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Abstract—The Internet of Things (IoT) may be considered
as a distributed, critical infrastructure, consisting of billions of
devices, many of which having limited processing capability.
However, the security of IoT must not be compromised by
these limitations, and defenses need to protect against today’s
threats, and those predicted for the future. This requires pro-
tection against implementation attacks, as well as the ability to
load, replace and run, best-practice cryptographic algorithms.
Post-Quantum cryptographic algorithms are attracting great
interest, and NIST standardization has a competition to find
the best. Prior research demonstrated that a Learning With
Errors candidate algorithm could be implemented on a smart
card chip, however this was a low-level implementation, and
not representative of loading the algorithm onto a secured
IoT chip platform. In this paper we present analysis from a
practical implementation of the Kyber768 CPAPKE public key
encryption component on a MULTOS IoT Trust-Anchor chip.
The investigation considered memory and speed requirements,
and optimizations, and compared the NTT transform version
of Kyber, presented in Round 1 of the NIST competition, with
the Kroenecker multiplier technique that exploits a hardware
crypto-coprocessor. The work began with a generic multi-round
multiplier approach, which was then improved using a novel
modification of the input data, allowing a built-in modular
multiply function to be used, significantly increasing the speed
of a multiplication round, and doubling the useable size of the
hardware multiplier.

Index Terms—MULTOS, Kyber, Post Quantum, embedded,
performance, IoT

I. I NTRODUCTION

The Internet of Things (IoT), is fast evolving into a critical
enabler for future society. Much focus is on new functionality
and services, however ensuring the security of IoT is crucial.
As yet there is no clear solution for securing the entire IoT,
however a lot is known about providing system security in
legacy systems, using best-practice cryptographic algorithms
and protocols, and there is considerable industry expertise
in protecting security sensitive devices from attacks on their
implementation. Complications for IoT security, include the
long potential life of the deployed infrastructure, the difficulty
to physically access and/or replace security-sensitive devices,
and their processing resource limitations. To maintain an effec-
tive defense against evolving attacks, requires flexible security
devices, which even after deployment, can be loaded with new
algorithms. The greatest test for such devices, may eventually
be attackers equipped with quantum computers, implying that

we cannot rely on legacy Public Key Infrastructure (PKI) for
confidentiality, integrity and availability.

In this paper we do not offer a magic bullet for IoT security,
but, practically investigate, trustworthy security foundations
for IoT that support traditional algorithms, yet are sufficiently
flexible to support the future loading of post-quantum algo-
rithms. The considered scenario was the IoT seeded with post-
quantum capable security anchors.

There are numerous security-sensitive systems in use today,
which have protection from strongly attack-resistant hardware,
e.g., the chips in our bank cards and passports. They include
specialist hardware, to resist physical, side-channel andfault
attacks (summarized in [11]), supported by software defensive
measures, and are typically assessed under Common Criteria
(CC) [2]. The secured microcontrollers within bank cards, are
normally of small register size (16-bit is common) and have
limited memory and processing speed; the Infineon SLE78
[7] is typical. The software defensive measures for high level
CC evaluation, significantly degrade performance compared
to unprotected native mode implementations, with one or two
orders of magnitude not untypical (see [10]). Therefore, a se-
cured microcontroller has a crypto-co-processor (CCoP), with
special hardware for executing specific functions much faster
than the CPU. The functions may be complete algorithms,
e.g., RSA [15], or general utilities such as block multiplies. A
secure chipplatform will offer an API for functions that map
onto the underlying CCoP. The CCoP cryptographic operations
may be fast relative to simple byte or bit manipulation via the
main CPU; making results and optimisation strategies unusual
compared to a CPU without CCoP.

The MULTOS [13] platform has a CCoP, but also offers
generic software primitives that still have defensive coding, but
are optimized for faster execution compared to implementation
at the application level. Secure chips are typically initialized
and personalized before first use, which may include the
storage of identities and cryptographic keys for operation
and management. To overcome processing restrictions, some
values may be pre-computed, for example, storing a diver-
sified ID rather than calculating it, or adding small look-up
tables to speed execution; our work made extensive use of
the personalisation phase. In this research we chose to use
MULTOS security platform(s) based on the high-levels of
security assurance that they have achieved, and the availability
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Fig. 1: Kyber Calculation

of the new IoT Trust-Anchor device. For the algorithm we
chose Kyber768 [16] CPAPKE, primarily because it was
the subject of the main prior-research reference, but also
because the inherent polynomial multiplications would stress
our implementation.

In Section II we provide a brief overview of Kyber and then
in Section III we outline initial assumptions and strategy for
the implementation. Section IV introduces the essential aspects
of MULTOS. In Section V we describe the implementation
process and challenges. Section VI presents, analyses and
optimizes the Part I experimental results; initially comparing
the NTT and generic multiplier methods, and then going on to
analyse the timing breakdown of the latter. In Section VII the
Part II work and results are discussed, which are based on a
novel multiplication strategy, possible when one of the inputs
represents noise. Section VIII offers conclusions and suggests
future research.

II. K YBER

Kyber is a Key Encapsulation Mechanism, within the NIST
competition [14] for standardising post-quantum algorithms;
as an alternative to well-known asymmetric algorithms, such as
RSA. There are different classes of post-quantum algorithms,
and particular algorithm proposals are evolving and combin-
ing as the competition progresses. The theoretical security
properties of Kyber are left to the international community
of cryptographic experts, as we focus on its implementation,
as a downloaded algorithm on an attack-resistant hardware
platform. The security of Kyber is based on the hardness of
the Module Learning With Errors problem (MLWE). This is
an algebraic assumption part of the larger family of Learning
With Errors (LWE), for which an introduction can be found
in [17]. The design of Kyber as a PKE scheme follows that
outlined in [9]. In terms of basic encryption process, thereis
some population of fields with random values, multiplication
with a generator matrix and a fixed key vector, and then the
intentional combination with a noise vector; as illustrated in
Figure 1. The security design goal is to make it infeasibly
difficult for an attacker to determine either the private keyS
or the random noise vectorE from a knowledge of the resultD
and the generator matrixA. Note that we also useA transpose
(AT) in calculations, but we will just refer toA for simplicity
of explanation.

The calculations centre around polynomials. A polynomial
has 256 coefficients, with each coefficient being represented
as a modulo KYBERQ (7681) unsigned integer. In the Kyber
reference implementation, and in this work, each coefficient is

stored within a 2-byte/16-bit unsigned integer. A polynomial
data structure is referred to as a ”poly” in the reference
code, and every small box in Figure 1 represents apoly.
The secret keyS and noiseE are vectors containing three
poly types; and referred to as ”polyvecs”. The generator
matrix A consists of threepolyvecs. One of the most time-
critical operations within the algorithm, is the multiplication
of polyvecs; which for the multiplication ofA by S is required
three times. Eachpolyvecmultiplication consists of threepoly
multiplications, and subsequent addition of their results. In
the original specification of Kyber, thepolyvecsare encoded
in the Number Theoretic Transform (NTT) domain, reducing
classical polynomial multiplication to vector inner products.
Note that as anyA matrix would transform into anotherA
matrix, the original Kyber was able to avoid the transform,
by stating that the generated matrix was already transformed.
The paper [1] swapped the transform approach for the use
of a hardware multiplier and we will follow this strategy;
although an NTT version was ported to the test platform
for comparison. We note that there is considerable research
activity to determine specialist hardware implementations for
NTT (and LWE) such as in [3], [6], which contrasts with our
goal of using an existing and flexible attack-resistant platform,
with generic CCoP support. For clarity we will recap here on
the multiplier method.

A. Multiplier-Method

Polynomial multiplications are at the heart of Kyber, and
critical in our use of the MULTOS Trust-Anchor, but such
operations can be slow without specialist hardware. The Kyber
reference uses the NTT transform as a means to avoid costly
polynomial multiplication, however there is a time cost for
the transform and its inverse. The method proposed in [1]
avoids the transform cost, by exploiting a hardware multiplier
within the CCoP. It turns a polynominal multiplication into
large integer multiplications. The CCoP hardware multiplier is
not as large as the multiplication required by Kyber. Therefore,
the multiplications have to be broken into interleaved parts,
with each handling a sub-set of coefficients, and then an
accumulation of the interleaved results. For each sub-multiply
(we refer to as Rounds), we use the Kronecker substitution
[8] as per the prior research [1]. The principle is to space
the polynomial coefficients sufficiently far apart within the
large input integer, that they do not overflow their storage
as a result of the multiplication, so the output coefficients
can be simply extracted from the result. For Kyber, our input
coefficients are mod KyberQ (7681), so 7680 is the largest
magnitude, requiring a minimum 13-bit storage location, and
26-bits for the product of two coefficients. In our initial
implementation, for each round of multiplication, we had 32
(of the 256) polynomial coefficients within each long integer
input, meaning that an unreduced resulting coefficient could
be the sum of 32 of the 26-bit products; requiring a total
of 31-bits of storage and fitting within the 32-bits provided.
Note that for the initial implementation, the full result had
to be available from the multiplier, in order to support a



modular reduction, whereby the upper (overflow)coefficients
were subtracted (modulo KyberQ) from the lower (retained)
coefficients. This is discussed further in Section V-B, but
accounts for why we could only multiply 32 coefficients at a
time (within a 2048-bit multiplier). In our final implementation
we succeeded in multiplying 64 coefficients at a time, within
the same size multiplier; as discussed in Section VII.

III. I MPLEMENTATION, INITIAL ASSUMPTIONS AND

STRATEGY

The focus of the research was to determine whether the
Kyber768 algorithm, as an example of a polynomial based
algorithm, could be loaded as an application onto a MUL-
TOS VM platform and execute acceptably via its APIs. As
the critical aspects centred aroundpolyvecmultiplication, a
scenario was envisaged in which a test message was encrypted
and decrypted using keys/generators known in advance and
personalized on the chip. It was important to prove, that the
MULTOS code was correctly matching that of the reference;
which would not have been possible if using MULTOS random
numbers, or different hash types. To achieve this, the Linux
reference code was used to dump its ”random” data fields,
as well as data representing generators, keys and noise; which
were subsequently personalized into the Non-Volatile-Memory
(NVM) of the MULTOS test device. Additional data was pre-
computed to support the multiplier method; for example, the
inverse NTT version of the original matrixA was needed.

IV. MULTOS

Our MULTOS device can be considered as a secure Virtual
Machine (VM) running on an attack-resistant chip, plus exter-
nal systems and processes that manage personalisation of the
chip with cryptographically protected Application Load Units.
The management and personalisation are currently based on
PKI, but would eventually evolve to a post-quantum equiva-
lent. The PKI loading approach is interesting for IoT, as the
distribution of the more commonly-used symmetric keys does
not scale well. The security evaluated MULTOS management
capability, provides reasonable justification that the chips can
be securely loaded and personalized post-deployment. As
would be expected from a secure multi-application device;
loaded applications are isolated from each other and under
the unique control of the Issuer. Source code development
for MULTOS is normally in the ”C” language, which is
compiled to MULTOS Execution Language (MEL). MEL can
be regarded as a kind of assembly language, however, for
security, it is greatly abstracted from the underlying processor,
and instructions are better thought of as functions. The VM
is 16-bit, with 32-bit extensions for memory access, and
the compiler supports up to 32-bit integer types. MULTOS
applications run within a virtual address memory map, which
is shown in Figure 2.

The main memory split is between code and data spaces,
both of which can be addressed up to 64kbyes. Historically,
the code (and static data) spaces, were held in ROM, with no
option to change the contents during deployment. Nowadays,

Fig. 2: MULTOS Application Memory Architecture

flash NVM is used, with the code being logically read-only,
but with the possibility of overwriting static data. The NVMis
fast to read, yet very slow to write; so useful for personalized
data, but not for dynamic variable storage. Run-time data
and variables are in RAM; some is needed for the stack to
support the OS as well as loaded applications. The application
also needs private RAM (session data) for variables, buffers,
arrays etc.. There is some public data, used for I/O buffers and
communicating between applications; which can (with some
care) be re-used as extended session memory; the motivation
being that the RAM for the entire chip is usually a small
fraction of the maximum 64kbytes that MULTOS would
support within one application’s data space.

A. Memory requirements

Generally, application coding is unlikely to exceed the
64kbyte code memory space, so the focus was on the RAM
and to a lesser extent on the data NVM. The latter was
only relevant due to the pre-calculated data needed for the
experiments. In the core calculation, we need to multiply a
polyvecby another; to have a generator matrix and at least
anotherpolyvecstored in NVM. The storage of a normalpoly
is 256*2 = 512 bytes. Apolyvec contains threepolys and
therefore needs 1,536 bytes, and we need two. We also need
buffers to expand thepolysfor the Kronecker substitution, with
four bytes per coefficient, so 1024 bytes each, and we need
two. Allowing for other buffers and variables, but assuming
some re-use of thepoly/polyvecmemory, we estimated a
minimum of 6kbytes application RAM, plus enough to support
the OS and the application stack requirements. For the static
data, the largest entry would be the generator matrixA, which
is threepolyvecs, and so 4608 bytes; allowing for a similar
number of individualpolyvecswe would need 9216 bytes,
and reserving half again for static values and look-up tables
we are in the range of 14kbyes. Fortunately, the memory sizes
fit within the logical limits of the MULTOS virtual memory.
The static memory is no concern, as MULTOS chips usually
have a few 100kbytes of NVM. The RAM requirement is just
within the MULTOS Trust-Anchor [12], which has a total of
13kbytes RAM; 9.5kbytes for stack and session, and 3.5kbytes
for public data.



B. Hardware Multiplier API

The Trust-Anchor has a CCoP, although at 2048bits, it
is half the size of the one used in [1]. The MULTOS API
supports two ways to access the multiplier; the simplest being
multosMultiply, which mapped to theMULTIPLYN primitive.

In our Part I implementation, we multiply inputs of 32
coefficients, each stored in 4-byte storage, equivalent to 128-
byte large integer inputs. In theory,multosMultiplyshould have
been capable of multiplying two 128 byte unsigned integers
and producing a 256 byte result, however theSTOREprimitive
is restricted to a maximum length of 255 bytes, whereas
blockLength*2is 256 bytes. In any case, themultosModular-
Multiplication was more interesting, as when the Kronecker
multiply is broken down into sub-multiplies, it is necessary
to do a modular reduction after each, to get back to a 32
coefficient result. As will be explained later, for Part I of
the study,multosModularMultiplicationcould not be used to
exactly duplicate the NTT reference results. However, despite
the input parameters and modulus having to be the same size,
we were still able to configuremultosModularMultiplication
to be a reliable functional equivalent ofmultosMultiply, but
we were then obliged to carry out the reduction manually in
application level software.

V. SOFTWARE IMPLEMENTATION

The software starting point was the NIST Round 1 reference
version from GiTHub [5]. This was built on a Linux machine
and modified so that data values could be dumped from the
code for import as pre-personalized data within the MULTOS
test-code. The exported data included the transposed version
of the generator matrixAT used in the NTT calculation,
as well as a version of this matrix calculated by inverse
NTT transform onAT; required for the multiply version. The
unpacked public key was stored in apolyvec, pkpv. To be
consistent with the NTT version, an NTT transformed version
of pkpvwas also pre-stored, and the NTT transformed version
of the unpacked secret keysk, as well as an untransformed
version. Noise vectorssp, epandeppwere also stored to avoid
any difference from sources of randomisation. The initial focus
of the investigation was around the performance ofindcpa enc
and indcpa dec functions; exploiting pre-stored values and
comparing the NTT approach with the multiplier equivalent.

A. NTT and Multiplier Version

After using pre-personalized keys and data fields where pos-
sible, the essential part ofindcpa enc is outlined in Listing 1,
along with the multiplier equivalent. Note that KYBERK is
’3’, and the original performance critical parts were the NTT
transform,polyvec ntt, the inverse transforms,polyvec invntt
and polyvec pointwise acc; the latter being much simplified
by the transforms. The NTT version was primarily to show
exact functional equivalence, but its timing was also measured
as an initial benchmark. The experimental timing is shown in
Table I. As anticipated, the overall duration was much too
slow to be practical on our VM, although the breakdown of
the timing was encouraging; much of the execution time was

spent in transforms and inverses, which are not needed in the
multiplier approach

NTT ORIGINAL MULTIPLIER
poly frommsg ( . . . ) ; poly frommsg ( . . . ) ;
p o l y v e c n t t ( . . . ) ; . . .
f o r ( i =0 ; i<KYBER K; i ++) f o r ( i =0 ; i<KYBER K; i ++)

po l yve c po in tw i s e a c c ( . . . ) ; p o l y v e c m u l t i p l y a c c ( . . . ) ;
p o l y v e c i n v n t t ( . . . ) ; . . .
po lyvec add ( . . . ) ; po lyvec add ( . . . ) ;
po l yve c po in tw i s e a c c ( . . . ) ; p o l y v e c m u l t i p l y a c c ( . . . ) ;
p o l y i n v n t t ( . . . ) ; . . .
po ly add ( . . . ) ; po ly add ( . . . ) ;
po ly add ( . . . ) ; po ly add ( . . . ) ;
p a c k c i p h e r t e x t ( . . . ) ; p a c k c i p h e r t e x t ( . . . ) ;

Listing 1: Overview of Encrypt Methods

The poly frommmsg, the last two poly adds and the
pack ciphertextare common to both versions. The multiplier
performance is dominated bypolyvec multiply acc, which has
three calls topolymodmul(which multiplies two polynomi-
als together), after which a process adds the three sets of
coefficient results and reduces them mod KYBERQ. Note
that polyvec multiply acc is called four times inindcpa enc,
so polymodmulis called 12 times; becoming the focus for
performance analysis and optimisation.

A representative flow chart is shown in Figure 3. Section 1
in the diagram is responsible for partitioning, expanding and
re-ordering the source polynomial coefficients into convenient
form for large integer multiplication, and is performed once
per call. The core processing relates to the diagram sections
2, 3 and 4; and in our implementation it uses an inner and
outer loop, executing a total of 8x8 rounds in our Part I
implementation, reducing to 4x4 in the Part II implemen-
tation. Diagram section 2 is the actual hardware multiply
with some surrounding buffer management. Diagram section
3 reduces the resulting polynomial back down to the number
of coefficients in an input polynomial, and diagram section 4,
modulo adds the interleaved round results to the appropriate
coefficients in an overall result accumulator. Finally, diagram
section 5 reduces the accumulated result back to the size of a
polynomial, then re-orders and reconstructs the actual resulting
polynomial.

B. Polynomial Reductions

Multiplying two polynomials as large integers of sizeN
results in an integer of size2N; therefore, to fit back into
polynomial storage, requires reduction. The form used is a
modular reduction byXN+ 1. XN alone would be an easy
discard of the overflow, but the extra ’1’ in the expression
requires the high order (overflow) half of the result to be mod-
ularly subtracted from the low (retained) half. Unfortunately,
we cannot directly usemultosModularMultiplication, as in the
subtraction, it treats the upper and lower halves of the result as
long integers, whereas, Kyber requires a modular subtraction,
coefficient-by-coefficient. This necessitated a manual approach
to reduction. ThemultosModularMultiplicationwas still used,
but with a modulus that could never be exceeded. Code was
added, to provide the modular reduction functionality; creating
what was referred to as V1 (unoptimized) code. Note that in



TABLE I: Non-optimized Initial Results (ms)

Type NTT All Poly All Other Total
xform xform vec Accs Ops Time

acc

NTT
enc 3 85987 4 41648 6372 134007
dec 2 46863 1 10427 8931 66221
Mult
enc 4 97975 6610 104585
dec 1 24619 5022 29641

Fig. 3: Flowchart of Polynomial Multiply

Part II of our study, a method was conceived to achieve poly-
nomial reduction viamultosModularMultiplication, although
this relied on assumptions about the inputs, and required
changes to personalized data; as discussed in Section VII.

VI. T IMING ANALYSIS AND OPTIMISATION, PART I

The timing results from the very first (unoptimized) bench-
mark experiments are shown in Table I.

They include the total execution times for the encryption
and decryption processes when computed via the original
NTT and alternative multiplier methods. The table also shows
the comparative time for thepolyvec pointwise acc and the
polyvec multiply acc. For the NTT case, the time for trans-
forms is shown separately. The NTT encryption method takes
an extra 28% of the multiplier method time, but both are far too
slow to be usable in almost any practical applications, and so
significant optimisation is needed. Thepolyvec pointwise acc
is significantly faster than thepolyvec multiply acc, but it is
reliant on NTT transforms. Both methods spend over 90% of
their time in thepolyveccalculations..

The focus of this research was on the CCoP multiplier
method, and the first step was to identify where the main time
losses occurred. Experiments were carried out to determine
the proportion of total execution time spent in the various
processing stages; with the evolving results presented in Ta-
ble II. The first interesting observation is that in the V1 code,
the CCoP multiply section is far from being the bottleneck,
accounting for just over 3% of the execution time. Even more
interesting is that 76% of the time is taken in manual modular

TABLE II: polymodmul Performance Breakdown (ms)

Code Poly Mult Reduce Acc Poly Total
Exp Round Round Round Reduce

1:V1 412 268 6149 942 360 8131

Part 437 273 3210 955 329 5204
Reduce
Block 637 66 2152 936 355 4146
add sub
MEL 419 66 1082 365 370 2302
Modulo

TABLE III: Modulo Reduction Speed Comparison

Modulo Reduction Technique Duration (ms)

MULTOS C Remainder 0.97
MULTOS ModularReduction 1.05
MEL Full Tabular 1.08
MEL Partial Tabular 0.21

reduction after each multiply round; requiring an inner loop
with a modular subtraction/reduction for each coefficient.

The V1 code used two modulo reductions per coefficient,
per round, relying on the MULTOS C-compiler remainder
operator. The modulo reductions served multiple purposes.
Firstly, to ensure that the subtraction result was positiveand
secondly to ensure that the sum of the results from the multiply
rounds would not overflow the 32-bit coefficient storage of the
accumulator. Using the Kronecker substitution technique,we
knew that there would be no carries between result coefficients.
Furthermore, as the input coefficient values were 13-bit, the
unreduced product of two coefficients could not exceed 26-
bits, and with 32 coefficients (in our multiplier round long
integers), the maximum number of these that could be added
together in a result was 32, equivalent to needing an extra
5-bits. The accumulator could add 8 (3-bits) of these results
together, which would require 34-bits total if we were to avoid
reduction; thereby overflowing our 32-bit accumulator stores.

As modulo reduction was a necessity within a performance
critical part of the code, an experiment was carried out to
compare several methods for reducing a 32-bit value mod
Kyber Q. The methods included themultosModularReduction
primitive, a new tabular technique, described later, along with
a partial tabular reduction technique (for reasons which will
become apparent). The results are presented in Table III. The
remainder operator was the fastest for full reduction; closely
followed by multosModularReductionand a MEL-optimized
tabular version (discussed next);

A. Tabular Reduction

The modulo reduction of result coefficients was sufficiently
critical to justify an allocation of the platform’s flash memory
for tabular reduction methods. The design goals for the latter
included, no run-time multiplies, no run-time shifts, data
independent run-time and no table needing more than 1kbytes
of NVM.

The first attempt used three tables, KTH, KTM and KTL;
the first two each have 256, 32-bit values (1kbytes), whereas



TABLE IV: Polymodmul Performance Breakdown (ms)

Version Poly Polyvec indcpa indcpa
Mult Mult enc dec

NTT 134007 66221
First Multiply 8165 24494 104585 29641
Optimized Multiply 2302 6906 35917 12719
Estimated Multiply 1220 3660 22560 9381

KTL has 256, 16-bit (512 bytes). KTH is used for reduction
based on the most significant byte of the input, and then KTM
and KTL for the next most significant bytes. The contents of
the tables are calculated as the maximum integer multiple of
KYBER Q that is smaller than the number represented by the
index, assuming the lower unknown bytes are zero. Because
the lower bytes could be say all 0xFFs, it is possible that
the index value after reduction would still be non-zero; so
the tabular reductions for KTH and KTM are used twice in
sequence. However, in our implementation we do not need
a full reduction. Partial reduction uses KTH once, adds a
minimum fixed value to the retained (lower) coefficients and
modulo subtracts the upper coefficients, knowing that the
results would be positive, and that the addition of multiple
multiplication rounds would not overflow the result accumu-
lator. In MULTOS we are abstracted from the underlying
processor, so the best code optimisation was to define the
functionality in the MULTOS Execution Language (MEL).

B. Other Optimisations

Referring back to diagram Fig 3, theAccumulate Round
section was the next most time consuming after modular
reduction, followed byFinal Reduce, so efficiencies were
sought by unrolling loops, and where possible, using constant
rather than run-time calculated addresses. A halt was called
on our Part I optimisation due to diminishing returns and the
experiments were repeated, also adding theindcpa dec case.
The final results are presented in Table IV. The positive aspect
is that on our attack-resistant device, the best optimized mul-
tiplier code encrypted (decrypted) more than 3.7 (5.2) times
faster than the NTT method and 2.9 (2.3) times faster than
our initial ported multiplier code. The most negative aspect is
that the encryption time is almost 36s, limiting the practical
usefulness of the algorithm. To go significantly faster with
the Part I implementation design, would require MULTOS to
incorporate a larger multiplier (4096 bit) and/or new primitives
within its platforms. However, we noted that if a variant of
the Kyber768 implementation design could avoid the manual
modulo reduction operations (for each multiplication round),
we estimated execution times to be 22.56s for encrypt and
9.38s for decrypt. This suggested a worthwhile speed increase,
and is what we set out to achieve in Part II of the investigation.

VII. T IMING ANALYSIS AND OPTIMISATION, PART II

The goal of Part II of the study was to avoid theXN+ 1
manual reduction of the multiplier round results. The need for
this can be seen from Table II, but is illustrated in the power
traces of Fig 4. The upper trace in the figure, transitions at

Fig. 4: Stages of Polynomial Multiply (20ms/div)

the start of each round and the second trace illustrates the
stages of a round; the third trace represents the chip power
usage. The multiply stage (2) is relatively short, being some
buffer preparation and the actual hardware multiply (seen as
the peak in power). The accumulate stage (4) takes longer
than the multiply and involves adding interleaved results into
the correct locations; however, the round reduction stage (3)
clearly dominates. The reduction is split between the KY-
BER Q reduction of the resulting coefficients (stage 3a) and
the subtraction of the overflow coefficients from the retained
coefficients (stage 3b). To make a significant improvement to
performance, we needed to remove stage (3) entirely, and we
began this by revisiting themultosModularMultiplicationAPI
call in MULTOS.

A. Polynomial Reduction Revisited

Recall from Section V-B that if we usemultosModular-
Multiplication to perform aX256+ 1 reduction, it performs
an arithmetic subtraction of the overflow large-integer from
the retained large-integer, whereas Kyber expects the overflow
coefficients to be subtracted (modulo KYBERQ) coefficient-
by-coefficient from the lower retained coefficients. Therefore,
to usemultosModularMultiplicationrequires that all parts of
the overflow integer representing the overflow coefficients,
are smaller in arithmetic magnitude than the corresponding
values representing the retained coefficients. Adding multiples
of KYBER Q to coefficients will increase their arithmetic
representation, without changing the final calculation, however
this alone does not help unless we can selectively control
the dynamic range of the input data to affect the coefficient
results. Therefore the first step was to try and reduce the
dynamic range of the data representation for the inputs to the
multiplications.

B. Reducing the Representation of Noise

Part I assumed all coefficient values were up to KYBERQ
in size, requiring a minimum of 13-bit storage. When we
focussed on encryption, we noted that one of the inputs to
the multiplications was always a representation of a noise.
Keeping with the original reference implementation, the coef-
ficients in these noise vectors were actually allowed to exceed
KYBER Q, but the extreme values were very limited, being



KYBER Q +/- 4. The first step in our new method was to vary
the way that noise was represented, so that the coefficients
could be represented by much smaller arithmetic values. For
example, an original noise vector with coefficients in the range
0x1DFD to 0x1E05 would be converted to 0x0 to 0x8 by
adding 4 modulo KYBERQ. If the coefficients in the other
input were 13-bit, then multiplying by up to 8 would require
16-bit storage, and if there were up to 32 (5-bit) coefficients
in our long integers the largest resulting coefficient would
be 21-bits. This gave us the reduction we needed to try and
manipulate the overflow coefficient results to be smaller than
the retained coefficient results.

C. Noise Data Manipulation: Overflow ¡ Retained Coefficients

The coefficient multiplication results are the sum of prod-
ucts of the input coefficients. To modify the overflow coeffi-
cient results differently from the retained coefficients requires
a property that sets them apart. The least significant coeffi-
cient (sayX0 of the noise) only contributes to the retained
coefficients and not the overflow. Therefore, if we could make
the X0 contribution dominant, it would dominate the retained
values within the result. To achieve this, requires as a first
step, thatX0 is arithmetically much larger than the other noise
coefficients; which can be achieved by adding KYBERQ to
it. This alone is not sufficient, asX0 may be multiplied by a
very small coefficient value in the other input. The required
second step was to ensure that the other input is stored as
its coefficient values plus KYBERQ. Considering dynamic
ranges, one set of coefficient inputs had increased to 14-bits
and multiplying this by a noise coefficient (other thanX0) gave
a 17-bit result; and 32 of these would take us to 22-bits. The
X0 coefficient multiplication would give us a result in the 26-
27bit range; so its contribution dominated and ensured all the
retained coefficients were larger than those in the overflow.

D. Input Data Manipulation in Practice

The data conditioning was implemented for encryption (the
major performance challenge), and decrypted correctly with
the Part I decryption function. It was assumed that noise would
be generated in the required form (so no extra processing)
and the generator matrix and relevant vectors were available
pre-stored in the appropriate form. The technique worked as
planned and the first performance results are presented as64
round noise reducewithin Table VI. Aside from obviating
the need for the manual round reduction, the success of the
techniques permittedmultosModularMultiplicationto be used
for multiplying larger integers, to reduce the number of rounds;
as discussed next.

E. Round Reduction

To perform manual round reduction requires that the over-
flow part of the long-integer multiplication result is accessible,
so the inputs can only be half the size of the multiplier ca-
pacity. When usingmultosModularMultiplicationthe hardware
and API take care of the reduction so you can use all of the
available capacity, which permitted a reduction in the number

of rounds in our overall polynomial multiplication. Ideally we
would have simply doubled from 32 to 64 coefficients (1028
to 2048 bits), unfortunately, the API required that the inputs
were the same size as the modulus, so we needed to store
65 coefficients within 2048bits; a packing/unpacking option
was explored as an alternative. From the discussion in Section
VII-C we selected 28-bit packing, as sufficient to maintain
separation of the result coefficients. It was noted from the
outset that the packing and unpacking, would be slow on the
secured MULTOS platform, due to the hardware abstraction
and defensive coding measures; potentially undermining im-
provements from the round reduction. However, as packing
and unpacking are the kind of utilities that could eventually
be incorporated into the MULTOS platform as optimized
primitives, it was felt justified to explore further. The best
that could be practically achieved in this work was with a
MEL-encoded unpack utility; the first results are shown as
the 16 round pack/reduceentry in Table VI. As further round
reduction was not possible without a larger multiplier, attention
was then turned to the accumulation stage.

F. Round Re-ordering and Accumulations

Accumulation is necessary because of the multi-round ap-
proach to multiplication. Because the input coefficients are
assigned to long-integers in an interleaved fashion, the ac-
cumulator adds results from a round into interleaved places
within the accumulated result. Therefore, accumulation isnot
a simple block addition, if it were, we could use the faster
MULTOS primitive multosADD. The round calculation was
originally formed within an inner and outer loop, indexed by
i and j respectively. It was noted that the locations written to
by the accumulator were not unique to a round (16 values),
but unique to the sum ofi+j . Therefore, if the rounds were
re-ordered so that common values ofi+j were sequential,
there was the potential of substituting the accumulate witha
block addition in some rounds. This assumed that the dynamic
range of the stored results could increase without overflow
between coefficients. From Section VII-E, we recall that our
chosen storage size was 28-bits, yet our maximum round result
values were 27-bits, so it was possible to combine two values
without overflow. If we had chosen at least 29 bit packing
we could have combined four values, which is the most we
would need to get optimum benefit from round re-ordering.
Table V illustrates the potential for swapping block additions
for accumulate operations. The results from the 28-bit version
are show in Table VI, as the16 round plus result ordering
entry. The final entry in the table is a faster estimate of the
same functionality, when using a MULTOS primitive unpack
utility; based on technical advice from MULTOS.

G. Part I v Part II Results

Table VI summaries the improvements in Part II of the study
compared to the original Part I. Note that in Part II, the focus
was on polynomial multiplication, and only encryption was
considered as a higher level operation; being the maximum
challenge for performance.



TABLE V: Swapping Block Adds for Accumulate (ms)

Sum Normal 28-bit 29-bit
i+j Accs Adds Accs Adds Accs Adds

0 1 0 1 0 1 0
1 2 0 1 1 1 1
2 3 0 2 1 1 2
3 4 0 2 2 1 3
4 3 0 2 1 1 2
5 2 0 1 1 1 1
6 1 0 1 0 1 0
Totals 16 0 10 6 7 9

TABLE VI: Part I v Part II Results

Rounds: Version Poly (ms) Polyvec (ms) Encrypt (ms)

64:Part I 2302 6906 35917
64:Noise reduce 1149 4130 22318
16:Pack/Reduce 1094 3944 21537
16:Pack/Reduce/Order 996 3631 20420
16:Est. Primitive 935 3282 19692
16:Est. 4096 CCoP 468 1641 9846

VIII. C ONCLUSIONS ANDFUTURE WORK

Part I of the research confirmed it was possible to load
and run the Kyber768 CPAPKE algorithm component on the
MULTOS Trust-Anchor, using NTT or 64-round CCoP multi-
plier solutions; supporting the goal of downloading advanced
algorithms for IoT. Although the CCoP solution outperformed
NTT, it was too slow for envisaged use. Multiplication of
polynomials was identified as the bottleneck, although not due
to CCoP multiplications, but the associated application-level
reduction and modulo operations. The latter was dominated
by manualXN + 1 reduction. Modulo KYBERQ reductions
of individual coefficients were also challenging, as performed
many times. Various optimisations were attempted, including
a tabular partial reduction, but encryption performance could
not improve beyond 36s. The design was changed in Part II by
observing that in encryption, one polynomial input is noise-
based. The original (reference) noise values varied over a small
magnitude range, yet required 13-bit storage; the new proposal
offset the noise into the 0 to 8 range, and the least significant
coefficient had KYBERQ added to it. KYBERQ, was added
to all coefficients in the other input, making them non-zero,in
the range of 13 to 14 bits. The effect within multiplication was
that the least significant coefficient of the noise, dominated the
lower coefficients in the result, ensuring they were each larger
than the corresponding overflow coefficients. This meant that
the modular reduction ofmultosModularMultiplicationcould
be used to generate the same results as in the Kyber NTT
reference. In the first instance this removed the manual reduc-
tion, and polynomial multiply went from 2302ms to 1149ms.
In the second instance it allowed more data to be input to the
multiplier, and to decrease the multiplication rounds to 16.
This was inefficient at the MULTOS application layer, as it
necessitated packing/unpacking before and after multiplication
rounds. The fewer rounds, did however make it more practical
to order them so that a more efficientmultosADDcould be
used instead of the interleaved accumulate function for some

rounds. In hindsight, there would have been more benefit
with 29 or 30-bit packing, rather than 28. The best practical
results, 996ms for a polynomial multiply, and 20420ms for an
encryption, cannot be described as fast, however they may
be adequate in machine-to-machine scenarios, and with a
4096 bit multiplier, found in similar chips, performance times
could halve. The fact that a post-quantum algorithm can be
downloaded/run on an existing IoT Trust-Anchor platform, is
encouraging for the future security of IoT. It is recommended
that the implementation optimisations should be further stud-
ied alongside the algorithm design, so the combination ensures
the intended strength. It would also be interesting to create a
30-bit packed coefficient solution, and to implement the latest
versions of Kyber or similar algorithms, such as Saber [4] (or
LightSaber).
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