
Approximation algorithms for general cluster
routing problem

Xiaoyan Zhang1, Donglei Du2, Gregory Gutin3, Qiaoxia Ming1, and Jian
Sun1(�)?

1 School of Mathematical Science & Institute of Mathematics, Nanjing Normal
University, Jiangsu 210023, P. R. China

sunjian199203@126.com
2 Faculty of Management, University of New Brunswick, Fredericton, New

Brunswick, Canada, E3B 5A3
ddu@unb.ca

3 Department of Computer Science Royal Holloway, University of London Egham,
Surrey, TW20 0EX, UK
g.gutin@rhul.ac.uk

Abstract. Graph routing problems have been investigated extensively
in operations research, computer science and engineering due to their
ubiquity and vast applications. In this paper, we study constant approx-
imation algorithms for some variations of the general cluster routing
problem. In this problem, we are given an edge-weighted complete undi-
rected graph G = (V,E, c), whose vertex set is partitioned into clusters
C1, . . . , Ck. We are also given a subset V ′ of V and a subset E′ of E.
The weight function c satisfies the triangle inequality. The goal is to find
a minimum cost walk T that visits each vertex in V ′ only once, traverses
every edge in E′ at least once and for every i ∈ [k] all vertices of Ci are
traversed consecutively.

Keywords: Routing problem ·Approximation algorithm ·General rout-
ing problem.

1 Introduction

Graph routing problems have been studied extensively since the early 1970s.
Most of there problems are NP-hard, and hence no polynomial-time exact al-
gorithms exist for most of them unless P=NP. In a typical routing problem,
a salesman starts from a home location, visits a set of prescribed cities exactly
once, and returns to the original location with minimum total distance travelled.

Arguably the most well-known routing problem is the travelling salesman
problem (TSP) (see [7] for a compendium of results on the problem). We are

? This research is supported or partially supported by the National Natural Science
Foundation of China (Grant Nos. 11871280, 11371001, 11771386 and 11728104), the
Natural Sciences and Engineering Re-search Council of Canada (NSERC) Grant
06446 and Qinglan Project.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/328914254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Xiaoyan Zhang et al.

given a weighted graph G = (V,E, c) (directed or undirected) with vertex set
V , edge set E, and cost c(e) for each edge e ∈ E. The TSP’s goal is to find a
Hamiltonian cycle with minimum total cost. Without loss of generality, we may
assume that G is a complete graph (digraph); otherwise, we could replace the
missing edges with edges of very large cost.

Unfortunately, the TSP is NP-hard even for metric arc costs [12]. There-
fore, one approach for solving the TSP (and other NP-hard problems) is us-
ing (polynomial-time) approximative algorithm whose performance is measured
by the approximation ratio, which is the maximum ratio of the approxima-
tive solution value to the optimum value among all problem instances. The
best known approximation algorithm for the TSP with triangle inequality is by
Christofides [3] with ratio 1.5. For the general TSP where the triangle inequality
does not hold, there is no (polynomial-time) approximation algorithm with a
constant approximation ratio, unless P=NP [20]. TSP along with its variations
have been extensively investigated in the literature. Here are two generalizations
of TSP studied in the literature.

The general routing problem (GRP): Let G = (V,E, c) be an edge-weighted
complete undirected graph such that the triangle inequality holds for the weight
function c. The goal is to find a minimum cost walk that visits each vertex in a
required subset V

′ ⊆ V exactly once and traverses every edge in a required subset
E

′ ⊆ E at least once. For this problem, Jansen [10] gave a 1.5-approximation
algorithm.

The cluster travelling salesman problem (CTSP): Let G = (V,E, c) be an
edge-weighted complete undirected graph such that the triangle inequality holds
for the weight function c. The vertex set V is partitioned into clusters C1, . . . , Ck.
The goal is to compute a minimum cost Hamiltonian cycle T that visits all ver-
tices of each cluster consecutively (and thus for each cluster we have starting and
finishing vertices on T ). Arkin et al. [1] designed a 3.5-approximation algorithm
for the problem with given starting vertices in each cluster. Guttmann-Beck
et al. [8] proposed a 1.9091-approximation algorithm for the problem in which
the starting and ending vertices of each cluster are specified and gave a 1.8-
approximation algorithm if for each cluster two vertices are given such that one
of the them can be a starting vertex and the other the finishing vertex.

In this paper, we introduce and study the general cluster routing problem
(GCRP) which generalizes both GRP and CTSP. We provide approximation
algorithms of constant approximation ratio for variations of this problem. In
GCRP, we are given an edge-weighted undirected graph G = (V,E, c) such
that the triangle inequality holds for the weight function c. The vertex set V
is partitioned into clusters C1, . . . , Ck. For any given vertex subset V ′ ⊆ V and
edge subset E′ ⊆ E, the aim is to find a minimum cost walk T (hereafter a walk
will be called a tour) that visits each vertex in V ′ exactly once and traverses each
edge in E′ at least once such that for every i ∈ [k] all vertices of T belonging to
Ci are visited consecutively in T . Depending on whether or not the starting and
finishing vertices of a cluster are specified or not, we consider two cases. When
every cluster has a pair of specified starting and finishing vertices, we offer a



Approximation algorithms for general cluster routing problem 3

2.4-approximation combinatorial algorithm. When every cluster has unspecified
starting and finishing vertices, depending on whether the required edges (i.e.,
those in E′) are incident with different clusters or not, we further consider two
subcases. If all required edges are only distributed in the clusters, we get a
3.25-approximation combinatorial algorithm. On the other hand, if there exist
edges from E′ incident with two different clusters, we get a 2.25-approximation
combinatorial algorithm.

The remainder of this paper is organized as follows. We provide some pre-
liminaries in Section 2. We study algorithms for the GCRP in Sections 3. We
conclude in Section 4. Every theorem whose proof is omitted is marked by (?).
The omitted proofs can be found in Appendix of the full version of the paper [24]
in arXiv.

2 Preliminaries

In this section, we recall some algorithms for three problems along with some
preliminary results, which will be used as subroutines in our algorithms later.

2.1 The Travelling Salesman Path Problem

The traveling salesman path problem (TSPP) [5, 8, 9, 21–23] is a generalization
of the TSP, but received much less attention than TSP in the literature. In
TSPP, given an edge-weighted undirected graph G = (V,E, c) and two vertices
s, t ∈ V , the aim is to find a minimum cost Hamiltonian path from s to t.
Note that vertices s and t need not be distinct. However, when s = t TSPP
is equivalent to the TSP. Let MST (G) be a minimum spanning tree of G. For
simplicity, MST (G) will also denote the cost of this tree.

Hoogeveen [9] considered three variations of the travelling salesman path
problem (TSPP), where as part of the inputs, the following constraints are placed
on the end vertices of the resulting Hamiltonian path:

(1) both the source and the destination are specified;
(2) one of the the source and the destination is specified;
(3) neither the source nor the destination are specified.

Property 1. For Cases (2) and (3), it was shown in [9] that a straightforward
adaptation of Christofide’s algorithm can yield an algorithm with a performance
ratio of 3

2 .

However, Case (1) is more difficult, for which many results exist in the lit-
erature. On the positive side, a 5

3 -approximation algorithm is proposed in [9],
followed by an improved 8

5 -approximation in [22]. Sebo [21] gave a strongly poly-
nomial algorithm and improved the analysis of the metric s − t path TSP. He
found a tour of cost less than 1.53 times the optimum of the subtour elimination
LP. On the negative side, the usual integer linear programming formulation has
an integrality gap at least 1.5.

Let c(P ) be the sum of all the edge costs of a given path or tour P . The
following result from [9] will be used later.



4 Xiaoyan Zhang et al.

Theorem 1. [9] There exists a polynomial-time algorithm for travelling sales-
man path problem with given end vertices s and t, and we can find two solutions
S1 and S2 for the problem which satisfy the following inequalities:

c(S1) ≤ 2MST (G)− c(s, t) ≤ 2OPT − c(s, t),

c(S2) ≤MST (G) +
1

2
(OPT + c(s, t)) ≤ 3

2
OPT +

1

2
c(s, t).

Corollary 1. [9] The shorter of the tours S1 and S2 is at most 5
3OPT .

Proof. By Theorem 1, if c(s, t) ≥ 1
3OPT , then c(S1) ≤ 5

3OPT . Otherwise (i.e.
c(s, t) ≤ 1

3OPT ) we have c(S2) ≤ 5
3OPT . ut

Below, we consider a more general problem, called the travelling general path
problem (TGPP). Let G = (V,E, c) be a weighted connected graph with two
specified ending vertices s, t ∈ V . For any given vertex subset V ′ ⊆ V and edge
subset E′ ⊆ E, the objective is to find a minimum cost path from s to t in G
that visits all vertices in V ′ exactly once and traverses all edges in E′. Note that
when s = t, this problem becomes the general routing problem introduced in [2]
which was discussed earlier. We focus on the case s 6= t in the reminder of this
paper.

Note that this is a minimum cost problem and the edge costs satisfy the
triangle inequality. Thus, we can reduce the visits of vertices and edges not in
V ′ and E′. Namely, we can create a new reduced graph as follow in the problem:

G′ = ({v|v ∈ e, e ∈ E′} ∪ {s} ∪ {t} ∪ V ′, E′).

We assume that s and t are two different vertices in the new graph G′.
First, we compute the connected components of G′ via depth-first search in
polynomial time. Then, contracting each component to a vertex, we construct
a new complete graph G∗, where each edge cost between vertices is the longest
edge cost between each pair of components, which is defined as the distance
of each pair of component. This can be done in polynomial time. But we only
consider those edges between the vertices with degree d(v) ∈ {0, 1}. Finally from
the graph G∗, we create a feasible solution as described in Algorithm 1.

Theorem 2. (?) Let S be the path output by Algorithm 1. Then we have

c(S) ≤ min

{
3OPT − c(s, t),

3

2
OPT +

1

2
c(s, t)

}
.

Corollary 2. The length of the tour output by Algorithm 1 is at most 2OPT .

Proof. By Theorem 2, if c(s, t) ≥ OPT , then c(S) ≤ 3OPT − c(s, t) ≤ 2OPT .
Otherwise, if c(s, t) ≤ OPT , we have c(S) ≤ 3

2OPT + 1
2c(s, t) ≤ 2OPT . ut



Approximation algorithms for general cluster routing problem 5

Algorithm 1 Algorithm of TGPP with specified vertice

Input:
1: An edge-weighted undirected graph G = (V,E, c).
2: Starting vertex s and ending vertex t of G.
3: V ′ ⊆ V , E′ ⊆ E are required vertex subset and edge subset, respectively.
Output: A travelling general salesman path.

begin:
4: Construct a new graph G′ = ({v|v ∈ e, e ∈ E′} ∪ {s} ∪ {t} ∪ V ′, E′).
5: Compute the connected components K1, . . . ,Kk of G′.
6: Let U be the set of vertices v with degree d(v) ∈ {0, 1}. Define a complete graph

Gk = ([k], Ek) with the cost c(e) of edge e = (i, j) with i 6= j equal to the longest
link between a vertex in Ki ∩ U and a vertex in Kj ∩ U.

7: Copy the edges of MST (G∗) except for those on s-t path.
8: Find an Eulerian walk between s and t.
9: Turn the Eulerian walk into a Hamilton path S.

10: output S.
end

2.2 The Stacker Crane Problem

Given a weighted graph G = (V,E, c) whose edge costs satisfy the triangle
inequality. Let D = {(si, ti) : i = 1, . . . , k} be a given set of special directed

arcs, each with length li. The arc
−−−−→
(si, ti) denotes an object that is at vertex si

and needs to be moved to vertex ti using a vehicle (called the stacker crane).
The problem is to compute a shortest walk that traverses each directed arc−−−−→
(si, ti) at least once in the specified direction (from si to ti). Let D =

∑
i

li and

A = OPT −D.
This problem is a generalization of the TSP, which can be viewed as an

instance of this problem where each vertex is replaced by an arc of zero-length.
Frederickson et al. presented a 1.8-approximation algorithm for this problem [4].
This algorithm applies two subroutines and then selects the better of the two
solutions generated. The main ideas of these two subroutines are summarized
below for convenience (see [4, 8] for details):

– Algorithm Short-Arcs 1: Shrink the directed arcs and reduce the problem to
an instance of TSP. Use an approximation algorithm for the TSP instance,
and then recover a solution for the original problem. This algorithm works
well when D ≤ 3

5OPT .
– Algorithm Long-Arcs 1: Complete the set of directed arcs into a directed

cycle cover. Then find a set of edges of minimum total weight to connect the
cycles together. Add two copies of each one of these edges, and orient the
copies in opposite directions to each other. The resulting graph is Eulerian,
and the algorithm outputs an Euler walk of this solution. The algorithm
performs well when D > 3

5OPT .

The following theorem can be derived from [4].



6 Xiaoyan Zhang et al.

Theorem 3. [4] Consider an instance of the Stacker Crane Problem where the
sum of the lengths of the special directed arcs is D. Let OPT be an optimal
solution, and let A = OPT −D. The walk returned by Algorithm Short-Arcs 1
has length at most 3

2A + 2D. The walk returned by Algorithm Long-Arcs 1 has
length at most 3A + D.

2.3 The Rural Postman Problem

Let E′ ⊆ E be a specified subset of special edges. We use c(e) to denote the edge
cost of e. The rural postman problem (RPP) is to compute a shortest walk that
visits all the edges in E′. The Chinese Postman Problem is a special case of RPP
in which E′ = E, i.e., the walk must include all the edges. The Chinese Postman
Problem is solvable in polynomial time by reducing it to weighted matching,
whereas RPP is NP-hard. Let D =

∑
i li be the total length of the paths in all

clusters. We recall the algorithms in [4, 8].

– Algorithm Short-Arcs 2: Consider the line graph c(G) of original graph G.
This algorithm works well when D ≤ 3

5OPT.

– Algorithm Long-Arcs 2: Complete the set of undirected arcs into a cycle
cover. Then find a set of edges of minimum total weight to connect the
cycles together. Add two copies of each one of these edges. The resulting
graph is Eulerian, and the algorithm outputs an Euler walk of this solution.
The algorithm performs well when D is large. Note that Algorithm Long-
Arcs 2 is similar to Long-Arcs, but in this case, D is a set of undirected
edges. The algorithm performs well when D > 3

5OPT .

The two algorithms defined above for SCP can be modified to solve RPP. It is
easy to see that the second part of Theorem 3 holds for this case as well, i.e. the
walk returned by Algorithm Long-Arcs 2 has length at most 3A + D.

Remark 1. As indicated by Frederickson et al. [4], it is easy to show that the
above algorithms produce a 3

2 performance ratio for RPP.

3 The general cluster routing problem

3.1 The general cluster routing problem with pre-specified starting
and ending vertices

Note that there may exist two subcases in this case. First, each edge in E′ is
fully contained in its cluster. Second, some edges may be incident with more
than one cluster.

Let si and ti be pre-specified starting and ending vertice of cluster Ci, i ∈ [k].
Since the goal is to find a minimal total edge cost and the edge costs satisfy the
triangle inequality, we can ignore the vertices not in V ′ and edges not in E′ from



Approximation algorithms for general cluster routing problem 7

graph G to consider a new graph instead. Namely, for every cluster Ci, i ∈ [k],
consider the GCRP in the following new graph G = ∪Ci, where

Ci = (Vi, Ei) =

(
{v|v ∈ e, e ∈ E′i} ∪ V ′i ∪ {si} ∪ {ti}, E′i

)
.

Our algorithm is based on the following idea. First, within each cluster Ci, we
find a path pi, starting with si and ending at ti, visits all the vertices in V ′ and
edges of each cluster Ci. This can be done by Algorithm 1. Second, we need
to connect the paths by adding some edges to make the resulting graph into a
single cycle.

Let G = (V,E) be a complete graph with vertex set V and edge set E,
the vertex set is partitioned into clusters C1, . . . , Ck. The starting and ending
vertices in each cluster are specified. Let Ci = (Vi, Ei) be the new graph as
described above. Clearly, the desired tour in G does not always exist, e.g., when
there exists a required edge e ∈ E′ between cluster Ci and cluster Cj , i 6= j,
and this required edge is not a (ti, sj) edge (in such a case, at least one of the
clusters must be visited more than one time). Henceforth, we will assume that
the desired tour does exist.

Algorithm 2 Algorithm of given starting and ending vertices

Input:
1: An edge-weighted graph G = (V,E, c).
2: A partition of V into clusters C1, . . . , Ck.
3: Each cluster Ci with starting and ending vertices si and ti, respectively, i =

1, . . . , k.
Output: A cluster general routing tour.

begin:
4: Construct a new graph G = ∪k

i=1Ci.
5: For i = 1, . . . , k, apply Algorithm 1 to get a path pi and orient the (si, ti) edge a

direction, from si to ti, to obtain the arc
−−−−→
(si, ti).

6: Apply Algorithm Short-Arcs 1 and Algorithm Long-Arcs 1 for SCP on special arc−−−−→
(si, ti), i = 1, . . . , k, and output the shorter solution T .

7: In T , replace the special directed arc (si, ti) by the path pi, for i = 1, . . . , k.
8: Output the resulting tour Ts.

end

The main idea of Algorithm 2 is illustrated as follows:
In Step 1, we first consider the number of connected components of Ci. If

the number is 1, it means that there exists a path from si to ti that visits all
the required edges in E′ and vertices in V ′. When the number is more than 2,
shrinking the connected components to be vertices and finding a path to connect
all these vertices lead to a feasible solution.

In Step 2, by applying Algorithm 1, we can get a path from the starting
vertex si to ending vertex ti.



8 Xiaoyan Zhang et al.

In Step 3, we only need to connect these clusters to form a tour. In this

progress, we can shrink the directed arc
−−−−→
(si, ti) and reduce the problem to an

instance of TSP. Use Christofides’ algorithm [3] for the TSP instance.
In Step 4 by replacing the special directed arc (si, ti) by path pi, we obtain

a solution to the original graph.
Our algorithm is a combinational algorithm, which deals with the condition

of the pre-specified starting and ending vertices carefully. Let OPT be the cost
of the optimal solution. Let L be the sum of lengths of the paths of OPT through
each cluster and let A be the length of the other edges of OPT that are not in
L. Let D be the total length of the directed arcs (si, ti), i = 1, . . . , k. Then, we
have the following theorem:

Theorem 4. (?) Let T be the tour output by Algorithm 2. Then

c(Ts) ≤ 2.4 OPT.

For the second case, there exists required edges in E′ between different clusters.
If there exist required edges incident with two different clusters, they must be
(ti, sj) edges. First, we need to compute the number of (ti, sj) edges. Suppose
the number is k. If k = 0, it is just Case 1. If k ≥ 2, we then get k+1 components
and we can shrink the components and go back to Case 1 again.

According to Theorem 4, for the general cluster routing problem with pre-
specified vertices, we now get a 2.4-approximation combinatorial algorithm.

3.2 The general cluster routing problem without specifying starting
and ending vertices

In this section, we consider the version of GCRP where, for each cluster Ci we
are free to choose the starting and ending vertices. We consider the two cases
again. In the first case, all required edges in E′ are only distributed within the
clusters. In the second case, there exist some required edges incident with some
different clusters.

For every cluster Ci, i ∈ [k], we consider GCRP on the new graph G = ∪Ci

defined as before:

Ci = (Vi, Ei) = ({v|v ∈ e ∈ E′i} ∪ V ′i , E
′
i).

We first consider the connected components of Ci. In order to obtain the
resulted tour, the degree of every vertex of the tour must be even. Therefore,
there also exist some cases that the tour cannot exist, i.e., there exists a vertex
v ∈ Vi with degree d(v) > 2 (in such a case, at least one of the clusters must be
visited more than once). Henceforth, we will assume that the desired tour exists.

To solve the first case when all required edges in E′ are only distributed within
the clusters, we propose an algorithm which computes two different solutions.
Then we select the shorter one of these two tours. To get the first solution, by
using Algorithm 1 with unspecified ends, we can find paths within each cluster.
Then we can view this as a Rural Postman Problem instance. To get the second



Approximation algorithms for general cluster routing problem 9

solution, for each cluster, we select two vertices si and ti such that c(si, ti) is
maximized. Let them be the end vertices of each cluster. Then we can apply
Algorithm 2 to get the second tour. Finally, we select the shorter tour.

The algorithm for the case when the tour exists can be described as follows:

Algorithm 3 Algorithm of unspecified ending vertices

Input:
1: An edge-weighted graph G = (V,E, c), V ′ ⊆ V , E′ ⊆ E.
2: A partition of V into clusters C1, . . . , Ck.
Output: A cluster general routing tour.

begin:
3: Consider the new graph Ci, for i ∈ [k].
4: Apply Algorithm 1 with unspecified end vertices in each cluster C1, . . . , Ck. Let

path pi be the resulting path on Ci, and denote its end vertices by ai and bi. Apply
Algorithm Long-Arc 2 and Algorithm Short-Arc 2 to output the shorter solution
for RPP with special edges (ai, bi) and let T1 be the tour obtained by replacing
special edge (ai, bi) by path pi, for i ∈ [k].

5: In each cluster find vertices si and ti that maximize c(si, ti), for i ∈ [k]. Apply
Algorithm 2 with the end vertices {si, ti} to output a tour T2

6: Output the shorter of T1 and T2.
end

We will analyze the approximation ratio of Algorithm 3. We first introduce
some notations. As in the previous section, let L denote the sum of the lengths
of the Hamiltonian paths within the clusters in OPT , and let A denote the sum
of the lengths of the remaining edges of OPT . Let D =

∑k
i=1 c(si, ti) denote the

sum cost of required edges. The first algorithm works well when D is small, and
the second works well when D is large.

Theorem 5. (?) Let T1 be the tour computed in Step 2 of Algorithm 3. Then
we have

c(T1) ≤ 3

2
OPT +

1

2
L + 2D.

Theorem 6. (?) Let T2 be the tour computed in Step 3 of Algorithm 3. Then
we have

c(T2) ≤ 3

2
OPT + 3L− 2D.

Now we can get the following theorem:

Theorem 7. Let T be the tour returned by Algorithm 3, then

c(T ) ≤ 13

4
OPT.

Proof. Note that L ≤ OPT . If 2D ≤ 5
4L, Theorem 5 implies that

c(T1) ≤ 3

2
OPT +

7

4
L ≤ 13

4
OPT.



10 Xiaoyan Zhang et al.

Otherwise, when 2D ≥ 5
4L, Theorem 6 implies that

c(T2) ≤ 13

4
OPT.

Since the algorithm chooses the shorter one between the tours T1 and T2, the
proof is completed. ut

Next, we will consider Case 2 when there exist required edges between clus-
ters.

We consider the problem in three different cases. In the first case, the number
of required edges incident with different clusters is k. In the second case, some
clusters have two required edges incident with other clusters. In the third case,
the number of clusters with required edges incident with other cluster is 0.

In the first case, we only need to find paths between each specified vertices.
This can be seen as an instance of Travelling Salesman Path Problem as we
described before. So the performance ratio of this case is 1.5.

In the second case, for the clusters which have two required edges incident
with other clusters, we find paths in them and it becomes the third case.

Without loss of generality, we consider the third case: the number of clusters
with required edges incident to other cluster is 0. For every cluster Ci, we denote
the specified vertex as ai. First, in each cluster, by computing the distance
between each component, we select the longest one; that is, we find the vertex bi
such that c(ai, bi) is maximum. This can be done in polynomial time, because the
number of vertices in each cluster is no more than n. Then we can find the path
pi in each cluster Ci by Algorithm 1. Since this problem has no direction, we
apply Algorithm Long-Arc 2 and Algorithm Short-Arc 2 to output the shorter
solution for RPP and find the tour with the edge (ai, bi). At last, we replace the
edge(ai, bi) by path pi. The whole algorithm can be described as follows:

Algorithm 4 Algorithm of existing required edges between clusters

Input:
1: An edge-weighted graph G = (V,E, c), V ′ ⊆ V , E′ ⊆ E.
2: A partition of V into clusters C1, . . . , Ck.
Output: A cluster general routing tour.

begin:
3: Let the vertex adjacent to required edges between different cluster Ci be ai. Find

a vertex that maximize c(ai, bi), for i = 1, . . . , k.
4: For each Ci, compute a path pi, a Hamiltonian path with end vertices ai and bi,

for i = 1, . . . , k.
5: Apply Algorithm Long-Arc 2 and Algorithm Short-Arc 2 to output the shorter

solution for RPP with the special edges {(ai, bi)|i = 1, . . . , k} to obtain tour S, for
i = 1, . . . , k.

6: In T , replace the special edge (ai, bi) by the path pi, for i = 1, . . . , k.
7: return the resulting tour T .

end



Approximation algorithms for general cluster routing problem 11

Theorem 8. (?) Let T be the tour output by Algorithm 4. Then c(T ) ≤ 9
4OPT.

Algorithm 4 is a 2.25-approximation algorithm for the general cluster routing
problem with unspecified end vertices, in which some required edges may be in-
cident with different clusters. Therefore, the performance ratio of approximation
algorithm for the problem with unspecified vertices is 3.25.

4 Conclusion

In this paper, we present constant approximation algorithms for two variations of
the cluster general routing problem. However, the two presented algorithms have
different approximation ratio, and in our future work we will consider whether
we can design approximation algorithms with the same approximation ratio for
these two problems.

References

1. Arkin, E., Hassin, R., Klein, L.: Restricted delivery problems on a network. Networks
29, 205–216, (1997)

2. Bienstock, D., Goemans, M.-X., Simchi, D., Williamson, D.-P.: A note on the prize-
collecting traveling salesman problem. Mathematical Programming 59, 413–420
(1991)

3. Christofides, N.: Worst-case analysis of a new heuristic for the traveling sales-
man problem. Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research
Group, 1976.

4. Frederickson, G.-N., Hecht, M.-S., Kim, C.-E.: Approximation algorithms for some
routing problems. SIAM Journal on Computing 7, 178-193 (1978)

5. Fumei, L., Alantha, N.: Traveling salesman path problems. Mathematical Progrom-
ming 13, 39–59 (2008)

6. Garey, M.-R., Johnson, D.-S.: A guide to the theory of NP-completeness computers
and intractability. W.H. Freeman and Company, New York, 1979

7. Gutin, G., Punnen, A.: The traveling salesman problem and its variations. Kluwer,
Dordrecht, (2002)

8. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation al-
gorithms with bounded performance guarantees for the clustered traveling salesman
problem. Algorithmica 28, 422–437 (2000)

9. Hoogeveen, J.-A.: Analysis of Christofides’ heuristic: some paths are more difficult
than cycles. Operations Research Letters 10, 291–295 (1991)

10. Jansen, K.: An approximation algorithm for the general routing problem. Infor-
mation Processing Letters 41, 333–339 (1992)

11. Jongens, K., Volgenant, T.: The symmetric clustered traveling salesman problem.
European Journal of Operational Research 19, 68–75 (1985)

12. Karp, R.-M.: Reducibility among combinatorial problems. Complexity of Com-
puter Computations 2, 85–103 (1972)

13. Lawler, E.-L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, 1976.

14. Lovász, L.: On some connectivity properties of Eulerian multigraphs. Atca Math-
ematica Academiae Scientiarum Hungaricae 28, 129–138 (1976)



12 Xiaoyan Zhang et al.

15. Marks, E.-S.: A lower bound for the expected travel among m random points. The
Annals of Mathematical Statistics 19, 419–422 (1948)

16. Menger, K.: Das botenproblem. Ergebnisse Eines Mathematischen Kolloquiums 2,
11–12 (1932)

17. Morton, G., Land, A.-H.: A contribution to the travelling salesman problem. Jour-
nal of the Royal Statistical Society: Series B 17, 185–203 (1955)

18. Nemhauser, G.-L., Wolsey, L.-A.: Integer and combinatorial optimization. Inter-
national Journal of Adaptive Control 4(4), 333–334 (1988)

19. Ohlmann, J.-W., Thomas, B.-W.: A compressed-annealing heuristic for the travel-
ing salesman problem with time windows. INFORMS Journal on Computing 19(1),
80–90 (2007)

20. Sahni, S., Gonzales, T.: P -complete approximation problems. Journal of the ACM
23, 555–565 (1976)

21. Sebö, A., Van Zuylen, A.: The salesman’s improved paths through forests. Journal
of the ACM 66(4), 1–16 (2019)

22. Sebö, A.: Eight fifth approximation for TSP paths. In: Goemans M., Correa J.
(eds) Integer Programming and Combinatorial Optimization 2013, LNCS, vol 7801,
pp. 362–374. Springer, Berlin, Heidelberg (2013)

23. Traub, V., Vygen, J.: Approaching 3
2

for the s-t path TSP. Journal of the ACM
66(2), 1–17 (2019)

24. Xiaoyan Zhang, Donglei Du, Gregory Gutin, Qiaoxia Ming and Jian Sun, Approx-
imation algorithms for general cluster routing problem, arXiv:2006.12929, 2020.


