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Abstract

We present LaCoDe (Lagrangian Compressible Deformation), a MATLAB

solver for the Stokes equations for compressible non-Newtonian visco-elastic

in two dimensions, based on a Lagrangian formulation of the Finite Element

Method. The incompressible Boussinesq approximation is a widespread assump-

tion in numerical models of lithospheric deformation, thus potentially masking a

significant contribution of mechanisms linked to volumetric changes that occur

in the asthenospheric mantle and the lithosphere. LaCoDe employs a com-

pressible formulation of the Stokes equations designed to address such volume-

changing processes. First, we provide a description of the equations governing

the deformation of Earth rocks and detailed overview of the algorithm, its nu-

merical implementation, treatment of the non-linearities rising from the com-

pressible formulation, and the remeshing algorithm that tracks and transfers the

physical fields that describe the material deformation from a highly-distorted

to a high-quality mesh. LaCoDe is then benchmarked by comparing numeri-

cal results to analytical solutions for the bending of a thin elastic beam under a

constant uniform load, flow around a rigid inclusion, Rayleigh-Taylor instability,

stress build-up in a visco-elastic Maxwell body, and Couette flow with viscous

heating. The Rayleigh-Taylor instability test is further used to demonstrate the

accuracy of the remeshing algorithm. The importance of including volumetric
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strain for geodynamic processes is illustrated by two numerical experiments: i)

volumetric-strain inducing phase changes in amagmatic slow-spreading ridges,

and ii) subducting slabs.
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1. Introduction1

Rocks are exposed to thermal, mechanical and chemical processes that in-2

duce volumetric changes. Obvious examples are mechanical compression and3

decompression, thermal expansion, and phase changes resulting from partial4

melting and serpentinisation. Even though stresses related to compressibility5

may play an important role in rock deformation and failure, the incompress-6

ible Boussinesq approximation of the governing equations is the most common7

approach used in geodynamic modeling of coupled asthenosphe-lithosphere sys-8

tems. This approximation is considered to be reasonably valid under lithospheric9

conditions and offers a simple and straightforward numerical implementation,10

hence its popularity. The Boussinesq approximation has been considered to11

be appropriate if: 1) the density of the material does not change more than12

10% with respect to its reference value (Spiegel and Veronis, 1959; Gray and13

Giorgini, 1976); and, 2) volume-change-related stresses are small with respect14

to the hydrostatic pressure and deformation-linked stresses.15

These approximations are usually valid for lithosphere-scale models, but may16

be violated in certain scenarios. For instance, it is well known that metamorphic17

phase changes occurring at crustal conditions can induce significant changes18

in density in localised regions that far exceed the maximum density changes19

thought to be appropriate for the Boussinesq approximation. In the case of20

partial serpentinisation, for example, density can be reduced by 18% or more,21

and its associated volumetric strain can cause rocks to fail. This mechanism22

potentially reduces the strength of the lithosphere by 30% (Escartin et al., 1997),23
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or even more when intact rock is replaced by a serpentinised fault. Volume-24

change-linked stresses related to phase changes may therefore have a significant25

influence on the localisation of deformation when brittle failure is an important26

rheological feature.27

The first studies proposing a compressible formulation for mantle deforma-28

tion (Jarvis and McKenzie, 1980; Quareni et al., 1986; Yuen et al., 1987) made29

use of the so-called anelastic approximation. These studies aimed at under-30

standing the behaviour of deep mantle convection; implications for lithospheric31

failure and deformation were not considered. In the last decades numerous stud-32

ies focused on the development of numerical tools to investigate lithospheric33

and upper mantle geodynamical processes (e.g. Christensen, 1987; Braun and34

Sambridge, 1994; Fullsack, 1995; Schmalholz et al., 2001; Moresi et al., 2003;35

Petrunin and Sobolev, 2006; Gerya and Yuen, 2007; von Tscharner and Schmal-36

holz, 2015). However, all of these studies assumed the Boussinesq incompressible37

approximation. To date, relatively little effort has been made to include and38

discuss the effects of volumetric strain at the lithospheric scale. To our knowl-39

edge, SLIM3D (Popov and Sobolev, 2008) and DynEarthSol2D (Choi et al.,40

2013) are the only available numerical models that include elastic compressibil-41

ity. However, these studies do not assess its implications for lithospheric scale42

processes.43

We propose a new compressible formulation that has been implemented in44

the new 2-D geodynamic code LaCoDe, which is based on the incompressible45

code M2TRI (Hasenclever, 2010; Hasenclever et al., 2011). LaCoDe solves for46

visco-elastic deformation, thermal convection and melting processes, in a La-47

grangian frame of reference. It is written in MATLAB and uses an optimised48

matrix assembly based on the ’blocking’ and vectorisation techniques described49

in Dabrowski et al. (2008). Stokes equations are solved using a Lagrangian50

mixed velocity-pressure approach with the Finite Element Method (FEM). An51

additional feature of LaCoDe, not discussed here, is a free-surface algorithm52

(Andrés-Mart́ınez et al., 2015) that allows improved tracking of the evolution53

of topographic relief.54
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The primary purpose of this paper is to assess the stability of the numerical55

implementation of a visco-elastic rheology that does not assume the incom-56

pressible Boussinesq approximation and to emphasize its relevance for modeling57

geological events at the scale of the lithosphere. We first describe the new for-58

mulation and its numerical implementation. We then test the accuracy of the59

code with a series of benchmarks for viscous and elastic deformation for which60

analytical solution is known: i) bending of a thin beam under a distributed61

load; the ii) SolCx and iii) SolKz tests (Duretz et al., 2011); iv) deformation62

around a viscous inclusion; v) Rayleigh-Taylor instability; vi) stress build-up in63

a visco-elastic Maxwell body; and vii) solution of a Couette-flow with viscous64

heating and temperature-dependent viscosity. Following these benchmarks, we65

demonstrate that nested Picard iterations are the most cost-effective scheme to66

deal with the combination of non-linear rheologies and a compressible formu-67

lation. Finally, we show two examples of tectonic processes where volumetric68

strain potentially plays a key role: i) volumetric strain linked to phase changes,69

and ii) comparison between subduction of a compressible and incompressible70

slab.71

2. Governing equations for compressible flow72

Mantle-lithosphere deformation is treated as a thermo-mechanical process73

described by the equations of conservation of momentum, conservation of mass,74

and conservation of energy in a domain Ω, respectively:75

∂σij
∂xj

= −ρgi (1)

76

Dρ

Dt
+ ρ

∂ui
∂xi

= qm (2)

77

ρCp
DT

Dt
=

∂

∂xi

(
κ
∂T

∂xi

)
+ αT

Dp

Dt
+Hq +Hsh (3)

where ρ is the density, xi are the spatial coordinates, ui are the velocity com-78

ponents, σij is the Cauchy stress tensor, gi is the gravitational acceleration, Cp79
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is the heat capacity, T is the temperature, κ is the thermal conductivity, α is80

the thermal expansivity, αTDp/Dt is the adiabatic heating, Hr is a heat pro-81

duction rate, and shear heating is defined as the energy released by the inelastic82

work Hsh = σijε
inel
ij , and t is time. The subscripts i and j refer to the horizon-83

tal and vertical directions in a two-dimensional Cartesian coordinate system,84

respectively. The function qm = q(x, t) in eq. (2) describes the rate of mass85

being added (local source of mass: qm > 0) or subtracted (local sink of mass:86

qm < 0) from a region, with dimensions of mass per unit volume and unit time.87

Note that, when a Lagrangian frame of reference is adopted, the material time88

derivative D(·)/Dt is equal to the partial time derivative ∂(·)/∂t.89

The set of equations (1), (2) and (3) describe the thermo-mechanical be-90

havior of compressible viscous flow. Several approximations of these equations91

have been widely employed to address the effects of compressibility within the92

mantle, such as the anelastic approximation (ALA) or the truncated anelas-93

tic approximation (TALA) (e.g. Jarvis and McKenzie, 1980; Bercovici et al.,94

1992; King et al., 2010; Heister et al., 2017). On the other hand, models study-95

ing geodynamic processes at a lithosphe scale (e.g. from rifting of continental96

crust, to subducting slabs) widely employ the so-called incompressible Boussi-97

nesq approximation, where the continuity equation is approximated as being98

divergence-free. In the (T)ALA approximations the dynamic pressure is as-99

sumed to be negligible with respect to the hydrostatic pressure (pdyn << ptotal),100

leading to a depth-dependent formulation for density. However, dynamic pres-101

sure effects could also become locally significant in tectonic processes such as102

subducting slabs or during phase changes. Therefore, we chose a more com-103

plete formulation in which the dynamic pressure is taken into consideration and104

employ an equation of state that depends on the total pressure:105

ρ(T, p) = ρo
[
1− α(T − To) +K−1(p− po)

]
(4)

where ρo, To, po are the reference density, temperature and pressure, respec-106

tively, K is the bulk modulus and p is total pressure. It is convenient to define107

a reference density so that additional volumetric changes are determined as a108
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further deviation from this reference state. In this paper, we are the lithostatic109

pressure to define the reference density profile. If one wishes, density changes110

due to phase changes can also be incorporated into the equation of state.111

2.1. Mixed formulation112

The implementation of a mixed formulation to solve the Stokes equations113

splits the Cauchy stress tensor into its deviatoric and pressure components:114

σij = τij − pδij (5)

where τij is the deviatoric stress tensor, δij is the Kroenecker delta, and the115

pressure is the mean of the principal stresses p = −σkk/3. Using eq. (5),116

the conservation of momentum is written in terms of the deviatoric stress and117

pressure:118

∂τij
∂xj
− ∂p

∂xi
= −ρgi (6)

2.2. Constitutive equation of a visco-elastic fluid119

The viscous constitutive law is conveniently expressed in terms of deviatoric120

stress τij and deviatoric strain rate ε̇ij :121

τij = 2ηε̇ij (7)

where η is the shear viscosity, and the deviatoric strain rate tensor is defined122

as:123

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij (8)

Elastic deformation is incorporated by adopting a Maxwell material model,124

where the visco-elastic deviatoric strain rate is the sum of the viscous and elastic125

strain rates:126

ε̇ij = ε̇viscij + ε̇elij =
τij
2η

+
τ̆ij
2G

(9)

where G is the shear modulus and τ̆ij is the objective deviatoric stress rate . The127

Zaremba-Jaumann objective time derivative (e.g. Hashiguchi and Yamakawa,128

2012) is used to compute the objective deviatoric stress rate in eq. (9):129

τ̆ij =
∂τij
∂t
− ωikτkj + τikωkj (10)
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where ωij = 1/2(∂ui/∂xj−∂uj/∂xi) is the spin tensor associated with the rigid130

body rotation. Following the implementation of large-strain elastic deformation131

described by Moresi et al. (2003) and Kaus (2010), τ̆ij is approximated by an132

implicit discretisation of the time derivative:133

τ̆ij ≈
τn+1
ij − τnij

∆t
− ωnikτnkj + τnikω

n
kj (11)

where the superscript n indicates the time step iteration, and ∆t is the time134

step. Substitution of eq. (11) into eq. (9) with subsequent rearrangement of135

the terms leads to the visco-elastic constitutive law:136

τij = 2ηeff ε̇ij + χτ̂ij (12)

where137

ηeff =
1

1
η + 1

G∆t

(13)

138

χ =
1

1 + G∆t
η

(14)

139

τ̂ij = τnij + (ωnikτ
n
kj − τnikωnkj)∆t (15)

were the “real” viscosity has been substituted with an effective viscosity ηeff140

that includes elastic terms. A pure viscous rheology is recovered as ∆t → ∞.141

Note that the visco-elastic deformation obtained per time step depends on the142

size of the time step. However, the deformation after a certain simulation time143

has to be independent of the chosen time step.144

2.3. Viscous creep145

Two mechanisms for viscous deformation are included in the current treat-146

ment: diffusion creep and dislocation creep (Poirier, 1985; Karato et al., 2001).147

Diffusion creep occurs at low stress levels, when atoms diffuse inside the crystal148

grains and along the grain boundaries, resulting in rock deformation. Deforma-149

tion due to dislocation creep is caused by the migration of dislocations through150
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the crystal lattice of the rock. These creep mechanisms depend on temperature,151

pressure, and, for dislocation creep, strain rate:152

ηdif =
1

2
(Adif ) exp

(
Edif + pVdif

nRT

)
(16)

153

ηdis =
1

2
(Adis)

− 1
ndis (ε̇disII )

1
ndis
−1

exp

(
Edis + pVdis

nRT

)
(17)

where A is the pre-exponential parameter, n is the power-law exponent (with,154

theoretically, n ≈ 3 (Turcotte and Schubert, 2014)), ε̇II =
√

(1/2)ε̇ij ε̇ij is the155

square root of the second invariant of the deviatoric strain rate tensor, E is the156

activation energy, V is the activation volume, R is the universal gas constant,157

and the sub-scripts dif and dis stand for diffusion and dislocation, respectively.158

We now build an effective creep viscosity as the harmonic mean of the diffusion159

and dislocation viscosities:160

1

η
=

1

ηdif
+

1

ηdis
(18)

Here, the smallest viscosity has the largest contribution to the effective viscosity,161

with deformation dominated by the mechanism that has the smallest activation162

stress. The viscous strain tensor is then ε̇viscij = ε̇difij + ε̇disij . Using the defini-163

tions (16) and (17), the diffusion and dislocation strain tensors are respectively164

computed as:165

ε̇difij =
τij

2ηdif
; ε̇disij =

τij
2ηdif

(19)

3. Numerical implementation166

LaCoDe solves the resulting set of governing equations of the thermo-mechanical167

problem using the FEM to generate the system of matrix equations (e.g. Hughes,168

1987; Zienkiewicz and Taylor, 2005). Discretising the domain into elements, the169

primary variables u, p and T are approximated using the shape functions Nu170

for velocity, Np for pressure and NT for temperature:171

u(x, y) =

nu∑
a=1

Na
u (x, y)ũa (20)
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172

p(x, y) =

np∑
a=1

Na
p (x, y)p̃a (21)

173

T (x, y) =

nT∑
a=1

Na
T (x, y)T̃a (22)

where the subscript a is the nodal index and nu, np and nT is the number of174

nodes in the element for the velocity, pressure and temperature spaces. Employ-175

ing the Galerkin procedure, the governing eqs. (1), (2) and (3) are transformed176

into their weak forms using the shape functions as trial functions.177

The choice of the approximation space for the coupled velocity-pressure prob-178

lem has to be taken carefully so that the so-called Ladyzhenskaya-Babuška-179

Brezzi (LBB) stability condition is satisfied (Zienkiewicz and Taylor, 2005).180

Some combinations of approximation spaces for velocity and pressure will vio-181

late such condition and result in spurious pressure modes and/or non-converged182

flow solutions. The LBB condition is satisfied in LaCoDe by using Crouzeix-183

Raviart triangular elements (Crouzeix and Raviart, 1973), where the velocity184

field is approximated by seven nodal points that define a quadratic interpolation185

enhanced by a cubic bubble function in the barycenter of the element (Fig .1).186

Pressure is discontinuous with three nodal points describing a linear interpola-187

tion within each element. Finally, temperature is approximated by six nodal188

points defining a quadratic interpolation.189

[Figure 1 about here.]190

In the following sections we detail the weak forms of the Stokes and thermal191

diffusion equations as well as their numerical implementation, where we drop192

the ·̃ from the approximated fields in order to simplify the notation. The reader193

is referred to FEM textbooks (e.g. Hughes, 1987; Zienkiewicz and Taylor, 2005)194

for more details on this method, and how to build the weak formulation of the195

Stokes and thermal diffusion equations.196
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3.1. FEM formulation of thermal diffusion197

The time derivatives in eq. (3) are approximated using a backward Euler198

discretisation:199

ρCp

(
Tn+1 − Tn

∆t

)
=

∂

∂xi

(
k
∂Tn+1

∂xi

)
+ αTn+1 p

n+1 − pn

∆t
+Hr +Hsh (23)

Using FEM for the spatial discretisation in space and rearranging eq. (23), we200

can express it in a compact matrix notation:201

KTT = fT (24)

where the stiffness matrix is:202

KT =

∫
Ω

∇NT k∇NT dΩ +
1

∆t

∫
Ω

NT
T ρ

n+1CpNT dΩ+

1

∆t

∫
Ω

NT
TαNu(pn+1 − pn)NT dΩ

(25)

and the right-hand-side vector is:203

fT =
1

∆t

∫
Ω

NT
T ρ

n+1CpT
nNT dΩ +

∫
Ω

NTHrdΩ +

∫
Ω

NTHshdΩ (26)

3.2. FEM formulation of Stokes equations204

Motion of a compressible visco-elastic flow is described by the Stokes equa-205

tions (1) and (2). The density time derivative in the continuity equation is206

computed in an implicit manner, so that eq. (2) is approximated as:207

∂un+1
i

∂xi
=

1

ρn+1

(
qm −

ρn+1 − ρn

∆t

)
(27)

The time derivative of density introduces a non-linearity in the system of equa-208

tions, and eq. (2) can also be solved in an explicit manner. A comparison209

between both approaches is discussed in Heister et al. (2017) and, a priori, it210

is not obvious whether one approach is numerically more stable and/or more211

efficient than the other. By definition, the explicit approach would require fewer212

non-linear iterations than the implicit approach; however, Heister et al. (2017)213
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concluded that both approaches yield equally accurate results for similar com-214

putational time requirements. Employing the expression (27) for the continuity,215

the weak form of Stokes equations can be expressed in matrix form as:216 ∫
Ω

BTDBun+1dΩ−
∫

Ω

BTmNpp
n+1dΩ =

∫
Ω

NT
u ρgdΩ−

∫
Ω

BTχτ̂dΩ (28)

217 ∫
Ω

NT
p mTBun+1dΩ =

∫
Ω

NT
P

(
1

ρn+1

(
qm −

ρn+1 − ρn

∆t

))
dΩ (29)

The element matrix Be represents the strain-displacement matrix, while De
218

is the rheology matrix that relates strain rates to deviatoric stresses:219

Beue =


∂Nu

∂x 0

0 ∂Nu

∂z

∂Nu

∂z
∂Nu

∂x


 ux

uz

 =


ε̇xx

ε̇zz

ε̇xz

 (30)

De = ηeff


C1 C2 0

C2 C1 0

0 0 1

 (31)

mT = [1 1 0] (32)

The mT vector is necessary in the matrix form of these equations so that220

the cross derivatives in the last row of matrix B do not appear in some terms.221

For isotropic, compressible viscous flow, the coefficients in the rheology matrix222

De take values of C1 = 4/3 and C2 = −2/3 (e.g. Dabrowski et al., 2008). The223

weak forms (28) and (29) can then be written in a compact matrix notation as:224

 A G

GT 0

 ·
 u

p

 =

 f1

f2

 (33)
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where:225

A =

∫
Ω

BTDBdΩ (34)

G = −
∫

Ω

BTmNpdΩ (35)

f1 =

∫
Ω

NT
u ρgdΩ−

∫
Ω

BTχτ̂dΩ (36)

f2 =

∫
Ω

NT
P

[
1

ρn+1

(
qm −

ρn+1 − ρn

∆t

)]
dΩ (37)

Note that the right-hand-side vector f2 contains the non-zero divergence terms226

related to density changes.227

3.3. Solution scheme for the compressible Stokes equations228

The system of eqs. (33) mathematically describes a so-called saddle point229

problem. Numerical complications arise due to the presence of the diagonal230

(2,2)-block in the matrix on the left-hand-side, which makes the matrix positive-231

semidefinite, so that it cannot be solved using standard forms of numerical232

algorithms such as Conjugate Gradient or Cholesky factorization that assume233

a symmetric positive-definite matrix. LaCoDe solves the Stokes equation using234

the Augmented Lagrangian method (Rockafellar, 1974; Fortin and Glowinski,235

2000; Zienkiewicz and Taylor, 2005), which consists of subtracting λ−1Mp from236

the left- and right-hand-side of the continuity equation, thereby generating the237

following iterative scheme:238  A G

GT −λ−1M

 ·
 u

p

k+1

=

 f1

f2 − λ−1Mpk

 (38)

where k is the iteration counter, λ is an artificial compressibility term penalising239

the new pressure term in the second row of the global block matrix that has240

units of dynamic viscosity, and M is the mass matrix defined as:241

M =

∫
Ω

NT
p NpdΩ (39)

The choice of λ is not trivial, as the global block matrix problem may become ill-242

posed or numerical locking might occur if λ is too high or too low, respectively. A243
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value of λ = max(η) has been proven to work well in the following benchmarks.244

Upon convergence, ||pk+1 − pk|| < tolerance and the system of eqs. (33) is245

recovered. The new system of eqs. (38) allows the elimination of the pressure246

field, so that the first and second rows of the system can be solved in a segregated247

manner. Rearranging the second equation we obtain the expression for the248

updated pressure:249

pk+1 = pk + M−1(λGTuk+1 − f2) (40)

After substitution of eq. (40) into the first equation in the system (38) we obtain250

the following linearised expression for the velocity field:251

uk+1 = K−1fk+1 (41)

where the stiffness matrix K is defined as:252

K =
(
A + GλM−1GT

)
(42)

and the force vector in the right-hand-side is:253

fk+1 = f1 + G
(
λM−1f2 − pk

)
(43)

The expression (40) is clearly non-linear because the density in f2 depends on254

the pressure via the equation of state (see eq.(4)). We treat this non-linearity255

by introducing a set of Picard iterations that freezes the density during the256

Augmented Lagrangian iterations:257

new velocity and pressure︷ ︸︸ ︷
∇ · uk+1 +

1

λ
pk+1 =

1

ρ(Pm,Tm)︸ ︷︷ ︸
previous Picard iteration

·

qm −
previous Picard iteration︷ ︸︸ ︷

ρ(Pm,Tm) −
previous time step︷ ︸︸ ︷
ρ(Pn,Tn)

∆t

 = fm2

(44)

where the superscripts k, m and n are the counters of the Augmented La-258

grangian, Picard and time iterations, respectively. Eqs. (40) and (41) are thus259

solved iteratively combining Augmented Lagrangian and Picard iterations in260

the following scheme (Fig .2):261
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1. p0 = 0 for n = 1, and p0 = pn−1 for n > 1.262

2. Calculate: K.263

3. Calculate: fm2264

4. Calculate: fk+1
265

5. Solve: uk+1 = K−1fk+1
266

6. Update pressure: pk+1 = pk + M−1(λGTuk+1 − fm2 )267

7. Check convergence of the continuity equation. If ‖ −QTuk+1 − fn2 ‖∞ / ‖268

−QTuk − fn2 ‖∞> tolp, repeat steps 4 and 6.269

8. Check convergence of non-linearities in the continuity equation. ‖ fm2 −270

fm+1
2 ‖∞> tolf2, repeat steps 3 to 7.271

where ‖ · ‖∞ is the infinity norm, and tolp = 10−2, tolf2 = 10−8 . We note272

that for p0 = 0, the equations are equivalent to the penalty method. The273

solution scheme presented here is equivalent to the schemes resulting from Uzawa274

iterations (Arrow et al., 1958; Zienkiewicz, 1985) and later extended in the275

context of optimization independently by Hesteness (Hestenes, 1969) and Powell276

(Powell, 1967).277

[Figure 2 about here.]278

Alternatively, the system of eqs.(33) could be approximated using the Schur279

complement of the Stokes equations. However, the Schur complement S =280

GA−1GT requires the computation of the inverse of the matrix A for a direct281

solution method, which is practically unobtainable, because it would be a very282

large and block matrix. In an iterative solver, this issue can be bypassed by the283

combination of the Schur complement with Conjugate Gradients or GMRES284

(e.g. Maday and Patera, 1989; Bangerth et al., 2011). For 2D calculations,285

the Augmented Lagrangian Method offers a simpler and computationally less286

expensive scheme to approximate the solution of the Stokes equations, because287

the discontinuous nature of the pressure field with Crouzeix-Raviart elements288

allows the inversion of M in eqs. (40) and (42) to be done on the element289

level. However, Crouzeix-Raviart elements do not have a three-dimensional290
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equivalent and even the construction of a direct inverse for A becomes costly291

and memory intensive in 3D, hence the use of the Schur complement becomes292

more appropriate for 3D computations (e.g. Hasenclever (2010)).293

3.4. Iteration scheme for non-linear rheology294

The problem described in Section 3.3 becomes even more non-linear if tem-295

perature and/or a non-Newtonian rheology are also considered. We propose296

two different approaches to tackle highly non-linear problems (Fig .2): i) all the297

non-linearities are treated within a single loop of Picard iterations, referred as298

Approach 1 ; and, ii) the rheological and density non-linearities are split into299

two levels of nested Picard iterations, referred as Approach 2. While Approach300

2 is likely to increase the total number of linear and non-linear iterations for a301

single time step, the rheological non-linearities are performed in a presumably302

better converged flow solution since the density non-linearities are first dealt303

with. The rheology iterations are stopped when the residual of the velocity field304

R is below a given tolerance:305

R =
‖ ui+1 − ui ‖∞
‖ ui+1 ‖∞

< tolu (45)

where i is the rheology iteration counter, and a value for tolu = 10−3. We306

note that this iterative scheme is able to handle other types of rheological non-307

linearities that are not discussed in this paper, such as plastic deformation. The308

efficiency of both approaches is compared in Section 5.2.309

4. Remeshing310

One of the drawbacks of using a Lagrangian formulation is that large de-311

formation of the mesh usually leads to highly distorted elements. This issue312

is overcome by mapping the necessary variable fields onto a newly generated313

high quality mesh. One could perform a remeshing after every time step, but to314

reduce the associated computational cost and interpolation errors, a new mesh315

is generated only when the quality of the mesh falls below a given threshold.316
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Let us define a triangle with the area A, vertices a, b and c, and the smallest317

and largest angles α and β, respectively. We define the quality factor of the318

triangle to be:319

qn =
4
√

3A

‖ ab ‖2 + ‖ ac ‖2 + ‖ bc ‖2
(46)

where qn is a measurement of equilaterality of the triangular element (i.e. qn = 1320

for an equilateral triangle). The remeshing algorithm is called only when a321

triangular element has qn < Tolq, α < Tolα or β > Tolβ . Unless specified, we322

use values of Tolqn = 0.25, Tolα = 7◦ and Tolβ = 170◦.323

Fields that are computed at the nodes (e.g. temperature) are linearly in-324

terpolated onto the new nodal positions. The information from other fields325

associated with the elements (i.e. stress, density) is stored at the integration326

points of the elements, and is mapped onto the new mesh employing the follow-327

ing procedure:328

1. Find the element of the old mesh containing the new integration point us-329

ing the quick search algorithm tsearch2 (Mutils package: http://milamin.sourceforge.net/downloads).330

2. Calculate local coordinates of the new integration point with respect to331

the element in the old mesh.332

3. The field Ψ(x, y) is mapped element-to-element onto the old nodes using333

linear shape functions:334

Ψa(x, y) = (Na(ξ, η))−1Ψ(x′, y′) (47)

where a is the nodal index, ξ and η are the local coordinates of the shape335

function and x′ and y′ are the coordinates of the integration point of the336

old mesh.337

4. The nodal values of target field Ψa(x, y) are mapped onto the new inte-338

gration point using the shape functions:339

Ψ(x∗, y∗) =

n∑
a=1

Na(ξ, η)Ψa(x, y) (48)

where ξ and η are the local coordinates of the shape function and x∗ and340

y∗ are the coordinates of the integration point of the new mesh.341

16



While this scheme works particularly well for perfect body-fitting meshes, in342

which case each element of the new and old meshes belongs to a single material343

type, other approaches may be better suited for non-body-fitting meshes. The344

accuracy of the remeshing scheme is demonstrated in Section 5.1.5.345

[Figure 3 about here.]346

5. Numerical experiments347

We present a set of benchmarks and numerical experiments to test the im-348

plementation of the formulation described above. We first demonstrate the349

accuracy of LaCoDe by comparing the results of these experiments with analyt-350

ical solutions and results from previously published studies. These benchmarks351

are: i) bending of a thin beam under a distributed load (Turcotte and Schubert,352

2014); ii) SolCx (Zhong, 1996) and iii) SolKz tests (Revenaugh and Parsons,353

1987); iv) deformation around a viscous inclusion (Schmid and Podladchikov,354

2003); v) Rayleigh-Taylor instability (van Keken et al., 1997); vi) stress build-up355

in a visco-elastic Maxwell body (Gerya and Yuen, 2007); and vii) solution of a356

Couette-flow with viscous heating and temperature-dependent viscosity (Tur-357

cotte and Schubert, 2014). Then, we investigate the effectiveness of the two358

approaches to solve problems with non-linear rheologies described in Section359

3.4. Finally, two tectonic scenarios where the effect of compressibility effects is360

relevant are presented: i) an example of volumetric strain produced by phase361

changes; ii) subduction of a compressible slab.362

5.1. Benchmarks363

5.1.1. Cantilever beam under a uniform load364

In this benchmark we compare the numerical results of a bending elastic365

thin plate, clamped at one end, against an analytical solution for a perfectly-366

elastic material (Turcotte and Schubert, 2014). We also use this benchmark367

to compare the accuracy of the non-linearised and linearised formulations in368
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resolving elastic problems. The ratio between the thickness and length of the369

cantilever is taken to be 1/10 in order to satisfy the thin beam hypothesis. The370

density of the beam is ρ = 100 kg/m3 (an approximate value for the density371

contrast between the upper and lower crust), and the shear modulus is G = 36372

GPa. The analytical solution for the maximum deflection ω is373

ω =
3

24

ρghL4

D
(49)

where h and L are the height and length, respectively, and D is the so-called374

flexural rigidity of the plate. The latter can be expressed in terms of the Young375

modulus E and the Poisson ratio ν: D = Eh3/12(1 − ν2). The maximum376

horizontal stress in the cantilever is given by:377

σmaxxx =
3ρgL2

h2
(50)

[Figure 4 about here.]378

To test the mesh-dependence and the accuracy of our code we use uniform379

meshes with different configurations of triangular elements. These meshes are380

constructed by splitting squares into two right triangles or four isosceles trian-381

gles, see Fig .4a. The deformed beam and the resulting stress field of the beam382

with ν = 0.25 are shown in Fig .4b. The maximum deflection of the cantilever383

(Fig .4c) is accurately resolved for different degrees of elastic compressibility384

(0.25 ≤ ν ≤ 0.4999). An excellent match to the analytical solution is achieved385

with only 8 elements in the vertical direction with relative errors eω < 1% for all386

the Poisson ratios. Maximum horizontal stresses show high relative errors for387

coarse meshes but rapidly converge to the analytical solution with eσxx
< 5%388

for meshes with 8 elements in the vertical direction. Good accuracy of the solver389

is demonstrated in both the compressible and incompressible limits. Relative390

errors for ν < 0.45 are consistent with the results obtained employing quadri-391

lateral elements with 4 nodes by Popov and Sobolev (2008) and 8 nodes by392

Quinteros et al. (2009).393
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5.1.2. SolCx394

This benchmark is intended to test the accuracy of the solution in the pres-395

ence of large sharp jumps in the viscous field. The domain is Ω = [0, 1]× [0, 1],396

the displacement in the corners is zero, and all the boundaries have null tangen-397

tial stress (i.e. free slip). The flow inside the domain is driven by the buoyancy398

forces defined by the density field ρ = sin(πy)cos(πx) and the viscosity field is399

defined by the piecewise function:400

η(x, y) =

1, if 0 ≤ x ≤ 0.5

106, if 0.5 < x ≤ 1

(51)

This strong viscosity jump yields a discontinuity in the pressure field between401

the two viscous domains, resulting in an excellent numerical experiment to assess402

the accuracy of the solver. The analytical solution of the flow and pressure fields403

is detailed in Zhong (1996). We consider an even and odd regular meshes of404

Crouzeix-Raviart elements constructed by splitting squares into two triangles405

rectangles. The number of nodes in the horizontal and vertical directions of the406

domain is heven = [8, 16, 32, 64, 128, 256] and hodd = heven − 1. The accuracy of407

the velocity and pressure fields is measured by computing the L1 and L2 norms.408

For a scalar field Ξ, the L1 and L2 norms are, respectively:409

‖ Ξ ‖1=

∫
V

| Ξ | dV (52)

‖ Ξ ‖2=

∫
V

Ξ2dV (53)

And for a vector field v, the L1 and L2 norms are, respectively:410

‖ v ‖1=

∫
V

(| v1 | + | v2 |)dV (54)

‖ v ‖2=

∫
V

(v2
1 + v2

2)dV (55)

The velocity and pressure errors converge with O(h3) and O(h2), respec-411

tively, both for the L1 and L2 norms, as well as in both even and odd meshes412

(Fig.5a). These orders of accuracy are comparable to the ones reported by Kro-413

nbichler et al. (2012) and Thielmann et al. (2014) employing even meshes of414
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Qd2 × P−1 elements, and one order of accuracy greater than the errors report415

in Duretz et al. (2011). We must remark that even though the errors are a bit416

larger than in even meshes, the order of accuracy is the same for odd meshes of417

Crouzeix-Raviart, whereas Qd2 × P−1 elements lead to lower convergence rates418

in odd meshes (Kronbichler et al., 2012; Thielmann et al., 2014).419

5.1.3. SolKz420

The so-called SolKz (Revenaugh and Parsons, 1987) test assesses the accu-421

racy of the solver against large, smooth viscosity variations. The geometry of422

the domain, spatial discretisation, mesh resolution, and boundary conditions are423

identical as in the SolCx benchmark. However, only even meshes are tested due424

to the lack an internal layer. The flow inside the domain is driven by the buoy-425

ancy forces defined by the density field ρ = sin(2y)cos(3πx), and the viscosity426

field smoothly increases from bottom to top:427

η(y) = exp(2By) (56)

where B = log10(106)/2, so that the viscosity contrast is of six orders of mag-428

nitude. As in the SolCx problem, velocity and pressure errors are measured in429

the L1 and L2 norms (Fig.5b).430

[Figure 5 about here.]431

The convergence rates obtained for this particular test are the same as for the432

SolCx test ((Fig.5, dashed lines)), and these errors are again comparable to the433

ones reported in Duretz et al. (2011), Kronbichler et al. (2012) and Thielmann434

et al. (2014).435

5.1.4. Viscous inclusion436

The set-up of this benchmark consists of a circular inclusion with radius R =437

0.1 embedded in a homogeneous matrix under pure shear boundary conditions438

in a square domain Ω = [−1, 1] × [−1, 1] (Fig.6a). As the SolCx test (Section439

5.1.2), the aim of this experiment is to assess the accuracy of the pressure440

and velocity fields in cases with strong viscosity jumps. The dimensionless441
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viscosity of the inclusion is η1 = 103, and the viscosity of the matrix is η2 = 1.442

The domain is discretised using an unstructured mesh of triangular elements443

that near-perfectly matches the matrix-inclusion interface. In other words, the444

edges of the elements match with the interface between the inclusion and the445

matrix, resulting in elements belonging either to one phase or the other. It446

has been shown that this type of spatial discretisation yields the most accurate447

solutions for this numerical experiment (Deubelbeiss and Kaus, 2008). For this448

particular test, the unstructured triangular mesh is generated with the mesh449

generator Triangle (Shewchuk, 1996). Velocity boundary conditions calculated450

from the analytical solution described in Schmid and Podladchikov (2003), using451

a background strain rate of ε̇b = 1, are prescribed on the boundaries of the model452

(see Appendix B). The pressure and velocity errors are calculated computed453

using the root-mean-square (rms) error so that our results can be compared454

with previous studies (e.g. Deubelbeiss and Kaus, 2008; Duretz et al., 2011; von455

Tscharner and Schmalholz, 2015):456

rms =

√∫
Ω

(χnum − χana)2dΩ∫
Ω

(χana)2dΩ
(57)

where χ is the computed field, and the superscripts num and ana indicate the457

numerical and analytical values, respectively.458

Both pressure and velocity show a monotonous convergence rate of first or-459

der with respect the number of degrees of freedom (DoFs), Fig .6b. Figs.6c-d460

show the pressure and velocity along the horizontal plane y = 0 for different461

numerical resolutions. Coarse meshes with low number of DoFs show accu-462

rate pressure solutions in the background matrix, whereas there is an evident463

drop in the accuracy of the numerical solution near the inclusion. Nevertheless,464

smoother pressure solutions around the inclusion are obtained with high spatial465

resolutions (DOF > 104). The velocity along the same plane displays higher466

levels of accuracy, with a smooth solution around the viscosity jump even for467

low numerical resolutions.468

[Figure 6 about here.]469
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The analytical and numerical solutions for pressure and velocity are shown470

in Fig .7, as well as the distribution of the pressure and velocity error fields.471

As discussed above, the highest pressure errors are located around the inter-472

face between the inclusion and the matrix, while velocity errors are smoothly473

distributed over the matrix, with the minimum errors occurring inside the in-474

clusion. The errors obtained with LaCoDe are comparable with other available475

repetitions of this test (e.g. Deubelbeiss and Kaus, 2008; Duretz et al., 2011;476

von Tscharner and Schmalholz, 2015).477

[Figure 7 about here.]478

5.1.5. Rayleigh-Taylor instability479

The purpose of this test is to benchmark viscous deformation due to convec-480

tion driven by density contrasts. This benchmark was designed by van Keken481

et al. (1997) and has been repeated several times by the geodynamics community482

(e.g. Bourgouin et al., 2006; Popov and Sobolev, 2008; Quinteros et al., 2009;483

Fuchs and Schmeling, 2013; Choi et al., 2013). The large deformation produced484

in this experiment provides an excellent way to validate not only the viscous485

deformation, but also the implementation of the remeshing algorithm. Both486

fluids are assumed to be isoviscous with equal viscosity but different density. In487

this test we use the dimensionless equation of conservation of momentum:488

∂τij
∂xj

+
∂P

∂xj
= RbΓnj (58)

489

[Figure 8 about here.]490

where nj is the unit vector in the direction j and Rb = ∆ρgh3/κηr is the491

”compositional Rayleigh number” , where ηr is the reference viscosity. Γ is a492

step function with Γ = 1 for the layer at the bottom and Γ = 0 for the top493

layer. The domain consists of a box of height h and width λ. The thickness494
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of the bottom layer is 0.2 with an initial perturbation between the two phases495

given by:496

ω = 0.02 cos
(πx
λ

)
(59)

The aspect ratio of the domain (λ = 0.9142) is chosen such that a harmonic497

perturbation with wavelength 2λ is the most unstable, giving the largest growth498

rate. Displacements are restricted at the bottom and top boundaries and tan-499

gential free-slip is allowed along the lateral boundaries (Fig .8a).500

We consider only an isoviscous case with ρr/ρo = 1.3. Throughout the501

evolution of the flow we calculate the evolution with time of the root-mean-502

square velocity (van Keken et al., 1997):503

urms(t) =

√
1

hλ

∫ λ

0

∫ h

0

‖ u ‖2 dxdz (60)

We use the ’best’ results from van Keken et al. (1997) as a reference (Pvk code504

with 80x80 C1 finite elements) to validate the results obtained with LaCoDe.505

The Rayleigh-Taylor instability shows the same evolution (Fig .8a-e) as the one506

shown by van Keken et al. (1997), and only a few discrepancies are found in507

the geometry of the secondary and tertiary diapirs in the late stages of the flow508

evolution. Models with coarse meshes are able to predict accurate values of the509

maximum rms velocity, but predict maximum rms velocities for the secondary510

diapir that are 13% higher than the values obtained with a finer mesh (Fig .8f).511

The growth rate of the instability γ at the dimensionless time t = 0 and the512

maximum rms velocity (Table .1) are in agreement with the reference values,513

with errors smaller than 1%. The increase in the difference of the maximum514

urms for the case with 17960 elements is due to a numerical resolution 2.8 times515

higher than the one employed in the reference case, presumably leading to a516

more accurate solution.517

[Table 1 about here.]518

The remeshing algorithm is called when the quality of any element or ele-519

ments of the mesh is below the quality threshold. The two fluids are spatially520
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discretised such that their interface represents a sharp contact, with individual521

elements belonging to a single phase. This interface is tracked with time, and522

it is used to define the geometry of the new mesh. The interface between the523

two fluids undergoes a high amount of stretching during the evolution of the524

flow and must be refined when remeshing becomes necessary, so that the spatial525

resolution along this boundary is constant. This is done by adding a new node526

in the midpoint between two consecutive nodes if the distance between them is527

larger than a specified value. This procedure yields a considerable increase of528

the number of elements with respect to the initial mesh, as the model evolves529

with time. As for the viscous inclusion test, the unstructured triangular mesh530

is generated with Triangle (Shewchuk, 1996).531

In this numerical experiment, it is sufficient to generate a new mesh and532

transfer the step function value, which is an element property. There is no actual533

need to transfer additional information from the old to the new mesh. However,534

for benchmarking purposes, we perform the mapping of the second invariant of535

the accumulated strain εaccII onto the new high quality mesh. Fig .8g,h shows an536

accurate mapping of εaccII from the old mesh onto the new mesh. The quality of537

the remeshing algorithm is assessed by comparing the finite strain field before538

and after remeshing. In order to compare the pre- and post-remeshing results,539

both fields are sampled in a high-resolution regular grid of 1000 by 1000 points,540

where the root-square error of the mapped field is computed (Fig .8i). The541

remeshing scheme yields a root-mean-square error on the order of 10−2, with a542

standard deviation of 0.0569. Considering added errors due to the additional543

interpolation onto a regular grid for numerical comparison to the pre-remeshing544

field, remeshing errors are to be generally anticipated to be lower than in Fig545

.8i.546

5.1.6. Stress build-up in a visco-elastic Maxwell body547

Visco-elastic deformation is demonstrated by repeating the numerical exper-548

iment of stress build-up in a Maxwell body under pure shear deformation . A549

constant background strain rate ε̇ = 10−15 s−1 is prescribed at the boundaries550

24



of a body of 100 by 100 km size (Fig .9a). The mechanical parameters are:551

G = 10 GPa, η = 1022 Pa · s and gravity is switched off. We take ν = 0.4999 in552

order to approximate an incompressible material. The build-up of the stress is553

described by the following analytical expression (Gerya and Yuen, 2007):554

τII = 2ε̇II(1− exp(−
Gt

η
)) (61)

The analytical and numerical time-stress curves overlap (Fig .9b,c), demonstrat-555

ing the high accuracy of the implementation of the Maxwell rheology.556

[Figure 9 about here.]557

5.1.7. Couette flow with viscous heating- and temperature-dependent viscosity558

[Figure 10 about here.]559

The aim of this test is to demonstrate the accuracy of the numerical solution560

of thermal diffusion and the coupling of the Stokes equations for fluids with561

temperature-dependent viscosity and shear heating. The set-up of the model562

is consists of the Couette flow in a rectangular channel (Fig.10a). The mo-563

tion of the flow is driven by shear along the top boundary of the channel with564

the following boundary conditions: no displacement and T = T0 at the lower565

boundary, constant shear stress and ∂T/∂x = 0 at the lateral boundaries of the566

model. The size of the model is Ω = [0, 90] × [0, 12] km. This aspect ratio is567

sufficiently large to avoid errors in the flow due to boundary effects. The model568

is started with T0 across the whole domain.569

The dependence of the maximum non-dimensional temperature change in570

the channel θ with the Brinkman number Br (a dimensionless number related571

to heat conduction from a wall to a flowing viscous fluid (Turcotte and Schubert,572

2014)) is used to compare the analytical solution (Appendix D) against the nu-573

merical results. The results obtained with LaCoDe show an excellent agreement574

with the analytical solution (Fig.10), demonstrating the capability of the code575

to model coupled thermo-mechanical problems with non-linear rheologies and576

shear heating.577
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5.2. Non-linear rheology iterations: single vs. nested Picard iterations578

We test the accuracy and efficiency of these two solution schemes with two579

different numerical experiments: A) a visco-elastic rectangular body under pure580

shear with a non-Newtonian rheology including diffusion and dislocation creep;581

and, B) a set-up for a subduction problem with a non-Newtonian visco-elastic582

rheology. In both problems, we keep track of and compare the number of linear583

and non-linear iterations, residual velocity and computational time during the584

first ten time steps for Test A, and six time steps for the Test B (this corresponds585

to the number of time steps before remeshing is required). Details of the model586

set-up, boundary conditions and thermo-mechanical parameters are found in587

Appendix C.588

[Figure 11 about here.]589

Results from Test A (Fig .11a) show that, as expected, Approach 2 leads to590

a higher number of Powell-Hestenes iterations compared to dealing with all non-591

linearities in the same loop as in Approach 1, resulting in typically ∼ 150% times592

more linear iterations and ∼ 25% additional computational time per iteration.593

Despite being somewhat more expensive, Approach 2 yields a better-converged594

solution.595

The efficiency of Approach 1 and 2 is further checked with the more realistic596

Test B, where a rheologically layered domain adds new degrees of complexity597

to the problem. In this case we have capped the maximum number of the outer598

level of Picard iterations to 60. Approach 2 converges typically within 17-30599

outer Picard iterations, whereas Approach 1 constantly reaches the maximum600

allowed number of iterations and results in a poorly-converged solution (Fig601

.11b). In this case, every time step using Approach 2 needs to perform about 2602

or 3 times the number of linear iterations performed by Approach 1; however,603

approximately half of the rheological non-linear iterations are required, yielding604

a slightly cheaper solution scheme.605

Considering these results, we infer that treating all the non-linearities in one606

level of Picard iterations (Approach 1) is more efficient in terms of total number607
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of iterations; however, this approach yields larger residuals of the velocity field608

(Fig .11). Approach 2 also becomes substantially cheaper than Approach 1 as609

the complexity of the problem increases because a lower number of outer Picard610

iterations is required. We therefore recommend to use the solution scheme in611

Approach 2 for geometrically complex and highly non-linear problems.612

5.3. Numerical experiments with a compressible lithosphere and asthenosphere613

5.3.1. Volumetric strain induced by serpentinisation614

The phase change from peridotite to serpentinite is accompanied by a con-615

siderable volume expansion and reduction in density. In this experiment, we616

simulate a visco-elastic oceanic lithosphere in which serpentinisation occurs to617

different degrees. The transformation of mantle peridotites to serpentinite oc-618

curs within a specific range of pressure and temperature and with an inflow of619

sea water into the material. However, in the model shown here, we simplify this620

process by imposing a rate of density change in a target region, at a rate that621

reaches the maximum degree of serpentinisation after 1 Myr. This experiment is622

designed to explore the impact of the rapid expansion and reduction in density623

on the stress and strain fields.624

The model is 300 km long and 100 km deep and is stretched under pure shear625

boundary conditions, with a full extension rate of uext = 1 mm/yr. Serpentini-626

sation occurs within the 40 km by 10 km rectangular area located at the centre627

of the model. The rheology is visco-elastic with η = 1023 Pa s, G = 36GPa628

and ν = 0.3. A lithostatic approximation of the pressure is used to define the629

reference density. The density of the serpentinised material is calculated as a630

linear function of β (Escartin et al., 2001):631

ρ(β) = ρserp

(
1− β

100

)
(ρo − ρserp) (62)

where β is the percent of serpentinisation. We take a ρo = 3300 kg/m3 char-632

acteristic of mantle material, and ρserp = 2550 kg/m3. We run a set of models633

with different values of degree of serpentinisation (β = 0, 20 and 40%).634

[Figure 12 about here.]635
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It is known that at these values of serpentinisation, significant weakening636

of the lithosphere should occur (Escartin et al., 1997; Maffione et al., 2015).637

Considering a pressure dependent failure criterion such as Drucker-Prager , τy =638

p sin(φ) + C cos(φ), and assuming cohesion C = 20 MPa and friction angle φ639

between 10◦ and 30◦ (dashed line in Fig.12b), it becomes evident that the640

stress linked to the volumetric increased caused by serpentinisation reactions641

can easily exceed the yield stress at shallow depths (at ∼ 2 km for β = 20%642

and ∼ 10 km for β = 40%; Fig.12b), thus localising, or enhancing, inelastic643

deformation in faults and shear bands. Topographic expressions in the sea-644

floor could also be linked to the production of serpentinite at shallow depths645

(Fig.12c). Our models predict topographic highs of 0.3 km and 0.7 km for a646

partially serpentinised material for β = 20% and β = 40%, respectively.647

For comparison, we include a model with β = 40% using the incompressible648

Boussinesq approximation (i.e. the continuity equation is approximated as ∇ ·649

u = 0 and the650

equation651

of state is pressure-independent). The incompressible approximation is not able652

to resolve the volumetric strain and the flow solution only accounts for the653

buoyancy forces produced by the serpentinisation. Therefore, the strain field is654

barely affected by the phase change and the stress field is incorrect, showing even655

lower stresses than for β = 0% (Fig.12b). Furthermore, the pressure dependence656

of the density in this model is switched off as it would become unstable after657

few time steps.658

Even though the model considered here is very simple, and more realistic659

set-ups and conditions might change the values of the effect of serpentinisation660

(e.g. plastic deformation, rheological layering, etc.), it serves as an example of661

how the volumetric strain produced by a phase change can potentially weaken662

the crust and localise brittle deformation. Therefore, weakening by serpentini-663

sation may play a crucial role to shape the kinematics of magma-poor margins664

and the bending/unbending of subducting plates (Morgan, 2001). This thought665
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numerical experiment also represent a case in which the incompressible Boussi-666

nesq approximation is not able to deal with large density changes and predicts667

unrealistic strain and stress fields. In such cases, a compressible formulation668

should be used.669

5.3.2. Subduction of a compressible slab670

[Figure 13 about here.]671

In subduction zones, the cold subducting plate might sink to great depths, where672

it is subject to considerable pressure changes that should induce large variations673

in density. In this test, we investigate how large these density variations can be674

for a compressible mantle and lithosphere, and whether they eventually become675

large enough so that the Boussinesq approximation becomes inaccurate. The676

asthenospheric mantle and lithosphere are modeled as a non-Newtonian visco-677

elastic body. The mechanical parameters, set-up, and boundary conditions for678

subduction are described in Appendix C.2. Thermal ages of the oceanic and679

continental lithospheres are chosen as 70 Myr and 400 Myr, respectively. As in680

the previous example, the reference density is defined by an approximation of the681

lithostatic pressure. For completeness, the results obtained for a compressible682

(ν = 0.30) asthenospheric mantle and lithosphere are compared with the near-683

incompressible case (ν = 0.499). In the compressible case, ridge push (i.e.684

oceanic lithosphere pushed towards the continental lithosphere) is active until 4685

Myr. At this moment, the tip of the slab is dense enough for slab-pull to become686

effective, and no additional forces are required to sustain the subduction of the687

oceanic lithosphere. The density in the near-incompressible case is lower, and688

ridge push is active until 6 Myr.689

At 3.5 Myr, while ridge push is still active, the compressible oceanic litho-690

sphere has subducted approximately 300 km, and the dip at its tip is 50◦ (Fig691

.13a). After slab-pull becomes effective, the trench starts to retreat and the slab692

rolls-back. At 8.3 Myr, the dip increases to 75◦ the pressure at the tip of the693

slab is high enough to produce density variations with respect to the reference694

state that exceed the accuracy threshold of the Boussinesq approximation (Fig695
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.13a). At this point the trench has retreated 125 km, the slab is 14◦ steeper,696

and has further subducted down to 475 km depth (Fig .13a).697

On the other hand, at 3.5 Myr and with ridge push active, the near-incompressible698

oceanic lithosphere subducts down to 275 km depth, and the maximum dip of699

slab is 10◦ less with respect the compressible case. At 8.3 Myr, the differences700

between the compressible and near-incompressible case become more evident,701

with the subducting slab being 70 km shallower and 10◦ less steep than for702

ν = 0.30.703

It is also worth noting the difference of the total pressure between the com-704

pressible and near-incompressible case (isobars in Fig .13a). In the first case,705

strong pressure gradients are predicted within the slab, with pressure drops at706

the core of the slab, and an increase of the pressure at the top boundary of the707

slab, whereas pressure gradients are almost negligible in the near-incompressible708

case.709

This simple numerical experiments illustrates how compressibility is a me-710

chanical feature that is certainly important to account for in models of subduct-711

ing slabs. The large pressures that build up within the slab can lead to density712

variations of more than 10% that can influence the timing and effectiveness of713

slab pull, and the dynamics of subduction.714

6. Discussion and summary715

1. LaCoDe is a robust numerical tool for thermo-mechanical geodynamic716

problems that includes a new self-consistent compressible formulation. As717

a sequential-only MATLAB-based algorithm, the lack of computational718

speed compared to other highly-parallelised codes written in lower-level719

languages such as C/C++/Fortran is compensated by MATLAB’s easy-720

debugging-fast-coding environment that runs in any workstation, and does721

not build upon any other compliances (only an interaction with a mesh722

generator is needed to construct unstructured finite element meshes).723

2. LaCoDe is easily expandable: implementation of new rheological laws or724
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processes such as partial melting other phase changes require minimum725

code modifications. Hence this code is an excellent ”numerical laboratory”726

where new features can be quickly implemented and tested.727

3. An implicit approach of the general compressible Stokes equation leads to728

a well-resolved solution employing iterative solvers such as the Augmented729

Lagrangian Method.730

4. The density-dependence of the compressible continuity equation intro-731

duces an additional non-linearity with respect to the incompressible ap-732

proximation, thus increasing the total number of iterations per time step.733

We find that for non-Newtonian rheologies, one can treat all non-linearities734

within one Picard loop. However, as the complexity of the problem in-735

creases, it becomes convenient to split the non-linearities with a rheological736

nature from the ones raising from the continuity equation into two levels of737

Picard iterations, this leads to faster convergence rates and best resolved738

solutions. Preliminary experiments indicate that this remains true when739

plastic deformation is incorporated as an additional non-linear rheological740

complexity to the model treatment.741

5. While the Boussinesq approximation is a valid hypothesis for simple mod-742

eling of crustal deformation, more complex models that aim to study pro-743

cesses such as phase changes or subduction of oceanic lithosphere will744

require a modification of the Boussinesq approximation to accommodate745

the chemical reaction- and pressure-linked effects of volumetric strain and746

volume-change-linked stresses.747

6. Benchmarks for elastic deformation and stresses show that the formulation748

presented here is able to model elasticity both for compressible materials749

and in the incompressible limit.750

7. Geodynamic models frequently require strong and sharp compositional751

jumps. We have demonstrated that the formulation implemented in La-752

Code is able to solve accurately the Stokes equations under strong (e.g.753

SolCx, viscous inclusion under pure shear) and smooth (e.g. SolKz test)754

viscosity, as well as in density contrasts leading to gravitational instabili-755
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ties (e.g. Rayleigh-Taylor instability).756

8. The agreement of the numerical and analytical solution of a Couette flow757

with viscous heating and temperature dependent viscosity demonstrates758

the accuracy of LaCoDe to solve thermo-mechanical problems.759

9. We demonstrate how compressibility may play an important role in some760

geodynamic processes that undergo strong pressure gradients, such as in761

subducting slabs, and when rapid density changes take place, such as762

during phase transformations. In the latter case, the presence of a self-763

consistent volume change source term is a powerful tool that opens an764

opportunity to study the effects of pressure changes caused by the inflow765

and outflow of mass into geological features (e.g. serpentinisation and melt766

extraction). Exploring these processes will be the aim of future work.767
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Appendix A. Analytical solution for a thin beam under uniform load772

The general equation describing the deflection ω of an elastic cantilever of773

length L and thickness h is given by:774

D
d4ω

dx4
= q(x)− F d

2ω

dx2
(A.1)

where q(x) is the load and F is the horizontal force. Considering F = 0 and a775

constant and uniform load, eq. (A.1) yields:776

d4ω

dx4
=

q

D
(A.2)

Eq. (A.2) can be integrated using the following boundary conditions: 1) ω = 0777

at x = 0 (fixed end); 2) dω/dx = 0 at x = 0; 3) dω2/dx2 = 0 at x = L; and,778
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4) dM/dx = V , where M is the bending momentum and V is the shear force.779

After some algebra, the solution can be written as:780

ω =
qx2

D

(
x2

24
+
Lx

6
+
L2

4

)
(A.3)

with the q being the gravitational load q = gρLh. The horizontal stress along781

the cantilever is given by the expression:782

σxx =
E

1− ν2
εxx (A.4)

the horizontal strain is given by:783

εxx = −z d
2ω

dx2
(A.5)

and the bending momentum at x = 0 is:784

M = −qL
2

h
(A.6)

The maximum bending stress at x = 0 in a cantilever, centred at z = 0, occurs785

at z = ±h/2 and it is obtained combining eqs. (A.4), (A.5) and (A.6):786

σmaxxx =
3qL2

h2
(A.7)

Appendix B. Analytical solution for a viscous inclusion787

The analytical solution of a viscous inclusion within a homogeneous matrix is788

based on Muskhelishvili’s complex variable stress-function method and solution789

(Muskhelishvili, 1953) for 2D elasticity. Here we present a brief description790

with the solution under pure shear conditions. A more detailed description791

in the geological literature is found in (Schmid and Podladchikov, 2003). The792

coordinates are expressed in the complex plane:793

z = x+ iy (B.1)

where i =
√
−1. For a slow incompressible viscous flow in plane strain, the794

velocity field can be expressed in terms of the complex functions φ(z) and ψ(z):795

796

ux + iuz =
φ(z)− zφ′(z)− ψ(z)

2η
(B.2)
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where the overbar refers to the complex conjugate and the prime refers to the797

derivative with respect to z. Under pure shear boundary conditions the func-798

tions φ(z) and ψ(z) in the matrix are given by:799

φm(z) = −2ε̇Ar2
c

z
(B.3)

800

ψm(z) = −2ε̇ηmz −
2ε̇Ar4

c

z3
(B.4)

with801

A =
ηm (ηc − ηm)

ηc + ηm
(B.5)

where rc is the radius of the inclusion and ηm and ηc are the viscosities of the802

matrix and the inclusion, respectively. Inside the inclusion:803

φc(z) = 0 (B.6)

804

ψc(z) = −4ε̇
ηcηm
ηc + ηm

z (B.7)

Substitution of eqs. (B.3) and (B.4) into (B.2) yields the analytical solution for805

the velocity field in the matrix:806

ux + iuz =
ε̇Ar2

c

ηm

[
−1

z
+

z

z2
− 1

z3
− zηm
Ar2

c

]
(B.8)

Substitution of (B.6) and (B.7) into (B.2) gives the analytical solution for the807

velocity inside the inclusion:808

ux + iuz = − 4ε̇

2ηc

ηcηm
ηc + ηm

z (B.9)

The general expression of the pressure field is given by:809

p = −2Re(φ′(z)) (B.10)

with Re(·) denoting the real part of (·). Under pure shear boundary conditions810

the pressure field in the inclusion is pc = 0 and the pressure in the matrix is811

given by:812

pm = −2Re

(
2ε̇Ar2

c

z2

)
(B.11)
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Appendix C. Model set-up and boundary conditions for tests in Sec-813

tion 3.4814

Appendix C.1. Test A: Pure shear deformation of a non-Newtonian visco-elastic815

body816

The initial size of the models is a 500 km by 400 km rectangular box with817

an initial temperature profile as shown in (Fig .14a). We use a non-Newtonian818

visco-elastic rheology with the thermo-mechanical parameters of wet olivine (Ta-819

ble .2). Pure shear far-field boundary conditions are prescribed on the bound-820

aries of the model (i.e. half and full extension rate are prescribed at the lat-821

eral and bottom boundaries of the domain, respectively), the boundaries of the822

model are thermally insulated, tangential free slip condition are prescribed at823

the lateral and bottom boundaries and the surface behaves as a free surface.824

Temperature is fixed at 0 ◦C and 1300 ◦C at the surface and bottom of the825

model. The domain of the model is discretised with an unstructured mesh of826

13828 triangular elements (42271 DoFs).827

Appendix C.2. Test B: Subduction initiation828

The set-up of Test B corresponds to a subduction problem in a box of 3000829

km by 1500 km. Oceanic and continental lithosphere are 80 km and 140 km830

thick, respectively. The motion of the bottom and lateral sides is fixed, and con-831

vergence is imposed by prescribing a horizontal velocity along a vertical profile832

of the oceanic lithosphere 500 km before the trench. We use a non-Newtonian833

visco-elastic rheology with a wet quartzitic crust, dry olivine continental litho-834

sphere and wet olivine for the oceanic lithosphere and asthenosphere. All side835

boundaries are thermally insulating; bottom and top temperatures are constant836

at 0 ◦C and 1300 ◦C, respectively; and free surface boundary conditions are837

prescribed at the top of the model. The initial thermal structure is given by838

continental lithosphere with a thermal age of 500 Myr and an oceanic lithosphere839

with a thermal age of 75 Myr. To ease subduction initiation, we introduce a840
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weak layer between the oceanic and continental lithospheres which has a con-841

stant viscosity of 5 · 1019 Pa·s. The domain of the model is discretised by an842

unstructured mesh of 17927 triangular elements (55107 DoFs).843

[Figure 14 about here.]844

[Table 2 about here.]845

Appendix D. Analytical solution for a Couette flow with viscous heat-846

ing and temperature dependent viscosity847

The non-Newtonian viscosity of the flow is controlled by the following equa-848

tion (Turcotte and Schubert, 2014):849

η = A exp

[
Ea
RT0

(
1− T − T0

T0

)]
(D.1)

where Ea is the activation energy, R is the gas constant and A is a pre-850

exponential factor that depends on the material. The analytical solution for851

the temperature field of the flow is described by the following set of equations852

(Turcotte and Schubert, 2014):853

x =
L

B
ln

[
(D −B)(C −B)

(D −B)(C +B)

]
(D.2)

854

B = ln

[
1 +

(
1− 2Br

B2

)2
1 +

(
1 + 2Br

B2

)2
]

(D.3)

855

C =
√

2(φ1 − φ(x))Br (D.4)

856

D =
√

2(φ1 − 1)Br (D.5)

857

φ(x) = exp(θ(x)) (D.6)
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858

θ(x) =
EaT (x)− T0

RT 2
0

(D.7)

859

φ1 =
B2

2Br
= exp(θ1) (D.8)

860

θ1 =
Ea(T1 − T0)

RT 2
0

(D.9)

861

Br =
(σxz1L)2Ea
KART 2

0

exp

(
− Ea
RT0

)
(D.10)

where Br is the non-dimensional Brinkman number, θ is the non-dimensional862

temperature change, σxz1 is the shear stress at the top boundary, K is the863

thermal conductivity and T1 is the temperature at the top boundary. If non-864

negative values of B are chosen, the Brinkman number can be calculated as865

(Gerya, 2009):866

Br =
B2

2

[
1−

(
exp(B)− 1

exp(B) + 1

)]
(D.11)

For a given σxz the solution is non-unique and two flows with different temper-867

ature and velocity exist. However, a unique solution exists if a given velocity is868

prescribed at the upper boundary. Therefore, we prescribe a constant horizon-869

tal velocity boundary u∗ at the upper boundary instead of imposing a constant870

shear stress. The input parameters for this test are Ea = 150 J/mol, R = 8.35,871

A = 1015 Pa·s, K = 2 W/m/K and T0 = 1000 K872
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33–75.900

Dabrowski, M., Krotkiewski, M., , D. W., 2008. MILAMIN: MATLAB-based901

finite element method solver for large problems. Geochemistry, Geophysics,902

Geosystems 9 (4), 1–24.903

Deubelbeiss, Y., Kaus, B., 2008. Comparison of Eulerian and Lagrangian nu-904

merical techniques for the stokes equations in the presence of strongly varying905

viscosity. Physics of the Earth and Planetary Interiors 171 (1), 92–111.906

38



Duretz, T., May, D. A., Gerya, T., Tackley, P., 2011. Discretization errors and907

free surface stabilization in the finite difference and marker-in-cell method for908

applied geodynamics: A numerical study. Geochemistry, Geophysics, Geosys-909

tems 12 (7).910

Escartin, J., Hirth, G., Evans, B., 1997. Effects of serpentinization on the litho-911

spheric strength and the style of normal faulting at slow-spreading ridges.912

Earth and Planetary Science Letters 151 (3), 181–189.913

Escartin, J., Hirth, G., Evans, B., 2001. Strength of slightly serpentinized peri-914

dotites: Implications for the tectonics of oceanic lithosphere. Geology 29 (11),915

1023–1026.916

Fortin, M., Glowinski, R., 2000. Augmented Lagrangian methods: applications917

to the numerical solution of boundary-value problems. Vol. 15. Elsevier.918

Fuchs, L., Schmeling, H., 2013. A new numerical method to calculate inhomoge-919

neous and time-dependent large deformation of two-dimensional geodynamic920

flows with application to diapirism. Geophysical Journal International 194 (2),921

623–639.922

Fullsack, P., 1995. An arbitrary Lagrangian-Eulerian formulation for creeping923

flows and its application in tectonic models. Geophysical Journal International924

120 (1), 1–23.925

Gerya, T., 2009. Introduction to numerical geodynamic modelling. Cambridge926

University Press.927

Gerya, T. V., Yuen, D. A., 2007. Robust characteristics method for modelling928

multiphase visco-elasto-plastic thermo-mechanical problems. Physics of the929

Earth and Planetary Interiors 163 (1), 83–105.930

Gleason, G. C., Tullis, J., 1995. A flow law for dislocation creep of quartz931

aggregates determined with the molten salt cell. Tectonophysics 247 (1), 1–932

23.933

39



Gray, D. D., Giorgini, A., 1976. The validity of the Boussinesq approximation934

for liquids and gases. International Journal of Heat and Mass Transfer 19 (5),935

545–551.936

Hasenclever, J., 2010. Modeling mantle flow and melting processes at mid-ocean937

ridges and subduction zones. Development and application of numerical mod-938

els. Ph.D. thesis, Hamburg University, Hamburg, Germany.939

Hasenclever, J., Morgan, J. P., Hort, M., Rüpke, L. H., 2011. 2D and 3D numer-940

ical models on compositionally buoyant diapirs in the mantle wedge. Earth941

and Planetary Science Letters 311 (1), 53–68.942

Hashiguchi, K., Yamakawa, Y., 2012. Introduction to finite strain theory for943

continuum elasto-plasticity. John Wiley & Sons.944
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Velocity node

Velocity bubble
function node

Pressure node

Figure .1: Crouzeix-Raviart triangular element. This element is characterised by continuous
quadratic velocities with cubic bubble function in the barycenter of the triangle and discon-
tinuous linear pressure and show quadratic convergence.
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Figure .2: Global workflow of the code.
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Figure .3: The information stored at the integration points of the elements of the old mesh
is mapped onto the new elements using the shape functions as interpolation functions. For
simplicity, the field Ψ(x, y) depicted in this sketch is assumed to be linear.
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Figure .4: a) Set-up for the cantilever problem and flexure and stress field after loading for
ν = 0.25. b) and c)Relative errors of the maximum deflection and bending stress for a thin
beam embedded in one side and subjected to a uniform loading.
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Figure .7: Analytical solutions of the a) pressure and b) velocity fields; and distribution
of the logarithmic rms error of c) pressure and d) velocity. The zoom-in in d) shows the
zero velocity error in the boundaries of the domain. Due to the symmetry of the pressure
and velocity fields, only the upper-right corner of the domain (Ω′ = [0, 1] × [0, 1]) is shown
in this figure. The results shown here correspond to a mesh with 6.65 · 105 DOF. Note: as
log10(0)→ −∞, values of log10(eu = 0) are forced to be zero in panel c.
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Figure .11: Comparison of the number of non-linear (upper left panel) and linear (ALM)
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Figure .12: a) Results for different values of β. The density depends linearly on the degree of
serpentinisation: β = 0, 20 and 40%. The color maps represent the square root of the second
invariant of the stress and the thick black lines are isolines of the velocity field. The change
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τII at x = 0; the dashed lines represent the yield stress given by a pressure dependent yield
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Table .1: Values of growth rate, maximum rms velocity and its corresponding time, obtained
with an unstructured mesh of Crouzeix-Raviart elements. with respect to the methods HS,
CND, SNK, and PvK presented in van Keken et al. (1997). The results are also in agreement
with repetitions of this test employing more modern techniques, e.g. DynEarth2D (Choi et al.,
2013), and ”level sets” (Suckale et al., 2010)

Code Elements (DOF) γ umaxrms tmax

LaCoDe (this study) 1808 (10754) 0.01221 0.003110 215
7093 (2592) 0.01222 0.003080 212

17960 (107468) 0.01222 0.003075 211
HS 81× 81 0.01177 0.0030916 208.99

CND 48× 48 0.01106 0.0030943 208.5
SK 160× 160 0.01220 0.0028970 207.84

PvK 80× 80 0.01225 0.003091 207.84
DynEarth2D - - 0.003106 215.25

Level sets 120× 132 0.01252 0.00301 211.2
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Table .2: Rheological parameters. Wet quartzite from Gleason and Tullis (1995) and dry
olivine and wet olivine from Hirth and Kohlstedt (2003), respectively.

Parameter Units Wet Olivine Dry Olivine Wet Quartzite
c MPa 20 20 20
ρ kgm−3 3300 3300 2850
G GPa 74 74 36
α - 3 · 10−5 3 · 10−5 2.4 · 10−5

HQ Wm−3 0 0 0.2 · 106

K Wm−3K−3 3.3 3.3 2.5
log10(A) Pa−ns−1 -15.56 -15.56 -28
E KJmol−3 480 530 223
log10(Vo) m3mol−3 -6 -6 1
ndis - 3.5 3.5 4
ndif - 1 1 0
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