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Abstract—We propose to apply the method of online prediction
with expert advice for estimation of Value at Risk. We show
that in some cases the combination of different methods can
produce better results compared to a single model. Our approach
is based on Weak Aggregating Algorithm (WAA), which is similar
to the Bayesian method, where the prediction is the average over
all models based on the likelihood of the available data. WAA
provides a theoretical guarantee that the prediction strategy is
asymptotically as good as the best expert. We propose two ways
of combining predictions of different experts. The first approach
combines predictions of normal distribution experts, whereas the
second method combines predictions of conventional models that
are used to estimate Value at Risk. The experimental results on
three stocks show that WAA performs close to or better than the
best expert model. In addition, backtesting with Kupiec uncondi-
tional coverage test and Christoffersen conditional coverage test
shows that WAA is the only method that fails to reject the null
hypothesis for all test cases.

Index Terms—online learning, prediction with expert advice,
Value at Risk, Weak Aggregating Algorithm

I. INTRODUCTION

In the history of finance, there have been a lot of crises
that deeply influenced the global economy. Examples of these
crises are the Wall Street crash in 1987, the Japan financial
crisis in 1989, the Asian financial crisis in 1997, the subprime
mortgage crisis of 2007-2008 and the European debt crisis in
2010. Financial crises and the rise of uncertainty in the finan-
cial market emphasize the need of effective risk calculation.

Value at Risk (VaR) measure is one of the most important
methods of risk management. The VaR method was introduced
in 1994 by J. P. Morgan [6] and became widely used by
most financial institutions. J. P. Morgan [13] defines VaR as
‘a measure of the maximum possible change in the value of
a portfolio of financial instruments over a pre-set horizon’.

There are several conventional methods that are widely used
for measuring VaR. Historical Simulation is one of the non-
parametric methods for measuring VaR, which assumes that
all possible future variations have been experienced in the
past and will be repeated in the future [3]. Another approach,
known as parametric, is when one estimates volatility of
assets’ returns in turn to obtain their VaR. Across paramet-
ric approaches the conventional methods include Variance–
Covariance, Exponential Weighted Moving Average (EWMA)
(Section 20.6 in [7]) and Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH) [2].

Some of the procedures to estimate VaR propose the use
of quantile regression. The quantile regression approach sug-
gested by Koenker and Basset [11] is one of the methods
which models a quantile of the response variable conditional
on the explanatory variables. ‘It is natural to evaluate a VaR
model by a quantile regression method due to its capability
of conditional distribution exploration with distribution-free
assumption, also allowing for serial correlation and conditional
heteroskedasticity’ [5]. In [15] a procedure to estimate a
conditional quantile model to calculate VaRs for portfolios
is presented; this method is found to be comparable with
conventional methods in forecasting VaR.

In this paper we will use the same pinball loss function
as is used in the quantile regression model. However, we do
not try to optimize parameters of some model. Instead our
approach combines predictions of different models based on
the method of online prediction with expert advice. Contrary
to batch mode, where the algorithm is trained on a training set
and gives predictions on a test set, in online setting we learn as
soon as new observations become available. One may wonder
why we don’t just use predictions of only one best expert
from the beginning and ignore predictions of others. First,
sometimes we cannot have enough data to identify the best
expert from the start. Second, good performance in the past
does not necessary lead to good performance in the future. In
addition, previous research shows that combining predictions
of multiple regressors often produces better results compared
to a single model [14].

Our approach is based on the Weak Aggregating Algorithm
(WAA) which was first introduced in [9]. The WAA works
as follows: we assign initial weights to experts and at each
step the weights of experts are updated according to their
performance. The approach is similar to the Bayesian method,
where the prediction is the average over all models based
on the likelihood of the available data. The WAA gives a
guarantee ensuring that the learner’s loss is as small as best
expert’s loss up to an additive term of the form C

√
T .

The WAA was proposed as an alternative to the Aggregating
Algorithm (AA), which was first introduced in [16]. The AA
gives a guarantee ensuring that the learner’s loss is as small
as the best expert’s loss up to a constant in case of finitely
many experts. The AA provides better theoretical guarantees.
However, it works with mixable loss functions and is not
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applicable in our task. An interesting application of the method
of prediction with expert advice for the Brier loss function
in forecasting football outcomes can be found in [17]; it was
shown that the proposed strategy that follows AA is as good as
any bookmaker. In a recent paper [1] merging algorithms were
proposed for prediction of packs with tight worst case loss
upper bounds similar to those for AA; empirical experiments
on sports and house price datasets are carried out to study the
performance of the new algorithms and compare them against
an existing method.

The main contribution of this paper is the application of the
method of prediction with expert advice to estimate VaR. To
the best of our knowledge, there was no previous research in
this area. We propose two ways of applying the framework of
prediction with expert advice for prediction of VaR. The first
approach is to apply WAA to combine predictions of normal
distribution experts, where each expert has particular parame-
ters of standard deviation. We choose to evaluate performance
of proposed strategies using stocks’ adjusted closing prices
of Walmart, WPP inc. and Apple. The experiments show that
loss of the WAA is close to or better than the loss of the
retrospectively best normal distribution expert. We compare
WAA with the model of quantile regression, and experimental
results show that in most cases WAA outperforms quantile
regression.

The second approach is to combine predictions of several
conventional methods for estimating VaR, such as Historical
Simulation, Variance–Covariance, EWMA and GARCH. The
experiments illustrate that combining predictions of different
experts sometimes could provide better results compared to
the single retrospectively best model.

We run backtesting of all methods by using Kupiec [12]
unconditional coverage test and Christoffersen [4] conditional
coverage test to do the Backtesting on VaR. WAA with normal
distribution experts is the only method that fails to reject
the null hypothesis for all test cases. WAA, which combines
predictions of four conventional models, seem to reject the
null hypothesis in situations when most of these models reject
the null hypothesis.

II. FRAMEWORK

We consider a game G, where space of outcomes Ω = R
and decision space Γ = R, where for any y ∈ Ω and γ ∈ Γ
we define the pinball loss for α ∈ (0, 1)

λ(y, γ) =

{
α(y − γ), if y ≥ γ
(1− α)(γ − y), if y < γ

. (1)

When N days is the time horizon and 1−α is the confidence
level, VaR1−α is the loss corresponding to the α-quantile of
the distribution of the gain in the value of the portfolio over the
next N days (Chapter 21.1 in [8]). We consider outcomes to
be returns of some stocks or portfolios. Let outcomes have
a cumulative distribution function FY (z) = Pr(Y ≤ z).
Because VaR is conventionally reported as a positive number,
we define

VaR1−α = − inf{z : FY (z) ≥ α} (2)

as the negative α-quantile of Y . Then the problem of VaR
estimation is equivalent to the problem of prediction of α-
quantile of returns. This problem can be solved by applying
the quantile regression.

Letting xt denote a sequence of signals, suppose yt is a
random sample on the regression process ut = yt − xtβ. The
α-th quantile regression, 0 < α < 1, is defined as any solution
to the minimization problem:

min
b∈Rn

∑
t:yt>xtb

α|yt − xtb|+
∑

t:yt<xtb

(1− α)|yt − xtb|.

The least absolute error estimator is the regression median,
i.e., the quantile regression for α = 1/2 ( [11]). The loss
function (2) is appropriate for quantile regression because on
average it is minimized by the α-th quantile. Namely, if Y is
a real-valued random variable with a cumulative distribution
function FY (z) = Pr(Y ≤ z), then the expectation Eλ(Y, γ)
is minimized by γ = inf{z : FY (z) ≥ α} (see Section 1.3 in
[10] for a discussion).

In the framework of prediction with expert advice the
learner has access to predictions ξt(1), ξt(2), . . . , ξt(N) at
time t generated by experts E1, E2, . . . , EN that try to predict
elements of the same sequence.

Learner works according to the following protocol:

Protocol 1.

FOR t = 1, 2, . . .
learner reads experts’ predictions γ1t , γ

2
t , . . . , γ

N
t ∈ Γ

learner outputs γt ∈ Γ
nature announces yt ∈ Ω
learner suffers loss λ(yt, γt)

END FOR

The performance of a learner is measured by the cumulative
loss.

Let us denote LiT the cumulative loss of expert Ei at step
T :

LiT :=

T∑
t=1

λ(yt, ξt(i))

=
∑

t=1,...,T :
yt>ξt(i)

α|yt − ξt(i)|+
∑

t=1,...,T :
yt<ξt(i)

(1− α)|yt − ξt(i)|.

The cumulative loss of the learner at step T is:

LT :=

T∑
t=1

λ(yt, γt)

=
∑

t=1,...,T :
yt>γt

α|yt − γt|+
∑

t=1,...,T :
yt<γt

(1− α)|yt − γt|.

III. WEAK AGGREGATING ALGORITHM

In the framework of prediction with expert advice we have
access to experts’ predictions at each time step and the learner
has to make a prediction based on experts’ past performance.
We use an approach based on the WAA since a pinball



loss function λ(y, γ) is convex in γ. The WAA accepts N
initial normalised weights q1, q2, . . . , qN ∈ [0, 1] such that∑N
i=1 qi = 1 and a positive number c as parameters. The

parameter c has a meaning of the learning rate in the theory of
prediction with expert advice. The choice of the initial weights
qi, i = 1, . . . , N might contain our prior knowledge about
experts. When no prior information is available, the common
choice is to assign equal initial weights.

The pseudo-code of WAA is given below:

Protocol 2.

(1) li1 := 0, i = 1, 2, . . . , N
(2) FOR t = 1, 2, . . . , T

(3) βt = e−c/
√
t

(4) wit := qiβ
lit
t , i = 1, 2, . . . , N

(5) pit :=
wi

t∑N
j=1 w

j
t

, i = 1, 2, . . . , N

(6) read experts’ predictions γ1t , γ
2
t , . . . , γ

N
t

(7) output prediction γt =
∑N
i=1 γ

i
tp
i
t

(8) observe yt
(9) lit+1 = lit + λ(yt, γ

i
t), i = 1, 2, . . . , N

(10) END FOR

The variable lit stores the loss of the i-th expert Ei, i.e., after
trial t we have lit+1 = LEit . The values wit are weights assigned
to the experts during the work of the algorithm; they depend
on the loss suffered by the experts and the initial weights qi .
The values pit are obtained by normalising wit.

For bounded games WAA provides the following theoretical
guarantee on the cumulative loss of a learner.

Lemma 1. (Lemma 11 in [9]) For every L > 0, every
game 〈Ω,Γ, λ〉 such that |Ω| < ∞ and λ(y, γ) ≤ L for
all y ∈ Ω and γ ∈ Γ and every N = 1, 2, . . . , for every
merging strategy for N experts that follows the WAA with
initial weights q1, q2, . . . , qN ∈ [0, 1] such that

∑N
i=1 qi = 1

and c > 0 the bound

LT ≤ LEiT +
√
T

(
1

c
ln

1

qi
+ cL2

)
is guaranteed for every T = 1, 2, . . . and every i =
1, 2, . . . , N.

The theoretical bound of WAA depends on the maximum
value of loss L. However, for many tasks, predicted outcomes
are bounded. Therefore, it is possible to have a sensible
estimate for the maximum loss based on the historical infor-
mation.

After taking equal initial weights q1 = q2 = · · · = qN =
1/N in the WAA, the additive term reduces to
(cL2 + (lnN)/c)

√
T . When c =

√
lnN/L, this expression

reaches its minimum. We get the following corollary.

Corollary 1. (Corollary 14 in [9]) Under the conditions of
Lemma 1, there is a merging strategy such that the bound

LT ≤ LEiT + 2L
√
T lnN

is guaranteed.

IV. EXPERIMENTS

In this section, we apply WAA to the problem of prediction
of VaR using three stocks of Walmart, Apple and WPP inc.
We use daily adjusted closing prices from January 2011 to
December 2018 that are downloaded from Yahoo Finance.1

A. WAA for normal distributions

First, as a proof of concept, we apply WAA to normal
distribution experts. We assume that stock investment’s returns
are normally distributed around the mean of a normal proba-
bility distribution. The volatility σ of a stock is a measure of
our uncertainty about the returns provided by the stock. Each
expert Ei predicts according to N (0, σ2

i ), i = 1, . . . , N . We
pick σi to be in a range from 0 to 0.03 with a step 0.0025,
and hence we have N = 13 normal distribution experts. We
assign equal initial weights qi = 1/N , i = 1, . . . , N and
follow Protocol 2. We estimate the constant of WAA to be
c = 200, using the formula c =

√
lnN/L which achieves the

minimum of the additive term of the loss bound. We estimate
L as the maximum loss over the first 500 observations. We test
the performance of WAA using dataset without the first 500
observations. Figure 1 shows the weights update for experts
Ei, i = 1, . . . , N for Walmart. We can see from the graph
that, for significance level α = 0.05, expert with σ = 0.01
has the largest weights at the end of the period. It corresponds
with Figure 4, where the same expert has the lowest total
pinball loss. It shows that WAA converges to the best expert by
updating weights of experts online based on their performance.
For significance level α = 0.01 expert with σ = 0.0125 has
the largest weight at the end of the period and the lowest total
loss. However, for α = 0.01 losses of several experts are close
to the loss of best expert, and as a result, their weights are also
close to each other. A similar picture can be seen for WPP
inc. at Figures 2, 5, and for Apple at Figures 3, 6. Tables I,
II summarise losses of normal distribution experts and WAA
for α = 0.05 and α = 0.01 respectively. We can see from the
table that losses of WAA are very close to the loss of best
normal distribution expert. For example, for WPP inc. losses
of WAA are lower than losses of best experts.

We also compare the performance of WAA with quantile
regression model (QR). QR was trained in online mode using
sliding window of the length 500. We can see from Tables I,
II that in most cases losses of WAA are lower than losses
of QR. Tables III, IV show the actual exceptions of VaR,
i.e., the number of times when stock’s losses exceed VaR,
for each method for α = 0.05 and α = 0.01 respectively. It
seems that WAA tends to underestimate VaR a little, while
QR overestimates VaR.

This approach shows that it is reasonable to apply WAA
in the considered setting. WAA converges to the best expert
by updating experts’ weights online. In addition, best experts
might be different for different significance levels. It shows
that the single retrospectively best model might not perform
well in the future, and it is reasonable to apply the mixture of

1The code written in R is available at https://github.com/RaisaDZ/VaR.



models instead. The performance of WAA is close to or better
than the best normal distribution expert, and in most cases it
outperforms the model of QR.
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Fig. 2. Weights update for WPP inc.
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B. WAA for conventional models

In this section, we use WAA with four conventional models
that are widely used to calculate VaR: Historical Simulation,
Variance–Covariance, EWMA and GARCH. ‘Historical simu-
lation is one popular way of estimating VaR. It involves using
past data as a guide to what will happen in the future’ (Section
21.2 in [8]). Suppose that we want to calculate VaR1−α
for a stock, and data are collected on movements in the
market variables over the most recent N days. This provides
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0

2

4

6

8

0 0.005 0.01 0.015 0.02 0.025 0.03
sigma

lo
s
s

0

2

4

6

8

0 0.005 0.01 0.015 0.02 0.025 0.03
sigma

lo
s
s

(a) α = 0.05 (b) α = 0.01

Fig. 5. Losses of normal distribution experts for WPP inc.

0

2

4

6

8

0 0.005 0.01 0.015 0.02 0.025 0.03
sigma

lo
s
s

0

2

4

6

8

0 0.005 0.01 0.015 0.02 0.025 0.03
sigma

lo
s
s

(a) α = 0.05 (b) α = 0.01

Fig. 6. Losses of normal distribution experts for Apple

N−1 alternative scenarios for what can happen between today
and tomorrow. The estimate of VaR1−α is the negative α-
quantile (2) of returns based on N − 1 historical scenarios.
The Variance-Covariance method is one of the parametric
methods which estimates the volatility of returns based on
the normal distribution assumption. Then VaR is calculated as
the α-quantile of the normal distribution with zero mean and
the estimated volatility. The exponentially weighted moving
average (EWMA) is another parametric method, where the
estimate of the volatility σt for day t is given by the formula

σ2
t = λσ2

t−1 + (1− λ)u2t−1,

where 0 < λ < 1 is a constant, σt−1 is the volatility estimate
at the end of day t−2 of the volatility for day t−1 and ut−1



TABLE I
TOTAL LOSSES OF NORMAL DISTRIBUTION EXPERTS FOR α = 0.05.

sigma WMT WPP AAPL
0 5.545 7.974 7.834

0.0025 3.515 5.775 5.655
0.005 2.478 4.329 4.337

0.0075 2.083 3.427 3.561
0.01 2.007 2.975 3.113

0.0125 2.088 2.811 2.876
0.015 2.252 2.828 2.788

0.0175 2.450 2.948 2.865
0.02 2.700 3.130 3.023

0.0225 2.975 3.346 3.228
0.025 3.262 3.587 3.453

0.0275 3.556 3.838 3.702
0.03 3.857 4.094 3.968

WAA 2.013 2.806 2.834
QR 2.089 2.851 2.761

TABLE II
TOTAL LOSSES OF NORMAL DISTRIBUTION EXPERTS FOR α = 0.01.

sigma WMT WPP AAPL
0 5.523 7.970 7.782

0.0025 2.604 4.745 4.619
0.005 1.397 2.838 2.910

0.0075 0.939 1.854 1.935
0.01 0.763 1.397 1.344

0.0125 0.688 1.199 1.066
0.015 0.702 1.117 0.959

0.0175 0.751 1.099 0.919
0.02 0.817 1.103 0.923

0.0225 0.894 1.128 0.953
0.025 0.970 1.177 1.001

0.0275 1.046 1.230 1.059
0.03 1.122 1.283 1.131

WAA 0.705 1.085 0.930
QR 0.796 1.181 1.080

TABLE III
ACTUAL EXCEPTIONS OF NORMAL DISTRIBUTION EXPERTS FOR α = 0.05.

expected = 75.5
sigma WMT WPP AAPL

0 711 720 721
0.0025 439 501 492
0.005 227 360 320

0.0075 123 234 219
0.01 74 143 155

0.0125 43 90 115
0.015 31 58 79

0.0175 20 37 42
0.02 10 28 29

0.0225 7 19 23
0.025 5 15 18

0.0275 3 14 12
0.03 2 11 10

WAA 72 73 63
QR 92 86 85

is the most recent daily percentage change in returns (Section
22.2 in [8]). Finally, the GARCH(p, q) estimates the volatility
σt for day t as

σ2
t = α0 +

q∑
i=1

αiu
2
t−i +

p∑
i=1

βiσ
2
t−i.

TABLE IV
ACTUAL EXCEPTIONS OF NORMAL DISTRIBUTION EXPERTS FOR α = 0.01.

expected = 15.1
sigma WMT WPP AAPL

0 711 720 721
0.0025 339 434 407
0.005 140 251 226

0.0075 63 129 144
0.01 33 64 91

0.0125 20 36 42
0.015 9 23 26

0.0175 5 15 19
0.02 2 14 11

0.0225 2 8 8
0.025 2 6 6

0.0275 2 6 4
0.03 2 6 2

WAA 9 14 12
QR 22 32 28

In our experiments we use GARCH(1, 1) which is based on the
most recent volatility estimates and the most recent returns’
changes.

We train these models using a sliding window of length
500, and then apply WAA using forecasts of these models
to predict a one-step ahead forecast. We re-train all models
except GARCH(1, 1) after each new observation becomes
available, for GARCH(1, 1) we do it after each 50 steps due to
computational complexity of this method. We start with equal
initial weights of each model and then update their weights
according to their current performance.

Figures 7, 8, 9 illustrate weights of each model depending
on the current time step. Figure 10 with the corresponding
Tables V, VI show total losses of each model and WAA
for α = 0.05 and α = 0.01 respectively. We can see
from the graphs that in most cases GARCH(1, 1) obtains
the largest weights which indicates that it suffers smaller
losses compared to other models. However, it changes for
α = 0.01 for WPP inc., where the largest weights are acquired
by Historical Simulation model. It shows that sometimes we
cannot use the past information to evaluate the best model. The
retrospectively best model can perform worse in the future
as an underlying nature of data generating can change. In
addition, different models can perform better for different
significance levels of VaR.

Similar to the previous experiments, losses of WAA are very
close to the loss of the best performing expert. In most of the
cases the best expert is GARCH(1, 1), and WAA follows its
predictions. However, for α = 0.01 for WPP inc. the best
expert changes. It again illustrates that the retrospectively best
model could change with time, and one should be cautious
about choosing the single retrospectively best model for future
forecasts.

C. Backtesting

First, we introduce the Kupiec unconditional coverage test,
which is also known as the proportion of failures test. The
most common way to test the performance of VaR models is
to count the number of exceptions (failures), i.e., the number
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TABLE V
TOTAL LOSSES OF METHODS FOR α = 0.05.

Method WMT WPP AAPL
Historical 2.031 2.829 2.867
Var-Cov 2.012 2.827 2.880
EWMA 2.077 2.845 2.734

GARCH(1, 1) 1.978 2.781 2.695
WAAm 1.983 2.782 2.733

TABLE VI
TOTAL LOSSES OF METHODS FOR α = 0.01.

Method WMT WPP AAPL
Historical 0.711 1.076 0.956
Var-Cov 0.731 1.129 0.986
EWMA 0.786 1.130 0.948

GARCH(1, 1) 0.706 1.081 0.896
WAAm 0.713 1.075 0.917

of times when stock’s losses exceed VaR. Denoting m to be
the number of exceptions, we define the failure rate during the
time horizon T as m/T . The Kupiec unconditional coverage
test measures whether the number of exceptions is consistent
with the confidence level. The null hypothesis H0 is

H0 : α = α̂ = m/T,

where α̂ is the observed failure rate and α is the significance
level of VaR1−α. According to [12] the test statistics takes
the form of a likelihood ratio test:

LRUC = −2 ln

(
(1− p)T−mpm

(1−m/T )T−m(m/T )m

)
.

This statistic is asymptotically distributed as a chi-square
variable with 1 degree of freedom. The VaR model fails the
test if this likelihood ratio exceeds a critical value. The critical
value depends on the test confidence level.

The Kupiec unconditional coverage test focuses only on
the number of exceptions. However, we would like to test
whether these exceptions were evenly spread over time. The
null hypothesis H0 for Christoffersen conditional coverage test
is that the probability of observing an exception on a particular
day does not depend on whether an exception occurred. The
test statistic for independence is given by

LRCCI = −2 ln

(
(1− π)n00+n10πn01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

1

)
,

where n00 is the number of periods with no failures followed
by a period with no failures,
n10 is the number of periods with failures followed by a period
with no failures,
n01 is the number of periods with no failures followed by a
period with failures,
n11 is the number of periods with failures followed by a period
with failures,



and πi is the probability of having a failure conditional on the
previous period:

π0 =
n01

n00 + n01
, π1 =

n11
n10 + n11

and π =
n01 + n11

n00 + n01 + n10 + n11
.

This statistic is asymptotically distributed as a chi-square with
1 degree of freedom. The Christoffersen conditional coverage
test is a combination of this statistic with the frequency
unconditional coverage test:

LRCC = LRCCI + LRUC.

This test is asymptotically distributed as a chi-square variable
with 2 degrees of freedom.

In this section, we perform backtesting of all considered
methods by running Kupiec unconditional coverage test and
Christoffersen conditional coverage test. Tables VII, VIII and
IX show results for α = 0.05 for Walmart, WPP inc. and
Apple respectively. Tables X, XI and XII illustrate results
for α = 0.01. UCD and CCD denotes unconditional and
conditional decisions respectively: Reject (Reject H0), Fail
(Fail to Reject H0). We denote WAAn the method considered
in Section IV-A, and WAAm is the method from Section IV-B.
We can see from the tables that WAA for normal distribution
experts (WAAn) is the only method that fails to reject the null
hypothesis H0. The second best performing model seems to be
GARCH(1, 1) as it rejects the only test case for WPP inc. with
significance level α = 0.01. In Table X we can see that all
methods reject the null hypothesis except WAAn. WAA for
conventional model experts (WAAm) sometimes rejects the
null hypothesis. It happens in situations when most of models
that are used in WAAm reject the null hypothesis

Figures 11, 12 and 13 illustrate daily returns (in percent)
of each company and VaR for WAAn and WAAm. The
behavior of VaR for WAAn is smooth because WAAn uses
predictions of constant normal distribution experts. VaR of
WAAm has more spikes because it uses predictions of methods
such as Historical Simulation, Variance-Covariance, EWMA
and GARCH(1, 1) which have more fluctuations in their
predictions.

TABLE VII
WALMART, α = 0.05, EXPECTED = 75.5.

Method Actual Luc Lcc UCD CCD
Historical 95 0.0266 0.0398 Reject Reject
Var-Cov 58 0.0315 0.0869 Reject Fail
EWMA 69 0.4364 0.4433 Fail Fail
GARCH 69 0.4364 0.6582 Fail Fail

QR 92 0.0592 0.0618 Fail Fail
WAAn 72 0.6772 0.8733 Fail Fail
WAAm 64 0.1637 0.1609 Fail Fail

V. CONCLUSIONS

We proposed two ways of applying the framework of
prediction with expert advice for calculating VaR. The first
approach is to apply WAA with normal distribution experts.

TABLE VIII
WPP INC., α = 0.05, EXPECTED = 75.5.

Method Actual Luc Lcc UCD CCD
Historical 84 0.3238 0.0056 Fail Reject
Var-Cov 60 0.0580 0.0192 Fail Reject
EWMA 74 0.8590 0.0387 Fail Reject
GARCH 78 0.7690 0.3462 Fail Fail

QR 86 0.2247 0.0978 Fail Fail
WAAn 73 0.7667 0.0891 Fail Fail
WAAm 67 0.3066 0.0218 Fail Reject

TABLE IX
APPLE, α = 0.05, EXPECTED = 75.5.

Method Actual Luc Lcc UCD CCD
Historical 85 0.2711 0.0005 Fail Reject
Var-Cov 72 0.6772 0.0020 Fail Reject
EWMA 66 0.2521 0.0160 Fail Reject
GARCH 82 0.4488 0.3711 Fail Fail

QR 85 0.2711 0.3277 Fail Fail
WAAn 63 0.1291 0.0536 Fail Fail
WAAm 72 0.6772 0.1831 Fail Fail

TABLE X
WALMART, α = 0.01, EXPECTED = 15.1.

Method Actual Luc Lcc UCD CCD
Historical 17 0.6300 0.7336 Fail Fail
Var-Cov 30 0.0007 0.0028 Reject Reject
EWMA 35 0.0000 0.0001 Reject Reject
GARCH 20 0.2273 0.2594 Fail Fail

QR 22 0.0948 0.1789 Fail Fail
WAAn 9 0.0880 0.2211 Fail Fail
WAAm 24 0.0340 0.0737 Reject Fail

TABLE XI
WPP INC., α = 0.01, EXPECTED = 15.1.

Method Actual Luc Lcc UCD CCD
Historical 18 0.4666 0.0437 Fail Reject
Var-Cov 26 0.0106 0.0082 Reject Reject
EWMA 30 0.0007 0.0028 Reject Reject
GARCH 26 0.0106 0.0241 Reject Reject

QR 32 0.0001 0.0001 Reject Reject
WAAn 14 0.7733 0.2813 Fail Fail
WAAm 24 0.0340 0.0737 Reject Fail

TABLE XII
APPLE, α = 0.01, EXPECTED = 15.1.

Method Actual Luc Lcc UCD CCD
Historical 21 0.1496 0.2049 Fail Fail
Var-Cov 24 0.0340 0.0737 Reject Fail
EWMA 22 0.0948 0.1789 Fail Fail
GARCH 15 0.9793 0.8599 Fail Fail

QR 28 0.0029 0.0032 Reject Reject
WAAn 12 0.4057 0.6428 Fail Fail
WAAm 19 0.3322 0.4904 Fail Fail

The experiments show that WAA converges to the best expert
by updating weights of experts online based on their current
performance, and its loss is close to or better than the loss of
the best expert. WAA also outperforms the quantile regression
model that is built using sliding window.

The second approach is to combine predictions of different
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Fig. 11. VaR for Walmart
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Fig. 12. VaR for WPP inc.
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Fig. 13. VaR for Apple

methods: Historical Simulation, Variance–Covariance, EWMA
and GARCH(1, 1). Similar to the previous experiments, losses
of WAA are very close to the loss of best performing model,
and sometimes WAA shows a better performance. The ex-
periments illustrate that the retrospectively best model could
change with time, and combining predictions of different
experts could provide better results.

We compare performances of all different methods of pre-
diction of VaR by running Kupiec unconditional coverage test
and Christoffersen conditional coverage test. WAA for normal
distribution experts is the only method which fails to reject
the null hypothesis for both unconditional and conditional
coverage tests.
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