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INTRODUCTION

Since its outbreak in December 2019, Severe Acute Respiratory Syndrome CoronaVirus 2
(SARS-CoV-2) has spread worldwide and is considered a pandemic. Coronavirus disease
(COVID-19) can lead to acute respiratory distress syndrome (ARDS) or death. Many efforts
have been made to identify risk factors predisposing to a severe issue. In the first SARS-CoV
epidemic in 2002, hypertension was noted in 9/19 patients who died from SARS-CoV in Toronto
(1). In the two largest cohorts of SARS-CoV-2 published, hypertension is the most common
comorbidity in patients with severe disease or in those who died or were ventilated (2, 3).
Nevertheless, these data are not adjusted for age, although age appears to be a strong predictor of
adverse outcome (4) and hypertension is a very common finding in older patients. Finally, cohort
studies only show correlation, not causality. In this paper, we hypothesize that the reductions in
Angiotensin-Converting Enzyme 2 (ACE-2) observed in hypertension and obesity can explain
many abnormalities observed in SARS-CoV-2 and question the role of treatments interfering
with ACE2.

ACE2 IN THE CARDIOVASCULAR SYSTEM

Like SARS-CoV, SARS-CoV-2 fuses with human cells after the receptor-binding domain of its
S (Spike) protein binds with Angiotensin-Converting Enzyme 2 (ACE-2), an enzyme located
on membrane of lung alveolar epithelial cells, renal tubular epithelial cells, enterocytes of the
small intestine, and arterial and venous endothelial cells of the kidney (5–10). Cardiomyocytes,
fibroblasts, endothelial cells, and pericytes account for the vast majority of cells expressing ACE2 in
the heart (10).

ACE-2 is a monocarboxypeptidase homologous to Angiotensin-Converting Enzyme (ACE)
whose active site is exposed at the extracellular surface (8, 11). ACE cleaves angiotensin I (ANGI)
to generate angiotensin II (ANGII), which binds to and activates Angiotensin Type 1 Receptor
(AT1R) to constrict blood vessels and increase salt and fluid retention, thereby elevating blood
pressure. ACE2 inactivates ANGII by converting it to angiotensin-(1–7), which has a vasodilator
effect when binding to Mas receptor (12) (Figure 1A). Moreover, ACE2 cleaves ANGI into
angiotensin-(1–9) (albeit with lower affinity than for ANGII), which is further converted into
angiotensin-(1–7) by ACE (12). Thus, ACE2 negatively regulates the renin-angiotensin system
and modulates the vasoconstriction, fibrosis, and hypertrophy induced by that system (8, 11). In
rats, ACE2 deficiency worsens hypertension when ANGII is in excess (8, 13). In human, gene
expression and/or ACE2 activity is lower in hypertensive patients than in normotensive ones (13).
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FIGURE 1 | (A) ANGII binding to AT1R elevates blood pressure and promotes inflammation. ACE2 inactivates ANGII by converting it to ang-(1–7) and negatively

regulates the renin-angiotensin system, promoting vasodilatation and hypotension. (B) SARS-CoV-2 infection. Binding of SARS-CoV-2 with ACE2 leads to their

internalization and to ACE2 shedding by ADAM17 (enzyme not shown). Lower availability of ACE2 results in a lower rate of ANGII degradation and excessive

stimulation of AT1R, which facilitates ARDS and myocardial injury. Binding of ANGII to AT1R leads to membranous ACE2 internalization, decreasing ACE2 availability

even more (not shown). Excessive ANGII is metabolized to ANGIV, which binds to AT4R and promotes thrombosis. Virus replication could also reduce cellular ACE2

expression (not shown). (C) SARS-CoV-2 infection and ACEi/ARB treatment. ACEi and ARB upregulate ACE2, and freer ACE2 remains after viral binding. ANGII is still

degraded by ACE2 in its beneficial metabolite Ang-(1–7), and AT1R and AT4R are less stimulated. ANGII binding on AT1R prevention with ARB and ANGII synthesis

decrease with ACE lead to less AT1R stimulation and persistent interaction with ACE2, avoiding ACE2 internalization. ACE2, Angiotensin Converting Enzyme 2; ACEi,

Angiotensin Converting Enzyme Inhibitor; ang-(1–7), Angiotensin-(1–7); ANGII, angiotensin II; ANGIV, angiotensin IV; ARB, Angiotensin Receptor Blocker; ARDS, Acute

Respiratory Distress Syndrome; AT1R, Angiotensin II Type 1 Receptor; AT4R, Angiotensin II Type 4 Receptor; SARS-CoV-2, Severe Acute Respiratory Syndrome

CoronaVirus 2.

Conversely, ANGII negatively regulates ACE2. AT1R and ACE2
physically interact to form complexes on the cell membrane in
the absence of excess Ang II (11). ANGII increase separates
AT1R and ACE2 on the cell surface and leads to ACE2
internalization and lysosomal degradation through an AT1R-
dependent mechanism (11, 13). Moreover, cellular ACE2 can
be cleaved and released (shedding) by the metalloproteinase
ADAM17, which is upregulated by ANGII (14). The soluble
form of ACE2 circulates in small amounts in the blood, but its
physiological role remains elusive, and shedding could be only a
mechanism to regulate ACE2 activity on the cell surface (15).

Notably, it has been shown that infection with SARS-
CoV can be blocked with soluble ACE2 molecules (6), and
some have hypothesized that a soluble recombinant form
can be used to overwhelm SARS-CoV-2 to prevent its
binding to cellular ACE2 (16). Recombinant human ACE2 has
been tested in a phase 2–3 trial in ARDS with interesting
results (17), and a pilot trial has recently been launched in
COVID-19 (NCT04287686).

ACE inhibitors (ACEi) and AT1R blockers (ARB) are two
classes of drugs that are widely used in medicine to treat
hypertension or heart failure. ACEi and ARB upregulate ACE2
expression on the cell surface, and ACE2 activity is not prevented
by ACEi (8, 11, 18). Accordingly, patients treated with ACEi/ARB
could have a higher level of membrane-bound ACE2, providing
a more potent binding site to COVID-19 S protein. Nevertheless,
in the absence of excess ANGII (either by reduction of ANGII
synthesis by ACEi or by AT1R blockade thanks to ARB), AT1R

is thought to interact with ACE2 (11). This interaction could
reduce the affinity of COVID S protein to ACE2 and then reduce
COVID-19 viral entry (11).

In the heart, ACE and ACE2 balance Ang II levels and ACE2
is known to be cardioprotective (8). ACE2 loss leads to a decrease
in myocardial function in rodents, likely mediated by ANGII-
induced oxidative stress and inflammation through AT1R, but
it is unknown whether excess ANGII has a role in an acute
setting (8, 19). This decrease is corrected by ARB or ACEi, and
these drugs rapidly increase ACE2 activity andmRNA expression
in the heart of rats (8, 20). Evidence for such an increase in
humans is lacking, but studies checked for variation in the
circulating level rather than the tissular level of ACE2 (21). In
human failing heart, ACE2 expression is increased, correlating
with disease severity, and is thought to be a compensatory
mechanism (8, 10).

ROLE OF ACE2 IN SARS-COV-2
INFECTION

SARS-CoV-2 has a 10–20-fold higher affinity for ACE2 than
does the 2002 SARS-CoV (22). An increased abundance of
cellular ACE2 is associated with a higher susceptibility to
SARS-CoV infection in mice (23). However, in both heart and
lung, binding of the SARS-CoV to ACE2 leads to the loss
of ACE2 by ACE2 internalization with the virus and ACE2
shedding (7, 9, 14). Lower availability of ACE2 results in a
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lower rate of ANGII degradation. In rodent lungs, excess ANGII
binding to AT1R increases pulmonary vascular permeability
and neutrophil accumulation and enhances lung injury (7,
24) (Figure 1B). Thus, decreased ACE2 expression promotes
increased lung injury and ARB prevents it by limiting ANGII
binding to AT1R (7, 8, 24, 25) (Figure 1C). This hypothesis is
supported in vivo by the increased frequency of severe ARDS
in patients infected with SARS-CoV with higher levels of ACE
determined by genetic predisposition, leading to higher levels of
ANGII (26), and by the correlation between viral load, ANGII
plasma level, and disease severity in influenza H7N5 (27) and
respiratory syncytial virus infection (25). More notably, in a
small cohort of patients infected with SARS-CoV-2, viral load
was correlated with plasma ANGII level (28). Unfortunately,
baseline treatments are unknown in this cohort, and correlation
between ARDS severity and plasma ANGII level failed to
reach statistical significance, maybe because of the low number
of patients.

Moreover, some have suggested that viral replication
by itself can reduce cellular ACE2 expression (29).
This point is of importance because limitation of
ANGII formation by ACEi and binding to AT1R by
ARB may yet become the best ways to limit lung
injuries if ACE2 is less or not synthetized following
viral infection.

SARS-CoV- and SARS-CoV-2-associated cardiac injury
contributes significantly to morbidity and mortality and
could hit as much as a third of patients with a severe form
of the disease (9, 28, 30, 31). SARS-CoV was found in the
heart of a third of human autopsy hearts, with a concomitant
marked reduction in cellular ACE2 (9). As in lungs, ANGII
probably contributes to the deleterious effect of SARS-CoV
on the heart and to SARS-associated cardiomyopathy, even
if myocardial dysfunction can also be influenced by the
strong immune response observed in those patients (9).
Inflammatory signals are likely to suppress ACE2 transcription
and down-regulate cell-surface expression of ACE2 (8). Thus,
inflammatory signals could decrease the cellular susceptibility
to SARS-CoV infection but increase the ANGII-mediated
tissular injury. Moreover, because pericytes are supposed to
play a role in myocardial microcirculation, SARS-CoV-2-
induced microcirculation disorder could explain the frequent
cardiac marker increase observed in hospitalized patients (2),
exacerbated by the reduced oxygen supply caused by lung
failure (10).

In summary, a decrease in cellular ACE2 may reduce the
susceptibility of cells to SARS CoV-2 but leads to greater
activation of AT1R and more severe tissue damage. In contrast,
the higher the abundance of ACE2 on the cell membrane,
the greater the susceptibility to viral particles but the less the
damage, due to less AT1R activation occurring. This latter
condition is the one provoked by ACEi/ARB treatment. On the
one hand, ACE2 increase under ARB/ACEi treatment could be
protective during COVID-19 because some ACE2 remains free
to degrade ANGII, but on the other hand, this ACE2 increase
could be deleterious by favoring cellular infection by COVID-
19, leading to potent myocarditis (Figure 1C). The protective

or deleterious role of ACEi/ARB in COVID-19 is harder to
modelize, as ACE2 is not the only protein required for SARS-
COV-2 penetration (5).

ARE ACEI AND ARB DELETERIOUS IN
SARS-COV-2 INFECTION?

It has been shown that both ACEi and ARB upregulates
ACE2, and a hypothesis was proposed by several authors
of a potential deleterious effect of treatment with ARB
and ACEi in the course of SARS-CoV-2 infection (32, 33).
Since these molecules are widely used to treat hypertension
or heart failure, such a fact could be a huge matter
of concern.

Obesity seems to be a major determinant of adverse outcome
in COVID-19 (34). Besides the altered pulmonary function
associated with obesity, it must be noted that obesity is associated
with a decrease in membranous ACE2 (35, 36). Moreover,
empirical observations are suggestive of an abnormally high
prevalence of pulmonary embolism in patients with COVID-19
(37), and prophylactic curative anticoagulation is recommended
in severe patients (38). Severe infections are a known precipitant
factor for acute venous thrombo-embolism because of epithelial
damage and platelet and endothelial cell dysfunction, but does
it by itself explain the observed high prevalence of pulmonary
embolism in these patients? When ANGII is increased, it can be
metabolized to angiotensin IV (ANGIV) by aminopeptidase A
and binds to Angiotensin Type 4 Receptor (AT4R) (39). Multiple
datasets underline the enhancement of thrombosis development
by ANGII and ANGIV (40, 41), and it can be hypothesized that a
reduction in ACE2 can increase thrombotic risk.

Despite the many potential cofounders, reduction in
membranous ACE2 expression could be an explanation for
numerous abnormalities observed in SARS-CoV-2 infection.
Thus, even if both ARB and ACEi increase the level of ACE2,
more ACE2 could be better rather than worse: more ACE2
remains on the cell surface after virus binding, maintaining
ANGII degradation and less stimulation of AT1R. Furthermore,
treatment with ARB inhibits AT1R and limits the damage
induced by its overstimulation. It is not clear whether
continuation or discontinuation of ARB or ACEi is a good
option in COVID-19 infection, as there is a lack of clinical data
to support an increased risk of contracting a severe form of
COVID-19. In addition, we do not even know whether renin
angiotensin system inhibitor therapy is beneficial or harmful
for virally mediated lesions, and switching to other drugs may
worsen the patient’s condition, especially for heart failure patients
with reduced ejection fraction (42). Clinical trials are ongoing
to analyze the beneficial effect of LOSARTAN in COVID-19
(NCT04311177 and NCT04312009), and a trial will start soon to
analyze the consequences of discontinuation or continuation of
ACEi/ARB (NCT04338009).

ACEi and ARB are not the only treatments for hypertension
or heart failure, but other classes only have a limited impact
on ACE2. Beta blockers suppress plasma angiotensin II levels
by inhibiting prorenin processing to renin and probably do not
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interfere with ACE or ACE2 (43). Calcium channel blockers
seem to reduce ANGII-induced downregulation of ACE2, but
data are limited to those presented in one paper on the effect of
nifedipine on fractionated cell extracts (44). In hypertensive rats,
neither thiazides nor mineralocorticoid-receptor antagonists
(MRAs) improve the spontaneous low ACE2 activity (18, 45),
but MRA could decrease ACE expression (18). Conversely,
MRAs increase membranous ACE2 activity in patients (46) with
heart failure. If the reduction of membranous ACE2 observed
in hypertension and obesity plays an important role in the
pathophysiology of severe COVID-19, can it be hypothesized that
non-ACEi/BRA drugs (beta-blockers, calcium channel blockers,
diuretics) are more likely to increase the risk of deleterious
outcomes than ACEi/BRA drugs that increase ACE2 and provide
theoretical protection? Data on baseline treatments are urgently
needed but are lacking to date in published cohorts.

CONCLUSION

The downregulation of ACE2 induced by viral binding, resulting
in increased stimulation of AT1R, may be an important
element in explaining severe COVID-19. Overall, the ACEi/ARB-
mediated increase in ACE2 is not obviously deleterious and may
even be protective. Only a well-conducted trial will provide a
valid answer to this question. To date, stopping this treatment
solely on the basis of presumed considerations does not seem to
be a good option.
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