronic decay occurs 67.4% of the time [7]. The remaining 32.6% of the time

the leptonic decay occurs, with decays to each generation occurring roughly equally.

Due to the two possible decay modes of the W boson, there are three possible final states in a

tt event. These are:

• All hadronic: this channel occurs when both of the W bosons decay hadronically. This

gives a final state of tt → W+bW−b → bbq ′q ′′q ′′′q ′′′′. This channel has the largest

branching ratio (46% [28]) due to the W mainly decaying to hadrons. While this large

branching ratio means the number of events produced will be large, the nature of the

final state means it is challenging to distinguish between tt events of this type and those

in which multiple jets are produced.

• Dilepton: this channel occurs when both of the W bosons decay into a charged lepton

and the corresponding neutrino, resulting in a final state of tt → W+bW−b → bb`ν``ν`.

The channel contains two charged leptons in the final state, which can be measured more

precisely than hadrons, making it desireable for a precision measurement. The drawback

is that this channel has the lowest branching fraction (11% [28]) and therefore results

in the smallest event sample. Additionally, the presence of two undetectable neutrinos

makes reconstructing the tt system more difficult.

• Lepton+jets: this channel was seen as the golden channel at the Tevatron because it

has the best parts of the dilepton and all-hadronic channels. In the lepton+jets channel,

one of the W bosons decays hadronically and the other leptonically, resulting in a final

state of tt → W+bW−b → bb`ν`q
′q ′′. One W boson decaying hadronically increases

the size (the branching ratio in this case is approximately 44% [28]) of the event sample,

while the presence of a charged lepton helps more precisely reconstruct the system. For

the studies presented in this thesis, the lepton+jets channel is used.
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2.2.3 Top quark mass

The top-quark mass, mt , is an important SM parameter to measure. It plays an important role

in the stability of the Higgs vacuum. Current values for mt and the Higgs mass point towards

a metastable Higgs vacuum as shown in Figure 2.5. A metastable vacuum would imply that the

Higgs vacuum expectation value is a false vacuum and that the Universe appears to favour a

vacuum expectation value in local minimum and rather than a global one. If the vacuum was

found to be unstable, new physics at the TeV scale would be required. However, if it is only

metastable, there could still be new physics found but it is not required for the universe to be

in a metastable state.

The masses of the top quark, the Higgs and the W boson are correlated due to the presence of

higher-order quantum corrections to the top-quark mass in the electroweak sector. Therefore,

precisely measuring all three can lead to strong test of the internal consistency of the SM.

Inferring the top-quark mass from a combined electroweak fit involving direct mass measurements

of the W and Higgs bosons currently favours a higher value [30] than those from independent

direct measurements. This further motivates the desire for ever more precise measurements of

the top-quark mass.

The interpretation of the top-quark mass and its uncertainties has been discussed at length

by many theorists in recent times [31–33]. The main issue lies with how to interpret what

is measured in a collider experiment. The top mass is generally determined in two ways:

direct measurements or indirect measurements. In direct measurements, the top-quark mass

is determined by reconstructing, partially or fully, the decay products of the tt system. The

parameter measured in this case is often referred to as mMC
t , a parameter of the Monte Carlo

simulation rather than the SM mt . In these measurements, some observable related to the

reconstructed tt system is compared to a prediction from Monte Carlo simulation known as a

template. Unfortunately this parameter is not easily relatable to a parameter in the SM due to

the non-perturbative calculations of Monte Carlo simulations.

A more theoretically sound, while not perfect, parameter is what is known as the pole mass,

mpole
t . The mpole

t can be thought of a similar to the electron mass in QED which is the pole of
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the QED propagator. The advantage of this parameter is that it is gauge invariant at all orders

of perturbation theory and calculations can be evaluated at a given order. The issue is that in

a full QCD calculation, due to quark confinement, the quarks do not generate poles and this

ambiguity leads to large, irreducible corrections of the order of the QCD scale. The pole mass

is often determined from indirect measurements by looking at the total or differential cross

sections and comparing them to fixed order predictions.

The top-quark mass can also be defined in what is known as the modified minimal subtraction

scheme, MS, mMS
t . In this scheme the mass is scale dependent or runs in a similar way to the

coupling constants. The mMS
t must be defined at a given scale, µ and can be related to mpole

t

by

mpole
t = mM̄S

t (R,µ) + δmt(R,µ) (2.20)

where R is a scale parameter. The corrections δmt(R,µ) have recently been calculated to four

loops [34]. The current ambiguity between the top-quark pole mass and MS mass is estimated

to be below 250 MeV [32]. There are other schemes in which the top-quark mass can be defined

however, these three definitions are the most commonly measured at collider experiments in

recent years.

2.2.3.1 Previous top-quark mass measurements

There have been many measurements of the top-quark mass since its discovery in 1995.

Furthermore, many different techniques have been attempted. Figure 2.6 summarises the direct

top quark mass measurements from the ATLAS and CMS Collaborations. The current most

precise single measurement of the top-quark mass from direct measurements (corresponding

to mMC
t ) is from the CMS Collaboration using the lepton+jets channel [36] with an observed

top-quark mass of mt = 172.25± 0.08 (stat+JSF)± 0.62 (syst) GeV. The measurement uses

the ideogram method where the top-quark mass is fitted simultaneously with a jet energy scale

(JES) factor that is constrained using the W -boson mass. The simultaneous fitting of the jet
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Figure 2.5 The Higgs potential as a function of top quark and Higgs masses with regions of absolute

stability, meta-stability and instability highlighted [35].

energy scale factor helps reduced the associated uncertainty, which often dominates top-quark

mass measurements.

A summary of some recent indirect measurements of the top-quark mass are shown in Fig-

ure 2.7. The summary plot shows mass measurements using the inclusive tt cross-section and

differential cross-sections of tt production and tt production in association with a single jet.

The current most precise measurement is from the CMS Collaboration using triple differential

cross-sections [38]. In this case the measurements are used together with a fixed-order NLO

QCD calculation to extract values for both the strong coupling strength, αs, and the top quark

pole mass.

2.2.3.2 Top-quark mass measurement motivation and outline

The current best measurements of mt by the ATLAS Collaboration use direct reconstruction

techniques where the decay products of the tt system are reconstructed and compared to
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Figure 2.6 A summary of direct top-quark mass measurements from the ATLAS and CMS Collabora-

tions [37].

40



2 Theoretical foundations 2.2 Top quark physics

155 160 165 170 175 180 185 190
 [GeV]topm

ATLAS+CMS Preliminary  from cross-section measurementstopm
WGtopLHC Sep 2019

 from top quark decaytopm

ATLAS, 7+8 TeV comb. [11]
CMS, 7+8 TeV comb. [10]

total   stat
 theo)± syst ± tot (stat ± topm Ref.

) n-differential, NLOt(tσ

+1j) differential, NLOt(tσ

) inclusive, NNLO+NNLLt(tσ
ATLAS, 7+8 TeV [1]-2.6

+2.5172.9  

CMS, 7+8 TeV [2]-1.8
+1.7173.8  

CMS, 13 TeV [3] )-1.5
+1.2 1.5  ± (0.1 -2.1

+1.9169.9  

ATLAS, 13 TeV [4]-2.1
+2.0173.1  

ATLAS, 7 TeV [5])-0.5
+1.0 1.4  ± (1.5 -2.1

+2.3173.7  

CMS, 8 TeV [6])-1.6
+3.6  -3.1

+2.5 (1.1  -3.7
+4.5169.9  

ATLAS, 8 TeV [7])-0.3
+0.7 0.9  ± (0.4 -1.0

+1.2171.1  

ATLAS, n=1, 8 TeV [8] 1.2)± 0.8 ± 1.6 (0.9 ±173.2 

CMS, n=3, 13 TeV [9] 0.8±170.9 

[1] EPJC 74 (2014) 3109

[2] JHEP 08 (2016) 029

[3] EPJC 79 (2019) 368

[4] ATLAS-CONF-2019-041

[5] JHEP 10 (2015) 121

[6] CMS-PAS-TOP-13-006

[7] arXiv:1905.02302 (2019)

[8] EPJC 77 (2017) 804

[9] arXiv:1904.05237 (2019)

[10] PRD 93 (2016) 072004

[11] EPJC 79 (2019) 290

Figure 2.7 A summary of recent indirect top-quark mass measurements from the ATLAS and CMS

Collaborations [37].

simulated templates. The measurement in the lepton+jets channel achieved a precision of

±0.39(stat)±0.82(syst) GeV [39] and from the dilepton channel ±0.41(stat)±0.74(syst) GeV [40].

Common to both of these analyses is the dominant systematic uncertainty arising from the

measurement and modelling on the JES. In this thesis, an alternative direct reconstruction

method is presented that greatly reduces the dependence on the JES and its uncertainties.

In this method, instead of reconstructing the full decay products of the tt system, a partial

reconstruction based solely on final state leptons is used. An invariant mass, m`µ, is constructed

from the charged lepton, ` (` = e, µ) from the W boson decay and a muon, µ, from the

semi-leptonic decay of a b hadron. A Feynman diagram of the specific decay used and the

invariant mass can be seen in Figure 2.8. This invariant mass is sensitive to mt and is a purely

leptonic observable that is consequently relatively insensitive to JES uncertainties. Furthermore,

the boost-invariance of the observable will reduce sensitivity on the top-quark production

modelling compared to methods based on the decay of the W -boson alone [41] where modelling

systematics are often substantial. In order to reduce any bias in the measurement, the analysis
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is performed blinded. This means that the final fit result is not looked at until the analysis

optimisation is complete.

.

b

m`µ
q

q

`+

ν`

µµ

tt b
W−

W+

Figure 2.8 Feynman diagram of the decay channel used in the analysis.

This method was attempted at CDF as a “proof of principle” study [42]. Similar method using

the decay of J/ψ → µµ from the b-quark was also performed by CMS [43] however, due to the

small branching fraction b → J/ψ decay, the measurement had large statistical uncertainties.
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Chapter 3

The Large Hadron Collider and the ATLAS

Experiment

The following chapter describes the Large Hadron Collider and the ATLAS Experiment, which

was used to collect the data for the analyses presented in this thesis.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [44] is the world’s largest particle accelerator, located at the

European Centre for Nuclear Research (CERN) in Geneva, Switzerland. The LHC comprises a

27 km circumference ring of superconducting magnets and radiofrequency cavities currently

capable of accelerating protons to 6.5 TeV. Two beams circulate the ring in opposite directions,

colliding at four interaction points at a centre-of-mass energy of 13 TeV. Before entering the

LHC, protons are accelerated through a complex of smaller accelerators, depicted in Figure 3.1.

Hydrogen gas is fed from a bottle into the complex where it is ionised and accelerated to 50

MeV using a linear accelerator called LINAC2. The beam of protons is then injected into

the Proton Synchrotron Booster (PSB), a synchrotron made up of four superimposed, 25 m

synchrotron rings that accelerate the protons up to 1.4 GeV. From the PSB, the protons are

then directed to the Proton Synchrotron (PS), which accelerates the proton beam to 25 GeV.
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This 628 m circumference synchrotron not only accelerates protons from the PSB, but it can

also accelerate heavy ions from the Low Energy Ion Ring (LEIR). After the protons leave the

PS, they are passed to the Super Proton Synchrotron (SPS), the final stage before entering the

LHC. The SPS is a 7 km circumference synchrotron which, prior to the LHC era, was used to

accelerate proton and anti-protons and provided collisions to the UA1 and UA2 experiments.

The UA1 and UA2 experiments discovered the W± [45, 46] and Z [47, 48] bosons in 1983.

Currently, the SPS accelerates protons from 25 GeV up to 450 GeV1 and can deliver them

to either the LHC or one of the various fixed target experiments, such as NA62 [49]. Finally,

the protons are injected into two beam pipes, each accelerating protons in opposite directions

around the main ring. The LHC uses 1232 superconducting dipole magnets, each weighing 35

tonnes, to bend the proton beam around the accelerator. Two independent linear accelerating

radiofrequency cavities accelerate the protons in each beam up to 6.5 TeV.

Generally, protons are injected into the LHC in bunches of ∼ 1011 protons once every 25 ns. The

LHC uses 392 quadrupole magnets to focus the proton beams. A focussed beam is important

to providing a high instantaneous luminosity. Instantaneous luminosity is a measure of the

particle flux at a given point. Assuming two identically shaped beams, each with a Gaussian

profile independent of position along the bunch, the instantaneous luminosity L is given by

L = fnbN
2γ

4πεβ∗ F, (3.1)

where f is the collision frequency, nb is the number of bunches per beam, N is the average

number of protons per bunch, γ is the relativistic γ-factor of the beam and F is a geometric

factor that takes into account the bunch length and crossing angle. The emittance ε is a measure

of the beam quality and the amplitude β∗ is a measure of the beam size at the interaction point.

This amplitude function is controlled by squeezing the beam size using quadrupole magnets.

By reducing the size of the beam, the instantaneous luminosity can be increased.The values for

ε and β∗ vary between runs but are generally around ε = 3 µm and β∗ = 30 cm [50]. The total

1The protons delivered to the fixed target experiments are accelerated only to 400 GeVbefore delivery.
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Figure 3.1 A diagram of the CERN accelerator and experiment complex [52].

dataset size is expressed in terms of the integrated luminosity, which is given by

Lnt =
∫
Ldt, (3.2)

with the units normally given in inverse femtobarns (fb−1) for LHC experiments. For Run 2

of the LHC (2015-2016), the integrated luminosity was 36.1 fb−1. The typical instantaneous

luminosity is around 2× 1034 cm2 s−1 [51].

The LHC collides protons at four interactions points, each with a detector located at it. At

the interaction points the two beams are brought together and collided. Two of the detectors,

ATLAS and CMS experiments, are general purpose detectors. The other two are specialised

detectors for b-physics (LHCb), and heavy ion physics (ALICE).
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Figure 3.2 A cut-away diagram of the ATLAS detector, with the various subsystems labeled [53].

3.2 The ATLAS experiment

The ATLAS experiment (acronym for A Toroidal LHC ApparatuS) is the largest experiment on

the LHC ring by both volume and mass. The detector is a barrel shape with a length of 44 m

and a diameter of 25 m, weighing approximately 7000 tonnes. An illustration of the ATLAS

detector is shown in Figure 3.2. The ATLAS detector is a general purpose detector, combining

many different technologies. The detector is built radially outwards in layers, with different

technologies at each layer in order to detect a wide range of particles.

The ATLAS experiment comprises the detector itself as well as magnets, triggers and data

acquisition systems. There are four electromagnet systems that provide a strong magnetic field

across the detector to aid in identifying particles and measuring their momentum. Closest to the

interaction point is the inner detector, which precisely tracks the trajectories and momenta of

charged particles. Further out from the interaction point are the electromagnetic and hadronic
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calorimeter systems, which measure the energy and direction of particles. The outermost layer

of the detector is dedicated to the muon spectrometer used to identify muons and measure their

kinematics. Each of these sub-systems will be described in the following sections.

ATLAS uses a right-handed coordinate system with the interaction point as the origin. The x

axis points points towards the centre of the LHC ring, the y axis towards the surface and the

z axis along the beamline. A cylindrical coordinate system is also used where r is the radial

distance to the point of interest, θ is the polar angle in the z − y plane and φ is the azimuthal

angle in the x− y plane. Generally θ is not used in LHC experiments. Instead pseudorapidity,

defined as η = − ln tan θ
2 , is used becauase differences in η are Lorentz invariant under boosts

along the z axis.

3.2.1 Inner Detector

The Inner Detector (ID) [54], shown in Figure 3.3, is the detector sub-system that sits closest

to the interaction point and its purpose is to reconstruct charged particle tracks. The ID is

surrounded by a 2 T solenoid magnet (discussed further in Section 3.2.4). The magnetic field

bends the path of charged particle tracks, enabling the ID to measure their momentum. The

ID is composed of three subdetectors, each using a different and complementary technology.

These are the pixel detector, the semiconductor tracker and the transition radiation tracker.

Both the pixel detector and semiconductor tracker use doped silicon sensors to track charged

particles. As charged particles transverse the silicon, electron-hole pairs are produced. A

potential difference is applied across the silicon, which causes the electron-hole pairs to drift in

opposite directions. The charge from the electron-hole pairs is then collected at diodes.

The pixel detector is composed of the Insertable B-Layer (IBL) [56] and three more layers in

the barrel region. The IBL was installed in 2014 between Run 1 and Run 2. The IBL pixels

are closest to the centre of the beampipe at a radius of R = 33.25 mm with each pixel only

50× 250 µm2 in R× θz. The spatial resolution in Rφ for the IBL pixels is 8 µm and 75 µm in z.

The pixels in the other layers have an area of 50× 400 µm2 and extend out to a radius of 122.5
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Figure 3.3 The layout of the Inner Detector, with the key components labelled [55].
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mm. Their spatial resolutions are 10 µm in Rφ and 115 µm in z. There are 1968 silicon sensors

making up the pixel detector, covering |η| < 2.5, with a total of 86.4 million readout channels.

The semiconductor tracker (SCT) surrounds the pixel detector and uses similar silicon technology.

However, instead of pixels it comprises strips arranged in four layers in the barrel and nine

disks in the forward region. The strips are arranged in pairs at a stereo angle of 40 mrad and

have a resolution of 17 µm in Rφ and 580 µm in z. The SCT in the barrel region covers the

radius from 300 mm to 520 mm.

The transition radiation tracker (TRT) is the outermost part of the ID. It comprises around

137000 straw tubes filled with a mixture of Xe(70%), CO2(27%) and O2(3%). Inside each tube

is a gold-plated tungsten wire that acts as an anode, while the outer tube is the cathode. As

a charged particle passes through the straw, the gas is ionised and an electron avalanche is

detected as an electrical current in the wire. In the barrel region, the TRT comprises 50000 1.5

m long straw tubes arranged in parallel to the beam axis, at a radius of between 560−1070 mm.

In each end-cap there are 12000 0.4 m long straw tubes arranged perpendicular to the beampipe.

The spatial resolution of each straw is 170 µm, however, combining measurements from many

straws this reduces to 50 µm. The TRT aids in particle identification using transition radiation.

When a ultra-relativistic charged particle passes through the boundary of two materials with

different dielectric constants, the probability of the charged particle emitting radiation is

proportional to the γ factor. Therefore, the radiation produced will vary depending on the rest

mass of the charged particle.

For tracks with 1 < pT < 2 GeV and 0 < η < 0.2, the vertex resolution is around 60 µm for the

transverse impact parameter, d0, and 120 µm for the longitudinal impact parameter, z0 [57].

3.2.2 Calorimeters

Located outside the solenoid magnet is the calorimeter system. The purpose of the calorimeter

system is to measure the energy of charged and neutral particles. To do so, ATLAS uses

sampling calorimeters, which make use of alternating layers of dense absorption material and
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detecting scintillator material. As particles pass through the dense material, showers are

produced and the secondary particles are then detected in the scintillator material.

The ATLAS calorimeter system is divided into an electromagnetic calorimeter (EM) and a

hadronic calorimeter HCAL). The EM calorimeter measures the energy of electrons and photons,

whereas the hadronic calorimeter measures hadron energies. The combination of the ID and

calorimeter systems can measure most particles of the Standard Model, excluding minimum

ionising muons and neutrinos.

3.2.2.1 Electromagnetic calorimeter

The EM calorimeter system (ECAL) [58] uses liquid argon as the active scintillating material

and lead for the absorber. The system is divided into a barrel region covering |η| < 1.475 and

two end-cap regions covering 1.375 < |η| < 3.2. The ECAL is divided up into cells of different

dimensions. In the barrel region, it consists of three different granularities of cells that vary as

a function of the radius, as shown in Figure 3.4. The innermost layer of the EM calorimeter has

a very fine cell granularity in η, with dimensions of 0.0031× 0.98 in ∆η×∆φ. The second layer,

constituting the majority of the system, has a cell granularity of 0.025 × 0.025. Finally, the

outermost layer has the largest cell granularity at 0.05× 0.1 and is mainly used to discriminate

between electromagnetic and hadronic showers. In the region |η| < 1.8 there is a presampler

that measures the energy lost by electrons and photons before entering the calorimeter. This

has a cell granularity of 0.025× 0.1.

Additionally, there are two two-stage end-cap EM calorimeters in the forward regions covering

1.375 < |η| < 2.5 with three layers and 2.5 < |η| < 3.2 with two lower cell granularity layers.

Both wheels are constructed similarly to the barrel region.

3.2.2.2 Hadronic calorimeter

Beyond the EM calorimeter sits the HCAL, which measures the energy of hadrons which do

not interact in the the EM calorimeter. As with the EM calorimeter, the HCAL is composed
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Figure 5.4: Sketch of a barrel module where the different layers are clearly visible with the ganging
of electrodes in f . The granularity in h and f of the cells of each of the three layers and of the
trigger towers is also shown.

5.2.2 Barrel geometry

The barrel electromagnetic calorimeter [107] is made of two half-barrels, centred around the z-
axis. One half-barrel covers the region with z > 0 (0 < h < 1.475) and the other one the region
with z < 0 (�1.475 < h < 0). The length of each half-barrel is 3.2 m, their inner and outer
diameters are 2.8 m and 4 m respectively, and each half-barrel weighs 57 tonnes. As mentioned
above, the barrel calorimeter is complemented with a liquid-argon presampler detector, placed in
front of its inner surface, over the full h-range.

A half-barrel is made of 1024 accordion-shaped absorbers, interleaved with readout elec-
trodes. The electrodes are positioned in the middle of the gap by honeycomb spacers. The size
of the drift gap on each side of the electrode is 2.1 mm, which corresponds to a total drift time
of about 450 ns for an operating voltage of 2000 V. Once assembled, a half-barrel presents no

– 114 –

Figure 3.4 Diagram of the barrel region of the EM calorimeter [59].
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supplies which power the readout are mounted in an external steel box, which has the cross-section
of the support girder and which also contains the external connections for power and other services
for the electronics (see section 5.6.3.1). Finally, the calorimeter is equipped with three calibration
systems: charge injection, laser and a 137Cs radioactive source. These systems test the optical
and digitised signals at various stages and are used to set the PMT gains to a uniformity of ±3%
(see section 5.6.2).

5.3.1.2 Mechanical structure
Photomultiplier

Wavelength-shifting fibre

Scintillator Steel

Source

tubes

Figure 5.9: Schematic showing how the mechan-
ical assembly and the optical readout of the tile
calorimeter are integrated together. The vari-
ous components of the optical readout, namely
the tiles, the fibres and the photomultipliers, are
shown.

The mechanical structure of the tile calorime-
ter is designed as a self-supporting, segmented
structure comprising 64 modules, each sub-
tending 5.625 degrees in azimuth, for each of
the three sections of the calorimeter [112]. The
module sub-assembly is shown in figure 5.10.
Each module contains a precision-machined
strong-back steel girder, the edges of which
are used to establish a module-to-module gap
of 1.5 mm at the inner radius. To maximise
the use of radial space, the girder provides both
the volume in which the tile calorimeter read-
out electronics are contained and the flux return
for the solenoid field. The readout fibres, suit-
ably bundled, penetrate the edges of the gird-
ers through machined holes, into which plas-
tic rings have been precisely mounted. These
rings are matched to the position of photomul-
tipliers. The fundamental element of the ab-
sorber structure consists of a 5 mm thick mas-
ter plate, onto which 4 mm thick spacer plates
are glued in a staggered fashion to form the
pockets in which the scintillator tiles are lo-
cated [113]. The master plate was fabricated
by high-precision die stamping to obtain the dimensional tolerances required to meet the specifica-
tion for the module-to-module gap. At the module edges, the spacer plates are aligned into recessed
slots, in which the readout fibres run. Holes in the master and spacer plates allow the insertion of
stainless-steel tubes for the radioactive source calibration system.

Each module is constructed by gluing the structures described above into sub-modules on a
custom stacking fixture. These are then bolted onto the girder to form modules, with care being
taken to ensure that the azimuthal alignment meets the specifications. The calorimeter is assembled
by mounting and bolting modules to each other in sequence. Shims are inserted at the inner and
outer radius load-bearing surfaces to control the overall geometry and yield a nominal module-
to-module azimuthal gap of 1.5 mm and a radial envelope which is generally within 5 mm of the
nominal one [112, 114].

– 122 –

Figure 3.5 Drawing of a tile calorimeter section [59].

of different subsystems in different regions. Located in the barrel region |η| < 1.7 is the tile

calorimeter [60]. The tile calorimeter uses steel absorber plates and plastic scintillator tile

elements with three segmented layers. In the first two layers the cell granularity is 0.1× 0.1 in

η × φ and 0.2× 0.1 in the final layer. A drawing of a tile module can be found in Figure 3.5.

In the forward region at 1.5 < |η| < 3.2 are the hadronic end-cap calorimeters, which are also

liquid argon sampling calorimeters. These end-cap calorimeters use copper as the absorber

material with a width of 25 mm in the inner wheels and 50 mm in the outer. The hadronic

end-cap calorimeters sit behind the EM end-cap calorimeters.
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3.2.2.3 Forward calorimeters

Further sampling calorimeters [58] are used in the extreme forward region at 3.1 < |η| < 4.9,

which act as both electromagnetic and hadronic calorimeters. These calorimeters again use

liquid argon as the active material; however, for the absorber layer both copper (for EM) and

tungsten (for hadronic) are used. The granularity at |η| = 3 is around 0.15× 0.15 in η × φ and

0.3× 0.3 at |η| = 4.5.

3.2.2.4 Calorimeter performance

The energy resolution of calorimeters can, in general, be parameterised as,

σE
E

= a√
E
⊕ b⊕ c

E
, (3.3)

where ⊕ is the sum in quadrature, a is the constant in the stochastic term, b is a constant

term, c is the constant in a term related to electronic noise and E is the energy in GeV. The

stochastic term, is due to statistical fluctuations in the shower, dead material in the calorimeter

or sampling fluctuations. The constant term is due to calibration uncertainties and detector

non-uniformity and the final term in Equation 3.3 parametrises effects from electrical noise.

The performance of the calorimeter systems has been determined using test beam experiments

and using electron and pion test beams. The resulting resolution for the barrel EM calorimeter

is [61],

σE
E

= (10.1± 0.4)%×
√
GeV√

E
⊕ (0.4± 0.1)%. (3.4)

For the hadronic calorimeters, pion test beams were directed at a combined module of liquid

argon electromagnetic and hadronic tile calorimeters. In this case, the energy resolution was

observed to be [62],

σE
E

= 1.6GeV
E

⊕ (52.0± 1.0)%×
√
GeV√

E
⊕ (3.0± 0.1)%. (3.5)
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3.2.3 Muon system

The outermost layer of the ATLAS detector is the muon spectrometer (MS) [63]. Its role

is to detect and measure the energy and momenta of particle that have passed through the

calorimeters. The majority of these particles will be muons, which do not deposit much of

their energy in the calorimeters. The muon spectrometer consists of four different technologies:

Monitored Drift Tubes (MDT), Cathode Strip Chambers (CSC), Resistive Plate Chambers

(RPC) and Thin Gap Chambers (TGC). The layout of the muon spectrometer is shown in

Figure 3.6. The MDT and CSC are primarily used for precise tracking, while the RPC and

TGC for fast triggering. The MS is immersed in a magnetic field provided by ATLAS’s toroidal

magnet system (discussed further in Section 3.2.4). This magnetic field bends the path of the

charged particles to aid in determining their momenta.

3.2.3.1 Monitored drift tubes

The monitored drift tube chambers [64] the region 0 < |η| < 2.7 with between three and eight

layers of 30 mm diameter tubes that work in a similar way to the TRT. Each tube contains

a Tungsten-Rhenium wire and is filled with a mixture of Ar and CO2 held at a pressure of 3

bar. The spatial resolution of a single MDT is 80 mm; however, this is enhanced by having

multiple layers of tubes per module to an average of 35 mm in the z direction. These MDTs

cover around 99.5% of the active detector area.

3.2.3.2 Cathode strip chambers

The remainder of the active detector area not covered by the MDTs, is instead covered by

cathode strip chambers [65]. These CSCs are present in the high-flux region of the detector

at 2.0 < |η| < 2.7 to help provide finer granularity and to cope with higher rate. Again, the

CSCs use a similar principle as the TRT and MDTs to operate. The difference is that instead

of using tubes, there are cathodes strips above and below the anode wires. One set of wires

runs perpendicular to the wires and the other in parallel to provide radial and transverse
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measurements. The CSCs have a combined resolution of 40 µm in η and 4 mm in φ. The

combination of the CSCs and MDTs provide a pT resolution of σpT
/pT ≈ 10% for muons with

a pT = 1 TeV [63].

3.2.3.3 Resistive plate chambers

The resistive plate chambers are used to quickly identify muons for triggering. They are made

of two parallel resistive plates with a gas filling the volume between them. The plates are

kept at a potential difference of 9.8 kV. As a muon passes through the chamber, the gas is

ionised, causing an avalanche of electrons which are collected on aluminum strips on the back

of the plates. The RPCs have a short response time of less than 25 ns, which allows quick

identification of muons and therefore fast triggering.

3.2.3.4 Thin gap chambers

As with the measurement of muon kinematics, the identification of muons is achieved with

a second system in the forward region. In the end-cap between 1.05 < |η| < 2.4, thin gap

chambers are used because of their ability to withstand much higher flux while still maintaining

< 25 ns response time. The TGCs are multi-wire proportional chambers that function in a

similar manner to the CSCs. The main difference is the distance between the cathode cases

and the anode wires. The wires are arranged such that the resolution in r is 2− 6 mm and 7

mm in φ. The combination of the RPCs and TGCs provide fast identification for triggering.

3.2.4 Magnets

The ATLAS detector uses 4 superconducting magnet systems to aid the measurement of charged

particle momentum. These magnets produce large magnetic fields that bend the path of charged

particles. The curvature of the particle path is proportional to the momentum and therefore

by measuring the curvature, the momentum can be calculated. An illustration of the magnet

system can be seen in Figure 3.7.
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Figure 3.6 A computer generated image of the muon system [66].
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Figure 2.1: Geometry of magnet windings and
tile calorimeter steel. The eight barrel toroid
coils, with the end-cap coils interleaved are
visible. The solenoid winding lies inside the
calorimeter volume. The tile calorimeter is
modelled (section 2.2.2) by four layers with dif-
ferent magnetic properties, plus an outside re-
turn yoke. For the sake of clarity the forward
shielding disk (section 3.2) is not displayed.

Figure 2.2: Bare central solenoid in the factory
after completion of the coil winding.

phases. The cold-mass and cryostat integration work began in 2001. The first barrel toroid coil
was lowered in the cavern in fall 2004, immediately followed by the solenoid (embedded inside the
LAr barrel calorimeter). The remaining seven barrel-toroid coils were installed in 2004 and 2005,
and the end-cap toroids in the summer of 2007.

2.1.1 Central solenoid

The central solenoid [2] is displayed in figure 2.2, and its main parameters are listed in table 2.1.
It is designed to provide a 2 T axial field (1.998 T at the magnet’s centre at the nominal 7.730 kA
operational current). To achieve the desired calorimeter performance, the layout was carefully
optimised to keep the material thickness in front of the calorimeter as low as possible, resulting
in the solenoid assembly contributing a total of ⇠ 0.66 radiation lengths [9] at normal incidence.
This required, in particular, that the solenoid windings and LAr calorimeter share a common vac-
uum vessel, thereby eliminating two vacuum walls. An additional heat shield consisting of 2 mm
thick aluminium panels is installed between the solenoid and the inner wall of the cryostat. The
single-layer coil is wound with a high-strength Al-stabilised NbTi conductor, specially developed
to achieve a high field while optimising thickness, inside a 12 mm thick Al 5083 support cylin-
der. The inner and outer diameters of the solenoid are 2.46 m and 2.56 m and its axial length
is 5.8 m. The coil mass is 5.4 tonnes and the stored energy is 40 MJ. The stored-energy-to-mass
ratio of only 7.4 kJ/kg at nominal field [2] clearly demonstrates successful compliance with the
design requirement of an extremely light-weight structure. The flux is returned by the steel of the
ATLAS hadronic calorimeter and its girder structure (see figure 2.1). The solenoid is charged and
discharged in about 30 minutes. In the case of a quench, the stored energy is absorbed by the en-
thalpy of the cold mass which raises the cold mass temperature to a safe value of 120 K maximum.
Re-cooling to 4.5 K is achieved within one day.
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Figure 3.7 A computer generated image of the magnet system [59].

As mentioned in Section 3.2.1, the ID is surrounded by a 2 T solenoid magnet [67]. The solenoid

sits between the ID and the ECAL. It has been designed to be thin and light so as to minimise

the probability of particles interacting with it as they pass through.

There are several toroidal magnets in the outer regions of the ATLAS detector. In the barrel

region (|η| < 1.35) there are eight magnets [68], producing on average, a 0.6 T magnetic field. In

the forward region, from 1.55 < |η| < 2.7, are the end-cap toroids [69]. Each end-cap contains

eight toroids, which produce on average, a 1 T magnetic field. The combination of the solenoid

magnet bending particles in one direction and the different toroidal magnets bending particles

in another direction aids in the precise measurement of muon kinematics.

3.2.5 Trigger and data acquisition

Currently, the LHC collides protons with a bunch spacing of 25 ns, which equates to an event

rate of 40 MHz. Reading out every part of the detector (around 100 million channels) at this
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Figure 3.8 A diagram of the ATLAS trigger and data acquisition system [72].

rate would be unfeasible, requiring huge bandwidth. In addition, many of the events are not

particularly interesting or useful for analysis. To select only interesting events and reduce the

rate, ATLAS employs a two-stage trigger system. The fist stage, known as the Level 1 (L1)

trigger [70], utilises extremely fast, custom hardware. The second stage is known as the High

Level Trigger (HLT) [71], which uses commercial PCs and software-based algorithms. While

the trigger system makes a decision on a given event, the data acquisition system buffers the

data from the various subdetectors and controls whether the data is saved. A diagram of the

ATLAS trigger and data acquisition system can be seen in Figure 3.8.
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3.2.5.1 Level 1 trigger

The L1 trigger reduces the rate from 40 MHz down to around 100 kHz using ASIC/FPGA-based

hardware. The custom hardware has the trigger algorithms built in, allowing for a decision

to be made in less than 2.5 µs. To make the decision, the L1 trigger uses reduced-granularity

input from the calorimeters and muon spectrometer. Using this information it can identify high

pT objects such as electrons, muons, jets and hadronically decaying taus. If an event contains

an object that passes the L1 trigger requirement, the Region-of-interest (ROI) is passed onto

the HLT.

3.2.5.2 High level trigger

The HLT system is implemented in software and is run on a 40000 core commercial computing

cluster. Once a L1 accept signal is received, the HLT can make use of the full granularity

information from the detector ROI to make a decision. Due to the reduced input rate, the HLT

is able to make use of parallel processing. Algorithms are combined into chains that can be

executed in parallel. Early algorithms will build more simple objects which can then be used to

make a trigger decision. This saves time by not running the more complex and time consuming

algorithms later on.

If an event passes all of the HLT requirements, the event is read out and saved in permanent

storage. The final output rate from the HLT is around 1 kHz, which is far more manageable

than the original input rate of 40 MHz.

3.2.5.3 Read out system

The ATLAS readout system (ROS) [73] acts as a buffer for the data while the HLT is making a

decision and then handles requests for data fragments. If the event is accepted by the HLT, the

data is then written to disk, otherwise it is deleted. The ROS is implemented on around 100

commercial PCs, each with four custom RobinNP cards. The data is input into the PCs using

1850 optical links at a rate of 100 kHz. At the output rate of 1 kHz, the data transfer rate is
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around 1 GB/s, which is sent via a network to the CERN Worldwide LHC Computing Grid

(WLCG) [74]. The WLCG is a global network of compute and storage clusters that is shared

by all LHC experiments.

3.2.6 Luminosity measurements

In order to measure the luminosity delivered to the ATLAS detector, three subdetectors are

used. The one located closest to the interaction point is the LUminosity measurement using

a Cherenkov Integrating Detector (LUCID) [75]. LUCID uses Cherenkov detectors located

17m either side of the interaction point. Next, the Zero Degree Calorimeters (ZDC) [76] are

located 140m from the interaction point on either side of the ATLAS detector. Both of these

subdetectors measure neutral particles from meson decays in the forward regions. Finally, at

240m from the interaction point, the Absolute Luminosity For ATLAS (ALFA) [77] detector is

located. This subdetector measures elastic proton-proton collisions at very low angles.
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Chapter 4

Data simulation and object reconstruction

In order to test the SM using the ATLAS detector, an understanding of how the physics

will manifest in the detector must be established. In this chapter, the idea of Monte Carlo

simulation is introduced as a method of producing predictions that experimental data can be

compared to. A description of the various physics objects that can be reconstructed in the

ATLAS detector is then provided.

4.1 Monte Carlo simulation

To understand what the final state of any given physics process will look like would look like,

Monte Carlo simulation (MC) is used to model both the initial and final state of the process of

interest, as well as the propagation of particles through the detector. The same reconstruction

algorithms used to reconstruct data (discussed in Section 4.2) are also applied to all MC

samples.

4.1.1 Event simulation

The simulation of each event is broken up into several stages as can be visualised in Figure 4.1.

The simulation starts with the incoming protons (shown as two dark green ovals). From these,

the initial-state partons are extracted and their momenta determined using the proton PDFs.
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The cross section for the hard scatter (shown as a red dot) is determined from the fixed order

matrix element (ME) and integrated over the phase space of the final state particles, which are

shown in the figure as the red lines/dots leaving the hard scatter. The ME calculation also

predicts their momenta.

The particles produced by the hard scatter then undergo a process of parton showering, where

the quarks and gluons produce a “shower” of further coloured particles (gluons, plus quark-

antiquark pairs produced via gluon splitting). These are shown in blue in the figure, along with

the coloured particles that make up the proton remnants. The parton showering process is

modelled by the DGLAP equations [78] until the energy scale is below 1 GeV. At the end of this

process, all coloured particles that remain will recombine to form colourless hadrons (shown in

dark green) in a process known as hadronisation (depicted by the light green disks in the figure).

Additional QED radiation may also be emitted from the final state particles (shown in yellow).

As well as the original hard scatter, additional interactions between other partons within the

proton must be included (known as the underlying event). These may include additional hard

interactions. Finally, pile-up collisions also overlaid, which originate from collisions of other

protons in the beam.

Simulating the particle interactions is extremely complex, due to the number of particles

involved in any individual interaction. For the non-perturbative parts of the calculation, such

as the hadronisation, models are used to approximate these processes. There exist models to

approximate the fraction of the parent quark momentum which is carried into the meson which

forms from it, known as fragmentation functions. Depending on the MC simulator, different

paramaterisations of the fragmentation function are used.

For hadronisation, two main models exist, the string model [79] and the cluster model [80]. In the

Pythia event generator [81] the string model is used whereas the Herwig event generator [82]

uses the cluster model. The differences in performance of these models can be used to assess

the uncertainty due to the model chosen. This will be discussed further in the coming chapters.
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Figure 4.1 A computer generated diagram of the event generation process [83].

Each MC generator comes with many tunable parameters. In order to give the best possible

description of nature, these parameters must be optimised, or tuned, using experimental datasets

of events produced via well-understood physical processes.

4.1.2 Detector simulation

The output of the MC event generation process is used as an input to a simulation of the

ATLAS detector. This simulation describes all of the detector material and geometry, as

well as any defects in the material or electrical problems. The simulation is built using the

GEANT4 [84–86] simulation software, which, like the event generation models, is tuned and

calibrated to ensure the accuracy of the model. Problems such as radiation damage to detectors

must be calibrated for over time. The output of the detector simulation is reconstructed in the

exact same way as data to allow the two to be compared directly.
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The simulation of the passage of particles through the detector is very computationally expensive.

This is mainly due to simulation of the calorimeters because it is extremely time consuming

to simulate the particle showers. To speed this up, an approximate simulation, ATLASFAST-II

(AFII) [87], is often used. This approximate model simulates the particle showers in the

calorimeters using parameterised functions applied to particle energy, rather than carrying out

the full shower simulation.

4.2 Object definitions

Using the data that has been collected or the MC simulation produced, the electrical signals

from the detector (or simulation of detector) need to be translated into physics objects that can

be used for physics analysis. To do so, reconstruction algorithms are applied to the data and

MC. This next section details the physics objects used in the analyses presented in this thesis.

4.2.1 Tracks and vertices

Starting from the centre of the detector, the ID is used to reconstruct tracks. Tracks are a

key physics object used to reconstruct many other physics objects and to identify vertices. A

track is reconstructed using hits in the ID to map the path of a charged particle traversing

through the IDt. As discussed in Section 3.2.4, the solenoid magnet bends the path of the

charged particle and it is the curvature of the track which is used in the determination of the

particles momentum.

In order to reconstruct a track, the pixels and strips in the ID are grouped together if they have

significant energy deposits. From this a collection of space-points are defined using connected

component analysis and those from the inner most layer of the SCT are used as track seeds.

Expanding to the outer layers from the track seeds produces track candidates. These track

candidates are then fitted using a Kalman filter [88]. Any scattering of the track by the detector

material is taken into account by the Kalman filter. Using the χ2 of the fit and the number

missing hits, poor quality tracks are rejected. The tracks are then extended to the TRT and
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the final reconstructed tracks are built by fitting using all parts of the ID. Each track can then

be described with five parameters: the transverse impact parameter d0, the longitudinal impact

parameter z0, azimuthal angle φ, polar angle θ and the charge momentum ratio q/p.

Once tracks are identified, they are used to find primary and secondary vertices by looking for

the points from which the tracks emerge. These vertices are found using an adaptive fitting

algorithm [89]. The primary vertex is then defined as the pp interaction vertex which has

the highest sum of transverse momentum. This vertex is most likely to be from where the

hard-scatter originates. All other vertices are then labelled as secondary vertices. The primary

vertex is used to identify the hard-scatter interaction in the event, whereas the secondary

vertices are from further decays from long lived particles or from other interactions. Tracks

may also come from from pile-up. Pile-up tracks originate from other pp interactions in the

beam which do not contain the hard-scatter interaction. There are two types of pile-up, in-

and out-of-time. In-time pile-up comes from tracks that originate from the same event whereas

out of time pile-up originates from a different event. Secondary vertices are used to identify

b-hadrons and will be discussed further in Section 4.2.5.

4.2.2 Electron reconstruction

Electrons (and positrons) are reconstructed by matching tracks with deposits in the ECAL.

The ECAL is divided into towers of approximately the granularity of the second calorimeter

layer. The energy deposited in the first, second and third calorimeter layers in each tower is

summed. Electron cluster candidates are seeded from a sliding-window algorithm using 3× 5

towers in η × φ space [90] by identifying clusters with a total energy above 2.5 GeV, where the

cluster energy is the sum of the corresponding tower energies. Tracks are then matched to the

electron clusters using the cluster seed position. If more than one track matches with a given

cluster, the match that is closest is chosen. If there are no matches, the cluster is considered to

be a photon candidate instead. The single electron reconstruction efficiency is above 99% for

electrons with ET > 20 GeV [90]. Here, ET is the energy of the object in the plane transverse

to the beam axis.
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In order to ensure that only genuine electron candidates are used for physics analysis, a

multivariate likelihood (LH) based identification is used. The LH is built from inputs from each

layer of the calorimeter, the track parameters and the track-cluster matching. A likelihood for

both signal and background is used to calculate a discriminant on which the identification is

based. There are three working points used: Loose, Medium and Tight which vary how strict

the identification requirements are. The efficiency of identifying an electron at ET = 40 GeV

for the three working points are 93%, 88% and 80% respectively [90].

The electrons must also be isolated. This is quantified through the electron isolation isolation

that quantifies how much other activity surrounds an electron in the detector. There two

methods to require isolation; calorimeter and track-based isolation. In calorimeter isolation,

a cone of some ∆R size around the electron candidate is formed and the sum of the energy

deposits within the cone is calculated. The ∆R criteria will vary depending on the working

point chosen. After subtracting the electron energy deposits, selection requirements can be

made to require there be little extra energy deposited in the calorimeter near the electron.

Track-based isolation works in a similar way by defining a cone, but in this case, the number of

tracks within the cone are counted. Various combinations of these two requirements make up

the different working points, which can be found in [90].

4.2.3 Muon reconstruction

Muons are built using information from both the ID and the MS. First, the tracks in each

subsystem are reconstructed independently. In the ID, muon tracks are reconstructed as

discussed in Section 4.2.1, as are any charged particle tracks. In the MS, hit patterns are

sought in each of the muon chambers using a Hough transform [91]. Seed track segments are

formed and then track candidates are selected using a combinatorial search [92]. For each track

candidate, the hits are fitted with a global χ2 fit and the candidate is accepted if the χ2 meets

a given criterion.

66



4 Data simulation and object reconstruction 4.2 Object definitions

To build the combined ID-MS muons, algorithms are used based on the information from the

ID, MS and calorimeters. The different combinations of input information leads to four different

types of reconstructed muons:

• Combined muons (CB): tracks are reconstructed independently in the ID and MS then

a combined track is formed using a global refit. Tracks are generally first reconstructed in

the MS and then extrapolated into the ID and matched to a track. The inverse approach

is sometimes used.

• Segment-tagged muons (ST): tracks from the ID are extrapolated to the MS and if

one local track segment in the MS is associated with it, the track is classified as a muon.

These are usually low pT muons or those that fall in reduced acceptance regions of the

MS.

• Calorimeter-tagged muons (CT): ID tracks that are matched to an energy deposit

in the calorimeter that is compatible to a minimum ionising particle is classified as a CT

muon. These muons have low purity but are useful for identifying muons which fall in

the region of the MS where cabling and infrastructure run.

• Extrapolated muons (ME): the reconstructed trajectory of ME muons uses only the

MS track and some loose requirement that its origin is the interaction point. The ME

muons are used to extend reconstruction acceptance to areas not covered by the ID.

If two muon types share ID tracks CB tracks are favoured. For ME muons, any overlapping

tracks are removed by selecting the best quality fit with the highest number of hits.

For muon identification, muons from W decays are considered prompt muons whereas those

coming from pion or kaon decays are non-prompt muons. Requirements are placed on muon

candidates in order to suppress the contribution from non-prompt muons. In CB tracks, the

variables commonly used to distinguish between prompt and non-prompt muons are:

• q/p significance: the absolute difference of the ratio of charge and momentum of muons

from the ID and MS divided by the sum in quadrature of the uncertainties.
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• ρ′: the absolute difference between the pT from the ID and MS, divided by the pT of the

combined track.

• χ2: the normalised χ2 of the combined track fit.

There are four muon identification working points; Medium, Loose, Tight and High-pT [92].

• Medium muons: This is the default working point used by the ATLAS collaboration.

Only CB and ME tracks are used. The CB tracks are required to have ≥ 3 hits in at

least two MDT layers. The ME are required to have hits associated with them in ≥ 3

MDT/CSC layers. However, this is only used in the 2.5 < |η| < 2.7 region where the ID

has no coverage. In order to suppress hadrons misidentified as muons, the q/p significance

is required to be less than seven. The reconstruction efficiency for this working point in

the range 20 < pT < 100 GeV is 96.1%.

• Loose muons: all CB and ME muons that satisfy the Medium requirement are also

included in the Loose selection. The Loose selection is optimised to maximise the

reconstruction efficiency, while still retaining only good quality muon tracks. Loose muons

are around 97.5% CB muons in the |η| < 2.5 region [92]. The reconstruction efficiency for

Loose muons in the range 20 < pT < 100 GeV is 98.1%.

• Tight muons: The Tight muon selection is optimised for high purity even if the

reconstruction efficiency is reduced. CB muons are required to have at hits in at least two

stations of the MS and to have passed the Medium selection requirements. The Tight

muon selection requires χ2 < 8 and a two-dimensional cut on ρ′ and q/p significance

as a function of muon pT. This two-dimensional cut rejects lower pT muons where the

misidentification is normally higher. The reconstruction efficiency for Tight muons in the

range 20 < pT < 100 GeV is 91.8%.

• High-pT muons: The High-pT muon selection is optimised for analyses searching for

high-mass resonances using muons. CB muons are required to pass the Medium selection

and have at least three hits in three MS stations. This selection maximises the momentum

resolution for muons with pT > 100 GeV.
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As with electrons, a further measure of a muon candidate is the isolation. Prompt muons

will normally be produced in isolation from other particles, whereas non-prompt from a

decay-in-flight may be surrounded by other particles. For muons there are two methods to

assess isolation: calorimeter and track-based isolation. For track-based isolation, a variable

, pvarcone30T , is defined as the scalar sum of the pT of tracks with pT > 1 GeV in a cone of

∆R = min(10GeV/pµT, 0.3) around the muon, excluding the pT of the track associated with

the muon itself. The calorimeter-based isolation builds a similar variable, Etopocone20
T , which is

defined as the sum of the ET values of the topological clusters in a cone of size ∆R = 0.2, after

subtracting the the contribution from the muon and pile-up effects. There are seven isolation

working points defined and a full breakdown of their definitions can be found in [92].

4.2.4 Jet reconstruction

When quarks and gluons are produced in an interaction they undergo hadronisation. A

consequence of this is that collimated “jets” of particles are formed and as they traverse the

detector many tracks and calorimeter deposits are left. These clusters of tracks and calorimeter

deposits are known as jets. The total energy deposited by the jet can be equated to the energy

of the quark or gluon from which the jet originated.

4.2.4.1 Reconstruction

In order to reconstruct a jet, a method of grouping tracks and calorimeter deposits must be

defined. To do so, many clustering algorithms exist and are now required to follow “The

Snowmass Conditions” [93]. These conditions stipulate that a clustering algorithm must be

simple to implement both experimentally and theoretically, independent of hadronisation model

and also produce reasonable theoretical predictions in perturbation theory. Importantly, it is

required that the clustering algorithm is both collinear and infrared safe. This requires that

the algorithm is invariant to infinitesimally soft or small angle radiation. The most commonly

used algorithm in the ATLAS Collaboration is the anti-kT algorithm [94].
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The clustering algorithms make use of the calorimeter information in the form of topological cell

clusters [95]. The topological cell clusters are used to mitigate the noise from the calorimeters.

In the anti-kT algorithm topological cell clusters are used as input by treating them as massless

pseudo-particles with a four momentum defined from the energy and direction of energy weighted

by the barycentre of the cell cluster. The algorithm then calculates the distance between each

pair of inputs, i and j, using,

dij = min(k2p
T,i, k

2p
T,j)

∆2
ij

R2 , (4.1)

where,

∆2
ij = (yi − yj)2 − (φi − φj)2, (4.2)

and the distance from each input i to the beam axis is defined as,

diB = k2p
T,i. (4.3)

Here kT is the transverse momentum and y and φ are the rapidity and azimuthal angle of the

input particle. p is a parameter which determines the order of the clustering. In the case of

the anti-kT algorithm, p = −1. R determines the size of the final jets that are output by the

algorithm.

The algorithm first calculates the smallest distance d. If the smallest is dij , then clusters i

and j are combined. If diB is the smallest, then i is called a jet and is removed from the list

of clusters. These distances continue to be calculated until there are no clusters left in the

list. When the parameter p is positive, the algorithm will cluster constituents from softest to

hardest, whereas when it is negative it behaves in the opposite manner. When p = −1 the

algorithm will cluster jets in an approximately conical shaped way. A visual example of the

anti-kT and kT algorithms can be seen in Figure 4.2.
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(a) (b)

Figure 4.2 Example of anti-kT (a) and kT (b) jet clustering algorithm with R = 1 [94].

Figure 4.3 A summary of the calibration steps for jets in the ATLAS experiment [96].
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4.2.4.2 Calibration

Generally in the ATLAS Collaboration, jets are reconstructed with a radius parameter R = 0.4.

These are referred to as “small jets” and are required to have pT > 25 GeV and |η| < 2.5.

Additionally, a requirement on the jet vertex tagger (JVT) multivariate discriminant is made

for jets with pT > 50 GeV and |η| < 2.4. The JVT uses two track based variables and a two

dimensional profile likelihood fit to determine the probability a jet originates from pile-up.

Once the jet objects are reconstructed, several stages of calibration are performed [97]. Figure 4.3

shows a summary of the various stages to the process.

Firstly, the jet axis is corrected so the origin points to the primary vertex rather than the

centre of the detector, which helps improve the resolution in η. Next, corrections are applied to

mitigate against for pile-up effects. The pT of the jet is corrected as follows,

pcorrectedT = pT − ρA− α(pT, η)(NPV − β(pT, η)µ. (4.4)

The ρA term removes the effect of the pile-up by estimating the median energy density ρ. This

term is discussed further in Section 8.6. After this correction, the pT is still found to have a

dependence on the amount of pile-up so an additional correction is needed. There is found to

be a dependence on the number of primary vertices NPV and the mean number of additional

pp collisions per bunch crossing µ. The dependence on NPV is sensitive to “in-time” pile-up

and µ to “out-of-time” pile-up. This correction is determined with two functions α and β that

are fit to MC [96].

After pile-up corrections a MC-based calibration is applied. The absolute jet energy scale (JES)

corrects the reconstructed jet four-momentum to the true energy scale (according to simulation).

The mean energy response is calculated by looking at the ratio of reconstructed ET and true

ET from MC simulation and is applied to the jets in regions of ET and η. The η calibration

corrects for any biases in the jet η reconstruction. The η biases are generally a consequence of

the layout of the calorimeters.
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The next stage is known as the global sequential calibration. Even after the MC corrections

there are still some dependencies of the JES on the longitudinal and transverse jet features

remaining. Differences in the calorimeter response to the constituent jet particles is found,

often due to the differing compositions of quark- and gluon-initiated jets. In total there are five

variables for which biases are corrected:

• The fraction of jet energy measured in the first layer of the Tile calorimeter;

• The fraction of jet energy measured in the third layer of the electromagnetic LAr calorime-

ter;

• The number of tracks with pT > 1 GeV;

• The average pT weighted jet radius;

• The number of muon track segments.

Finally, a residual in-situ calibration is applied, which corrects for biases in the MC using well

measured event topologies. The η-calibration uses jets from the well calibrated central region

to correct the pT of jets in the forward region by balancing the pT of dijet events. The jet pT is

then corrected with three further calibrations derived by measuring the pT response, R. Using

Z+jets and γ+jets events, the pT of central jets is balanced against a well calibrated photon or

Z -boson in order to determine the response in the central region. These two measurements are

performed in parallel and then combined. Then to correct high-pT jets, several well calibrated

low-pT jets are balanced against one high-pT using multijet events. The measured response for

each event topology can be seen in Figure 4.4, with all three showing good agreement.

4.2.5 b-tagging

The identification of jets originating from b quarks is important for the analyses involving the

top quark due to the top quark predominantly decaying to b quarks. Identifying jets originating

from b quarks is made easier by the presence of b-hadrons. b-hadrons have a much longer

lifetime than light hadrons and therefore leave displaced tracks within the jet. These displaced
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Figure 4.4 The results of the in-situ calibration. The ratio of the data and MC response, R, from the

three event topologies is shown with different markers as a function of jet-pT. The black line shows the

combination of the three topologies [96].

tracks will originate from secondary vertices, which can be identified from the transverse d0

and longitudinal z0 sin θ impact parameters.

A common tagging algorithm used in the ATLAS Collaboration is the MV2c10 algorithm [98].

The MV2c10 is a multivariate discriminant that takes as input three complementary b-tagging

algorithms to discriminate between jets originating from b, c or light quarks1. The three

algorithms used as input are:

• IP2D and IP3D impact parameter algorithms: The two impact parameter algo-

rithms use the transverse (IP2D and IP3D) and longitudinal (IP3D) impact parameters

of the tracks associated with the jet. The IP3D algorithm contains more information than

the IP2D algorithm; however, IP3D is more sensitive to pile-up due to the longitudinal

impact parameters’ dependence on pile-up. The output is a log-likelihood ratio for each

combination of outcomes (u, d or light quark), which is used as input to the MV2c10 [99].

• Secondary vertex (SV): The reconstructed secondary vertex information of the tracks

associated with the jet can be used to discriminate between heavy and light quark initiated

jets. There are eight outputs from the SV algorithms used in MV2c10: invariant mass of
1Light quarks refer to u, d and s quarks.
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Figure 4.5 The output MV2c10 discriminant for b jets (blue), c jets (green) and light flavour jets

(red) [99].

tracks matched to the SV, ∆R(jet,SV), jet energy fraction, number of tracks used in the

SV, number of two track vertex candidates and the three distance measures [99].

• JetFitter: The JetFitter uses similar information to the SV algorithm but instead

reconstructs the full decay using a Kalman Filter [88]. The JetFitter also outputs similar

variables to the SV algorithm [99].

In addition to the outputs from the three b-tagging algorithms, the pT and η of the jets are

also used as input to the discriminant. The model is then trained on simulated tt events. The

signal events are those containing jets originating from a b quark and the background events

contain jets initiated by c or light quarks. In the case of MV2c10, the background is 7% c quarks

and 93% light flavour quarks. Other variations of the algorithm exist with different c-to-light

flavour fractions. Four working points are defined for the algorithm with differing b-jet selection

efficiencies. The working points are 60%, 70%, 77% and 80%. The working point used in the

following analyses is 77%, which corresponds to a rejection factor of around 12 for c-jets and

380 for light jets. The distribution of the MV2c10 discriminant can be seen in Figure 4.5.
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Other techniques exist to tag heavy flavour quarks, one of which is a soft muon tagger (SMT)

that makes use of semileptonic decays of B hadrons into muons. This tagger is used in the

analyses presented in this thesis and is discussed in more detail in Section 5.4.1.

4.2.6 Missing energy

In pp or pp̄ colliders where composite particles are collided, it is not possible to know the

momentum fraction carried by a given parton. Assuming a head on collision, it is therefore not

possible to know the momentum in the z-direction. However, using this assumption, it can

be assumed that the total pT of the event should be zero. Events where this is appears not

the case can be attributed to the presence of one or more particles that have not in interacted

with the detector. In tt events in the lepton+jets or dilepton channels, this missing transverse

momentum, pmiss
T , can be attributed to the neutrino(s) from the leptonic W boson decay. In

other analyses it could also be interpreted as the presence of a new particle. The pmiss
T is

calculated by summing the pT from all physics objects present in the event plus an additional

soft radiation term [100]. A more often used variable is the missing transverse energy, Emiss
T ,

which is the magnitude of pmiss
T , with a direction of φmiss.
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Chapter 5

Object and event selection

The physics objects used for the event selection in the top-quark mass measurement and

differential cross-section measurements are: electrons, muons, jets and b-jets. The objects are

reconstructed with the process described in Section 4.2. The dataset and simulation samples

used in these analyses are detailed in this chapter along with the selection for each object.

5.1 Data

This analysis is performed using 2015 and 2016
√
s = 13 TeV pp collision data collected by

the ATLAS detector at the LHC corresponding to an integrated luminosity of 36.1 fb−1. The

average number of pp interactions per bunch crossing, µ, is between 14 and 25. Data are only

used if beam conditions are stable and all ATLAS subdetector systems are operational. All

data are processed as described in Section 4.2.

5.2 Simulation samples

MC simulations are used to model the expected signal and background distributions using the

methods described in Section 4.1. For all samples, the Pythia-8.186 event generator [81] with

the MSTW2008 LO PDF set [101, 102] and the AUET2 tune [103] is used to generate additional
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pp collisions that are overlaid to model the effects of in- and out-of-time pileup. The additional

collisions are superimposed on the signal and background events with the same luminosity

profile as in the data. To improve the heavy flavour decay modelling, the EVTGen-1.2.0

generator [104] is used for all samples except those simulated with the Sherpa generator [105].

5.2.1 tt simulation

The nominal tt sample is generated using hvq generator [106] in the Powheg-Box V2

generator [107–109] and the NNPDF3.0 parton distribution function (PDF) set [110] and

mt = 172.5 GeV. The hvq program uses on-shell matrix elements for next-to-leading order

(NLO) production of tt pairs. The off-shell effects and top-quark decays are modelled using

MADSPIN [111]. For the parton shower and hadronisation, Pythia8.2 [112] is used with a

custom A14-rb version of the ATLAS A14 tune [113]. The motivation and derivation of this

custom tuning is detailed in Section 6.1.1. The radiation in top-quark decays is handled by the

parton-shower generator, which implements matrix-element corrections at an effective NLO

level. The parameter hdamp, which controls the high-pT radiation emission, is set to twice the

top quark mass of each sample. The tt sample is normalised to the top++2.0 [114] theoretical

cross-section of 823+46
−51 pb. This cross-section is calculated at NNLO in QCD and including

resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms [115–119].

5.2.2 Background simulation

The main background processes in the analysis are from single-top quark production and from

W or Z boson production in association with jets (W /Z +jets ). A small contribution arises

from diboson (W W , W Z or ZZ ) production. Events not containing a real prompt lepton can

be included in the sample through the misidentification of a jet or photon as an electron or

from non-prompt electrons or muons passing the prompt lepton isolation requirements. This is

referred to as "multijet" background.

The W /Z +jets and diboson samples are simulated using the Sherpa generator. In the W /Z

+jets samples the matrix element is calculated for up to two loops at NLO and up to four
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loops at LO using the COMIX [120] and OpenLoops generators [121]. The ME+PS@NLO

prescription [122] is used to merge with the Sherpa parton shower. The CT10 PDF set is used

in conjunction with dedicated parton shower tuning developed by the Sherpa authors. The

normalisation for the W+jets sample along with the relative fractions of W boson production

in association with heavy flavour quarks is estimated from data by exploiting the intrinsic W

charge-asymmetry of W boson production [123]. The normalisation for the Z+jets is extracted

from the MC only however it is cross checked in data with a control region. The diboson

samples are generated in the same manner but with up to one (for ZZ ) or zero (W W and W Z )

additional partons at NLO and up to three additional partons at LO. They are normalised to

their respective NLO cross-section calculated by the generator used to simulate the diboson

events.

Samples of the W t and s-channel single top quark events are generated with the Powheg-Box

V1 and V2 respectively, using the CT10 PDF set. The diagram removal prescription [124] is

used to remove the overlap between the tt and W t final states. Electroweak t-channel single top

quark events are generated using the Powheg-Box V1 generator, which uses the four-flavour

scheme for the NLO matrix elements calculations together with the fixed four-flavour PDF

set CT10f4. For this process, the top quarks are decayed using MADSPIN [125], preserving

all spin correlations. All single-top quark samples are interfaced to Pythia 6.428 [126] with

the Perugia 2012 [127] underlying-event tune. The EvtGen v1.2.0 program is used to model

properties of the bottom and charm hadron decays. The single-top quark t- and s-channel

samples are normalised to the approximate NNLO theoretical cross sections [128–130].

Finally the multijet background is estimated from data using the matrix method [131]. This is

discussed in further detail in Section 6.2.2.

A full list of the signal and alternative samples can be found in Table 5.1,the alternative

mass and background samples in Table 5.2 and the various signal samples for the differential

cross-section analysis in Table 5.3.
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Table 5.1 Generator and settings used to produce the signal and alternative tt samples.

Process Generator, parton shower and settings Reco/truth level
Nominal tt

Powheg+Pythia8 with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 AFII
Powheg+Pythia8 with standard A14 tune Powheg+Pythia8, hdamp = 1.5mt FullSim, AFII

tt variations
Powheg+Herwig7.1.3 angular-ordered showering Powheg+Herwig7.1.3, hdamp = 1.5mt AFII
aMC@NLO+Pythia8 with rb retuned aMC@NLO+Pythia8, rb = 1.05 AFII
Powheg+Pythia8 with aMC@NLO-like Pythia settings Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 AFII
Powheg+Pythia8 ISR up variation with retuned rb Powheg+Pythia8, hdamp = 3mt, µ

ME
R = µ

ME
F = 0.5, rb = 1.05, A14v3cUp AFII

Powheg+Pythia8 ISR down variation with retuned rb Powheg+Pythia8, hdamp = 1.5mt, µ
ME
R = µ

ME
F = 2.0, rb = 1.05, A14v3cDo AFII

Powheg+Pythia8 colour reconnection max variation Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05, CR range = 10 Truth-level
Powheg+Pythia8 colour reconnection off variation Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05, CR off Truth-level
Powheg+Pythia8 early resonance decay variation Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05, EarlyResonanceDecays Truth-level
Powheg+Pythia8 underlying event up variation Powheg+Pythia8, A14v1Up, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8 underlying event down variation Powheg+Pythia8, A14v1Do, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8 rb up variation Powheg+Pythia8, hdamp = 1.5mt, rb = 1.071 Truth-level
Powheg+Pythia8 rb down variation Powheg+Pythia8, hdamp = 1.5mt, rb = 1.029 Truth-level
Powheg+Pythia8 FSR scale up variation with retuned rb Powheg+Pythia8, hdamp = 1.5mt, µ

PS
R = µ

PS
F =

√
2, rb = 1.0356 AFII

Powheg+Pythia8 FSR Scale down variation with retuned rb Powheg+Pythia8, hdamp = 1.5mt, µ
PS
R = µ

PS
F = 1/

√
2, rb = 1.0802 AFII
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Table 5.2 Generator and settings used to produce the alternative tt mass samples and background samples.

Process Generator, parton shower and settings Reco/truth level
tt mass variations

Powheg+Pythia8(mt = 165.0 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8(mt = 169.0 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8(mt = 170.5 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8(mt = 171.0 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8(mt = 171.5 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8(mt = 172.0 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8(mt = 173.0 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8(mt = 173.5 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8(mt = 174.0 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8(mt = 174.5 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 AFII
Powheg+Pythia8(mt = 176.0 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level
Powheg+Pythia8(mt = 180.0 GeV) with A14-rb tune Powheg+Pythia8, hdamp = 1.5mt, rb = 1.05 Truth-level

tt dilepton
Powheg+Pythia8 with standard A14 tune Powheg+Pythia8, hdamp = 1.5mt FullSim, AFII dilepton
Powheg+Herwig7.0.4 Powheg+Herwig7.0.4, hdamp = 1.5mt AFII dilepton
aMC@NLO+Pythia8 aMC@NLO+Pythia8 AFII dilepton

Background samples
single top t-channel Powheg+Pythia6 FullSim
single top s-channel Powheg+Pythia6 FullSim
single top Wt channel Powheg+Pythia6 FullSim
W+jets Sherpa 2.2.1 FullSim
Z+jets Sherpa 2.2.1 FullSim
Diboson WW , WZ, ZZ Sherpa FullSim
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Table 5.3 Generator and settings used to produce the alternative tt signal samples used in the differential analysis.

Process Generator, parton shower and settings Reco/truth level
tt mass variations

Powheg+Herwig7.1.3 dipole shower Powheg+Herwig7.1.3, hdamp = 1.5mt Truth-level
Powheg+Pythia8 with rb = 1.000 Powheg+Pythia8, hdamp = 1.5mt, rb = 1.000 Truth-level
Powheg+Pythia8 withrb = 1.100 Powheg+Pythia8, hdamp = 1.5mt, rb = 1.100 Truth-level
Powheg+Pythia8 FSR scale up variation Powheg+Pythia8, hdamp = 1.5mt, µ

PS
R = µ

PS
F =

√
2 Truth-level

Powheg+Pythia8 FSR scale down variation Powheg+Pythia8, hdamp = 1.5mt, µ
PS
R = µ

PS
F = 1/

√
2 Truth-level

Powheg+Pythia8 ISR up variation Powheg+Pythia8, hdamp = 3mt, µ
ME
R = µ

ME
F = 0.5, A14v3cUp AFII

Powheg+Pythia8 ISR down variation Powheg+Pythia8, hdamp = 1.5mt, µ
ME
R = µ

ME
F = 2.0, A14v3cDo AFII

Powheg+Pythia8 with Monash tuning Powheg+Pythia8, hdamp = 1.5mt AFII
Powheg+Pythia8 with Monash tuning and Peterson fragmentation Powheg+Pythia8, hdamp = 1.5mt AFII
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5.3 Electrons

Electrons are reconstructed as described in Section 4.2.2. Candidates in the calorimetry

transition regions 1.37 < |ηcluster| < 1.52 are excluded and only electrons with |ηcluster| <

2.47 are used. Electron candidates are required to pass the tight likelihood identification

requirement. The following criteria are applied to the transverse and longitudinal impact

parameters: |z0 sin θ| < 0.5 mm and | d0
σd0
| < 5. All electrons must have pT > 25 GeV. To reduce

the background from non-prompt electrons, candidates must pass the gradient isolation working

point.

5.4 Muons

Muons are reconstructed as described in Section 4.2.3 and are required to have pT > 4 GeV and

|η| < 2.5. Different requirements are applied in order to distinguish between muons from the

leptonic decay of the W -boson (referred to as ‘prompt’ muons) and those from the semileptonic

decay of b-hadrons (referred to as ’soft’ or SMT-muons).

Prompt muon candidates are required to have pT > 25 GeV and to satisfy the medium

quality requirement. The transverse and longitudinal impact parameters are required to meet

|z0 sin θ| < 0.5 mm and | d0
σd0
| < 3. The muon candidates must also be isolated from jet activity

by requiring the gradient isolation working point and to be within ∆R > 0.4 of the nearest

selected jet. However, if this jet has fewer than three associated tracks, the muon is kept and

the jet is removed to avoid losing high energy muons that undergo significant energy loss in the

calorimeters.

5.4.1 Soft muon tagger (SMT)

Muons with pT > 4 GeV that do not pass the prompt muon selection are selected as soft muon

candidates. In order to be tagged as soft muons, the muons are required to pass the tight

quality requirement and to be ∆R < 0.4 within a selected jet. Very loose requirements are
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applied to the impact parameters, d0 < 3 mm and |z0 sin θ| < 3 mm in order to reject edge

cases. If more than one muon passes the criteria for a given selected jet, the soft muon with the

highest pT is chosen. The closest jet to a soft muon is defined as “SMT-tagged” and therefore

there can only be one “SMT-tagged” jet per event.

5.5 Jets

After the reconstruction and calibration detailed in Section 4.2.4, jet candidates are required

to have pT > 25 GeV and |η| < 2.5. Quality criteria are imposed to identify jets arising from

non-collision sources or detector noise and any event containing at least one such jet is removed.

To avoid selecting jets from secondary pp interactions, an additional requirement on the JVT is

made for low pT (pT < 60 GeV) jets in the central (|η| < 2.4) region of the detector. During

jet reconstruction, no distinction is made between electron candidates and energy deposits

therefore, if any jets lie within ∆R < 0.2 of a selected electron, the single closest jet is removed

in order to avoid double counting. Following this, any electrons within ∆R < 0.4 of a jet are

removed.

5.6 b-tagging

Jets are identified as originating from a b-quark using the multivariate algorithm described in

Section 4.2.5. The mv2c10 tagger with a 77% efficiency working point is used for the analysis.

In addition to the multivariate b-tagger, the soft muon tagger is also used to tag jets originating

from b-quarks. Events are required to have jets tagged by both the multivariate tagger and the

soft muon tagger.

5.7 Particle level objects

For some cross check studies and crucially for the alternative top-quark mass samples, particle

level samples are used. Particle level is defined as the collection of stable particles (mean
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lifetime > 3 × 10−11s) from the matrix element and parton shower generators without any

simulation of the particle interactions with the detector. Due to the time required to simulate

samples with detector reconstruction, particle samples are used for the alternative tt mass

samples. In order to make the same selection at particle level as at reconstructed level, the

analogous particle objects are required. In Section 6.3, a method to reweight particle level

samples to reconstructed level is discussed for use with tt mass variation samples.

5.8 Event selection

The event selection is seeded by the lowest un-prescaled (where prescaled trigger means only

a given fraction of the events passing the trigger are saved) single electron and single-muon

triggers. The single lepton triggers identify events where there is at least one single lepton

present. For the simulated samples, a pseudo run-number is randomly assigned to each event.

The pseudo run-numbers are sampled from the run numbers of the 65 runs in the 2015 and 150

runs of the 2016 data sets. The pseudo-run numbers will ensure the simulated samples have

the same integrated luminosity as the corresponding real data run. Simulated events with a

pseudo run-number corresponding to the 2015 (2016) data set are required to satisfy the same

trigger requirements as the real data events of the 2015 (2016) data set. In addition, events are

required to contain at least one reconstructed vertex with at least two tracks of pT > 0.4 GeV

and to be consistent with the beam-collision region in the x− y plane. If multiple vertices are

reconstructed, the vertex with the largest ∑ p2
T of its associated tracks is taken as the primary

vertex.

Events are selected based on the following requirements:

• Pass the lowest un-prescaled single-lepton, where a lepton is either an electron or muon,

trigger;

• Has exactly one prompt isolated lepton with pT > 27 GeV that is matched to the

corresponding trigger;
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• No additional prompt leptons with pT > 25 GeV in order to reject events that are from

the dilepton decay channel of the tt system;

• Emiss
T > 30 GeV and Emiss

T + mT(W ) > 60 GeV. mT(W ) =
√

2p`TEmiss
T (1− cos ∆φ),

where p`T is the transverse momentum of the lepton and ∆φ is the azimuthal angle

between the lepton and the direction of the missing transverse momentum. These criteria

help reduce the multijet and W+jets backgrounds (discussed in Section 5.2.2);

• At least one soft muon is required to have pT > 8 GeV and |η| < 2.5 in order to suppress

fake soft muons. The highest pT soft muon is chosen and matched to a jet that is referred

to as the SMT-jet;

• The SMT-jet is required to have pT > 25 GeV and |η| < 2.5. A further jet energy

calibration is applied to SMT-jets and is discussed in Section 6.1.3;

• The four leading jets in the event (excluding the SMT jet if this is one of the four) are

required to have pT > 30 GeV and |η| < 2.5. The higher pT cut on the non-SMT tagged

jet reduces the non-tt background and uncertainty from the JES;

• At least one jet b-tagged by the mv2c10 algorithm and one by the SMT (could be the

same jet);

• Finally, the invariant mass of the soft muon and the prompt lepton, m`µ, is required to

be between 15 and 80 GeV.

The soft muon and the prompt lepton are required to be separated by ∆R < 2 to help

increase the fraction of events in which the soft muon and prompt lepton originate from

the decay of the same top quark;

• Two orthogonal signal regions are defined based on the charge of the soft muon and

prompt lepton. The opposite sign (OS) region requires the soft muon and prompt lepton

to have opposite electric charge while the same sign region (SS) requires them to have

the same electric charge. The OS region is enriched in muons originating from b → µ
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whereas the SS is enriched with muons from b → c → µ. Although the SS region is less

sensitive to mt , using the combination of both regions improves the result.
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Chapter 6

Simulation modelling

The following chapter details the modelling of the signal and background processes used in

both the top-quark mass measurement and differential cross-section measurement.

6.1 Signal modelling

Due to the intended precision of the measurement, using the MC simulation with the default

settings is not good enough. Several aspects of the tt signal samples are optimised for the

analysis and are detailed in this section.

6.1.1 Modelling of b-quark fragmentation

Correct modelling of the momentum transfer between the b-quark and the b-hadron is imperative

to this analysis. The MC event generators, such as Pythia, Herwig and Sherpa generators,

describe the transition from quark to hadron using phenomenological models. As discussed in

Section 4.1.1, the two models used are the string and cluster models, with each containing a

number of parameters that are tuned to data. Pythia8 allows for the use of several different

parameterisations for the b-quark fragmentation function, whereas Herwig and Sherpa use non-

parametric models, which handle the complete parton shower evolution. The free parameters

in these models are normally fit to measurements from e+e− collider experiments. For this
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analysis it is assumed that b-quark fragmentation properties at a given energy scale are the

same in e+e− and hadron collisions.

In Pythia8 the Lund-Bowler parameterisation [132, 133] for b-quark fragmentation is used

and is given by

f(z) = 1

z(1+brbm
2
b)

(1− z)a exp(−bm2
T/z), (6.1)

where a, b and rb are the function parameters, mb is the b-quark mass, mT is the b-hadron

transverse mass and z is the fraction of the longitudinal energy of the b-hadron with respect to

the b-quark, in the light cone reference frame

z =
(E + p||)B
(E + p)b

. (6.2)

Here, p|| is the hadron momentum in the direction of the b-quark and (E + p)b is the sum of

the energy and momentum of the b-quark before hadronisation takes place. The fragmentation

function is defined at the hadronisation scale and is evolved by the parton shower to the process

scale through the DGLAP evolution equations.

In the Monash [134] Pythia8 tune, the a and b parameters have been fitted to data that

is sensitive to light quark fragmentation and are assumed to be universal between light and

heavy quarks. The parameter rb, however, is specific to b-quark fragmentation and controls the

position of the peak of the distribution represented by Equation 6.1. In the Monash tune, the

b-quark fragmentation is tuned to SLD measurements, which fit a value of rb = 0.855.

The default tuning for ATLAS is the A14 tune, which is based on the Monash tune and inherits

the fragmentation and hadronisation parameters. To improve the modelling of the b-quark

fragmentation in the A14 tune, a fit of the rb parameter is performed using e+e− collision data

from ALEPH, DELPHI and OPAL at the LEP collider and from the SLD experiment at the

SLC collider [135–138]. The xB distribution is defined at LEP as

xB = 2pB · pZ
m2
Z

, (6.3)

89



6 Simulation modelling 6.1 Signal modelling

where pB and pZ are the four-momenta of the b hadron and Z boson, respectively. Using

Z → bb events, the xB distribution is fitted to extract the value of rb. Here, xB is used instead

of z because it is built from experimentally measurable quantities. At the LHC, xB takes a

different form

xB = 1
1−m2

W /m
2
t +m2

b/m
2
t

· 2pB · pt
m2
t

. (6.4)

The tuning is performed using Professor v2.2 [139] for the minimisation and Rivet v2.5.4 [140]

for the implementation of the measurements. The resulting fitted value is rb = 1.05± 0.021.

This setting is referred to as A14-rb and is applied to all MC samples produced with Pythia8

for the simulation of the parton shower.

6.1.2 Modelling of b- and c-hadron production and decay

In addition to understanding the momentum transfer from the b quark to the b and c hadrons,

the production and decay rates of these hadrons must be accurately modelled. In Pythia, the

decay rates of the b and c hadrons is modelled by EvtGen. While EvtGen offers an improved

modelling over the default Pythia settings, the production fractions and decay rates may not

be up-to-date. In order to ensure the correct production fraction and decay rates are used,

both are rescaled to the values as reported by the PDG [7].

6.1.2.1 b and c-hadron production fractions

The production fractions of the weakly decaying b and c hadrons are rescaled to the values shown

in Table 6.1. These values are produced by the Heavy Flavour Averaging Group (HFLAV) [141]

based on measurements from DELPHI [138], CDF [142–145], LHCb [146–148] and ATLAS [149]

experiments. The direct rate measurements from the aforementioned experiments are combined

with the world average of the time-integrated mixing probability averaged over an unbiased

sample of semileptonic b-hadron decays. The combination assumes the production fractions

are independent of the centre-of-mass energy of the events. A scale factor is applied to each b
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Table 6.1 The production fraction values for b hadrons and c hadrons in the PDG and

Powheg+Pythia8. The relative scale factors applied to Powheg+Pythia8 are also shown. The

values under the PDG column are derived from Ref. [7] and [150]. The same scale factors are applied to

the charge-conjugate hadrons.

Hadron PDG (%) Powheg+Pythia8 Scale Factor

B0 0.404±0.006 0.429 0.941±0.014
B+ 0.404±0.006 0.429 0.942±0.014
B0
s 0.103±0.005 0.095 1.088±0.052

b-baryon 0.088±0.012 0.047 1.874±0.255

D+ 0.226±0.008 0.290 0.780±0.027
D0 0.564±0.015 0.553 1.020±0.027
D0
s 0.080±0.005 0.093 0.857±0.054

c-baryon 0.109±0.009 0.038 2.898±0.237

hadron in a simulated event, with the overall weight given by the product of all b-hadron scale

factors in the event. The production fractions in all Powheg+Pythia8 samples are measured

to be the same allowing the same scale factors to be applied in all samples.

6.1.2.2 b and c-hadron to µ branching ratios

The branching ratios of b and c hadron decays that contain a µ are rescaled to values from the

PDG [7], shown in Table 6.2. The b → µ branching ratio was determined from DELPHI [151],

L3 [152, 153] and OPAL [154] data, with the final predicted values calculated by the Electroweak

Heavy Flavour Working Group [155]. The scale factors for the branching fractions of the

semileptonic decays of c-hadrons are only applied to semileptonic c-hadron decays when the

c-hadron does not come from the cascade decay of a b-hadron.
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Table 6.2 Hadron to µ branching ratios in the PDG and Powheg+Pythia8. The relative scale factors

applied to Powheg+Pythia8 are also shown. The values under the PDG column are derived from

Ref. [7] and [150].

Hadron PDG Powheg+Pythia8 Scale Factor

b → µ 0.1095+0.0029
−0.0025 0.106 1.032+0.0027

−0.0023

b → τ 0.0042± 0.0004 0.0064 0.661±0.062
b → c → µ 0.0802± 0.0019 0.085 0.946±0.022
b → c → µ 0.016± 0.003 0.018 0.888±0.167
c → µ 0.082± 0.005 0.084 0.976±0.059

6.1.3 SMT-jet calibration

The pT spectrum of SMT-jets shows a slight miscalibration as can be seen in Figure 6.1a. This

miscalibration is likely due to a missing correction factor in the overall JES calibration sequence

for jets containing semileptonic decays. Jets that contain semileptonic decays will contain

undetectable neutrinos and muons that are not included in the clustering and are therefore

likely to have a different response. To improve the modelling of the SMT-jets, a dedicated SMT

jet calibration factor is derived.

The observable used is the ratio between the pT of SMT-jet and the average pT of the non-SMT

tagged jets (referred to as the pT-ratio in this section) in the event. Figure 6.1b shows the pT of

the leading jet and a clear trend in the data/MC ratio can be seen. This is due to mismodelling

of the top-quark pT, discussed further in Section 9.5, rather than the SMT-jet miscalibration.

The ratio of the SMT-jet pT and the average pT of the non-SMT tagged jets is used to remove

the effect of the top quark pT mismodelling from the calibration factor. A similar selection to

the OS region of the main analysis is used; however, instead of at least four jets in the event,

exactly four jets are required. This requirement removes any dependence on mismodelling of

jet multiplicity in the event.

To derive the correction factor, a binned-template likelihood fit is performed on the pT-ratio

distribution. The technique used is similar to that used in the mass extraction in Chapter 9,
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Figure 6.1 Comparison between data and MC for SMT-jet pT (a) and leading jet pT (b) with the nominal

event selection applied. The uncertainty bands include the statistical and systematic uncertainties.

where more details can be found. First, templates of the pT-ratio distribution are generated

with different SMT-jet calibration values and a morphing technique is used to interpolate

between the templates with a piece-wise function built bin-by-bin. Then these templates are

used as input to the binned likelihood fit where the parameter kSMT-jet ,the SMT jet scaling

factor, is free in the fit.

The systematic uncertainties are evaluated by repeating the fit on the histograms produced

with each systematic variation applied to simulated events and comparing with the result

obtained on a fit to the nominal histogram. The result of the fit gives a value of kSMT-jet =

0.967± 0.005± 0.021, where the first uncertainty is statistical and the second is the systematic

uncertainty. The pre and post-fit plots can be seen in Figure 6.2 and an explanation of these

uncertainties can be found in Chapter 8. A breakdown of the systematic uncertainties can be

seen in Table 6.3. The scale factor derived is close to unity. The calibration factor is applied to

all tt signal samples.
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Figure 6.2 Pre and post-fit plots for the SMT jet calibration derivation.

6.1.3.1 kSMT-jet dependence on mt

To verify kSMT-jet is not dependent on mt, the nominal signal sample is replaced by a sample

with mt = 174.5 GeV and the fit is repeated. The result of the fit is k174.5
SMT-jet = 0.963± 0.005,

where the quoted uncertainty is statistical only. The result is compatible with the nominal fit

and therefore it is assumed there is no dependence on mt.

6.1.3.2 Fit stability in SS region

The nominal fit setup for the mass extraction uses a combined binned profile likelihood fit

performed on the m`µ distribution in two orthogonal regions, OS and SS. The OS region is

used to derive the nominal kSMT-jet scale. To check the fit is also behaving correctly in the SS

region, the fit is also performed on the pT-ratio distribution in the SS region. The result of the

fit is kSSSMT-jet = 0.974± 0.008, where the quoted uncertainty is statistical only. The result is

compatible with that performed in the OS region.
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Table 6.3 Breakdown of the systematic uncertainties of the kSMT-jet scale factor fit.

Source Shift (±)
Statistical error on fit 0.0053
MC statistical error 0.0013
Statistical error on fakes 0.0016
b-tag component b 0 0.0052
JER 0.0018
JES (BJES response) 0.0038
JES (pileup ρ topology) 0.0010
Pileup 0.0020
tt BR b→ c WS 0.0033
tt FSR 0.0010
tt Parton shower and hadronisation 0.0024
tt MC event generator 0.0209
tt Colour reconnection 0.0023
tt Underlying event 0.0025
Total Systematic 0.0231
Total Stat+Syst 0.0237
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6.2 Background modelling

For most background samples in this analysis, the MC simulation is satisfactory. However, for

W+jets and multijet backgrounds this is not the case and a data-driven method is therefore

required. W+jets events will pass the tt selection when the W -boson decays leptonically in

association with at least one b-quark initiated jet, as well as several other light flavour jets.

The W+jets background is estimated using MC samples with a data-driven scale factor for

the normalisation using the charge asymmetry method [123]. For the multijet background, the

tt selection can be passed if a fake or non-prompt lepton is produced in a association with at

least one b-quark initiated jet and several other light flavour jets. The multijet background is

estimated using a fully data-driven approach.

6.2.1 W+jets background measurement

The data-driven approach for the W+jets measurement consists of a measurement of the overall

W+jets normalisation and a measurement of the relative contributions of W+cc, W+bb, W+c

and W+light subcomponents. There are three steps to the measurement:

1. Estimation of the W+jets normalisation using the charge asymmetry method in a Njet = 2

(pre-tag) sample of data. A scale factor CA is calculated.

2. The scale factor, CA, is applied to the W+jets MC sample and the flavour composition

is measured in a Njet = 2, Nb-jet >= 1 (tagged) sample of data. A correction factor Ki∈F

is calculated per flavour fraction (F ).

3. The correction factors, Ki, are applied to pre-tag data and (2) and (3) are repeated until

CA and Ki are stable.

The measurement of the W+jets normalisation uses the charge asymmetry method. which

exploits the charge-asymmetric nature of W+jets production at the LHC. This charge asymmetry

is due to the the PDF of the proton and the pp initial state. In protons the mean of the u(x)

distribution is larger than that of the d(x) therefore the production of W+ is favoured over
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W− at the LHC. This asymmetry leads to an excess of positively charged leptons in W+jets

events. The ratio r = σ(pp→W+)
σ(pp→W−)

is theoretically well understood and can be estimated in MC

accurately. In contrast to W+jets, most other backgrounds in this analysis will symmetrically

produce positively and negatively charged leptons1. There is a small asymmetry in diboson

events; however, this has a negligible impact on the normalisation estimation. Using these

assumptions the following equation can be defined

N
W+ +NW− =

(
NMC

W+ +NMC
W−

)
(
NMC

W+ −NMC
W−

)(D+ −D−) =
(
rMC + 1
rMC +−1

)
(D+ −D−), (6.5)

where D+ and D− are the number of events in the data sample with a positive or negative

high-pT lepton and NMC
W±

are the number of events in the MC sample with a W±. The single-top

contribution is estimated in MC and subtracted from the data. The normalisation scale, CA,

can then be expressed as

CA =

(
rMC+1
rMC+−1

)
(D+ −D−)(

NMC
W+ +NMC

W−

) . (6.6)

The flavour composition of W+jets events is broken down into four categories: W+cc, W+bb,

W+c and W+light. A set of scaling factors, Ki∈F , are determined for the flavour fractions

using a Njet = 2, Nb-jet ≥ 1 region. The flavour fractions, fi∈F , are determined from MC

simulation and are fixed at those values. Using the constraint that the flavour fractions sum to

unity along with the total number of positively and negatively charged data events, a system of

three equations can be used to fit the data for the correction factors Ki


CA ·

(
N bb
MC,W

− +N cc
MC,W

−

)
CA ·N

c
MC,W

− CA ·N
lf

MC,W
−

(fbb + fcc) fc flf

CA ·
(
N bb
MC,W

+ +N cc
MC,W

+

)
CA ·N

c
MC,W

+ CA ·N
lf

MC,W
+


·


Kbb,cc

Kc

Klf


=


D
W

−

1.0

D
W

+


(6.7)

1Single-top production via s or t channel is an exception.
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where D
W

± is the total number of positively or negatively charged data events with all events

not coming from MC simulation of W+jets and multijet background events subtracted. In

order to solve the equation for the four correction factors Ki using only three equations, the

scaling factors for Kbb and Kcc are set equal to each other. The scale factors can be extracted

by inverting the matrix.

The derived normalisation factor for the W+jets background sample is CA = 1.119±0.158. The

corresponding flavour fraction correction factors are Kbbcc = 0.982± 0.349, Kc = 1.041± 0.349

and Klf = 0.992± 0.085, where the quoted uncertainty includes both statistical and systematic

effects. The systematic uncertainties evaluated are the same as those detailed in Chapter 8.

The three correction factors are all close to unity.

6.2.2 Multijet background estimation

The multijet background comprises events containing a non-prompt or “fake” lepton, which

mimics the signal from a real prompt isolated lepton. Generally fake leptons arise from a QCD

jet or photon being reconstructed as an isolated lepton. To fake an electron, a track in the ID

is required in addition to an energy deposit in the ECAL. A QCD jet may contain a charged

meson which leaves a track in addition to a π0, which will decay to photons and therefore

produce an energy deposit in the ECAL. Producing a fake muon is more difficult because a

larger energy jet is required to deposit energy in the MS and therefore fake leptons are more

likely to be electrons. Non-prompt leptons occur from the semileptonic decay of heavy-quark

hadrons or from the decay in flight of a pion or kaon. Simulation of the multijet background

is not accurate enough. Simulating fake leptons requires a precise knowledge of the detector

geometry and is dependent on the materials present in the detector. Therefore, it is much more

difficult to simulate than, for example, the W+jets background, which is only dependent on

the physics process. A data-driven method known as the matrix method [131] is therefore used

to estimate the multijet background.
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6.2.2.1 The matrix method

The method makes use of a data region enriched in fake2 leptons by relaxing the lepton isolation

requirement. Events passing this requirement are defined as loose. Conversely, events passing

the standard requirement are defined as tight.

The total selection, S, can be constructed from events exclusively passing the tight selection, T ,

and those passing only the loose selection, L. The sample could also be split into events with a

real lepton, R, or a fake lepton F . Using these definitions the following equation must hold

S = L+ T = F +R. (6.8)

Using Equation 6.8, the following equation for the number of tight and loose events can be

found

DT

DL

 =


εr εf

εr εf

 ·

nR

nF

 . (6.9)

The observed number of tight and loose events in data, DT and DL, can be related to the

unknown number of events with a fake or real lepton, nF and nR, through two coefficients, εF

and εR, known as the fake and real efficiencies. These efficiencies describe the probability that a

fake (real) loose lepton passes the tight requirement. The coefficients εi are defined as εi = 1−εi.

To estimate the multijet background, given by the estimated number of fake events passing the

tight selection εfnF , Equation 6.9 can be inverted assuming εf 6= εr


nR

nF

 = 1
εr − εf


εf −εf

−εr εr

 ·

nT

nL

 . (6.10)

2Fake will refer to both fake and non-prompt leptons in this section.
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An estimate for the number of fake events is then given by

εfnF =
εf

εr − εf
(εr(nT + nL)− nT ), (6.11)

using the observed number of tight and loose events. The estimation of the background in a

given bin is estimated with a weight per event, given by

wi =
εf

εr − εf
(εr − δi∈T ), (6.12)

where δi∈T = 1 for tight events and 0 otherwise.

6.2.2.2 Estimation of real and fake efficiencies

The fake and real efficiencies are measured in data control samples that are enriched in fake or

real leptons. For the fake enriched region the following selection is applied:

• exactly one lepton and one jet;

• Emiss
T < 20 GeV (e+jets channel);

• |dsig0 | > 5 (µ+jets channel).

The efficiency is taken as the number of tight lepton events divided by the number of total

events. The selection requirements in the e+jets channel will cut prompt electrons because

these events will have a larger amount of Emiss
T than fake electrons from QCD jets. The

|dsig0 | > 5 requirement in the µ+jets channel selects events where the muon is offset from the

primary vertex and is therefore more likely to be non-prompt. These will likely be muons from

semileptonic decay of c or b quarks where the muon will not come from the primary vertex.

The real efficiency is measured using events that contain Z → `` and the tag and probe method.

Events are selected providing they contain a pair of leptons with opposite electric charge and

an invariant mass that satisfies 60 < M`` < 120 GeV. If one of the leptons passes the tight

requirement, it is considered the tag and the other is the probe. The efficiency is then the

number of probes that pass the tight requirement divided by the total number of probes.
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6.2.2.3 Triggers

The triggers used for the tight selection are the same as used in the main analysis. The loose

selection differs slightly for 2016 runs. The lowest pT triggers for both electron and muons in

2016 runs (HLT_e26_lhtight_nod0_ivarloose and HLT_mu26_ivarmedium) apply an isolation

and tightened ID requirements. These triggers are not suitable for the loose requirement

due to the isolation requirements that would bias the sample with prompt leptons. Instead

HLT_e24_lhmedium_nod0_L1EM18VH and HLT_mu24 are used. These triggers are prescaled so

the appropriate prescale must be applied to the weight, wi, for events in the low-pT region.

6.2.2.4 Efficiency parameterisations

The fake and real efficiencies are parameterised as a function of different observables to better

model the multijet background. A set of efficiency files parameterised with the following

observables are provided by the central physics group

• pT(`) - prompt lepton transverse momentum;

• η(`) - prompt lepton pseudorapidity;

• pT(j0) - leading jet transverse momentum;

• Nb−jet - number of b-tagged jets;

• mT(W ) - transverse mass of the W -boson;

• ∆φ(`, Emiss
T ) - azimuthal separation of the lepton and missing transverse energy;

• ∆R(`, j) - distance between the lepton and the closest jet.

The real and fake efficiencies for electrons and muons as a function of the aforementioned

observables are shown in Figures 6.3 and 6.4.

These observables are chosen for their discriminating power between prompt leptons and fake

or non-prompt leptons. To estimate the multijet background in a given analysis, a combination

of different parameterisations is used. The individual efficiencies from each parameterisation
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Figure 6.3 The real and fake efficiencies for electrons.
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Figure 6.4 The real and fake efficiencies for muons.
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Table 6.4 Parameterisation 1 of the real and fake efficiencies. This parameterisation is the default

recommended by the Top Fakes group.

Year Channel Parameterisation
2015 e+jets Real:ηlep ⊕ plepT ⊕∆R, Fake: ηlep ⊕ plepT ⊕∆φ(`, Emiss

T )
2015 µ+jets Real:ηlep ⊕ plepT ⊕∆R, Fake: ηlep ⊕ plepT ⊕∆φ(`, Emiss

T )
2016 e+jets Real:ηlep ⊕ plepT ⊕∆R, Fake: ηlep ⊕ plepT ⊕∆φ(`, Emiss

T )
2016 µ+jets Real:ηlep ⊕ plepT ⊕∆R, Fake: ηlep ⊕ plepT ⊕∆φ(`, Emiss

T )

are combined according to

εcombined = εk=0 ·
∏

k∈1,··· ,n−1

εk
ε
, (6.13)

where k ∈ {0, · · · , n− 1} are the parameterisations and ε is the average efficiency extracted

from a linear fit to the parameterisation distribution.

Several different parameterisation combinations are investigated to find the best multijet

background estimation. To find the optimal parameterisation combination, the data are

compared to the MC and multijet samples in control regions with low Njet. Control plots in

low Njet regions for pT(`), Emiss
T and mT(W ). These three observables will have distinctly

different shapes in tt signal events and multijet background events. In pT(`), multijet events will

dominate at the low pT end of the spectrum. Emiss
T will generally be higher in tt signal events

for electrons and mT(W ) will peak at the W -boson mass. The control regions investigated

are Njet ≥ 2, 3, 4 with no b-tagging and Nb−jet ≥ 1. The agreement between the data and

prediction for each parameterisation is compared for each observable in each control region

and the goodness of agreement is quantified using a χ2 test statistic. The χ2 calculation takes

into account the systematic uncertainties and their correlations. In the control plots, only the

systematic uncertainty for the multijet estimation is present. The systematic uncertainty for

the multijet estimation is composed of two parts; a 50% normalisation uncertainty and a shape

variation. The shape variation is derived from an alternative parameterisation combination.

The parameterisation combinations investigated are shown in Tables 6.4 to 6.7.
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Table 6.5 Parameterisation 2 of the real and fake efficiencies. In this case, both the real and fake

efficiencies use the same parameterisation. This parameterisation is used by another analysis with a

similar event selection.

Year Channel Parameterisation
2015 e+jets ηlep ⊕ pj0T ⊕∆R
2015 µ+jets ηlep ⊕ plepT ⊕∆R
2016 e+jets ηlep ⊕ pj0T ⊕∆R
2016 µ+jets ηlep ⊕ plepT ⊕∆R

Table 6.6 Parameterisation 3 of the real and fake efficiencies. In this case, both the real and fake

efficiencies use the same parameterisation. This parameterisation is used by another analysis where a

full parameterisation optimisation has been carried out.

Year Channel Parameterisation
2015 e+jets ηlep ⊕Nb-jet ⊕ p

j0
T

2015 µ+jets ηlep ⊕Nb-jet

2016 e+jets ηlep ⊕ pj0T
2016 µ+jets ∆φ(`, Emiss

T )

6.2.2.5 Efficiency parameterisation combination optimisation

The comparison of the first three parameterisation combinations suggested parameterisation

1 has the best agreement between data and prediction in the observables most applicable to

Table 6.7 Parameterisation 4 of the real and fake efficiencies. In this case, both the real and fake effi-

ciencies use the same parameterisation. This parameterisation is used as the alternative parameterisation

for parametrisation 3.

Year Channel Parameterisation
2015 e+jets ηlep ⊕∆R⊕ pj0T
2015 µ+jets plepT ⊕∆φ(`, Emiss

T )
2016 e+jets plepT ⊕∆φ(`, Emiss

T )⊕ pj0T
2016 µ+jets ηlep ⊕∆R⊕ pj0T
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(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.5 Comparison of data and prediction for electron+jets events with NJet ≥ 2 before any

selection has been applied on the number of b-tagged or SMT-tagged jets.

the analysis, in this case p`T. The other two configurations show a large shape mismodelling in

the low pT region for electron channels, likely due to the parameterisation combinations not

using p`T. As p`T is closely related to the final observable m`µ, the modelling in this variable is

prioritised. The control plots associated with using parameterisation 1 for the e+jets channel

can be seen in Figures 6.5 to 6.10 and the µ+jets channel in Figures 6.11 to 6.16. Each

plot shows the comparison between data and MC prediction and the shaded bands show the

uncertainty from the limited statistics in the MC predictions and the uncertainty associated

with the multijet background estimation.

The yields for the multijet background are shown in Table 7.2. The multijet background is one

of the smaller backgrounds in the final selection.

6.2.3 SMT mistag rate

The rate at which light jets are misidentified by the SMT is known as the SMT mistag rate

or SMT fake rate. The SMT mistag rate is measured in data using the technique outlined

in [156]. The principle is to use a sample of W+1 jet events to measure the rate at which

the SMT tags light jet events in order to derive a data-to-MC scale factor, SSMT-mistag. The
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(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.6 Comparison of data and prediction for electron+jets events with NJet ≥ 3 before any

selection has been applied on the number of b-tagged or SMT-tagged jets.

(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.7 Comparison of data and prediction for electron+jets events with NJet ≥ 4 before any

selection has been applied on the number of b-tagged or SMT-tagged jets.
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(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.8 Comparison of data and prediction for electron+jets events with NJet ≥ 2, requiring at

least one b-tagged jet.

(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.9 Comparison of data and prediction for electron+jets events with NJet ≥ 3, requiring at

least one b-tagged jet.
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(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.10 Comparison of data and prediction for electron+jets events with NJet ≥ 4, requiring at

least one b-tagged jet.

(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.11 Comparison of data and prediction for muon+jets events with NJet ≥ 2 before any selection

has been applied on the number of b-tagged or SMT-tagged jets.
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(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.12 Comparison of data and prediction for muon+jets events with NJet ≥ 3 before any selection

has been applied on the number of b-tagged or SMT-tagged jets.

(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.13 Comparison of data and prediction for muon+jets events with NJet ≥ 4 before any selection

has been applied on the number of b-tagged or SMT-tagged jets.
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(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.14 Comparison of data and prediction for muon+jets events with NJet ≥ 2, requiring at least

one b-tagged jet.

(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.15 Comparison of data and prediction for muon+jets events with NJet ≥ 3, requiring at least

one b-tagged jet.
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(a) pT(`) (b) Emiss
T (c) mT(W )

Figure 6.16 Comparison of data and prediction for muon+jets events with NJet ≥ 4, requiring at least

one b-tagged jet.

W → µν channel is used because of the higher contamination from multijet background in the

W → eν channel [157]. The W+jets normalisation and flavour fraction scale factors, as well as

the multijet background estimation derived in the previous sections are used for the mistag

rate measurement. The result is SSMT-mistag = 1.10± 0.14.

6.2.4 SMT reconstruction efficiency

As discussed in Section 5.4.1, the soft muon candidates must pass the tight quality requirement

and therefore reconstruction efficiency scale factors are available from the central muon group.

However, these scale factors are derived for isolated muons, whereas the soft muons will, by

definition, be inside a jet. In order to verify that the scale factors provided were sufficient for

the soft muons, additional studies were performed to check the reconstruction efficiencies for

muons inside jets and non-prompt muons.

The reconstruction efficiencies were checked in MC samples, by finding true, particle level

muons that originate from a b- or c-hadron and then trying to geometrically match them to

reconstructed muons. The reconstruction efficiency is then defined the fraction of true muons

that are matched to reconstructed muons.
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In addition to checking MC sample, a study using the tag-and-probe method is also used. Pure

samples of J/ψ → µµ and Z → µµ are used selected by applying cuts to the invariant mass of

the dimuon candidates. The efficiency scale factors derived are very close to those provided by

the central muon group and therefore no additional corrections are required.
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6 Simulation modelling 6.3 Particle level reweighting

6.3 Particle level reweighting

Due to the time taken to simulate the passage of particles through the detector and the limited

resources available, MC samples with detector reconstruction are not available for all scenarios.

The following samples, used in this analsyis, consist of particle level information only:

• Alternative mt samples;

• Colour reconnection variation samples;

• Underlying event variation samples;

• rb variation samples.

In order to use these samples in the analysis a method to “smear” the particle level samples to

reconstructed level is developed. The following section details this method and its validation.

6.3.1 Particle level selection

The particle level selection is defined to be as close to the reconstructed level selection as

possible. The pre-selection, based on particle level objects, is as follows:

• The prompt lepton is defined as the highest pT lepton coming from the t → W → ` or

t → τ → ` (` is e or µ) with a pT > 27 GeV and |η| < 2.5;

• If there is a second lepton coming from t → W → ` or t → τ → ` also passing the

selection, the event is vetoed;

• EmissT > 30 GeV and EmissT +MT(W ) > 60 GeV;

• At least four true jets with pT > 25 GeV, |η| < 2.5;

• At least one true jet must be labelled as a b-jet;

• A muon is tagged as the soft muon if pT > 8 GeV and |η| < 2.5 and the closest jet is

within ∆R(µ-soft, jet) < 0.4;
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• At least one of the selected true jets must be labelled as a b-jet. This can be the SMT-jet

or another;

• ∆R(µ-soft, `) < 2;

• The soft muon and lepton must have opposite electric charge;

• All jets not SMT-tagged must have pT > 30 GeV;

• Veto events where the soft muon originates from a t → W → µ or t → τ → µ decay.

These events are considered a background.

6.3.2 Transfer function

In order to use particle level events at the reconstructed level, only the information from the

m`µ distribution is required. Therefore, a transfer function is defined with a bin-by-bin weight

as follows

wi = N reco
i

N truth
i

(6.14)

where i denotes the ith bin of the m`µ distribution and Ni are the number of events in the ith

bin of the particle and reconstructed level m`µ distributions. The transfer function is defined

using the nominal tt signal sample (PP8 A14-rb). A comparison of the transfer functions

derived from the Powheg+Pythia8 A14-rb and Powheg+Pythia8 A14 samples can be seen

in Figure 6.17.

The general strategy is to use the transfer function derived from the nominal tt signal sample

to reweight particle level distributions for the alternative mass and signal variation samples.

The use of the transfer function is based on the assumption that because m`µ is a leptonic

observable there will be limited smearing of the observable by the detector. The response

matrix is defined as

Rij = P (observed in bin i|true value in bin j). (6.15)
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Figure 6.17 A comparison of the transfer functions derived from Powheg+Pythia8 A14-rb and

Powheg+Pythia8 A14 tt samples.
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Figure 6.18 Plot of the response matrix derived from Powheg+Pythia8 A14-rb tt sample. Note the

final selection limits 15 < m`µ < 80 GeV
.

As can be seen in Figure 6.18, which shows the response matrix, there is very little migration

between bins and therefore, the assumption is valid. A further assumption is that the transfer

function should have limited dependency on the kinematics of m`µ due to the different tt

samples being reweighted. The following sections test these assumptions.

6.3.3 Transfer function dependency on mt

The main use for the transfer function is to reweight particle level samples of alternative mt

predictions for use in the mass extraction process detailed in Chapter 9. In order to verify

the transfer function is suitable for use on samples with different mt , a single sample with

mt = 174.5 GeV is simulated at reconstructed level (AFII) and compared with the particle

level sample with the transfer function reweighting applied. Figure 6.19 shows the comparison
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Figure 6.19 Comparison of mt = 174.5 tt sample at reconstructed level with particle level sample,

reweighted to reconstructed level with transfer function for m`µ.

between the two samples. The comparison of the two distributions gives a P (χ2) = 0.75, a

Kolmogorov compatibility test results in a compatibility of 0.87, and the difference in the

average of the m`µ distribution is 〈mAFII
`µ 〉 − 〈mtruth,TF

`µ 〉 = 0.000± 0.013 GeV. These results

indicate the samples are fully compatible and therefore the transfer function is safe to use with

the alternative mt tt samples.

6.3.4 Transfer function dependency on modelling variations

In addition to the alternative mt samples, the colour reconnection, rb and underlying event

variation samples are also only at particle level. For the rb variations, Figure 6.17 shows a

comparison of the transfer function defined with a sample using rb = 1.05 (A14-rb nominal and

a sample using rb = 0.855 (original A14 sample). This range of rb is larger than the range used
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Figure 6.20 Comparison of the Powheg+Pythia8 A14 tt sample at reconstructed level with particle

level sample reweighted to reconstructed level with transfer function derived from the Powheg+Pythia8

A14-rb sample for m`µ.

in the variation samples (rb = 1.071 and rb = 1.029). Figure 6.20 shows a comparison of the

reconstructed level Powheg+Pythia8 A14 sample with the particle level Powheg+Pythia8

A14 sample reweighted with a transfer function defined from the Powheg+Pythia8 A14-rb

sample. Both Figure 6.17 and Figure 6.20 show good agreement; therefore, the transfer function

is safe to use with these samples.

Both the colour reconnection and underlying event uncertainties are small for the analysis

(see Chapter 8) and therefore contribute a negligible impact to the total uncertainty. For

these reasons, the transfer function defined from the nominal signal sample is considered to be

sufficient.
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Chapter 7

Sample composition and event yields

After the object and event selection requirements are applied, the composition of the sample

and event yields are checked. This chapter details the categorisation of events according to the

origin of the soft muon and then the comparison of event yields from the signal and background

MC samples with the measured data.

7.1 Sample composition

The soft muons in tt events can come from various sources. In the MC samples, particle level

information is used to identify the origin of the soft muons by checking back through the event

record to see what the muon’s ancestry was. Using this, four categories are identified:

• Muons originating from the decay chain of a b quark produced in a t → W b. This

includes events that contain B → µ, B → D → µ, B → τ → µ and B → D → τ → µ.

This category is referred to as the tt SMT-signal.

• Muons originating from the decay chain of a b quark that did not originate from a top

decay. These b quarks come from initial or final state gluon splitting (g → bb). It also

includes muons originating from c quarks not produced by a top decay, but rather which

are produced by gluon splitting or from the W → sc decay. This category is referred to

as tt SMT-background events.
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• Muons that are prompt leptons from the leptonically decaying W , but which have not

passed the prompt lepton requirements and are close to a jet. These muons are mainly

from tt dileptonic decays and are referred to as tt dilepton events.

• Muons that are reconstructed without an associated muon in the particle level information

for the event. These are muons originating from the decay of light hadrons and which are

added to the particle-level information only during the detector simulation stage. These

are referred to as SMT-fake events.

The tt SMT-signal category will have the highest sensitivity to mt ; however, for the remainder

of this chapter, SMT-signal and SMT-background are combined and referred to as tt (SMT from

b- or c-hadron). Table 7.1 shows the fraction of events falling in each sub-category involving

direct and sequential decays and those not belonging to the top decay chain. The other two

categories are treated as backgrounds to the analysis.

Table 7.1 Fraction of MC tt events split into components of direct and sequential decays, and decays

not belonging to the b from the t→Wb decay chain.

OS [%] SS [%]
Processes involving a µ from a t or t
t→ B → µ 73.6 51.2
t→ B → D → µ 16.7 44.2
t→ B → τ → µ 2.0 1.3
t→ B → D → τ → µ 0.8 0.8

Processes involving a µ not from a t or t
B → µ 0.6 0.9
D → µ 5.8 1.4
Other (τ → µ) 0.5 0.1

7.1.1 Event yields

The expected event yields for the signal and background components in addition to the number

of observed data events can be seen in Table 7.2 for both the OS and SS regions. The selection
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contains over 90% tt events when including the cases from the signal, dilepton events and

fake SMT events. The contribution from the backgrounds is minimal, with the single top Wt

channel contributing the largest single contribution. The Z+jets background makes a small

contribution at the peak of the m`µ distribution, but is more important around the peak of the

Z -boson mass.

Table 7.2 Events yields withm`µ between 15 and 80 GeV, seperately for OS and SS regions. Uncertainties

shown include statistical and systematic contributions.

Process Yield (OS) Yield (SS)

tt̄ (SMT from b- or c-hadron) 56000± 4000 34800± 2800
tt̄ (SMT from W → µν) 2190± 320 4.9± 3.6
tt̄ (SMT fake) 1490± 210 1240± 170
Single top t-channel 770± 70 490± 40
Single top s-channel 63± 6 49± 4
Single top Wt channel 1840± 140 1260± 100
W+jets 1600± 400 1080± 240
Z+light jets 210± 80 15± 6
Z+HF jets 550± 170 310± 100
Diboson 17.2± 2.9 6.3± 1.4
Multijet 530± 140 480± 130
Total Expected 65000± 5000 39800± 3000
Data 66891 42087

In 83% of selected tt events in the OS region the soft muon and the prompt lepton originate

from the same top quark (same-top decay). There are a further 10% of events in which the

soft muon and prompt lepton originate from different top quarks. This purity stems from the

∆R(`, µ-soft) < 2 cut, which preferentially selects events containing same-top decays. In the

remaining 7% of decays the soft muon does not originate from either of the b-quarks from top

decays. In the SS region the corresponding fractions are 57%, 41% and 2%, respectively.

The data are compared to the sum of the signal and background predictions and visualised as a

function of several observables in order to verify the predictions. Figures 7.1 to 7.7 show the
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Figure 7.1 Comparison of data and prediction for pT(`primary) for the OS (a) and SS (b). The prediction

is the sum of the expected signal and background events. The shaded band includes both the statistical

and systematic uncertainties.

comparison for several physical quantities related to the event selection and the kinematics of

the constituent parts of m`µ. The agreement between the data and prediction is assessed with

a χ2 test, which takes into account the full bin-by-bin correlation matrix. All distributions

agree at a level of better than two standard deviations.
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Figure 7.2 Comparison of data and prediction for η(`primary) for the OS (a) and SS (b). The prediction

is the sum of the expected signal and background events. The shaded band includes both the statistical

and systematic uncertainties.
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Figure 7.3 Comparison of data and prediction for pT(µSMT) for the OS (a) and SS (b). The prediction

is the sum of the expected signal and background events. The shaded band includes both the statistical

and systematic uncertainties.
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Figure 7.4 Comparison of data and prediction for mT(W ) for the OS (a) and SS (b). The prediction

is the sum of the expected signal and background events. The shaded band includes both the statistical

and systematic uncertainties.
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(a) Emiss
T in the OS region.

0 20 40 60 80 100 120 140 160 180 200

 [GeV]miss
TE

0.7

0.85

1

1.15

 

D
at

a 
/ P

re
d. 0

1000

2000

3000

4000

5000

E
ve

nt
s 

/ 5
 G

eV

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

SS selection
Pre-Fit

Data
)c/b from SMT (tt

 fake)SMT (tt
Single top
Other backgrounds
Uncertainty

(b) Emiss
T in the SS region.

Figure 7.5 Comparison of data and prediction for Emiss
T for the OS (a) and SS (b). The prediction is

the sum of the expected signal and background events. The shaded band includes both the statistical

and systematic uncertainties.
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(a) pT(leading jet) in the OS region.
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Figure 7.6 Comparison of data and prediction for pT(leading jet) for the OS (a) and SS (b). The

prediction is the sum of the expected signal and background events. The shaded band includes both the

statistical and systematic uncertainties.
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Figure 7.7 Comparison of data and prediction for pT(SMT jet)for the OS (a) and SS (b). The prediction

is the sum of the expected signal and background events. The shaded band includes both the statistical

and systematic uncertainties.
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Chapter 8

Sources of uncertainty

The analyses presented in this thesis consider a total of 146 individual variations corresponding

to 30 sources of uncertainty. These sources of uncertainty are summarised in Table 8.1 and

their impact on the measured value of the top-quark mass is discussed in Chapter 9. In this

section the method of evaluating each systematic uncertainty is described. The effect of each

uncertainty on the differential cross-section measurement is discussed in Chapter 10.

8.1 Luminosity

The uncertainty on the combined 2015+2016 integrated luminosity is 2.1% [158]. The luminosity

and its uncertainty is measured using the LUCID-2 detector [75].

8.2 Data and MC statistics

The uncertainty on the size of the sample of data events is evaluated by performing the fit

(Chapter 9) while keeping all nuisance parameters associated with systematic uncertainties

constant. The uncertainty arising from the limited size of the MC samples used for the signal

and background predictions includes the effect on the fit calibration and the uncertainty arising

from the limited number of events in each sample.
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8 Sources of uncertainty 8.2 Data and MC statistics

Table 8.1 Summary of all the sources of uncertainty currently included in the analysis. Where

appropriate, the number of independent components considered is indicated.

Source of uncertainty Number of components

Detector systematics
Electron energy scale and resolution 2
Electron efficiency 4
Electron charge mis-identification 1
Muon momentum scale and resolution 5
Muon reconstruction efficiency 2
Muon trigger, isolation, TTVA efficiency 6
JVT efficiency 1
JES 28
JER 1
Emiss
T soft term 3

b-tagging efficiencies 27
Pileup modeling 1
Signal modelling
NLO generator 2
PS and hadronisation 2
Parton shower αFSRS 1
ISR 2
Colour reconnection 1
Underlying event 1
b-quark fragmentation rb 1
B,C production fractions 7
B,C branching ratios 5
PDFs 30
Background modelling
tt dilepton 3
W+jets normalisation 3
Z+jets normalisation 2
Multijet normalisation 2
Single-top normalisation 1
SMT-fakes normalisation 1
SMT-fakes modelling 1
Other
MC statistics 2
Luminosity 1
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8 Sources of uncertainty 8.3 Leptons

8.3 Leptons

The uncertainties associated with leptons arise from the trigger, reconstruction, identification

and isolation, as well as the lepton momentum scale and resolution. Dedicated scale factors to

correct for differences between data and MC simulation are used for reconstruction, identification

and isolation efficiencies of electrons and muons in addition to the efficiency of the trigger used

to record events.

The efficiency scale factors are derived using the tag-and-probe method using Z → `+`−

(` = e−, µ−) events in data and MC. The scale factors are applied on a per event basis to the

MC samples to correct for differences. Each scale factor has an associated uncertainty that

is also applied as a per event weight. The total uncertainty on the efficiency scale factors for

high-pT leptons is < 0.5% for muons across the entire pT spectrum [159] and electrons that

satisfy pT > 30 GeV. For low-pT electrons the uncertainty exceeds 1% [160].

Uncertainties also originate from the correction factors that correct for differences in the lepton

momentum scale and resolution between data and MC. These correction factors are measured

using the reconstructed dilepton invariant mass in both Z → `+`− and J/ψ → `+`− decays.

Additional measurements of E/p in W → e−ν events, where E is the electron energy measured

in the calorimeter and p is the electron momentum measured in the ID. The uncertainty on the

momentum scale is evaluated by performing the the measurement again with the momentum

scale varied by ±1 standard deviation. For the scale resolution the measurement is repeated

with the lepton resolution smeared.

The systematic uncertainty associated with the electron charge misidentification is evaluated

using the method outlined in [160]. The scale factors for correcting the differences in electron

charge misidentification between data and MC are calculated using Z → e−e+ events.

Due to the soft muons using the standard tight quality working point, the standard uncertainty

prescriptions can be used [92]. Additional studies have been performed to verify the scale

factors for isolated muons are also valid for muons inside jets.
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8.4 Jets and missing transverse energy

The systematic uncertainties associated with the jet energy scale are evaluated by varying the

jet energies according to the variations that were derived in the calibration process described

in Section 4.2.4. For this analysis, a total of 26 variations are used to evaluate the jet energy

scale uncertainties. A full description of their derivation can be found in [96, 97]. For 24

of the variations, the standard prescription is used; however, for two of the variations an

analysis-specific procedure is used. These are detailed in Section 8.5 and Section 8.6.

The jet energy scale uncertainty is around 5.5% for jets with pT = 25 GeV. The uncertainty

decreases with increasing pT. For the range 100 GeV < pT < 1.5 TeV, the uncertainty is below

1.5%. Although the observable used in the analysis, m`µ, is purely leptonic, the jet uncertainties

contribute to the total uncertainty of the event selection using jets. The uncertainty on the

efficiency for passing the JVT requirements is evaluated by varying the scale factors within

their uncertainties [161].

The uncertainty associated with the jet energy resolution was measured at 8 TeV in Run 1 of

the LHC [162]. Additional uncertainties are included for the extrapolation from Run 1 to Run

2 conditions. The uncertainty is propagated to the analysis by smearing the jet pT in the MC.

The additional SMT-jet energy scale correction has an associated statistical and systematic

uncertainty. The systematic uncertainty is propagated into the analysis in a correlated way.

For each systematic variation the corresponding correction factor is applied.

8.5 Jet flavour composition uncertainty

Jets can originate from either a gluon or a quark and their respective kinematics and properties

vary. These differences will affect how the jet propagates through the detector. The main

difference is the response of the calorimeters. The response is defined asR = precoT (jet)/ptruthT (jet)

and varies between light quarks and gluon jets in MC. The difference in response is due to

gluon jets containing more particles and therefore those particles have, on average, lower pT
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Figure 8.1 Distribution of the track multiplicity, ntrack, for jets initiated from quark and gluons using

the Pythia8 generator [166].

than jets originating from light quarks. The calorimeters perform better for higher pT particles,

which means the response will vary with pT. The difference in particle multiplicity in the jet

stems from the colour factor for gluons being CA = 3 and for jets CF = 4/3 [163, 164]. The

ratio of the number of particles in gluon jets, Ng, to quark jets, Nq at leading order is given by

Ng

Nq
= CA
CF

. (8.1)

A comparison of track multiplicity in a jet, ntrack, between quark and gluon initiated jets can

be seen in Figure 8.1. Due to the lower pT of jets originating from gluons, the particles have

a lower probability of penetrating further into the calorimeter and therefore suggests a lower

response. The difference in calorimeter response between light quark and gluon jets can be up

to 10%, depending on the jet pT and calibration scheme [165].

To evaluate the systematic uncertainty associated with the flavour response, the variation ∆RS

for a given sample S is given by

∆RS = ∆fg(Rg −Rq) + fg∆Rg, (8.2)
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8 Sources of uncertainty 8.5 Jet flavour composition uncertainty

where Rq and Rg are the responses to light quark and gluon jets, respectively, fg ±∆fg is the

gluon fraction plus its uncertainty and ∆Rg is the uncertainty on the gluon response, derived

from the difference in response between MC generators [165].

The different response due to light quark and gluon initiated jets can impact analyses where

the flavour composition for the sample is not known. By estimating the flavour composition of

a given sample, the uncertainty can be reduced. In the default setup, fg = 0.5± 0.5 is used as

a conservative estimate of the flavour composition.

8.5.1 Flavour composition estimation method

To reduce the uncertainty associated with the jet flavour composition, the flavour composition

of the MC samples used in the analysis are measured. The process used is as follows:

• All jets that pass the detector level requirements are matched to jets at particle level

with a requirement ∆R < 0.3;

• The partonic flavour of each jet is defined by the closest (∆R < 0.3) and most energetic

parton according to the truth record;

• The jet flavour composition is mapped in bins of pT and η as fg depends on these variables;

• fg is calculated in each bin where fg = N
jet
gluon

N
jet
gluon+N jet

light-quark
;

• ∆fg is then calculated by comparing fg from three MC samples:

– MC generator - the absolute difference in fg between the nominal Powheg+Phythia8

and aMC@NLO+Pythia8 samples;

– Parton showering and hadronisation - the absolute difference in fg between

the nominal Powheg+Phythia8 and Powheg+Herwig7 samples;

– ISR/FSR - half of the absolute difference in fg between the nominal Powheg+Phythia8

sample and the radiation high/low samples of Powheg+Pythia8.

• The final ∆fg comes from the three components added in quadrature.
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8.5.2 Flavour composition in the event topology

The flavour composition is estimated in the four channels used in the analysis; e+jets and

µ+jets for both 2015 and 2016 data runs. The selection used is the same as the nominal analysis

selection. Plots of the gluon fraction in each of the channels are shown in Figure 8.2 . In order

to make use of the full reduce the statistical uncertainty associated with the limited number of

events in the MC simulation, the four channels are combined in to one. Figure 8.3 shows the

comparison of the gluon fraction in each channel, split by η region. The larger gluon fraction

at low pT will be due to ISR radiation from gluons or pileup so they are not likely to be high

pT. The low number of events in the MC sample is apparent in the 2015 channels. However,

the gluon fractions for each channel are comparable, showing no dependence on channel. This

means that the combined fractions can be safely used.

The gluon fraction varies as a function of jet-pT and jet-η and it is generally around 0.3− 0.6.

The improvement in the uncertainty associated with the jet flavour composition comes from

the reduction in the uncertainty on the gluon fraction. Instead of being 100%, as in the default

case, the uncertainty is generally closer to 50% and often lower. In Figure 8.3, each η region

shows the same shaped distribution where the gluon fraction is higher at lower jet-pT. This

is due to the lower pT jets more often originating from pileup and therefore more likely to be

gluon initiated jets.

133



8 Sources of uncertainty 8.5 Jet flavour composition uncertainty

 0.32±
0.62

 0.52±
0.69

 0.48±
0.42

 0.21±
0.27

 0.29±
0.37

 0.41±
0.31

 0.20±
0.38

 0.29±
0.52

 0.56±
0.44

 0.39±
0.40

 0.28±
0.30

 0.13±
0.34

 0.31±
0.28

 0.15±
0.44

 0.27±
0.59

 0.33±
0.75

 0.47±
0.43

 0.23±
0.25

 0.55±
0.24

 0.37±
0.54

 0.15±
0.27

 0.32±
0.68

 0.43±
0.60

 0.21±
0.45

 0.28±
0.40

 0.35±
0.57

 0.60±
0.32

 0.12±
0.25

 0.40±
0.40

 0.24±
0.50

 0.31±
0.54

 0.58±
0.47

 0.77±
0.67

 1.31±
0.67

 0.30±
0.43

pT [GeV]

210

|
je

t
η|

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
e+jets 2015

 0.25±
0.60

 0.14±
0.50

 0.25±
0.36

 0.13±
0.30

 0.16±
0.27

 0.08±
0.28

 0.06±
0.46

 0.35±
0.57

 0.28±
0.49

 0.17±
0.39

 0.20±
0.35

 0.22±
0.28

 0.25±
0.28

 0.05±
0.43

 0.36±
0.60

 0.28±
0.58

 0.14±
0.43

 0.23±
0.31

 0.23±
0.27

 0.18±
0.27

 0.06±
0.41

 0.38±
0.64

 0.35±
0.54

 0.31±
0.49

 0.29±
0.40

 0.21±
0.35

 0.24±
0.35

 0.04±
0.35

 0.31±
0.63

 0.43±
0.58

 0.27±
0.51

 0.30±
0.49

 0.39±
0.38

 0.21±
0.42

 0.09±
0.39

pT [GeV]

210

|
je

t
η|

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
e+jets 2016

 0.51±
0.82

 0.18±
0.53

 0.29±
0.35

 0.21±
0.25

 0.20±
0.32

 0.07±
0.44

 0.18±
0.27

 0.46±
0.58

 0.50±
0.46

 0.40±
0.49

 0.29±
0.38

 0.23±
0.42

 0.44±
0.24

 0.23±
0.46

 0.54±
0.76

 0.39±
0.69

 0.36±
0.48

 0.13±
0.52

 0.27±
0.39

 0.40±
0.36

 0.28±
0.55

 0.22±
0.60

 0.22±
0.47

 0.40±
0.31

 0.25±
0.32

 0.74±
0.46

 0.11±
0.36

 0.22±
0.56

 0.19±
0.62

 0.87±
0.64

 0.07±
0.50

 0.49±
0.43

 0.73±
0.33

 0.07±
0.43

 0.15±
0.14

pT [GeV]

210

|
je

t
η|

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
+jets 2015µ

 0.20±
0.53

 0.29±
0.50

 0.31±
0.41

 0.19±
0.32

 0.17±
0.26

 0.30±
0.28

 0.07±
0.41

 0.29±
0.57

 0.26±
0.48

 0.26±
0.42

 0.15±
0.31

 0.14±
0.31

 0.11±
0.29

 0.05±
0.35

 0.35±
0.59

 0.27±
0.57

 0.18±
0.45

 0.21±
0.34

 0.20±
0.32

 0.30±
0.33

 0.06±
0.41

 0.35±
0.64

 0.28±
0.54

 0.21±
0.49

 0.21±
0.37

 0.22±
0.34

 0.24±
0.36

 0.05±
0.36

 0.28±
0.64

 0.49±
0.61

 0.25±
0.53

 0.33±
0.44

 0.25±
0.35

 0.32±
0.29

 0.07±
0.28

pT [GeV]

210

|
je

t
η|

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
+jets 2016µ

Figure 8.2 Plots of the gluon fraction as a function of jet-pT and jet-η with its associated uncertainty

in each of the four channels.
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Figure 8.3 Plots of gluon fraction as a function of jet pT in five η regions. Each colour represents a different channel and run year as described in the

legend. Uncertainty bands include the statistical error on the gluon fraction.
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8.6 Pileup ρ topology uncertainty

As discussed in Section 4.2.4, one of the key variables used in the pileup correction stage of the

jet calibration is the pileup pT density, ρ. The ρ for each event is a measure of the underlying

pileup activity in the event that will contribute to the measured pT of a given jet. The pileup

density is estimated from the median of many kt algorithm clustered jets with no minimum pT

threshold. Jets clustered with the kt algorithm are used because the algorithm tends to cluster

lower-pT pileup jets. ρ is defined as

ρ = median

 p
jet
T,i

Ajet
i

 , (8.3)

where each kt jet has a momentum pjetT,i and area Ajet
i . This can be understood as the energy

density in the event coming from pileup events. In events with more pileup, it should be

expected that ρ is also higher.

To correct a given anti-kt jet’s pT, the ρ of an event is taken into account. To correct the jet-pT,

the following equation is used

pcorrT = pjetT − ρ×A
jet, (8.4)

where ρ indicates the pileup activity in the event and the area, Ajet, is a estimate of how

susceptible a jet is to pileup interactions.

8.6.1 Uncertainty on ρ

To assess the uncertainty on ρ, the dependence of ρ on the mean number of interactions per

bunch crossing, 〈µ〉, is studied in three different event topologies: Z+jets, γ+jets and dijet.

The uncertainty is derived from any bias between the event topologies. In principle the ρ for

an event should be topology invariant. For each topology, both MC and data is used, with two

different MC generators compared.
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In each topology, ρ is plotted as a function of 〈µ〉 and then a linear fit is performed on the

profile of this distribution. To assess the difference between ρ in MC and data, across the three

topologies, the difference in the slope and intercept of the fit are studied. The effect on the

slope is given by

∆s =
(
∂ρ

∂〈µ〉

channel 1

data
− ∂ρ

∂〈µ〉

channel 2

data

)
−
(
∂ρ

∂〈µ〉

channel 1

MC
− ∂ρ

∂〈µ〉

channel 2

MC

)
, (8.5)

where channel 1 and 2 denote all possible pairings of the three topologies. The effect on the

modelling of the intercept is given by

∆I =
(
ρ(〈µ〉ref)channel 1data − ρ(〈µ〉ref)channel 2data

)
−
(
ρ(〈µ〉ref)channel 1MC − ρ(〈µ〉ref)channel 2MC

)
, (8.6)

where 〈µ〉ref is the mean value of 〈µ〉 for the given year of data taking and ρ(〈µ〉ref) is the value

of ρ for 〈µ〉ref as taken from the fit.

The uncertainty associated with the slope and intercept is derived using the average area of the

jets (πR2) and the mean jet energy calibration factor at pT = 25 GeV averaged over each η

bin, CJES. This is used to propagate the max(∆s) and max(∆I) to make a systematic shift of

the calibrated jet pT. The systematic shift due to the uncertainty of the slope fitted to the ρ

dependence on 〈µ〉 is given by

∆s
pT

= ±max(∆s)× CJES × πR2 × (〈µ〉 − 〈µ〉ref), (8.7)

and the systematic shift due to the uncertainty on the value of ρ is given by

∆I
pT

= ±max(∆I)× CJES × πR2. (8.8)

As discussed in Section 4.2.4, the jet pileup correction has a dependence of the reconstructed jet

pT on both 〈µ〉 and the average number of primary vertices, 〈NPV 〉. Both dependencies have

an associated systematic uncertainty, ∆〈µ〉pT
and ∆〈NPV 〉pT

. Both ∆s
pT

and ∆〈µ〉pT
have a functional

dependence on 〈µ〉 and it is observed that ∆〈µ〉pT
is dominant in all cases so ∆s

pT
is ignored.
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8.6.2 Event selection

To estimate the uncertainty on ρ, events are selected for the three event topologies using the

following event selection requirements.

Z+jets

• Passing the following triggers: electron channel - HLT_2e17_lhmvloose_nod0, muon

channel - HLT_2mu14;

• pleading-jetT > 10 GeV and |ηjet| < 4.5;

• Exactly 2 leptons with pT > 20 GeV and |η| < 2.4;

• The 2 leptons are required to have an invariant mass 66 < m`` < 116 GeV and must have

opposite electric charge;

• ∆φ(jet, Z) > 2.8;

• Lepton isolation from jets ∆R > 0.35.

The reference pT for the Z+jets topology is defined as prefT = pZT · | cos ∆φ(Z, jet)|.

γ+jets

• Passing the trigger HLT_g140_loose

• pleading-jetT > 10 GeV and |ηjet| < 4.5

• At least one photon with pγT > 150 GeV - tight ID

• ∆φ(jet, γ) > 2.8

• Photon isolation from jets ∆R > 0.2

Dijets

• Passing the unprescaled trigger: HLT_j400

• Two jets with pT > 25 GeV with the leading jet pT > 450 GeV and |ηjet| < 4.5
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• At least one of the two leading jets within |ηjet| < 0.8

• ∆φ(probe-jet, reference-jet) > 2.5

where the reference jet is the jet in the well-calibrated reference region and the probe jet is

the more forward jet. These definitions come from the event topologies defined for the jet

calibration procedures [165].

8.6.3 Control plots

For the Z+jets topology, the data and MC prediction from the two generators is compared

for several important variables. The control plots for the γ+jets and dijets can be found in

Appendix A.

8.6.3.1 Z+jets

The comparisons between the data and MC predictions for the Z+jets topology can be seen in

Figures 8.4 and 8.5. For most observables there is a good agreement between data and MC.

However, the subleading jet-pT, Figure 8.4d, shows a large discrepancy in the high jet-pT region

for the Powheg+Pythia sample. This discrepancy is to be expected. In Z+jets, the Powheg

generator calculates up to NLO for Z+0-jets and LO for Z+1-jet. Therefore, the second jet in

the event will be generated from the showering in Pythia which is only LO. This also explains

the slight slope seen in the leading jet-pT.

139



8 Sources of uncertainty 8.6 Pileup ρ topology uncertainty

[GeV]
T

Lepton p

0 50 100 150 200 250 300

E
ve

nt
s 

210

310

410

510

610

Z+jets Data 15+16

Z+jets Pythia

Z+jets Sherpa

[GeV]
T

Lepton p
0 50 100 150 200 250 300

D
at

a
M

C

0.6
0.8

1
1.2
1.4

(a) Lepton-pT.

ηLepton 

4− 3− 2− 1− 0 1 2 3 4

E
ve

nt
s 

210

310

410

510

610

Z+jets Data 15+16

Z+jets Pythia

Z+jets Sherpa

ηLepton 
4− 3− 2− 1− 0 1 2 3 4

D
at

a
M

C

0.6
0.8

1
1.2
1.4

(b) Lepton-η.

[GeV]
T

Leading jet p

0 50 100 150 200 250 300 350 400 450 500

E
ve

nt
s 

210

310

410

510

610 Z+jets Data 15+16

Z+jets Pythia

Z+jets Sherpa

[GeV]
T

Leading jet p
0 50 100 150 200 250 300 350 400 450 500

D
at

a
M

C

0.6
0.8

1
1.2
1.4

(c) Leading jet-pT.

[GeV]
T

Subeading jet p

0 50 100 150 200 250 300

E
ve

nt
s 

210

310

410

510

610
Z+jets Data 15+16

Z+jets Pythia

Z+jets Sherpa

[GeV]
T

Subeading jet p
0 50 100 150 200 250 300

D
at

a
M

C

0.6
0.8

1
1.2
1.4

(d) Sub-leading jet-pT.

Figure 8.4 A comparison of the data and two MC predictions for (a) lepton-pT, (b) lepton-η, (c) leading

jet-pT and (d) subleading jet-pT for the Z+jets topology.
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Figure 8.5 A comparison of the data and two MC predictions for (a) jet multiplicity, (b) leading jet-η,

(c) reference object pT and (d) ρ for the Z+jets topology.
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8.6.4 ρ vs 〈µ〉 fits

To extract the dependence of ρ on 〈µ〉, the profile of ρ vs 〈µ〉 is plotted and a performed. The

fits for each event topology can be seen in Figures 8.6 to 8.8. The results of the fit for each

parameter is shown in the figure legend.
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Figure 8.6 Linear fit of ρ vs 〈µ〉 profile for the Z+jets topology.

8.6.5 ρ uncertainty result

The final uncertainty is calculated using the fits shown in Section 8.6.4 as input to the procedure

outlined in Section 8.6.1. The final result is a 2D map of the fractional uncertainty binned in

jet-pT and jet-η. The final result can be seen in Figure 8.9. For a jet with pT = 25 GeV and

η = 0 the fractional uncertainty is 1.76%. At low-pT, the ρ pileup uncertainty dominates the

jet energy uncertainty because the pileup contribution to the jet-pT is a larger fraction of the

overall jet-pT.
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Figure 8.7 Linear fit of ρ vs 〈µ〉 profile for the γ+jets topology.

8.7 Flavour tagging

In order to correct the b-tagging efficiencies in MC samples to match those in data, correction

scale factors are derived. The scale factors are derived separately for jets originating from b, c

and light quarks [167–169]. Jets originating from b and c quarks are derived as a function of

pT whereas the light jet efficiency is scaled by pT- and η-dependent factors. The uncertainties

on these scale factors are estimated by varying each source of uncertainty up and down by

one standard deviation. The uncertainties are fed into an eigenvariation model (EV). The EV

employs a reduction scheme such that only large variations are treated separately and smaller

variations are combined. These uncertainties are taken as uncorrelated for b, c and light jets.

The tagging efficiencies have a dependence on the ratio of the hadron-pT and jet-pT and the

minimum angle between the jet being tagged and the neighbouring jets. These dependencies

are observed between different parton shower and hadronisation models. To account for the

differences between the parton shower and hadronisation model used in the MC samples used
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Figure 8.8 Linear fit of ρ vs 〈µ〉 profile for the dijet topology.

to derive the tagging efficiencies and the models used in the samples in the analysis, MC-to-MC

correction factors are also applied. The overall uncertainty from the flavour tagging ranges

between 2–12% depending on the jet-pT [98].

8.8 Pileup

The distribution of the average number of interactions per bunch crossing in MC are reweighted

to match the observed conditions in data. The uncertainty is evaluated according to the

uncertainty on the average number of interactions per bunch crossing [158]. Additional MC-to-

MC scale factors for the lepton efficiencies are also applied to the pileup variation samples to

remove the lepton efficiency dependence on pileup conditions.
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Figure 8.9 Fractional uncertainty map for ρ binned in jet-pT and jet-η.

8.9 Signal modelling

Several sources of uncertainty associated with the modelling of the tt MC samples are considered.

Uncertainties that modify the kinematics of the prompt lepton and the b-hadron from which

the soft muon originates are key to the measurement. The uncertainty associated with the tt

inclusive cross-section does not affect the analysis since no information is extracted from the

number of events selected after background subtraction. The uncertainties associated with the

simulation tt production and decay are split into five individual uncertainties: the uncertainty

from the choice of MC event generator, the choice of parton shower and hadronisation model,

the uncertainty on the fitted value of the b-quark fragmentation parameter rb, the choice of

parameters related to the initial-state QCD radiation and the choice of parton shower radiation

parameters. Although there is likely double counting by including several different sources of

uncertainty related to the same processes, the prescription was enforced during the ATLAS

review process.
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8.9.1 b and c hadron production fractions

The uncertainty associated with the b and c hadron production fractions is derived from the

rescaling procedure outlined in Section 6.1.2.1. The scale factors, Table 6.1, which correct the

MC simulation to the most recent measurements of the production factors, have an associated

uncertainty which derives from the uncertainty from the measurements of the production

fractions. These uncertainties are propagated throughout the analysis.

8.9.2 b and c hadron to µ branching ratios

Similarly to the production fractions, the uncertainties associated with the branching ratios of

hadrons to µ are derived from the procedure outlined in Section 6.1.2.2. The scale factors, given

in Table 6.2, that correct the MC simulation to the most recent measurements of the branching

ratios, have an associated uncertainty that derives from the uncertainty on the measurements

of the production fractions. These uncertainties are propagated throughout the analysis.

In addition, a further check is performed to verify the uncertainty associated with the inclusive

b → µ branching ratio is sufficient. In the b → cµ transition, the type of D meson will affect the

kinematics of the decay. A test is performed to check the exclusive branching ratio uncertainties

for heavier D mesons is covered by the inclusive uncertainty. The decays studied are:

1. B0 → D−µν

2. B0 → D∗(2010)−µν

3. B+ → D0µν

4. B+ → D∗(2007)0µν

as well as their charge conjugates. For each of these decays, the kinematics are checked in

events selected using the following requirements:

• pjetT > 25 GeV

• |ηjet| < 2.5
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Table 8.2 Comparison of the BR ratios between the PDG values and from MC.

Decays PDG (2014) MC
BR(B0→D−

µν)
BR(B0→D∗(2010)−

µν)
0.44± 0.01 0.44± 0.01

BR(B+→D0
µν)

BR(B+→D∗(2007)0
µν)

0.40± 0.01 0.40± 0.01

• plepT > 27 GeV

• Njet ≥ 3

• Nb-jet ≥ 1

Plots comparing the kinematics of events from the neutral and charged b-hadron decays can

be seen in Figure 8.10 and 8.11. For the heavier resonance decays there is a shift towards

a harder psmt-µ
T distribution as expected. This, in turn, leads to a harder m`µ spectrum for

heavier resonance decays. The psmt-jet
T remains almost unchanged.

Further checks are carried out to test that EvtGen correctly decays the b hadrons. The ratio

of the PDG [7] branching ratios for each decay is taken and compared to the ratio found from

the samples. Table 8.2 summarises the results, which are found to be consistent with those

from the PDG.

To assess the effect of heavier resonance decays on the uncertainties, the effect of applying

the exclusive decay uncertainties is assessed and compared to the inclusive decay uncertainty.

In Table 8.3, the systematic between the inclusive decay, B0 → D∗(2010)−µν decay and

B+ → D∗(2007)0µν is compared. The shift is calculated by weighting events up and down by

the uncertainty associated with each decay in the optimised signal selection region and taking

the mean of the m`µ distribution. The inclusive shift is significantly larger than the shift of

the individual exclusive decays and therefore using only the inclusive uncertainty in the final

measurement is sufficient. Figure 8.12 shows the effect of the systematic shift for the exclusive

decays.
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(a) (b)

(c)

Figure 8.10 Comparison between B0 → D−µν (black) and B0 → D∗(2010)−µν (red) for (a) psmt-jet
T ,

(b) psmt-µ
T and (c) m`µ.

Table 8.3 The shifts on the mean of the m`µ distributions, arising from applying the individual decay

uncertainties.

Inclusive b→ µ (GeV) Exclusive B0 → D∗(2010)−µν (GeV) Exclusive B+ → D∗(2007)0µν (GeV)
Up 0.026 0.006 0.015
Down -0.027 -0.006 -0.015
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(a) (b)

(c)

Figure 8.11 These plots show the comparison between B+ → D0µν (black) and B0 → D∗(2010)−µν

(red) for (a) psmt-jet
T , (b) psmt-µ

T and (c) m`µ.
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Figure 8.12 (a) Comparison of the effect of the systematic uncertainty for B0 → D0(2010)µν and (b)

B+ → D∗(2007)0µν exclusive decays.

8.9.3 MC event generator

The uncertainty associated with the choice of MC event generator, or NLO matching scheme, in

the tt MC sample is assessed by comparing a sample generated with Powheg+Pythia8 with a

sample generated with MadGraph_aMC@NLO+Pythia8 (shortened to aMC@NLO+Pythia8

in this section). The aMC@NLO matching requires specific Pythia8 settings in order to retain

the NLO accuracy. These settings switch off the matrix-element corrections for both initial

and final state radiation and the global-recoil settings are used for the final state radiation

emissions. These settings are different to those used in the Pythia8 samples, which is used to

shower the nominal Powheg sample. Therefore, comparing the nominal Powheg+Pythia8

with the aMC@NLO+Pythia8 sample would have an artificially large uncertainty, which

is not due to the NLO emission but rather differences in the description of the final state

radiation. Additional uncertainties are attributed to the final state radiation, therefore, to

avoid double counting of uncertainties, a sample of aMC@NLO+Pythia8 is generated with

the same Pythia8 settings as the aMC@NLO+Pythia8 sample. Additionally, the tt pT
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distribution is known to be modelled poorly in aMC@NLO+Pythia8; therefore the tt pT

distribution is reweighted to that of the Powheg+Pythia8.

8.9.4 Underlying event and colour reconnection

The underlying event and colour reconnection can affect the amount of radiation emitted from

the b-quark and therefore impact the kinematics of the b-hadron. These effects can modify the

shape of the m`µ distribution.

To estimate the uncertainty arising from colour reconnection, two new samples are generated.

In one sample, the colour reconnection strength in the Pythia8 default settings is set to

the maximum value. This setting reconnects all hadrons. The other sample sets the colour

reconnection strength to zero so no hadrons are reconnected. As a cross check to verify the

effect of reconnection in the top decay products, a comparison with the “Early resonance decay”

(ERD) model is performed. In the ERD model, the top quarks and W -bosons are allowed

to decay before colour reconnection takes place. In this model the top quark decay products

directly participate in colour reconnection. The impact on the measured value of the top quark

mass is found to be negligible.

The variations for the underlying event are provided by eigentunes of the A14 Pythia8

tuning [113].

8.9.5 PDFs

The PDF set used in the nominal tt Powheg+Pythia8 sample is NNPDF3.0. The un-

certainty is evaluated using the PDF4LHC15 error set [170] by reweighting the nominal

Powheg+Pythia8 sample with 30 weights. The value for mt is extracted for each weight and

then the total systematic is taken as the sum in quadrature of the 30 variations.
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8.9.6 Initial-state QCD radiation uncertainties

The uncertainty on the modelling of the initial-state QCD radiation is estimated with samples

generated by varying the scales in Powheg+Pythia8. A sample with increased initial state

radiation is generated with a normalisation and factorisation scale increased by a factor of 0.5,

a doubled value of hdamp and a larger αISRS . This sample corresponds to the Pythia8 A14

Var3cUp variation [171]. A sample with decreased initial state radiation is generated using

renormalisation and factorisation scales increased by a factor of two and a lower αISRS value.

This sample corresponds to the Pythia8 A14 Var3cDw variation.

8.9.7 b-quark fragmentation parameter rb uncertainty

As discussed in Section 6.1.1, the nominal tt signal sample uses a custom tuning, A14-rb,

derived from a fit to Z → bb LEP data. The uncertainty from the fit of rb is taken as the

variance associated with a uniform distribution between the two extreme fitted values of rb

(rb = 1.024 and rb = 1.096). The result of the fit is rb = 1.05± 0.021. Two additional samples

with rb = 1.029 and rb = 1.071 are used as the systematic variation. The effect of rb variation

on xB can be seen in Figure 8.13 in addition to the final state radiation uncertainty.

8.9.8 Parton shower and hadronisation model uncertainties

To assess the systematic uncertainty associated with the parton shower and hadronisation

model, a comparison between the nominal tt MC sample and an alternative model is used. The

alternative model used is Powheg+Herwig7.1.3, which has an alternative shower algorithm,

hadronisation model, underlying event and colour reconnection. The Herwig7.1.3 generator is

chosen due to its improved shower description for heavy quark fragmentation and a new tune

to e+e− data. Within the Herwig7.1.3 generator there are two shower algorithms to choose

from: angular ordered shower or dipole shower. The angular ordered shower model agrees with

xB measurements from LEP better than the dipole shower model, therefore it is used for this

analysis.
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8.9.9 Parton shower αFSR
s

Commonly, the uncertainty on the final state radiation is evaluated with additional MC samples

with the final state radiation renormalisation, µFSRR , and factorisation scales, µFSRF , varied up

and down by an arbitrary factor of two. The upper range of variations varies in literature from

1.25 to
√

2 [134]. A newer technique based on producing event-by-event weights has recently

become available [172]. Due to technical issues, the event reweighting method cannot be used in

this analysis. It is, however, shown in [172] that a variation of a factor two for µFSRR and µFSRF

using the event reweighting is approximately equivalent to a factor of an explicit
√

2 variation.

Therefore, explicit factors of
√

2 and 1/
√

2 are used for the up and down variations.

Variations of µFSRR and µFSRF also affect the fragmentation of the event. In order to remove

the variation of fragmentation effects, the rb for the final state radiation variation samples is

refitted to LEP data using the same method outlined in Section 6.1.1. In a further step to

remove any possibility of double counting uncertainties, the xB distribution for the variation

samples are reweighted to match the nominal tt sample.

8.10 Background modelling

8.10.1 tt dilepton

The modelling of the tt dilepton sample has three sources of systematic uncertainty. Similarly

to the tt signal sample, the tt dilepton sample has an associated uncertainty from the modelling

of initial state radiation, the choice of NLO matching and the modelling of the parton shower

and hadronisation. These are estimated with a similar procedure as the tt signal. For the initial

state radiation modelling, the uncertainty is derived from the same samples as the tt signal. The

NLO matching uncertainty is derived from a comparison between the aMC@NLO+Pythia8

and the nominal tt sample. Finally, the parton shower and hadronisation model uncertainty is

derived from the comparison between Powheg+Herwig7.0.4 and the nominal tt sample.
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8.10.2 tt SMT-fake uncertainties

The uncertainty on the SMT-fake component originates from the SMT scale factor. The

uncertainty on the scale factor is applied to all events where the soft muon is considered an

SMT-fake. An additional uncertainty is applied to the SMT-fake component to cover the

uncertainty on the modelling. The nominal tt sample is compared to an additional sample

simulated with Sherpa.

8.10.3 Non-tt backgrounds

For the single top quark background, an uncertainty of +5%
−4% is applied to the total cross-section

for single-top quark production [128–130]. An uncertainty associated with initial and final state

radiation is also added and is evaluated in a similar manner to the method used for tt signal.

Additional uncertainties were considered for NLO matching, parton shower and hadronisation

and W t, however, the effects are found to be negligible.

An uncertainty of 30% is applied to the Z+jets background. This uncertainty is applied

independently for light and heavy flavour jet components of the Z+jets. This uncertainty is

derived from simulation and verified in a data control region around the Z boson mass peak.

For the W+jets background, the uncertainty on the normalisation flavour fraction is derived from

the data-driven method detailed in Section 6.2.1. The total uncertainty for the normalisation

and flavour fraction is around 22% for W b(b) and W cc components and approximately 45%

for the W c and 23% for W+light jets.

A 50% normalisation uncertainty is applied to the diboson background, which includes the

uncertainty on the inclusive cross section and additional jet production [173].

Finally, a 30% systematic uncertainty is applied to the multijet background event yields derived

from comparisons with data yields in control regions similar to the event selection but enriched

in events from multijet background events.
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Chapter 9

Mass extraction

After the event selection detailed in Chapter 5 has been applied, the distribution of the invariant

mass of the prompt lepton and the soft muon, m`µ, is used to determine the mass of the top

quark mt . A binned-template profile likelihood fit is performed on the range 15 < m`µ < 80 GeV.

The reduced range is considered because the tail is more sensitive to tt modelling uncertainties

and higher order corrections as well as the Z+jets background. The fit is performed on the two

orthogonal samples, OS and SS, simultaneously and their sensitivity can be seen in Figure 9.1.

This chapter first details the binned-template profile likelihood fit procedure and then discusses

the fit verification and results.

9.1 Binned template profile-likelihood fit

9.1.1 Binned likelihood fit

A likelihood fit uses a likelihood function to assess the goodness of fit between a given model

and a sample of data. In particle physics, the likelihood model for the number of events in a

given bin of a distribution is given by a Poisson likelihood model. This Poisson likelihood model

describes the probability of observing n data events in bin i, given some number of predicted

signal, S and background B events. The number of signal events will vary depending on the

model used for the prediction and this is normally included as a factor, µ, often referred to as
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Figure 9.1 Sensitivity of the m`µ distribution to the input top-quark mass, estimated using simulated

events for (a) OS and (b) SS samples.

the signal strength. This factor is referred to as the parameter of interest (POI). The likelihood

is given by

L(n|µ) =
∏
i

Pois(ni|µSi +Bi). (9.1)

The optimal value for the POI is then given by the maximum of the likelihood or, equivalently,

the minimum of the negative log-likelihood and is denoted by µ̂. This is known as the maximum

likelihood estimate (MLE) [174].

9.1.2 Binned profile likelihood fit

The predictions for the signal and background events have associated systematic uncertainties.

These systematic uncertainties can be included in the fit as additional parameters referred to

as nuisance parameters. Each systematic uncertainty is included as a Gaussian constrained

nuisance parameter. The likelihood is modified as follows

L(n|µ,θ) =
∏
i

Pois(ni|µSi +Bi) ·
∏
s

Gaus(as|θs), (9.2)
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9 Mass extraction 9.1 Binned template profile-likelihood fit

where as will normally come from some auxillary measurement such as the jet energy scale

described in Section 4.2.4. The auxillary measurement will also have an associated uncertainty

which is included in this term. The parameter θs refers to the nuisance parameter. Similar to

the case without systematic uncertainties included, the MLEs are given by µ̂ and θ̂.

The total uncertainty on the measurement can be estimated by using the profile likelihood ratio.

This is given by

λ(µ) = L(µ, ˆ̂θ(µ))
L(µ̂, θ̂)

, (9.3)

where ˆ̂
θ(µ) is known as the conditional maximum likelihood estimate (CMLEs) [174]. This is

the value of θ that maximises the likelihood at a fixed µ. This term is often referred to as the

profiled value of θ. Using λ(µ), a test statistic tµ can be constructed in order to quantify the

agreement of the data with a given value of µ,

tµ = −2 lnλ(µ). (9.4)

The uncertainty on µ̂ can then be calculated from confidence intervals [174].

9.1.3 Binned template profile-likelihood fit

The binned profile likelihood fit works for estimating the value of some signal strength from a

given prediction. However, in the case of the top mass, rather than comparing to one signal

prediction with an associated signal strength, the top mass is extracted from fitting to multiple

predictions. To achieve this, the problem formulation is changed: instead of predictions being

in the form of µS(θ), they are a function of a template with the form S(µ,θ).

To achieve this, a technique known as signal morphing is employed. A set of N templates, in

the form of histograms hi∈N , are generated at different values of mt . The assumption is that

any value of mt can be generated from a linear combination of hi. The signal prediction as a
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Figure 9.2 Visualisation of the morphing technique.

function of mt can be expressed as

h(mt) =
N∑
i

wi(mt)hi. (9.5)

The weight, wi is built using piece-wise linear interpolation and is described by

wi =



0 if mt < mt,i−1,

1 - mt,i −mt mt,i−mt,i−1
if mt,i−1 < mt < mt,i.

1- mt −mt,i mt,i+1−mt,i
if mt,i < mt < mt,i+1.

0 if mt > mt,i+1.

An illustration of the method can be seen in Figure 9.2.

To improve the stability of the fit, a smoothing procedure is applied to the signal template. The

bin contents of each prediction as a function of mt is assumed to be linear. The bin content

is fitted with a linear function and the bin contents for each mt point are taken as the exact

value of the fit. Implementing the smoothing procedure for the signal samples produces a more
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9 Mass extraction 9.2 Fit setup

parabolic negative log-likelihood distribution therefore, the asymptotic approximation can be

used [175].

9.2 Fit setup

The fit is performed using the binned template profile-likelihood method outlined in the previous

section. Both the OS and SS samples are fitted simultaneously, with three free parameters free

in the fit: mt which controls the shape of the m`µ distribution for tt events and normalisation

factors for the OS and SS regions, kOS
tt and kSStt . The normalisation factors fix the number of

predicted events to the observed data and no mt information is extracted.

As discussed in Chapter 8, there are a large number of systematic variations in this analysis.

Since many of these systematics are considered a priori, a pruning procedure is applied to

reduce the number of insignificant variations. The procedure removes from the fit systematic

variations that do not affect the total prediction by more than 0.05% in a given bin. This

cut-off value does not affect the overall uncertainty (< 0.03 GeV effect) significantly, however,

it does reduce the complexity of the fit.

The fit method and event selection are optimised to minimise the total uncertainty on mt while

keeping the central value blinded.

9.2.1 Fit validation

Two validation tests are performed. The first is used to check the validity of the asymptotic

approximation. To do so, toy experiments are generated and histograms are build where the

bin content is derived by Poisson fluctuating the Asimov dataset. Here, the Asimov dataset

is a dataset where the number of events in a given bin is exactly the expectation value [175].

The fit procedure is performed on these toy experiments and the resulting distribution of mt

is expected to follow Gaussian behaviour with a mean equal to the nominal top-quark mass

(mt = 172.5 GeV) and a standard deviation compatible with the statistical uncertainty of the

fit to Asimov (see Section 9.3). Using 1000 toys the resultant distribution is Gaussian in shape
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9 Mass extraction 9.3 Fit to Asimov dataset

with a mean of 172.523± 0.015 GeV and a standard deviation of 0.460± 0.011 GeV. The mean

is compatible with the nominal mt value and the standard deviation is compatible with the

statistical uncertainty of the fit to Asimov data (0.467 GeV).

The second test is used to check the closure of the fitting procedure. The fit is performed on

histograms built in the same way as those constructed from the Asimov dataset. However,

instead of the nominal expectation value in each bin, the alternative mt expectation values

are used. The fit is found to recover the correct value for mt within errors in each case and

therefore the fit is assumed to be linear and unbiased.

9.3 Fit to Asimov dataset

To assess the statistical and systematic uncertainty of the measurement, the fit is performed on

the Asimov dataset with an input mt = 172.5 GeV. The fitted value of mt is exactly the input

and the total uncertainty is

±0.76 GeV = ±0.40 (stat)± 0.65 (syst) GeV.

The statistical uncertainty is obtained by repeating the fit while keeping constant all systematic

uncertainty nuisance parameters. The systematic uncertainty is then obtained from the

quadratic difference between the total and statistical uncertainties.

From the fit to the Asimov dataset there should be no pulls and only very small constraints.

The pull is defined as

pull = (θ̂ − θ0)
∆θ , (9.6)

where θ0 is the value of the nuisance parameter from the auxillary measurement, θ̂ is the

estimate of the nuisance parameter from the fit and ∆θ is the uncertainty on the nuisance

parameter. If the mean of the pull distribution is not 0, this would indicate the fit has altered

the value of the nuisance parameter. Similarly, if the width of the distribution is less than 1,
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Figure 9.3 Distribution of the nuisance parameter pulls and constraints from the fit to the Asimov

dataset.

the uncertainty on the nuisance parameter has been constrained. Figure 9.3 shows the pulls

and constraints for the nuisance parameters in the fit to the Asimov dataset and it can be seen

that the fit is behaving well with all pulls centred at 0. The ranking plot is shown in Figure 9.4.

In the plot, the pulls and constraint information for each nuisance parameter is combined with

their impact on the measurement. It can be that there is very little change in the value and

uncertainty of the nuisance parameters, indicating the fit is behaving well.
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9.4 Fit to data

Before the final unblinding of the result, cross checks are performed with the data, but with

the fitted value of mt kept blinded. The pulls of the nuisance parameters are checked as well

as the post-fit control plots. Figure 9.5 shows the nuisance parameter pulls and constraints.

All nuisance parameters have small or no pull and very few are constrained, indicating the

fit is behaving well. Figures 9.6 to 9.12 show the post-fit comparisons between data and MC

prediction. All control plots show good agreement between data and MC prediction within 2

standard deviations.

9.5 Result

The final result of the fit to the OS and SS samples in data is

mt = 174.44± 0.39(stat)± 0.64(syst) = 0.76(stat+syst) GeV.

The goodness of fit is tested using the saturated model technique [176]. The resulting probability

is 56%. The fitted values for the two normalisation factors are as follows

kOS
tt = 1.030± 0.009(stat+syst)

kSStt = 1.065± 0.011(stat+syst)

The normalisation factors are both close to unity, indicating the MC prediction is acceptable.

The breakdown of the impact of the different groups of systematics can be seen in Table 9.1

and the corresponding ranking plot is shown in Figure 9.13. The addition of the systematic

uncertainties to the fit reduces the total systematic uncertainty on the measurement by 2.6%.

Checks are also performed by fitting the OS and SS samples separately, resulting in the following

values for the top-quark mass: mt(OS) = 174.63± 0.86 GeV and mt(SS) = 173.88± 1.22 GeV.
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Figure 9.5 Distribution of the nuisance parameter pulls and constraints from data.
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Figure 9.6 Comparison of data and prediction for pT(`primary) for the OS (a) and SS (b). The prediction

is the sum of the expected signal and background events. The uncertainty band includes the statistical

and systematic uncertainies.
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Figure 9.7 Comparison of data and prediction for η(`primary) for the OS (a) and SS (b). The prediction

is the sum of the expected signal and background events. The uncertainty band includes the statistical

and systematic uncertainies.
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Figure 9.8 Comparison of data and prediction for pT(µSMT) for the OS (a) and SS (b). The prediction

is the sum of the expected signal and background events. The uncertainty band includes the statistical

and systematic uncertainies.
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Figure 9.9 Comparison of data and prediction for mT(W ) for the OS (a) and SS (b). The prediction

is the sum of the expected signal and background events. The uncertainty band includes the statistical

and systematic uncertainies.

167



9 Mass extraction 9.5 Result

0 20 40 60 80 100 120 140 160 180 200

 [GeV]miss
TE

0.7

0.85

1

1.15

 

D
at

a 
/ P

re
d. 0

1000

2000

3000

4000

5000

6000

7000

8000

E
ve

nt
s 

/ 5
 G

eV

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

OS selection
Post-Fit

Data
)c/b from SMT (tt

)W from SMT (tt
 fake)SMT (tt

Single top
Other backgrounds
Uncertainty

(a) Emiss
T in the OS selection.

0 20 40 60 80 100 120 140 160 180 200

 [GeV]miss
TE

0.7

0.85

1

1.15

 

D
at

a 
/ P

re
d. 0

1000

2000

3000

4000

5000

E
ve

nt
s 

/ 5
 G

eV

ATLAS Internal
-1 = 13 TeV, 36.1 fbs

SS selection
Post-Fit

Data
)c/b from SMT (tt

 fake)SMT (tt
Single top
Other backgrounds
Uncertainty

(b) Emiss
T in the SS selection.

Figure 9.10 Comparison of data and prediction for Emiss
T for the OS (a) and SS (b). The prediction is

the sum of the expected signal and background events. The uncertainty band includes the statistical

and systematic uncertainies.
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Figure 9.11 Comparison of data and prediction for pT(leading jet) for the OS (a) and SS (b). The

prediction is the sum of the expected signal and background events. The uncertainty band includes the

statistical and systematic uncertainies.
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Figure 9.12 Comparison of data and prediction for pT(SMT jet)for the OS (a) and SS (b). The

prediction is the sum of the expected signal and background events. The uncertainty band includes the

statistical and systematic uncertainies.

The two values extracted agree within uncertainties. Further checks are performed by fitting

the electron and muon channels, the different prompt lepton charges and different b-tagging

and event selections separately. All tests produced compatible results.

A key issue that often appears in top-quark property measurements is the mismodelling of the

top-quark pT in current MC simulations. As can be seen in Figure 9.6, there is a disagreement

between data and MC prediction for the primary lepton pT, which stems from the mismodelling

of the top-quark pT. A test was performed in a fit for the top-quark mass using both the m`µ

distribution and the primary lepton pT simultaneously to check if the mismodelling of the

top-quark pT spectrum affects the measurement. The test produced a top-quark mass that is

compatible with that from the nominal analysis and which resulted in a similar χ2 value.
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Table 9.1 Breakdown of the impact of the various sources of uncertainty on mt, as obtained from the

combined OS+SS binned template profile-likelihood fit to the real data.

Source of uncertainty Impact on mt [GeV] Stat. precision [GeV]

Statistical and datasets
Data statistics 0.39
Signal and background model statistics 0.16
Luminosity < 0.01 ±0.01
Pile-up 0.04 ±0.03

Modelling of signal processes
Monte Carlo event generator 0.04 ±0.06
b, c-hadron production fractions 0.11 ±0.01
b, c-hadron decay BRs 0.40 ±0.01
b-quark fragmentation rb 0.19 ±0.06
Parton shower αFSRS 0.08 ±0.04
Parton shower and hadronisation model 0.07 ±0.07
Initial-state QCD radiation 0.18 ±0.08
Underlying event < 0.01 ±0.03
Colour reconnection < 0.01 ±0.02
Choice of PDFs 0.07 ±0.01

Modelling of background processes
Soft muon fake 0.16 ±0.03
Multi-jet 0.06 ±0.02
Single top 0.01 ±0.01
W/Z+jets 0.17 ±0.01

Detector response
Leptons 0.12 ±0.01
Jet energy scale 0.13 ±0.02
Soft muon jet pT calibration < 0.01 ±0.01
Jet energy resolution 0.08 ±0.05
Jet vertex tagger < 0.01 ±0.01
b-tagging 0.10 ±0.01
Missing transverse momentum 0.15 ±0.01

Total systematic uncertainty 0.64 ±0.04

Total uncertainty 0.76 ±0.03

171



9 Mass extraction 9.6 Conclusions

9.6 Conclusions

A measurement of the top-quark mass using a novel technique, utilising the partial recon-

struction of the top-quark decay products has been presented. The resulting measurement is

currently the most precise top-quark mass measurement from direct reconstruction of its decay

products, by the ATLAS Collaboration. The result of mt = 174.44± 0.39(stat)± 0.64(syst) =

0.76(stat+syst) GeV is consistent with the current ATLAS combination of top-quark mass mea-

surements within 2.2 standard deviations. The main uncertainties are from the b-quark decay

and fragmentation, as well as the modelling of the top-quark pair production. As discussed in

Section 6.1.1, the modelling of b-quark fragmentation in the simulation is not good. In order to

improve this, the MC tuning should be improved using differential cross-section measurements

that have sensitivity to the b-quark fragmentation. Currently, the MC generators used by the

ATLAS Collaboration are tuned using only LEP data for the b-quark fragmentation. Including

measurements from the LHC should help improve the MC tuning.

It is clear from this measurement that the soft muon has sensitivity to the b-quark fragmentation

and therefore the kinematics of observables related to it are good candidates for differential

cross-section measurements. The next chapter will detail differential cross-section measurements

using observables related to the soft muon.
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Chapter 10

Measurement of top-quark pair differential

cross-sections

Using the same objects, event selection and systematic uncertainties as were used in the

top-quark mass analysis presented in the previous chapters, the following chapter details the

differential cross-section measurements.

10.1 Analysis outline

In the previous chapter, the top quark mass was measured using the invariant mass of a soft

muon and a charged lepton from the leptonically decaying W boson produced in the decay of

a tt pair. One of the dominant uncertainties in the measurement originates from the b-quark

fragmentation. As discussed in Section 6.1.1, the modelling of the b-quark fragmentation in

the standard tuning used for ATLAS MC samples does not describe the observed data for

observables related to the soft muon well. To improve this modelling, a refit to LEP data is

performed to update the tuning.

Currently, the standard ATLAS MC tunes, such as A14 [177] and Monash [134], only use

LEP data for observables sensitive to b-fragmentation. To improve the MC predictions for
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observables related to the decay products of b quarks, measuring observables in LHC data that

are sensitive to b-fragmentation is required.

Using observables built from the soft muon kinematics used in the top-quark mass measure-

ment, differential cross-sections are measured and compared with various signal predictions.

These signal predictions have different fragmentation parameterisations or completely differing

hadronisation models. The agreement between data and these models can give an indication of

which MC generators perform best.

This is an exploratory study using the same 36.1 fb−1 of data as the top quark mass measurement

and which will be used to identify new observables that could be used in a full Run 2 differential

cross-section analysis. Non-optimal jet definitions at particle level mean the precision of this

exploratory study will likely be lower than a full Run 2 study.

10.1.1 Observables

Observables are chosen for their dependence on the hadronisation and heavy quark fragmentation

parameters of the MC predictions. The measured observables are:

• m`µ - The invariant mass of the charged lepton originating from the leptonically decaying

W -boson and the soft muon;

• pT(W -lepton) - The transverse momentum of the charged lepton originating from lepton-

ically decaying W -boson;

• pT(µ-soft) - The transverse momentum of the soft muon;

• prelT (µ-soft) - The transverse momentum of the soft muon transverse to the axis of the

SMT jet, which is given by

prelT (µ-soft) = |p(µ-soft)× p(SMT jet)|
|p(SMT jet)| ; (10.1)
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• pzT(µ-soft) - The transverse momentum of the soft muon longitudinally to the axis of the

SMT jet, which is given by

pzT(µ-soft) = p(µ-soft) ·p(SMT jet)
|p(SMT jet)|2

; (10.2)

• pT(µ-soft)/pT(SMT jet) - The ratio of the transverse momentum of the soft muon and

the transverse momentum of the SMT jet;

• pT(SMT jet) - The transverse momentum of the SMT jet.

From the studies performed in the top mass extraction analysis, m`µ has a clear dependence on

the heavy quark fragmentation due to the soft muon component. The pT(W -lepton) will be

sensitive to various NLO generator models. Both prelT (µ-soft) and pzT(µ-soft) have sensitivity to

both the pT and axis of the soft muon and the SMT jet. The ratio pT(µ-soft)/pT(SMT jet) acts

as a proxy for xB, discussed in Section 6.1.1. Although the B-hadron is not fully reconstructed,

pT(µ-soft) acts as a proxy and therefore the ratio with the SMT jet pT will carry similar

information as xB. Although pT(W -lepton) does not have sensitivity to b-fragmentation, the

measurement of the differential cross-section in a new fiducial region is useful. It has been shown

in previously top-quark differential cross-section analyses [178] that there is a disagreement

between data and MC in the pT(W -lepton) observable therefore, further measurements in

different phase spaces are important.

10.2 Unfolding

In particle physics, the distributions of measured observables are subject to the effects of limited

detector resolution, acceptance and efficiency effects. The distorted measured distributions will

have random noise and bias effects when compared with the underlying true distribution. Often,

it is useful to compare the measurements of an underlying physics process between experiments

where the effects of detector distortion will vary. Similarly, comparing with a new theoretical

prediction is much simpler without the need to simulate the detector response. In order to
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estimate the underlying true distribution for a given measured distribution, a method known

as unfolding is used.

The problem of unfolding can be summarised as estimating the probability distribution of

some data where no parametric form is available. Unfolding falls into the category of inverse

problems in mathematics and is also referred to as deconvolution or unsmearing [179].

This section outlines the formulation of the unfolding problem as well as an overview of the

method used in this analysis.

10.2.1 Problem formulation

The aim of unfolding is to estimate some ftruth(y) probability density function from an observed

random variable x. In particle physics, the measured distributions will generally not be a

continuous function but rather a binned histogram. For the true probability density function

ftruth(y), the probability of a measurement to be in bin j is given by

pj =
∫
bin j

ftruth(y) dy. (10.3)

If an experiment is performed with a total number of events mtot, the expected number of events

is given by the expectation value of the total number of events, E[mtot] = µtot. Therefore, the

expected number of events in bin j is given by

µj = µtotpj . (10.4)

Using these expected values, the true histogram µ = (µ1, . . . µM ) with M bins can be built.

In addition to the true histogram, the measured values of x are also binned into a histogram

of N bins, n = (n1, . . . , nN ). In a similar way to the process described in Chapter 9, the

number of events in a given bin ni can be modelled as an independent Poisson variable with an

expectation value νi. The expected histogram of the observed data is then given by ν = E[n].
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The expected number of observed events in a given bin is related to the true number of events

in that bin. The relation depends on the effects of the detector response, efficiency, acceptance

and the presence of background events. The expected number of observed events in bin i is

given by

νi =
M∑
j=1

Rij µj + βi, (10.5)

where βi are the number of entries in bin i originating from background events and Rij is the

ijth element of the response matrix. Each element of the response matrix is defined by

Rij = P (observed in bin i|true value in bin j), (10.6)

and R an N ×M matrix. The response matrix is built using a MC event generator to produce

the true data. The true data is then passed through the detector reconstruction process to

create the corresponding expected measured data. Equation 10.6 can be generalised to the

histograms for each quantity

ν = Rµ+ β. (10.7)

The goal of unfolding is then to construct estimators µ̂ for the true histograms, given some

observed data n.

The obvious solution, assuming N = M , is to invert Equation 10.7

µ = R−1(µ− β). (10.8)

Another obvious choice is to use the observed data as an estimator for ν. It can be easily shown

that ν̂ = n is also the maximum likelihood and least squares solution [179]. The estimator for

µ is then given by

µ̂ = R−1(n− β). (10.9)
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The estimator built by simply inverting the response matrix, while unbiased, can have extremely

large variances and strong correlations between neighbouring bins. This effect arises from

the fact that the detector response will generally smear out any fine structure in the true

distribution. In the case where ν is unfolded with R−1, the exact µ distribution is returned.

However, in a real measurement n is used as an estimator for ν. The measured data will have

a fine structure from statistical fluctuations and so applying R−1 to the measured data will

lead to large oscillations between neighbouring bins.

In order to combat these effects, a technique known as regularisation is employed. The general

idea of regularisation is to introduce some measure of smoothness to the true histogram µ. One

approach is to instead of minimising the negative log-likelihood, to minimise a cost functional

Φ(µ) = −α logL(µ) + S(µ), (10.10)

where α is some regularisation parameter and S(µ) is a regularisation function which penalises

high variance in the distribution. The regularisation parameter is used to control the bias-

variance trade-off. It can be shown that the maximum likelihood estimator for µ has the

minimum variance for an unbiased estimator. Therefore, by reducing the variable with regu-

larisation, there must be an increase in bias. There are many different possible regularisation

functions which can be used [180–182].

10.2.2 Unfolding methods

There exists a plethora of methods to perform regularised unfolding in a particle physics setting.

Methods include using Tikhonov regularisation [183], single valued decomposition [184] and a

Fully Bayesian Unfolding method [185]. Recently, the use of Gaussian Processes for unfolding

has been developed [186]. There are also many literature reviews of the field available [187–189].

One of the more commonly used methods in particle physics, and specifically top quark

physics, is an iterative technique based on expectation maximisation. In particle physics, this

method is more commonly referred to as the D’Agostini method [190] or the Richardson-Lucy
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algorithm [191–193]. Instead of using a regularisation function, this method takes an iterative

approach.

First, a set of probabilities of an event being found in each bin are determined, p = (p1, . . . , pM ).

For the first iteration, the probability can be taken as pi = 1/M for bins of equal size. The

initial estimators for µ are given by

µ̂(0) = ntot p(0). (10.11)

Then, for each iteration, the estimator for the true number of events in a given bin i is defined

by

µ̂
(k+1)
i =

N∑
j=1

 Rijp
(k)
i∑

lRjlp
(k)
l

nj , (10.12)

where nj is the observed number of events with the background subtracted. In each iteration, the

new prior probabilities are taken as the result of the previous iteration, p(k) = µ̂(k−1)/µtot. The

inverse of the response matrix can be thought of as the conditional probability that the true value

is in bin i, given that it was found in bin j, R−1
ij = P (true value in bin i|measured in bin j).

The method uses Bayes’ theorem to rewrite this conditional probability in terms of the response

matrix and the prior probabilities.

In this iterative method, the number of iterations is considered as the regularisation parameter.

As the number of iterations increases, the resulting estimator tends towards the maximum

likelihood estimator. This means that a larger number of iterations increases the variance but

decreases the bias.

10.2.3 Unfolding in differential cross-section measurements

In differential cross-section measurements, unfolding is used in order to compare a given

observable to different theoretical predictions. These unfolded measurements allow theorists to

compare their models to existing measurements or for experimentalists to tune MC simulation

parameters.
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When unfolding, the measured data can be unfolded to different levels of truth. At these levels,

the objects that make up the true prediction can vary. As discussed in Section 5.7, at particle

level, observables are built from stable particles before their interaction with the detector.

Another possibility is parton level, where observables are derived from the final state output of

the matrix element calculation. In this analysis, particle level observables are used because at

parton level, the soft muon will not be defined due to its origin in the hadronisation process.

In order to calculate the differential cross-section for an observable X, in bin j the following

equation is used

dσ
dXj

= 1
L

1
∆Xj

1
εj

∑
i

[
M−1

ij

]T
facc
i (ni − βi). (10.13)

Here, the index i = 1, . . . , N runs over the measured bins and j = 1, . . . ,M over the unfolded

bins. For this analysis, the number of measured bins and unfolded bins are equal, N = M .

The integrated luminosity is given by L and ∆Xj is the width of bin j. εj represents the

efficiency of detection. The efficiency is defined as the ratio of the number of events passing

both particle level and reconstructed level selection requirements and the number of events

passing the particle level selection and is given by

εj =
nreco∧particle
j

nparticle
j

. (10.14)

The efficiency correction is applied to correct for inefficiency of reconstruction. Similarly, the

acceptance facc
i is defined as the ratio of the number of events passing both particle level and

reconstructed level selection requirements with the number of events passing the reconstructed

level selection and is given by

facc
i =

nreco∧particle
j

nreco
j

. (10.15)

The acceptance factor corrects for event which are reconstructed but fall outside of the particle

level fiducial cuts. The term M−1
ij is known as the migration matrix and is related to the

180



10 Measurement of top-quark pair differential cross-sections 10.2 Unfolding

response matrix via

Rij =
εj
facc
i
×Mij . (10.16)

This term represents whichever regularised unfolding procedure is being used, which, in this

case, is the D’Agostini method. Finally, ni and βi are the observed number of events and

background events, respectively, in bin i.

The migration matrices, efficiency and acceptance factors derived from MC for each observable

can be seen in Figures 10.1 to 10.7. For the leptonic observables the migration matrices are

very diagonal, as expected. However, the matrices for the jet observables have a significant

contribution from off-diagonal elements. This is not a physical phenomena or detector effect,

but rather, it is due to the definition of a jet at particle level. The particle level jet definition

in the software release used for this analysis includes the charged leptons and neutrinos in the

jet clustering. At reconstructed level, however, neither are included. This manifests as particle

level jets having harder pT spectra and therefore the migration matrices are much less diagonal.

While this is not a major problem, it is more optimal to have diagonal migration matrices for

unfolding.

10.2.4 Regularisation optimisation

In the D’Agostini method for unfolding, the number of iterations, r, determines the regularisation.

In order to determine the optimal regularisation, in a similar manner to the binning optimisation,

a semi-automated procedure is used.

First, the reconstructed and particle level MC samples are split into two equal subsamples,

referred to as training and test samples. The training samples are used to build the migration

matrix, efficiency and acceptance factors. The test sample is then treated as pseudodata and is

unfolded using the correction factors derived with the training sample. For each bin in a given

observable, toy experiments are thrown by sampling from a Gaussian distribution defined with

a mean given by the number of events in the given bin and variance given by the corresponding
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Figure 10.1 Correction factors for m`µ.
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Figure 10.4 Correction factors for prel
T (µ-soft).
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Figure 10.5 Correction factors for pT(µ-soft)/pT(SMT jet).
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Figure 10.6 Correction factors for pz
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Figure 10.7 Correction factors for pT(SMT jet).
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Figure 10.8 The χ2/NDF as a function of the number of iterations used for the D’Agostini unfolding

method for the m`µ observable.

bin variance. Alternative samples are built using the toy experiments and each sample is

unfolded using the correction factors derived from the training samples. For each alternative

sample a χ2 test statistic is calculated to assess the agreement between the unfolded alternative

sample and the underlying truth. This procedure is repeated with values of r = 1, . . . , 10 for

each observable. The mean of the χ2 test statistic for each value of r is calculated and the r

corresponding to the lowest χ2 is used as the initial regularisation parameter. An example of a

plot of the χ2 as a function of the number of iterations can be seen in Figure 10.8.

As discussed in the previous section, the number of iterations controls the regularisation of the

unfolding. More iterations will tend to produce a result with lower bias, with the opposite being

true with fewer iterations. Therefore, in order to pick the optimal regularisation parameter the

unfolding validation tests must also be taken into account. Using the validation methods in

Sections 10.2.5 and 10.2.6, the regularisation can be further optimised. The final result suggests

r = 2 is the optimal parameter for all observables.
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10.2.5 Closure test

In order to validate the unfolding procedure with the given migration matrices, efficiency and

acceptance terms, closure and stress tests are performed. The closure test ensures that the

unfolding procedure is performed correctly. There are two types of closure test: a technical

closure test and split closure test.

The technical closure test is performed to check the unfolding code is working correctly. For this

test, the reconstructed distribution is unfolded and compared with the particle level distribution.

The same events that are used to derive the migration matrix and correction factors are used

as input, therefore the expectation is the unfolded distribution is exactly the truth. This test

serves predominantly as a sanity check.

The split closure test splits the reconstructed and particle level MC samples into two equal

subsamples, as in the previous section. The unfolded pseudodata is compared to the test sample

particle level distribution and a χ2 test statistic is calculated. If the p-value is > 0.05 then the

sample is considered to close. However, if this condition is not met, then the bin edges and

widths are adjusted.

For all observables the samples were considered to close with the final binning configurations

and the comparisons between unfolded pseudodata and the particle level test samples can be

seen in Figures 10.9 and 10.10.

10.2.6 Stress tests

The other validation test is the stress test. The stress test assesses the unfolding procedures’

ability to recover an acceptable estimate for the underlying truth distribution when the shape of

the measured data is different from the truth distribution used to derive the correction factors.

There are three stress tests used to validate the unfolding: a data/MC discrepancy stress test, a

linear stress test and a bump injection stress test. In a similar manner to the closure test, the

MC samples are split in half with one treated as a test sample and the other a training sample.

The pseudodata and particle level test distribution are reweighted to alter the shape of the
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Figure 10.9 The split closure tests for a selection of observables. The unfolded pseudodata is compared

to the MC prediction from the training sample and the uncertainty bands include the statistical

uncertainty on the unfolding.
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Figure 10.10 The split closure tests for a selection of observables. The unfolded pseudodata is

compared to the MC prediction from the training sample and the uncertainty bands include the

statistical uncertainty on the unfolding.
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distribution with respect to the training sample, which is used to derive the correction factors.

The stressed pseudodata is unfolded and compared to the test particle level distribution. The

disagreement between the unfolded pseudodata and the particle level distribution indicates any

bias in the unfolding procedure.

For the data/MC discrepancy stress test, the distributions are reweighted with a factor based

on the discrepancy between data and MC predictions at reconstructed level. Each bin of the

pseudodata distribution is reweighted with

fi = ndatai

nMC
i

, (10.17)

where ni are the number of events in a given bin for the data and MC distributions at

reconstructed level.

In addition to the data/MC discrepancy stress test, a linear stress test is performed to more

aggressively stress the unfolding procedure. In the linear stress test the distributions are

reweighted to artificially inject a difference in the agreement between pseudodata and training

sample. This difference will result in a linear slope in the ratio of the pseudodata and

reconstructed level training sample. Each bin in the pseudodata and test sample is reweighted

with

fi =

(1 + k)−
(

2ki
N

) , (10.18)

where i is the bin number, N is the total number of bins and k is a factor that can be

changed to increase or decrease the linear slope injected. The reweighting is performed with

k = −0.01,−0.02,−0.05,−0.1, 0.01, 0.02, 0.05, 0.1. These factors correspond to a 2k × 100%

linear slope in the agreement between pseudodata and reconstructed training sample. As the

factor increases, the agreement between the unfolded stressed pseudodata and the particle level

distribution is expected to get worse. For this test there is no level of agreement that must

be achieved for the test to be “passed”, but rather to find the limit at which the unfolding

procedure is no longer producing reasonable estimators.
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The results of the data/MC and linear stress tests are shown in Figures 10.11 to 10.14. The

original prediction is also shown to illustrate the difference between the stressed and original

predictions. The linear stress tests show good agreement for |k| = 0.05. However, for most

observables, the unfolding procedure breaks down for |k| = 0.1. For all observables the data/MC

test shows good agreement. The unfolding procedure is therefore considered robust with the

given binning and regularisation parameter.

The bump injection test is used to check that the unfolding procedure does not smooth out

any unexpected deviations in the measured data. These deviations could be caused by some

unknown particle that manifests as a peak in a distribution. The bump injection stress test is

only performed on them`µ observable because the other observables are unlikely to contain some

resonant mass peak. Although the m`µ distribution is also unlikely to contain a resonant mass

peak, the test is performed for completeness. The pseudodata and MC simulation distributions

are injected with a bump by reweighting each bin by a factor

fi = 1 + k exp

(mi −m0)2

2σ2

 (10.19)

where mi is the mass in bin i, m0 is the mass of the hypothetical resonance and σ is its width.

An additional scale factor k is also included.

An example of the bump injection stress test can be seen in Figure 10.15. The underlying

stressed prediction is found to be recovered by the unfolding procedure for an injected bump

with parameters |k| = 0.1, m0 = 60 GeVand w = 7 GeV.

10.3 Binning optimisation

For each given observable, the differential cross-section is measured in a binned histogram with

specific bin widths and bin edges. The location of the edges and width of the bins are important

parameters to optimise in a differential cross-section measurement. The bins need to be fine
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Figure 10.11 The data/MC (left) and linear (right) stress tests for m`µ and pT(W -lepton). The

stressed pseudodata is compared with the stressed test particle level sample and the uncertainty band

includes the statistical uncertainty on the unfolding.
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Figure 10.12 The data/MC (left) and linear (right) stress tests for pT(µ-soft) and prel
T (µ-soft). The

stressed pseudodata is compared with the stressed test particle level sample and the uncertainty band

includes the statistical uncertainty on the unfolding.
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Figure 10.13 The data/MC (left) and linear (right) stress tests for pT(µ-soft)/pT(SMT jet) and

pT(SMT jet). The stressed pseudodata is compared with the stressed test particle level sample and the

uncertainty band includes the statistical uncertainty on the unfolding.

197



10 Measurement of top-quark pair differential cross-sections 10.3 Binning optimisation

0.25

0.3

0.35

0.4

0.45

0.5A
.U

.

Stressed pseudo-data
Stressed PP8 A14-rb
PP8 A14-rb
Stat. uncert.

) stressed = 0.3262χP(

0 0.2 0.4 0.6 0.8
-soft) [GeV]µ(z

T
p

0.8

0.9

1

1.1

1.2

D
at

a
P

re
di

ct
io

n

(a) Data/MC - pz
T(µ-soft).

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
.U

.

Stressed pseudo-data
Stressed PP8 A14-rb
PP8 A14-rb
Stat. uncert.

) stressed = 0.0972χP(

0 0.2 0.4 0.6 0.8
-soft) [GeV]µ(z

T
p

0.8

0.9

1

1.1

1.2

D
at

a
P

re
di

ct
io

n

(b) 10% slope - pz
T(µ-soft).

Figure 10.14 The data/MC (left) and linear (right) stress tests for pz
T(µ-soft). The stressed pseudodata

is compared with the stressed test particle level sample and the uncertainty band includes the statistical

uncertainty on the unfolding.
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Figure 10.15 The bump injection stress tests for m`µ. The stressed pseudodata is compared with the

stressed test particle level sample and the uncertainty band includes the statistical uncertainty on the

unfolding.
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enough to extract information or differentiate between different predictions, however, if the

bins are too fine then the statistical and systematic uncertainties may be too large. In order

to optimise the binning, a semi-automated approach is used based on the resolution of the

observables. Manual adjustments are then made based on the uncertainties and the unfolding

procedure.

The first step involves an algorithm that uses the resolution of each observable. The absolute

difference between the particle level and reconstructed level values for each observable is

determined across 200 fine bins. The resolution is defined as the RMS standard deviation of

this quantity. The algorithm begins from the left hand side and merges bins until two criteria

are satisfied:

• The bin has a width greater than δ× the resolution of the observable, where δ is manually

chosen.

• The bin has a statistical error below 5%×N where N is the number of fine bins within

the merged bin.

Once both criteria are met, the bin is merged and the algorithm moves onto the next leftmost

bin. If the bin has a smaller bin width than the previous one, the two bins are merged. The δ

parameter varies between 1.0 and 2.5 in steps of 0.1.

While the algorithm outlined bases the binning configurations on the resolution of the observables,

this alone is not sufficient. The binning configuration has an effect on several aspects of the

measurement. First, the bin-to-bin migrations in the migration matrix will have an effect on

the stability of the unfolding. Ideally, migration matrices are as diagonal as possible to improve

the stability of the unfolding. Migration matrices with large off-diagonal components can cause

instability in the unfolding procedure, which can manifest as problems in the closure tests and

stress tests, discussed in Sections 10.2.5 and 10.2.6 The binning configurations are therefore

manually adjusted to maximise the diagonality of the migration matrices and agreement in

closure and stress tests.
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Finally, the statistical and systematic uncertainties will also depend on the binning configurations.

Additional manual adjustments are made to the binning configurations after the data have

been run through the entire analysis chain.

The final binning configurations chosen for each observable can be seen in Figures 10.16 and 10.17

where the reconstructed level distribution for each observable is shown. Note the final bin is

not an overflow bin.

10.4 Systematic uncertainties

The systematic uncertainties in the differential cross-section measurement use exactly the

same variations as in the top quark mass measurement. Each variation is unfolded using the

corrections factors derived from the nominal MC predictions and then compared to the particle

level prediction for the variation. For detector systematics the particle level prediction is the

same as the nominal prediction, however, for the signal modelling uncertainties, the particle

level prediction is a separate sample. For most systematic uncertainties an up and down

variation exists and so the uncertainty can be asymmetric. However, for samples where there is

only one variation the symmetric difference from the nominal is taken as the uncertainty.

The uncertainty associated with the limited MC statistics is estimated using toy experiments.

Alternative samples are generated by sampling a Gaussian distribution with a mean of the

given bin content and a width given by the bin contents’ variance. These alternative samples

are unfolded and the standard deviation of the distribution of each bin is taken as the statistical

uncertainty on the MC sample.

As discussed in Section 8.9.3, in the top quark mass measurement, the uncertainty associated

with the NLO matching scheme is estimated by comparing the aMC@NLO+Pythia8 sample

with a Powheg+Pythia8 sample with the same Pythia8 settings as aMC@NLO+Pythia8.

To estimate the uncertainty on the differential cross-section, the aMC@NLO+Pythia8 sample

is unfolded with correction factors derived from the Powheg+Pythia8 sample with the
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Figure 10.16 Comparison between data and MC predictions at reconstructed level for several observables.

The uncertainty bands include both the systematic and statistical uncertainties.
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Figure 10.17 Comparison between data and MC predictions at reconstructed level for several observables.

The uncertainty bands include both the systematic and statistical uncertainties.
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Table 10.1 A breakdown of the systematics uncertainties in each bin for m`µ. The uncertainties are

given in %.

Bins [GeV] 15–25 25–35 35–45 45–55 55–65 65–80

m`µ [GeV] 1.6 · 10−2 2.4 · 10−2 2.3 · 10−2 1.7 · 10−2 1.1 · 10−2 5.6 · 10−3

Total Uncertainty [%] +1.7
−1.5

+1.4
−1.4

+1.2
−1.2

+1.5
−1.7

+1.7
−1.5

+4.6
−4.7

Statistics [%] ±1.0 ±0.8 ±0.8 ±1.0 ±1.2 ±1.4
Systematics [%] +1.2

−1.0
+1.1
−1.1

+0.8
−0.9

+1.1
−1.4

+1.1
−0.8

+4.4
−4.4

Background +0.4
−0.4 ±0.2 - ±0.2 ±0.3 +0.7

−0.7

Flavour tagging ±0.1 - - - ±0.1 ±0.2
Underlying event and colour reconnection +0.7

−0.1
+0.3
−0.5

-
−0.1

+0.1
−0.7

+0.5
−0.2

+0.7
-

Parton shower αFSR
s - - - -

−0.5
+0.2

-
+0.3

-

MC event generator ±0.4 ±0.4 ±0.3 ±0.7 ±0.4 ±0.6
Parton shower and hadronisation model ±0.3 ±0.4 ±0.1 ±0.3 ±0.1 ±0.7
Initial-state QCD radiation -

−0.2
+0.2

-
+0.1

-
-

−0.2
+0.4
−0.3

-
−0.2

Jet energy scale ±0.4 +0.4
−0.4

+0.5
−0.5 ±0.3 +0.3

−0.3
+2.5
−2.5

Leptons and EmissT Soft Jets +0.6
−0.7

+0.6
−0.6

+0.6
−0.6

+0.7
−0.6

+0.4
−0.4

+3.3
−3.4

Luminosity - - - - - ±0.1
PDF - - - - ±0.1 ±0.2
Pile-up - - - - - -
b-quark fragmentation rb +0.3

-
+0.3
−0.2

-
−0.3

-
−0.2

+0.5
-

+0.5
−0.4

b, c production fractions and decay BRs ±0.3 ±0.2 - ±0.2 +0.3
−0.3

+0.4
−0.4

different Pythia8 settings rather than the nominal sample. The uncertainty is then calculated

in the same way as the other single sided uncertainties.

The systematic uncertainties for each observable are shown in Tables 10.1 to 10.7. In most bins

of most observables the systematic uncertainty is larger than the statistical. Overall, detector

systematics are relatively small when compared with signal modelling systematics. The only

large detector systematic that has a major effect is related to the leptons and Emiss
T . In higher

pT bins for most observables, this uncertainty is dominant. For the majority of bins however,

both the parton shower and hadronisation and generator uncertainties are dominant.
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Table 10.2 A breakdown of the systematics uncertainties in each bin for pT(W -lepton). The uncertainties

are given in %.

Bins [GeV] 30–40 40–50 50–60 60–70 70–80 80–90 90–100 100–110 110–120

pT (W -lepton) [GeV] 2.7 · 10−2 2.1 · 10−2 1.5 · 10−2 1.1 · 10−2 8.5 · 10−3 6.1 · 10−3 4.6 · 10−3 3.6 · 10−3 2.6 · 10−3

Total Uncertainty [%] +1.5
−1.3

+1.3
−1.3

+1.6
−1.6

+1.8
−1.8

+1.9
−2.3

+2.2
−2.7

+3.0
−3.0

+3.5
−3.0

+4.8
−4.6

Statistics [%] ±0.8 ±1.0 ±1.1 ±1.3 ±1.4 ±1.6 ±1.9 ±2.2 ±2.7
Systematics [%] +1.2

−1.0
+0.8
−0.8

+1.0
−1.0

+1.1
−1.1

+1.1
−1.8

+1.3
−2.1

+2.3
−2.3

+2.7
−2.0

+3.9
−3.6

Background ±0.2 - - ±0.1 ±0.2 ±0.2 ±0.2 ±0.2 ±0.3
Flavour tagging - - - - - - ±0.1 +0.1

−0.1 ±0.2
Underlying event and colour reconnection +0.6

−0.5
+0.1

-
+0.3
−0.4

+0.6
−0.3

-
−1.2

-
−1.3

+0.4
−0.3

+1.9
-

+1.2
−0.8

Parton shower αFSR
s - -

−0.2 - -
−0.3

+0.2
−0.2

-
−0.5

+0.6
-

+0.3
−0.5

-
−0.5

MC event generator ±0.5 ±0.5 ±0.7 ±0.8 ±0.6 ±0.5 ±1.2 ±0.8 ±2.3
Parton shower and hadronisation model ±0.3 ±0.1 ±0.5 ±0.5 - - ±0.6 ±0.6 ±0.4
Initial-state QCD radiation +0.4

−0.1 - - +0.3
−0.2 - -

−0.5
+0.2
−0.6

-
−0.6

+1.1
−0.3

Jet energy scale +0.2
−0.2

+0.4
−0.4

+0.3
−0.3

+0.2
−0.2

+0.6
−0.6

+0.6
−0.7

+0.8
−0.8

+0.4
−0.4

+1.7
−1.8

Leptons and EmissT Soft Jets +0.6
−0.6

+0.4
−0.4

+0.4
−0.3 ±0.2 +0.8

−0.8
+0.9
−1.0

+1.3
−1.4

+1.1
−1.1

+1.5
−1.5

Luminosity - - - - - - - - -
PDF ±0.4 ±0.3 ±0.1 - ±0.3 ±0.5 ±0.7 ±1.0 ±1.3
Pile-up - ±0.1 - - - - - - -
b-quark fragmentation rb +0.3

- - +0.2
-

-
−0.3

-
−0.6

-
−0.7

+0.5
−0.2

+0.5
-

+0.7
-

b, c production fractions and decay BRs ±0.1 - - - - ±0.1 +0.1
−0.1 ±0.2 ±0.2

Table 10.3 A breakdown of the systematics uncertainties in each bin for pT(µ-soft). The uncertainties

are given in %.

Bins [GeV] 8–15 15–22 22–29 29–36 36–43 43–50 50–60

pT (W -lepton) [GeV] 5.8 · 10−2 3.4 · 10−2 2.0 · 10−2 1.3 · 10−2 8.2 · 10−3 5.3 · 10−3 3.3 · 10−3

Total Uncertainty [%] +2.1
−2.0

+1.8
−2.0

+1.5
−1.5

+2.6
−2.5

+4.5
−4.7

+6.6
−6.7

+11.7
−11.9

Statistics [%] ±0.5 ±0.8 ±1.0 ±1.4 ±1.7 ±2.1 ±2.4
Systematics [%] +2.0

−1.9
+1.5
−1.8

+1.0
−1.0

+2.1
−2.1

+4.1
−4.3

+6.2
−6.3

+11.4
−11.6

Background +0.5
−0.5

+0.2
−0.2 ±0.3 +0.4

−0.4
+0.6
−0.6 ±0.9 +1.4

−1.4

Flavour tagging +0.2
−0.2 - - +0.3

−0.2
+0.5
−0.5

+0.7
−0.7

+0.9
−0.9

Underlying event and colour reconnection +0.3
-

-
−0.8

+0.4
−0.2

+0.4
−0.1

+0.5
-

+0.2
−0.3

+0.9
-

Parton shower αFSR
s

+0.2
-

-
−0.3 - +0.3

−0.1
-

−0.6
+0.5
−0.3

+0.3
-

MC event generator ±1.1 ±0.6 ±0.5 ±1.6 ±2.4 ±3.1 ±5.0
Parton shower and hadronisation model ±0.7 ±0.6 ±0.5 ±0.4 ±0.8 ±0.4 ±0.2
Initial-state QCD radiation +0.2

-
-

−0.3 - - +0.1
−0.9

+0.5
−0.6

+1.3
−0.3

Jet energy scale +0.8
−0.8

+0.9
−0.9 ±0.3 +0.7

−0.7
+1.9
−1.9

+3.1
−3.2

+6.4
−6.6

Leptons and EmissT Soft Jets +0.9
−0.9

+0.9
−0.8 ±0.2 +0.8

−0.8
+2.3
−2.4

+4.0
−4.1

+7.7
−8.0

Luminosity - - - - - - +0.2
−0.2

PDF ±0.3 - ±0.1 ±0.3 ±0.5 ±0.7 ±1.0
Pile-up - - - ±0.1 ±0.1 - +0.3

−0.3

b-quark fragmentation rb +0.4
-

-
−0.5

+0.2
−0.2

+0.3
-

-
−0.7

+1.1
−0.2

+0.9
-

b, c production fractions and decay BRs +0.4
−0.4 - ±0.3 +0.4

−0.4
+0.5
−0.5

+0.6
−0.6

+0.6
−0.6
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Table 10.4 A breakdown of the systematics uncertainties in each bin for prel
T (µ-soft). The uncertainties

are given in %.

Bins [GeV] 0–0.75 0.75–1.50 1.50–6

prelT (µ-soft) [GeV] 3.7 · 10−1 5.6 · 10−1 6.8 · 10−2

Total Uncertainty [%] +2.4
−2.4

+1.3
−1.2

+3.5
−3.7

Statistics [%] ±0.6 ±0.3 ±0.6
Systematics [%] +2.3

−2.2
+1.2
−1.1

+3.5
−3.6

Background +0.6
−0.6

+0.2
−0.2 ±0.6

Flavour tagging +0.3
−0.3 ±0.1 ±0.1

Underlying event and colour reconnection +0.5
- - -

−0.5

Parton shower αFSR
s

+0.1
−0.1 - -

−0.2

MC event generator ±0.3 ±0.2 ±0.5
Parton shower and hadronisation model ±1.2 - ±1.3
Initial-state QCD radiation - +0.2

-
-

−0.3

Jet energy scale +0.8
−0.8

+0.5
−0.5

+1.5
−1.6

Leptons and EmissT Soft Jets +1.2
−1.2

+1.0
−0.9

+2.6
−2.7

Luminosity - - ±0.1
PDF - - -
Pile-up ±0.4 ±0.1 ±0.7
b-quark fragmentation rb - +0.2

- -
b, c production fractions and decay BRs +0.8

−0.8 ±0.2 +0.6
−0.6
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Table 10.5 A breakdown of the systematics uncertainties in each bin for pT(µ-soft)/pT(SMT jet). The

uncertainties are given in %.

Bins 0–0.15 0.15–0.25 0.25–0.80

pT (µ-soft)/pT (SMT jet) 1.8 · 100 3.1 · 100 7.5 · 10−1

Total Uncertainty [%] +6.9
−7.0

+2.1
−2.2

+4.1
−4.1

Statistics [%] ±0.7 ±0.2 ±0.4
Systematics [%] +6.9

−6.9
+2.0
−2.1

+4.1
−4.1

Background +0.8
−0.8

+0.3
−0.2

+0.3
−0.3

Flavour tagging ±0.2 ±0.1 ±0.1
Underlying event and colour reconnection -

−0.2
+0.4
−0.4

+0.5
−0.3

Parton shower αFSR
s - -

−0.4
+0.2
−0.1

MC event generator ±3.8 ±0.9 ±2.0
Parton shower and hadronisation model ±2.4 ±1.0 ±2.5
Initial-state QCD radiation +0.2

-
+0.1
−0.5

+0.2
−0.2

Jet energy scale +2.4
−2.4 ±0.7 ±1.2

Leptons and EmissT Soft Jets +4.5
−4.5

+1.3
−1.3

+2.2
−2.2

Luminosity - - -
PDF ±0.4 ±0.2 ±0.2
Pile-up ±0.2 - ±0.1
b-quark fragmentation rb +0.2

−0.2
-

−0.1
+0.2
−0.2

b, c production fractions and decay BRs +0.6
−0.6

+0.1
−0.1

+0.3
−0.3
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Table 10.6 A breakdown of the systematics uncertainties in each bin for pT(SMT jet). The uncertainties

are given in %.

Bins [GeV] 30–50 50–75 75–110 110–150

pSMT−jet
T [GeV] 7.6 · 10−3 1.1 · 10−2 9.6 · 10−3 5.9 · 10−3

Total Uncertainty [%] +5.0
−5.0

+3.2
−3.2

+0.9
−1.2

+5.7
−5.7

Statistics [%] ±0.7 ±0.4 ±0.3 ±0.6
Systematics [%] +5.0

−5.0
+3.2
−3.1

+0.8
−1.1

+5.7
−5.6

Background ±0.3 ±0.2 +0.1
−0.1 ±0.2

Flavour tagging +0.5
−0.6 ±0.2 +0.3

−0.3 ±0.3
Underlying event and colour reconnection +0.9

−0.6
+0.3

-
-

−0.5
+0.4
−0.3

Parton shower αFSR
s

+0.2
−0.1

+0.2
-

-
−0.2

+0.5
−0.1

MC event generator ±1.6 ±1.3 ±0.1 ±2.3
Parton shower and hadronisation model ±2.7 ±0.4 ±0.4 ±0.6
Initial-state QCD radiation +0.5

−0.4 - -
−0.6

+0.4
-

Jet energy scale +1.5
−1.5

+1.2
−1.2

+0.2
−0.2

+2.2
−2.2

Leptons and EmissT Soft Jets +3.3
−3.4

+2.5
−2.5

+0.6
−0.5

+4.5
−4.5

Luminosity - - - -
PDF ±0.4 ±0.3 - ±0.7
Pile-up ±0.2 - - ±0.1
b-quark fragmentation rb - +0.2

-
-

−0.3
+0.4

-

b, c production fractions and decay BRs ±0.2 ±0.1 - ±0.2
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Table 10.7 A breakdown of the systematics uncertainties in each bin for pz
T(µ-soft). The uncertainties

are given in %.

Bins [GeV] 0–0.15 0.15–0.30 0.30–0.80

pzT (µ-soft) [GeV] 1.8 · 100 2.9 · 100 5.9 · 10−1

Total Uncertainty [%] +7.1
−7.2

+2.0
−2.1

+5.9
−5.8

Statistics [%] ±0.7 ±0.2 ±0.5
Systematics [%] +7.1

−7.1
+1.9
−2.0

+5.9
−5.8

Background +0.8
−0.8 ±0.3 +0.4

−0.4

Flavour tagging ±0.2 ±0.1 ±0.1
Underlying event and colour reconnection +0.1

−0.3
+0.2
−0.4

+0.9
−0.4

Parton shower αFSR
s - -

−0.4
+0.4
−0.2

MC event generator ±3.9 ±0.8 ±2.8
Parton shower and hadronisation model ±2.6 ±0.8 ±3.9
Initial-state QCD radiation +0.3

-
-

−0.3
+0.2
−0.3

Jet energy scale +2.5
−2.5

+0.7
−0.7

+1.6
−1.6

Leptons and EmissT Soft Jets +4.5
−4.6

+1.3
−1.3

+2.7
−2.6

Luminosity - - -
PDF ±0.4 ±0.2 ±0.1
Pile-up ±0.2 - ±0.1
b-quark fragmentation rb +0.2

−0.1
-

−0.2
+0.4
−0.2

b, c production fractions and decay BRs +0.7
−0.6 ±0.1 +0.4

−0.5

208



10 Measurement of top-quark pair differential cross-sections 10.5 Results

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

µl
dm

σd Data
=1.05brPWG+PY8 A14 

PWG+H7.1.3
=1.05braMC@NLO+P8 

PWG+PY8 A14
Stat. unc.
Stat.+Syst. unc.

-1 = 13 TeV, 36.1 fbs

Resolved

20 30 40 50 60 70 80

 [GeV]µlm

0.9

1

1.1

  
D

at
a

P
re

di
ct

io
n

(a)

0.8

1

1.2

1.4

1.6

  
D

at
a

P
re

di
ct

io
n

Stat. unc.

Stat.+Syst. unc.

PWG+H7.1.3 (angular)

PWG+H7.0.4

PWG+H7.1.3 (dipole)

-1 = 13 TeV, 36.1 fbs

Relative cross-section

0.8

0.9

1

1.1

1.2

1.3

  
D

at
a

P
re

di
ct

io
n

=1.050brPWG+PY8 =1.100brPWG+PY8 

=1.000brPWG+PY8 

20 30 40 50 60 70 80
 [GeV]µlm

0.8

0.9

1

1.1

1.2

1.3

  
D

at
a

P
re

di
ct

io
n

PWG+PY8 A14 PWG+PY8 Monash

PWG+PY8 Monash+Peterson

(b)

Figure 10.18 Comparison between the measured normalised differential cross-section and various signal

predictions for m`µ. (a) shows several standard signal predictions and (b) compares signal predictions

with various hadronisation parameters.

10.5 Results

The unfolded normalised differential cross-section results are shown in this section. In Fig-

ures 10.18a, 10.19a, 10.20a, 10.21a, 10.22a, 10.23a, and 10.24a, the differential cross-section

for each observable is shown with some standard MC predictions overlaid. The statistical

and systematic uncertainties are shown in each plot. Figures 10.18b, 10.19b, 10.20b, 10.21b,

10.22b, 10.23b, and 10.24b show the ratio of various predictions with different hadronisation

and fragmentation parameters and the normalised differential cross-sections. Full details of the

signal predictions used can be found in Section 5.2.
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Figure 10.19 Comparison between the measured normalised differential cross-section and various signal

predictions for pT(W -lepton). (a) shows several standard signal predictions and (b) compares signal

predictions with various hadronisation parameters.
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Figure 10.20 Comparison between the measured normalised differential cross-section and various

signal predictions for pT(µ-soft). (a) shows several standard signal predictions and (b) compares signal

predictions with various hadronisation parameters.
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Figure 10.21 Comparison between the measured normalised differential cross-section and various

signal predictions for prel
T (µ-soft). (a) shows several standard signal predictions and (b) compares signal

predictions with various hadronisation parameters.
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Figure 10.22 Comparison between the measured normalised differential cross-section and various signal

predictions for pT(µ-soft)/pT(SMT jet). (a) shows several standard signal predictions and (b) compares

signal predictions with various hadronisation parameters.
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Figure 10.23 Comparison between the measured normalised differential cross-section and various signal

predictions for pT(SMT jet). (a) shows several standard signal predictions and (b) compares signal

predictions with various hadronisation parameters.
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Figure 10.24 Comparison between the measured normalised differential cross-section and various

signal predictions for pz
T(µ-soft). (a) shows several standard signal predictions and (b) compares signal

predictions with various hadronisation parameters.
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10.5.1 Comparison with predictions

In order to quantify the level of agreement between a given prediction and a differential

cross-section, a χ2 test statistic is calculated. The χ2 is calculated using

χ2 = UTC−1 U, (10.20)

where U are vectors of the difference between the data and prediction and C is the full

covariance matrix.

The final covariance matrix is constructed using two different methods. The first uses toy

experiments to calculate the covariance from the statistical uncertainty and the detector

systematics. Alternative distributions are produced by applying bin-by-bin Poisson weights to

the data. The Poisson weight for a given bin uses an expectation value set to the number of

events in the bin. Each bin is then scaled by the corresponding systematic uncertainty variation.

The alternative distribution is then unfolded using the nominal procedure and differential

cross-sections are measured. The results of these toy experiments are used to calculate the

covariance. The covariance is calculated using 10000 toys.

The second method is used to calculate the signal modelling uncertainties. This method sums

seven separate covariance matrices corresponding to the parton shower and hadronisation

model, choice of NLO matching scheme, initial and final state radiation, rb fragmentation

parameter, colour reconnection and underlying event uncertainties. The matrices are calculated

by multiplying the measured cross-section in each bin by the systematic variation. The bin-to-bin

correlation is set to unity for each systematic.

Using the χ2 and the number of degrees of freedom, the p-value for each prediction is calculated.

If the p-value is greater than 0.05, the prediction and data are said to agree. Table 10.8 shows

the χ2/NDF and p-value for each prediction and each observable.
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Table 10.8 Comparison of the relative differential cross-sections and several different predictions. For each prediction he χ2 test statistic and p-value

is calculated. p-values highlighted in red indicate the prediction hypothesis is rejected for the given observable.

Model m`µ pT(SMT jet) pT(µ-soft)/pT(SMT jet) p
rel
T (µ-soft) pT(µ-soft) p

z
T(µ-soft) pT(W -lepton)

χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value χ

2/NDF p-value χ
2/NDF p-value

PWG+H7.0.4 4.3/5 0.50 1.2/3 0.76 0.9/2 0.65 1.3/2 0.52 12.3/6 0.06 0.6/2 0.76 19.5/8 0.01
PWG+H7.1.3 (angular) 1.8/5 0.87 4.8/3 0.19 1.8/2 0.41 8.5/2 0.01 8.1/6 0.23 1.7/2 0.43 18.0/8 0.02
PWG+H7.1.3 (dipole) 2.5/5 0.78 2.2/3 0.53 1.9/2 0.38 4.5/2 0.10 5.5/6 0.48 2.5/2 0.29 23.4/8 <0.01
PWG+PY8 A14 1.1/5 0.96 0.7/3 0.87 1.7/2 0.42 3.6/2 0.16 3.0/6 0.81 1.2/2 0.55 15.8/8 0.05
PWG+PY8 A14 rb = 1.000 1.1/5 0.95 1.6/3 0.67 1.1/2 0.59 4.5/2 0.11 4.2/6 0.65 1.0/2 0.61 17.2/8 0.03
PWG+PY8 A14 rb = 1.029 1.1/5 0.95 1.4/3 0.71 0.9/2 0.65 4.7/2 0.09 4.5/6 0.61 0.8/2 0.66 17.4/8 0.03
PWG+PY8 A14 rb = 1.05 1.7/5 0.88 1.3/3 0.73 0.9/2 0.65 3.8/2 0.15 5.9/6 0.44 0.9/2 0.65 17.8/8 0.02
PWG+PY8 A14 rb = 1.071 2.5/5 0.78 1.9/3 0.58 0.9/2 0.62 3.4/2 0.19 5.5/6 0.48 0.9/2 0.65 16.6/8 0.03
PWG+PY8 A14 rb = 1.100 2.7/5 0.74 2.2/3 0.53 0.7/2 0.71 3.8/2 0.15 6.2/6 0.40 0.7/2 0.71 17.1/8 0.03
PWG+PY8 A14 FSR Hi 1.4/5 0.93 0.8/3 0.85 1.9/2 0.40 4.8/2 0.09 1.8/6 0.94 1.5/2 0.48 18.7/8 0.02
PWG+PY8 A14 FSR Lo 0.6/5 0.99 1.0/3 0.81 1.5/2 0.48 6.7/2 0.04 3.4/6 0.76 1.3/2 0.53 18.5/8 0.02
PWG+PY8 FSR Hi rb = 1.0356 2.2/5 0.83 2.0/3 0.58 0.8/2 0.67 3.8/2 0.15 5.9/6 0.44 0.8/2 0.67 17.5/8 0.03
PWG+PY8 FSR Lo rb = 1.0802 1.4/5 0.92 1.0/3 0.80 0.9/2 0.63 3.8/2 0.15 5.0/6 0.54 0.9/2 0.65 16.6/8 0.03
PWG+PY8 ISR Hi 0.1/5 1.00 1.4/3 0.69 2.8/2 0.24 10.9/2 <0.01 2.0/6 0.92 2.6/2 0.27 19.9/8 0.01
PWG+PY8 ISR Hi rb = 1.05 1.3/5 0.94 3.1/3 0.38 1.2/2 0.54 6.6/2 0.04 4.9/6 0.55 1.5/2 0.48 21.5/8 <0.01
PWG+PY8 ISR Lo 1.9/5 0.86 0.9/3 0.83 1.6/2 0.44 3.9/2 0.14 1.9/6 0.93 1.1/2 0.59 15.2/8 0.06
PWG+PY8 ISR Lo rb = 1.05 1.7/5 0.89 1.1/3 0.78 0.6/2 0.76 2.9/2 0.24 5.2/6 0.52 0.5/2 0.79 15.3/8 0.05
PWG+PY8 Monash 3.6/5 0.61 1.8/3 0.62 1.3/2 0.51 6.5/2 0.04 7.2/6 0.31 1.4/2 0.48 18.7/8 0.02
PWG+PY8 Monash+Peterson 22.7/5 <0.01 2.2/3 0.54 1.1/2 0.57 6.0/2 0.05 25.0/6 <0.01 1.6/2 0.44 16.4/8 0.04
aMC@NLO+PY8 10.0/5 0.07 8.4/3 0.04 1.0/2 0.59 8.0/2 0.02 9.8/6 0.13 0.4/2 0.83 15.2/8 0.06
aMC@NLO+PY8 rb = 1.05 22.5/5 <0.01 4.1/3 0.25 0.2/2 0.89 5.5/2 0.07 17.9/6 <0.01 0.2/2 0.88 7.3/8 0.50
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10.6 Discussion

Overall, most predictions have a reasonable agreement with data in the majority of observables.

The pT(W -lepton) distribution, however, shows disagreement between data and most predictions.

The disagreement is a known problem and has been seen in previous analyses [194]. The

Powheg+Pythia8 generator is known to predict a harder top-quark-pT spectrum than

observed in data. In Ref. [194], it is noted that reweighting the nominal Powheg+Pythia8

sample to match NNLO QCD predictions for the top-quark-pT spectrum. Unfortunately, such

a sample was not available for this analysis.

Although the pT(W -lepton) distribution highlights the issue with MC simulation of the top-

quark-pT spectrum, the aim of this analysis was to investigate the MC simulation of hadronisa-

tion and fragmentation. Firstly, it can be seen that the observables that should be sensitive

to the b-quark fragmentation show no discrimination between the rb variation samples. As

discussed in Section 6.1.1, rb controls the position of the peak in the xB distribution. This will

change the fraction of energy that is transferred from the b-quark to the b-hadron. Although

changes in this energy transfer greatly affected the top-quark mass extraction, the differences

in the differential cross-section are not large enough to reject any of the rb signal predictions.

While changing just a single parameter in the b-quark fragmentation parameterisation shows little

discrimination, the change of b-quark fragmentation parameterisation does. The Monash+Peterson

prediction uses the Monash tuning and the Peterson [195] b-quark fragmentation parameter-

isation. The Monash+Peterson prediction is disfavored by both the m`µ and pT(µ-soft)

distributions. The Monash prediction, however, is only disfavored by the m`µ distribution,

suggesting that the Peterson parameterisation is worse than the Lund-Bowler parameterisation,

which is used in all other Pythia samples. Furthermore, it is interesting to note that the

Herwig samples, which use a non-parametric description of the b-quark fragmentation, are

also not disfavoured. The only exception is the prelT (µ-soft) distribution.

The modelling of the prelT (µ-soft) observable is very sensitive to the hadronisation and fragmen-

tation. It shows the worst agreement overall, out of the observables sensitive to hadronisation

and fragmentation. Poor modelling of this observable can be seen for several predictions. The
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poor modelling of this observable is one reason why it is not used in the SMT, even though it

is a useful discriminant for selecting soft muons.

Overall, the observables investigated do not show disagreement for many predictions. It

is important to note, however, the binning for many of these observables could be much

finer with increased statistics and a particle level jet definition that more closely matches the

reconstructed level one. Observables such as prelT (µ-soft) and pzT(µ-soft) would benefit from more

than three bins and would likely show more discriminating power between models. Furthermore,

measurements of these observables using the full Run 2 dataset will be useful for MC tuning.

Currently, no differential cross-section measurements of observables that are sensitive to b-quark

fragmentation at the LHC exist, so their extraction and inclusion in MC tuning procedures

would be valuable.
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Chapter 11

Conclusions

In this thesis, measurements of the top-quark mass and of the differential tt cross-sections

have been presented. The top-quark mass measurement utilises a novel technique based on the

partial reconstruction of the top-quark mass using a fully-leptonic observable. The invariant

mass of the lepton from the decay of the W -boson and a muon from the semileptonic decay of

a b-hadron is constructed and a profile likelihood fit is performed. The extracted top-quark

mass of mt = 174.44± 0.39 (stat)± 0.64 (syst) = 0.76 (stat+syst) GeV is consistent with the

current ATLAS combination of top-quark mass measurements within 2.2 standard deviations.

This measurement is currently the most precise top-quark mass measurement using direct

reconstruction of the top-quark decay products.

One of the main uncertainties of the analysis is that associated with the b-quark fragmentation.

This uncertainty is large, in part, because of poor modelling of the b-quark fragmentation in

ATLAS MC simulation. In order to improve the MC simulation, measurements of differential

cross-sections in ATLAS data that are sensitive to b-quark fragmentation should be used as input

to the MC tuning process. The first measurement of top-quark differential cross-sections that

are sensitive to b-quark fragmentation in ATLAS is presented. The differential cross-sections as

a function of seven observables are compared to various signal predictions and a χ2 test statistic

is calculated. With the partial Run 2 dataset, the power of these observables to discriminate

between different signal predictions is limited because of statistics and a sub-optimal particle

level jet definition.
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11 Conclusions

The measurement of the top-quark mass is systematically dominated and therefore would

not benefit much by performing the analysis with the full Run 2 dataset. The main area

of improvement for the analysis is the modelling of the b-quark fragmentation, which the

differential cross-section measurement should help with.

Aside from a full Run 2 measurement of the differential cross-section of observables sensitive

to b-quark fragmentation, a measurement of the top-quark mass at particle level may also be

interesting. As discussed in Section 2.2.3, the measurement of the top-quark mass and the

interpretation of the mass is a complex topic. In the top-quark mass measurement presented

in this analysis, the measured mass is considered to be the MC mass, mMC
t . Measurement of

the top-quark pole mass, mpole
t , is normally performed by extracting it from differential cross-

sections for top-quark pair production and comparing to fixed order calculations. In principle, a

similar measurement could be performed using the differential cross-section measurement of m`µ.

However, due to the soft muon originating from a non-perturbative process (hadronisation), a

fixed order calculation is not possible.

Discussions with a Alexander Mitov [196] suggested that it could be possible to calculate a

pseudo-fixed order calculation for this process and therefore a more theoretically sound top-quark

mass measurement could be performed. This work would require input from theorists to calculate

the differential cross-sections but the top-quark mass extraction would be straightforward to

implement.
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Appendix A

ρ topology control plots

γ+jets

The comparisons between the data and MC predictions for the γ+jets topology can be seen in
Figures A.1 and A.2. In these comparisons, the data and MC predictions are normalised to
unity, as some MC samples are missing. Again the agreement is good across all observables.
The uncertainties on the ratio plot are incorrect, however, the ratio value itself is. These plots
cannot be reproduced with the correct uncertainties due to an irretrievable loss of data.
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Figure A.1 A comparison of the data and two MC predictions for (a) γ-pT, (b) γ-η, (c) leading jet-pT

and (d) subleading jet-pT for the γ+jets topology.
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Figure A.2 A comparison of the data and two MC predictions for (a) jet multiplicity, (b) leading jet-η,

(c) reference object pT and (d) ρ for the γ+jets topology.
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Figure A.3 A comparison of the data and two MC predictions for (a) probe jet-pT, (b) reference jet-pT,

(c) leading jet-pT and (d) subleading jet-pT for the dijet topology.

Dijets

The comparisons between the data and MC predictions for the dijets topology can be seen in
Figures A.3 and A.4. Similarly for the dijet, the data and MC prediction samples are normalised
to unity. There is good agreement across all observables. The uncertainties on the ratio plot are
incorrect however, the ratio value itself is. These plots cannot be reproduced with the correct
uncertainties due to an irretrievable loss of data.
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Figure A.4 A comparison of the data and two MC predictions for (a) jet multiplicity, (b) leading jet-η,

(c) raverage interactions per event and (d) ρ for the dijet topology.
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