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Understanding the factors that drive the genetic structure of a species and its responses
to past climatic changes is an important first step in modern population management. The
response to the last glacial maximum (LGM) has been well studied, however, the effect of
previous glaciation periods on plant demographic history is still not well studied. Here we
investigated the population structure and demographic history of Primula fasciculata that
widely occurs in the Hengduan Mountains and Qinghai-Tibetan Plateau. We obtained
genomic data for 234 samples of the species using restriction site-associated DNA (RAD)
sequencing and combined approximate Bayesian computation (ABC) and species
distribution modeling (SDM) to evaluate the effects of multiple glaciation periods by
testing several population divergence models and demographic scenarios. The
analyses of population structure showed that P. fasciculata displays a striking
population structure with six groups that could be identified genetically. Our ABC
modeling suggested that the current groups diverged from ancestral populations
located in the eastern Hengduan Mountains after the largest glaciation occurred in the
region (~ 0.8–0.5 million years ago), which is consistent with the result of SDMs. Each
current group has survived in different glacial refugia during the LGM and experienced
expansions and/or bottlenecks since their divergence during or across the following
Quaternary glacial cycles. Our study demonstrates the usefulness of population genomics
for evaluating the effects of past climatic changes in alpine plant species with shallow
population structure.

Keywords: demography, genetic structure, Hengduan Mountains, population genomics, Quaternary climatic changes
INTRODUCTION

Plant populations are not randomly arranged assemblages of genotypes but are structured in space
and time (Loveless and Hamrick, 1984). Because of the limited mobility of plants, their genetic
structure implies spatial structure, where genetic differentiation increases with geographic distance
(Wright, 1943). Yet, recent empirical studies have put forward that geographic distance by itself fails
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to fully explain the genetic variation observed in natural systems
(e.g., Shafer and Wolf, 2013). In fact, geographic, environmental,
historical, and intrinsic factors (e.g., mating system) have been
suggested to simultaneously act as drivers of spatial genetic
patterns at different spatial scales (Wang et al., 2013; Muñoz-
Pajares et al., 2017; Ren et al., 2017). Identifying the factors that
drive the genetic structure of a plant species is an important first
step not only to understand speciation, adaptation, and genetic
change (Antonovics, 1968), but also to help in population
management. In the latter case, the spatio-temporal dynamics
of population histories can profoundly impact their future
evolutionary potential (e.g., Lanier et al., 2015). This is
especially true for climate-sensitive species inhabiting highly
fragmented environments, such as mountain ranges.

One of the key high-altitude biodiversity hotspots in the world
where these processes can be studied are Mountains of Southwest
China, i.e., the HengduanMountains region. They were formed by
recent uplifts of mountains during the late Miocene and Pliocene
(Li and Fang, 1999; Myers et al., 2000; Zheng et al., 2000; Mulch
and Chamberlain, 2006; also reviewed in Favre et al., 2015; Renner,
2016; Muellner-Riehl, 2019). Additionally, the climate in the
region and the Qinghai-Tibetan Plateau (QTP) has changed
drastically during the Quaternary, and the extent and timing of
glaciations remain controversial, especially for the old glaciations
(Ou et al., 2015; Muellner-Riehl, 2019). However, recent studies
have suggested that four major glaciations have likely occurred
since 1.2 million years ago (Ma), which are the Xixiabangma (0.8–
1.17 Ma), Naynayxungla (0.5–0.72 Ma), Guxiang (0.13–0.3) and
the Last Glaciation (0.01–0.07 Ma; Shi, 2002; Zheng et al., 2002;
Ou et al., 2015). The Naynayxungla Glaciation is thought to be the
largest glaciation that occurred in this region (Shi, 2002; Zheng
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et al., 2002; Ou et al., 2015). The origin and maintenance of the
high biodiversity in this region are the result of its specific
topographic features and profound ecological heterogeneity
created by the historical orogenesis and associated climatic
changes (Wu, 1987). Today, the Hengduan Mountains are
characterized by parallel and deep North-South oriented valleys
surrounded by high mountain peaks (Figure 1). The mountains
display drastic altitudinal variations ranging from 1,000 m to
numerous peaks above 6,000 m, and the area is particularly
vulnerable to climate change (Zheng, 1996; Yao et al., 2007).
With such a complex geological, climatic, and ecological diversity,
the region has attracted attention of numerous biologists to study
the factors affecting species diversification and evolution (e.g.,
Xing and Ree, 2017; reviewed in Qiu et al., 2011; Liu et al., 2014;
Wen et al., 2014; Mosbrugger et al., 2018). Some studies focused
on species-level diversification that resulted from the uplift of the
QTP and Hengduan Mountains (e.g., Liu et al., 2002; Liu et al.,
2006; Ren et al., 2015), while others looked at intraspecific
divergence to investigate the effects of past geological events and
Quaternary climatic fluctuations on population genetic structure
(e.g., Wang et al., 2009; Liu et al., 2013). For example, studies on
Quercus aquifolioides (Du et al., 2017), on several closely related
Picea species (Li et al., 2013)and on Taxus wallichiana (Liu et al.,
2013) have suggested that plant species in the Hengduan
Mountains tend to show long-term demographic stability and
survival in multiple refugia. Although numerous phylogeographic
studies on herbs, shrubs, and trees in this region have suggested
several phylogeographic patterns (summarized in Muellner-Riehl,
2019), a comprehensive understanding of the factors triggering
current genetic structure and a detailed demographic scenario in
response to the Quaternary climatic fluctuations in this region are
FIGURE 1 | Sampling locations of all 61 populations of P. fasciculata (gray stars) and the 12 selected populations (large colored circles) used for genomic analyses
in this study. The three regions of the Tibeto-Himalayan region were delineated by blue dotted lines.
July 2020 | Volume 11 | Article 986

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Ren et al. Demography of Primula fasciculata
still unclear because of the limited genetic information used in
most previous studies.

Integrative approaches combining population genomics
(e.g., Ren et al., 2017) with niche modeling (Guisan and
Zimmermann, 2000) have helped to understand current spatial
genetic patterns and the processes (Theodoridis et al., 2016).
Population genomic data can provide accurate estimates of
genetic structure (Avise, 2010; Narum et al., 2013) and
increased accuracy when estimating demographic parameters
(e.g., Emerson et al., 2010; Bourret et al., 2013; Lanier et al., 2015;
Ren et al., 2017), whereas species distribution models allow to
predict geographic areas that are part of the ecological niche of
species at different temporal and spatial scales. A recent study
based on these approaches has significantly advanced our
understanding of the response of alpine plant species to
Quaternary climatic changes in the Himalayas (Ren et al.,
2017). Although Next-Generation Sequencing (NGS) methods
have recently become cost-effective, the application of
population genomics on the taxa distributed in the Hengduan
Mountains remains rare because of its remoteness and
inaccessibility, and consequently, such genomic level studies
are particularly needed for this region to provide a better
understanding of evolutionary history of species.

Here we focus on Primula fasciculata (Primulaceae), one of the
most widely distributed alpine plant species in the Hengduan
Mountains and QTP (Hu and Kelso, 1996; Figure 1). It is an
insect-pollinated, heterostylous, herbaceous, perennial plant that
occurs in diverse habitats at elevations ranging from 2,900 to 5,000
m. As an outcrossing small herb of variable height (2–10 cm), P.
fasciculata disperses its seeds largely by gravity and usually grows in
wet meadows or along hill-streams (Hu and Kelso, 1996; Richards,
2003). A recent study, focused on P. fasciculata and its two closely
related species (i.e., P. tibetica and P. nutans) at species level and
investigated interspecific divergence and the factors that affected the
maintenance of species boundaries, has indicated that P. fasciculata
diverged from P. tibetica during the Pliocene and experienced
expansion during the Quaternary (Ren et al., 2018). However, the
population structure and demographic history of P. fasciculata and
the factors affecting its demography were not involved in Ren et al.
(2018). Here, we use an integrative approach combining genomic
phylogeography with niche modeling to test several demographic
scenarios corresponding to specific hypotheses related to the effects
of Quaternary climatic fluctuations on alpine species in this region.
The aims of our study are to: i) identify the population structure of
P. fasciculata and understand the factors driving it; and ii) compare
several detailed demographic scenarios for P. fasciculata using ABC
modeling and test these hypotheses with species distribution
models to evaluate the effects of Quaternary climatic changes on
the evolution of this species.
MATERIALS AND METHODS

Data Set
The data set of P. fasciculata (Dryad doi: https://doi.org/10.5061/
dryad.tt8n46q; File 1-D2) used in Ren et al. (2018) that
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comprises 234 individuals from 12 populations with 17.8%
missing data was re-analyzed in this study to further
investigate the population structure and demographic history
of this species. In order to obtain estimates of neutral population
genetic structure, the detected 106 outlier SNPs by both
BAYESCAN and LOSITAN in this species (Ren et al., 2018)
were removed for the downstream analyses. Therefore, all results
in this study were derived from the neutral data set containing
5,980 single-SNP loci. This neutral data set in Ren et al. (2018)
was used only to test whether population divergence of the
neutral genomic fractions was driven by geographical or
environmental or both factors. The result showed that both
factors played a role, which was the only result derived from
this data set in our previous paper. In this study, on the basis of
this data set, we did multiple population structure analyses and
ABC modeling to investigate population structure and
demographic history of this species. Therefore, the hypotheses
behind and the analytical methods were completely different
between the two studies.

The 12 populations were selected from our 54 sampled
populations to be representative of both the geographical
distribution and the diversity of ecological niches of this species.
We estimated the latter by extracting the 19 bioclimatic variables of
WorldClim (http://www.worldclim.org/current) from the
occurrences of the individuals sampled in the 54 populations. We
did a principal component analysis (PCA) using the prcomp
function in the stats package of R and identified the 12
populations based on the PC1 and PC2 axes (explained nearly
82% of the variance; Figure S1). Seventeen to 20 individuals
were sampled in each population, making sure that all
individuals sampled were at least 20 m apart. The detailed
location information of the 12 populations was listed in
Supporting Information Table S1.

Characterization of Population Genetic
Structure
Population genetic structure of P. fasciculata was estimated by
using the Bayesian method implemented in STRUCTURE 2.3.4
(Pritchard et al., 2000) and by principal components analysis
(PCA). Structure analyses were performed under the “Admixture
model” and the “Correlated allele frequency model” with K-
values ranging from 1 to 12. Ten independent runs were
performed for each value of K using 1 × 105 generations for
the burnin and 2 × 105 generations for the sampling. The optimal
K was chosen using the delta-K method of Evanno et al. (2005) as
implemented in STRUCTURE HARVESTER (Earl and
VonHoldt, 2012). The coefficient for cluster membership of
each individual was averaged across the ten independent runs
using CLUMPP (Jakobsson and Rosenberg, 2007) and plotted
using DISTRUCT (Rosenberg, 2004). PCA was performed with
the glPCA function in adegenet package (Jombart, 2008) in R to
identify the major axes of variation of the populations.

Pairwise FST values and analysis of molecular variance
(AMOVA) among populations were calculated in GENODIVE
v.2.0b27 (Meirmans and Van Tienderen, 2004), and significance
was determined using 1 × 104 permutations. AMOVA for
July 2020 | Volume 11 | Article 986
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populations that were further clustered into several groups based
on the STRUCTURE and PCA results (Table S2) was applied to
evaluate which grouping strategy explains the highest percentage
of total variance among groups, which was used to select the
most likely strategy of the grouping for ABC modeling.

The first three components of the PCA performed on the
genetic data and the geographic coordinates (latitude and
longitude) of the 12 populations were used in a Procrustes
analysis using the R package vegan (Oksanen et al., 2013). This
analysis minimizes the sum of squared Euclidean distances
between two sets of points by rotating one set of points to
match the other, while preserving the relative distances among all
points within the map (Wang et al., 2012). The similarity of the
two maps is quantified using the Procrustes similarity statistic t0
(Wang et al., 2010; Wang et al., 2012). We used the protest
function in vegan to test the probability of observing a similarity
statistic higher than the observed to if no geographic pattern is
assumed using 1 × 105 permutations (Wang et al., 2012).

We further used BARRIER v2.2 (Manni et al., 2004) to
compute the Monmonier's maximum-difference algorithm for
identifying biogeographic boundaries or areas exhibiting the
largest genetic discontinuities between population pairs based
on pairwise genetic distances (FST). We randomly selected 5,000
loci from the neutral data set 100 times to generate 100 FST
distance matrices by using populations module in the STACTS
v1.30 (Catchen et al., 2013). The number of barriers was set to
vary from 1 to 10, reflecting their descending order of relative
importance (“priority”) for genetic dispersion (Manni et al.,
2004). The robustness of the genetic boundaries was assessed
by running BARRIER on the 100 FST distance matrices.

Estimates of Historical Demography
To decipher the historical demography of P. fasciculata, we
estimated divergence times, admixture, and changes in
population sizes among different groups of population using
approximate Bayesian computation (ABC) modeling. We
stratified the procedure in three steps (Figure 2): (1) we
investigated the most likely tree topologies for the three main
lineages (see Results) that were identified by the PCA analyses
among 13 scenarios describing all possible topologies (Figure 2;
Table S2); (2) we split the three main lineages into six groups
based on AMOVA analysis on multiple grouping strategies (see
more details in Results), i.e., L3 was split into G3, G1, and G2; L1
was split into G4 and G5; L2 was not split and renamed as G6
(see Results; Figure 2; Table S2). Based on the best-supported
tree topology obtained in (1) and the STRUCTURE result, and
given the fact that G1 had the highest altitude distribution (Table
S1) and was sampled in the westernmost of the distribution of
the species (suggesting that G1 was not likely ancestral), we fixed
the ancestor of G3 as the most recent common ancestor for all
groups, then G6 and G1 originated from G3, and G2 originated
from the admixture between G3 and G6. Finally, we set two
scenarios to model the divergence order of G4 and G5 from G3.
This step was conducted to estimate the divergence times among
the six groups; (3) we tested changes in population sizes of each
of the six groups in the recent past among four scenarios (Figure
2; Ren et al., 2017): i) old expansion; ii) recent expansion; iii)
Frontiers in Plant Science | www.frontiersin.org 4
expansion followed by shrinkage; iv) expansion followed by
shrinkage and a new expansion event. Five individuals that had
the least missing data from each of the 12 populations were
selected for steps 1 and 2 to reduce computational time. For step
3, we used those same five individuals for the two groups (i.e., G3
and G6) that contained multiple populations, whereas all
individuals were used for the four groups (i.e., G1, G2, G4, and
G5) that included only one population.

For each step, we tested different scenarios using DIY-ABC
v.2.1.0 (Cornuet et al., 2010; Cornuet et al., 2014). We selected for
these analyses a single SNP per locus, which had to be present in
(i) at least 80% of the individuals from each lineage/group and
(ii) all lineages/groups. We chose a minor allele frequency (MAF)
of 0.01 to increase the mean level of genetic variation of both the
observed and simulated data sets and to reduce the proportion of
loci that may correspond to sequencing errors. The data sets used
for the ABC modeling and the distributions of prior probabilities
are summarized in Table S3. We selected all summary statistics
to generate a reference table (on average 106 data sets per
scenario). The parameters defining each scenario (i.e.,
population sizes, divergence times, and/or times of population
size changes) were considered as random variables drawn from
prior distributions. For each simulation, DIY-ABC drew a value
for each parameter from its prior distribution and performed
coalescent simulations to generate a simulated pseudo-observed
data set (POD) with the same number of gene copies and loci per
lineage/group as those observed. It then calculated summary
statistic for each POD and the observed data. Based on a distance
and a tolerance, it decided for each POD whether its summary
statistic was sufficiently close to that of the observed data. We
used 1% of the simulated data sets closest to the observed data to
estimate the relative posterior probabilities for each scenario
via logistic regression. Posterior distributions of historical
demographic parameters based on the most likely scenario
(Cornuet et al., 2010) were estimated. The time parameters are
estimated in generations and converted into years by multiplying
by the generation time, which was set to one year (Ren et al.,
2017). Finally, for each step, we performed an evaluation of the
fit of each scenario to the data sets by running a model-checking
analysis following Cornuet et al. (2010).

Species Distribution Models
We generated species distribution models (SDMs; Guisan and
Zimmermann, 2000) to evaluate the potential effects of past
climatic changes on the distribution of P. fasciculata and to
compare such effects with the demographic changes modeled by
ABC. An ensemble model (Araújo and New, 2007) was
generated by the combination of three different statistical
techniques: generalized linear model, gradient boosting
machine and random forests, as implemented in the R package
biomod2 (Thuiller et al., 2009). A total of 74 occurrences were
used as presences data to calibrate the models. The performance
of the model was assessed by randomly splitting ten times (cross-
validation) the data into an 80% data set to generate the models
and a 20% data set to estimate their predictive accuracy (AUC
statistic). According to Ren et al. (2017), the paleo-climatic
conditions of the last interglacial (LIG) in this area predicted
July 2020 | Volume 11 | Article 986
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large differences of precipitation compared with the present and
the last Maximum Glacial (LGM), resulting in the failure of
projection for the LIG, which was also true in the present
projection for the LIG (Figure S2). Therefore, in this study, we
estimated the potential distributions for the 1) the present; 2) the
LGM (0.022 Ma), and 3) the Marine isotope stage 19 (MIS19,
~0.787 Ma). As predictors, we used the bioclimatic variables
from PaleoClim (http://www.paleoclim.org/, Fordham et al.,
2017; Brown et al., 2018; Karger et al., 2017 REF) at 2.5
arcminutes resolution. In order to avoid multicollinearity, we ran
a Pearson correlation analysis by pairs for the 14 bioclimatic
variables available for all the periods (for MIS19, monthly
maximum and minimum temperatures are not available). In each
pair with a correlation value greater than 0.7 (Dormann et al., 2013)
we removed one climate variable. The climatic variables finally used
to calibrate the SDMs were: temperature seasonality (bio4), mean
Frontiers in Plant Science | www.frontiersin.org 5
temperature of coldest quarter (bio11), precipitation of wettest
month (bio13), precipitation of driest month (bio14), precipitation
seasonality (bio15) and precipitation of coldest quarter (bio19).
RESULTS

Structuring of Population Genetic Variation
Although the optimal K value of the STRUCTURE analyses
based on the DK method of Evanno was K = 2, the differences of
DK among K values were very small (Figure 3). The DK of the
second most probable K value (K = 6) differed from the optimal
one by only 2. Other K values (3, 4, 5, and 9) also received
considerable support. We decided to show all these K values in
Figure 3 and combined them with the PCA results to capture the
most reasonable set of lineages for the ABC modeling.
FIGURE 2 | Alternative demographic scenarios for the three steps analyzed by DIY-ABC. The best-fit scenario was indicated by square in steps 1 and 2.
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The first two PCA axes identified three main genetic lineages
and explained 13.04% and 7.76% of the total variation,
respectively (Figure 4). The two southwestern populations
(PF05, PF06) and four northwestern populations (PF09-PF12)
formed two separate lineages (L1 and L2), while the rest of the
populations form a third lineage (L3; Table S2). The three main
lineages (L1-L3) were used in step 1 of the ABC modeling to
identify the most likely population tree topology.

In order to investigate the most likely strategy of grouping for
the ABC modeling, we further assigned the 12 populations into
Frontiers in Plant Science | www.frontiersin.org 6
four, five, six or seven groups based on the PCA and
STRUCTURE analyses (Figures 3 and 4). The detailed
information of different grouping strategies was summarized in
Table S2. The strongest signature of population spatial
differentiation was obtained by AMOVA analysis (22.2% of
total variance; Table S4) when populations were assigned to
six groups. We therefore used the six groups in step 2 of the ABC
modeling to estimate the divergence times among these groups,
and in step 3 to estimate the demographic changes for each of
them. The six groups were identified as following: the third axis
FIGURE 3 | DK values identified using STRUCTURE HARVESTER and plots of posterior probabilities for individuals of P. fasciculata assigned to K genetic clusters from
STRUCTURE analyses for K = 2–6 and 9. Populations are delimited by black lines, with the corresponding population names listed along the bottom of the plot.
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of the PCA (PC3; 6.12% of the total variation) showed a
separation of population PF07 from lineage L3, which was also
shown when K = 4 in the STRUCTURE. We identified this
population as G1. Looking at K values from K = 2 to K = 6,
population PF08 was always represented as an admixed
population, which was labeled as G2. The remaining
populations of L3 were grouped as G3. The two populations
(L1) that diverged from each other in the PCA (Figure 4) were
identified as G4 and G5. The four northwestern populations
form the sixth group (G6; Table S2) evident both in
STRUCTURE and PCA.
Frontiers in Plant Science | www.frontiersin.org 7
Procrustes analysis was used to quantify the association
between the genetic variation of populations and their
geographic locations. The first two PC spaces identified a
significant similarity score (t0 = 0.579, P_value < 10−5), which
increased to t0 = 0.777 when genetic variation in PC1 and PC3
spaces were considered (Figure 5A). This was caused by the clear
separation of the most geographically isolated population PF07
from other populations by the PC3 axis. Individuals from G6 are
genetically more similar with each other than would be expected
given the geographic distance among the populations forming
this group. The general pattern of association with geography for
FIGURE 4 | Distribution of individuals of P. fasciculata along PC scores (PC1, 13.04% vs. PC2, 7.76%; PC1 vs. PC3, 6.12%) of genetic variation based on the
analysis of SNP dataset; individuals are color-coded according to their population identities (see Figure 1). The three lineages and six groups used for ABC modeling
are indicated.
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A

B

FIGURE 5 | (A) Procrustes-transformed PCA plot of genetic variation with each individual of P. fasciculata mapped in PC space (the small circles) relative to the
geographic location of populations (the larger circles). Black lines show the orientation of the genetic space relative to the geographic longitude and latitudinal axes.
The length of the line connecting individuals in PC space to their geographic location represents the extent of the deviation from the expected pattern of genetic
variation based on geography. (B) Result of BARRIER analysis showing the spatial separation of P. fasciculata populations. All the ten barriers (red lines) are highly
supported over 100 FST distance matrixes. Barriers are delimited by small red triangle. Numbers (1–10) represent descending order of relative importance (“priority”).
Frontiers in Plant Science | www.frontiersin.org July 2020 | Volume 11 | Article 9868

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Ren et al. Demography of Primula fasciculata
the rest of populations was robust, indicating high level of
population divergence. Such level of divergence was also
evident in the BARRIER analysis that gave high support to all
ten barriers (bootstrap support 100%; Figure 5B). The presence
of such strong barriers between P. fasciculata populations
indicates an abrupt change in the genetic profile of populations
across the species distribution. Although the ranking of the
population barriers (Figure S3) was not in agreement with the
STRUCTURE and PCA analyses, the general pattern of spatial
genetic structure identified by the BARRIER analysis was
consistent with the other analyses. Differentiation among
populations was significant, with FST values ranging from 0.088
to 0.604 with a mean value of 0.377 (Table S5), which was
consistent with AMOVA for the total data set (FST = 0.306;
Table S4).

Estimates of Historical Demography
We used a three-step procedure to estimate the demographic
history of P. fasciculata. Among the 13 scenarios tested in step 1,
the scenario depicting an origin of both L1 and L2 from L3,
provided the best fit to our data, with posterior probabilities
significantly higher than the other scenarios (0.995, 95% credible
interval (CI) 0.99, 1.00; Table S6; Figures 2 and S4). According
to the main tree topology inferred from step 1, the analyses done
in step 2 showed that groups G1, G6, and G4/G5 (i.e., alternative
scenarios; Figures 2 and S4) originated from G3, while G2 was
formed by admixture between G3 and G6. The scenario where
G4 originated from G3 and later G5 diverged from G4 fitted the
data much better (0.93, CI: 0.93–0.94; Table S6; Figure 2). A
check of the goodness-of-fit of the distributions of the
parameters for the scenarios with the real data set further
indicated that scenarios 13 and 1 were the best-supported
scenarios for step 1 and step 2, respectively (Table S7).
Frontiers in Plant Science | www.frontiersin.org 9
Modeling the changes in population size for each group
(step 3) recovered complicated demographic histories for the
six groups. Analyses for G3 supported a scenario of “expansion–
shrinkage,” while G2, G4 and G6 were better modeled by a
scenario of “expansion–shrinkage–expansion.” The other two
groups (G1 and G5) were better modeled by a scenario of “recent
expansion” (Table S6).

We estimated the divergence times and the population sizes
as well as the timing and extent of these changes for the six
groups. Group G3 was found to be the ancestor of P. fasciculata
and started to expand its distribution ca. 0.60 Ma (95% highest
posterior density (HPD): 0.27–0.86 Ma; Figures 6 and S3; Table
S8), followed by a slight bottleneck around 0.038 Ma (HPD:
0.004–0.075 Ma). G6 diverged from the ancestral populations
formed by G3 ca. 0.47 Ma (HPD: 0.38–0.55 Ma; Table S9). It
started to expand until ca. 0.36 Ma (HPD: 0.18–0.49 Ma), before
experiencing a bottleneck ca. 0.06 Ma (HPD: 0.02–0.09 Ma;
Table S8). Then, it quickly expanded just after the LGM. During
the first expansion of this group, it came into secondary contact
with the ancestral populations of G3, exchanged genes and
resulted in the formation of G2 around 0.12 Ma (HPD: 0.07–
0.17 Ma; Table S9). G2 experienced ancient expansion (0.10 Ma)
and shrinkage (0.054 Ma) before and during the last glaciation
(i.e., 0.015–0.075 Ma), respectively, and a recent expansion after
the LGM. G1 diverged from the ancestral populations ca. 0.36
Ma (HPD: 0.23–0.49 Ma) and stayed stable through time before
experiencing a recent expansion after the LGM. G4 diverged
from G3 ca. 0.41 Ma (HPD: 0.26–0.54 Ma) and started to expand
before experiencing a bottleneck during the last glaciation. A
recent expansion after the LGM was also detected for this group.
G5 was isolated from the ancient expansion of G4 (0.15 Ma,
HPD: 0.09–0.21 Ma; Table S9) and experienced a recent
expansion after the LGM.
FIGURE 6 | Summary of inferred demographic history of the six groups of P. fasciculata. Changes in population sizes are integrated into the divergent scenario.
Times on the vertical axis represent the glaciation periods that occurred in the QTP (Zheng et al., 2002). Population sizes are indicated on each square. Times of
divergence and changes in population sizes are indicated next to each change in population size. Only the mean values are shown (see Tables S8 and S9 for 95%
credible interval for all values).
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Species Distribution Models
The value AUC obtained for the final consensus model was
0.995, therefore it is an accurate model. The predicted current
potential distribution fitted very well with the actual distribution
of the species. The predictions to the LGM condition suggested
that P. fasciculata has retreated to eastern Hengduan Mountains
to occupy a large region and some restricted refugia in the
eastern Himalayas, while during the MIS19 (a much colder
period of Quaternary), the predicted suitable habitat for the
species was enormously reduced to a small region in the eastern
Hengduan Mountains.
DISCUSSION

Based on population genomic data, we found a striking
population genetic structure for P. fasciculata in the highly
fragmented biodiversity hotspot of the Hengduan Mountains.
The patterns of genetic differentiation detected by different
structure analyses were congruent, and we identified six groups
of populations that capture the main characteristics of the
population history of this species. The results of ABC
modeling provided strong support for population divergence
driven by Quaternary climatic fluctuations. The comparison of
the different demographic scenarios shows that all six groups
have experienced bottlenecks or stayed stable during the last
glaciation, while five groups started to expand just after the LGM.
These results obtained with genomic data were also supported by
the SDM analyses. Taking together with a recent study that
investigated factors in driving genomic variation in this species
(Ren et al., 2018), our results suggest that all the historical factors
(i.e., past climatic changes), spatial and environmental variables
act as drivers of spatial genetic patterns. This study thus
contributes a significant advance to our understanding of how
alpine species were genetically structured and responded to
Quaternary climatic fluctuations in the Hengduan Mountains
and the QTP.

Spatial Patterns of Genomic Diversity
Our results revealed exceptionally high levels of population
divergence across the distribution of P. fasciculata, with a
mean FST value of 0.377 (Table S5). This value is slightly lower
than the level of genetic differentiation among populations
reported for its closely related species P. tibetica (0.450; Ren
et al., 2018) and Bulbophyllum occultum (0.387; Jaros et al.,
2016), but it is still within the range usually ascribed for plants
with particularly restricted dispersal ability. The divergence of
populations detected with our neutral genomic markers is thus
generally considered “very high” and translates into <1 migrant
per generation under equilibrium conditions (Conner and Hartl,
2004), a value often considered the minimum for maintaining
species cohesion. By contrast, for the species that are
characterized by extensive long-distance gene flow facilitated
by the dust-like and wind-dispersed pollen and seeds, the level of
population differentiation usually exhibits low genetic
differentiation among populations (e.g., orchids in general,
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FST = 0.02 – 0.116, Tremblay et al., 2005; epiphytic species,
mean FST = 0.146, Phillips et al., 2012; Restio capensis, FST
(RADseq/neutral) = 0.03, Lexer et al., 2014).

Spatial patterns of nuclear genomic differentiation inferred
from STRUCTURE, PCA and BARRIER analyses were largely
concordant with each other (Figures 3, 4, and 5B), which suggest
a strong correspondence between population differentiation and
their geographic locations. The pattern was further supported
by the procrustes analysis, which showed a high similarity score
between the overall rotated genetic space and their geographic
locations (Figure 5A). The persistence of population divergence
may be facilitated by the poor dispersal ability of the species
(Richards, 2003) and reinforced by the rugged topographic
features and profound ecological heterogeneity found in the
Hengduan Mountains. Indeed, a recent study has shown that
both spatial (i.e., geographic distance and elevation differences
between populations) and environmental (i.e., climatic
and edaphic variables) factors acted as drivers of population
differentiation not only in selected but also in neutral genomic
regions (Ren et al., 2018). Such strong correlation may suggest
local adaptation, which may have further reinforced the genetic
structure (Savolainen et al., 2013; Twyford et al., 2015).
Furthermore, historical factors (i.e., past climatic fluctuations)
were inferred to drive large-scale spatial genetic structure in
this species (see below). Similar spatial, environmental, and
historical factors have been suggested to drive spatial genetic
patterns in its closely related species P. tibetica (Ren et al., 2018)
and in a montane pollination-generalist herb (Muñoz-Pajares
et al., 2017). By contrast, for P. nutans, another closely related
species of P. fasciculata, geographic isolation played an
important role in driving population divergence (Ren et al.,
2018), while for the plant species Restio capensis that occurs in
the Cape Floristic Region of South Africa, another biodiversity
hotspot in the world, climatic variables were the major drivers of
population divergence (Lexer et al., 2014). Therefore, drivers of
population differentiation may be different and complex in
different taxa and areas, and more factors should be considered
when evaluating population differentiation of organisms and in
particular for those that are distributed in mountainous areas.

Demographic History of P. fasciculata in
Response to Quaternary Climatic
Fluctuations
Quaternary climatic fluctuations had a dramatic effect on
distribution patterns and phylogeographic structure of species
(Comes and Kadereit, 1998; Abbott et al., 2000; Hewitt, 2004),
especially for those cold-adapted species distributed in high
altitude such as the QTP that are assumed to be particularly
vulnerable to past climatic changes (Zheng, 1996; Yao et al.,
2007). Despite much effort (reviewed in Liu et al., 2014; Favre
et al., 2015), we are lacking a detailed demographic history for
the species present in the Hengduan Mountains and QTP
because of limited genetic information (e.g., Yang et al., 2008;
Du and Wang, 2016; Wan et al., 2016; but see Li et al., 2013;
Shang et al., 2015). In this study, our analysis uncovers a detailed
Quaternary demographic history of an alpine species distributed
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https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Ren et al. Demography of Primula fasciculata
in the Hengduan Mountains and QTP. It corroborates our
previous study on P. tibetica, which showed similar effects of
the different factors in the Himalayas.

Our test of the different demographic hypotheses done within
an ABC framework shows that populations included in G3
experienced the most ancient expansions ca. 0.60 Ma (HPD:
0.27–0.86 Ma; Figure 6) and all other genetic groups originated
from G3. The model comparisons suggest that current
populations originated from ancestral populations located in
the eastern Hengduan Mountains. The divergence times
between the genetic groups and the ancestral populations
(Figure 6) are dated after the largest Naynauxungla glaciation
that began ca. 1.2 Ma and reached its maximum between 0.8 and
0.5 Ma in the QTP (Shi, 2002; Zheng et al., 2002). This result
indicates that the Hengduan Mountains acted as a main
refugium for the species to survive during this largest
glaciation period, which is also indicated by the SDMs for
MIS19 (Figure 7). The Hengduan Mountains as a refugium is
also evident in the niche modeling of this species in Ren et al.
(2018) and many other studies (e.g., Yang et al., 2008; Li et al.,
2013; Du et al., 2017; also reviewed in Muellner-Riehl, 2019).
However, a previous study suggested that P. fasciculata diverged
from its closely related species P. tibetica during the Pliocene
period (4.65 Ma) and expanded its distributions at the beginning
of the Quaternary when the climate became cold (Ren et al.,
2018). During the period between 4.65 and 0.6 Ma, it is unlikely
that no population divergence had occurred, given the varied
topographic features in the region. A more likely explanation
would be that extensive extinction of ancestral populations might
have occurred during the past environmental changes, most
likely during the largest Naynauxungla glaciation, which
produced an ice sheet covering an area five to seven times
larger than its current range (Shi, 2002; Zheng et al., 2002; Ou
et al., 2015). Such extensive ice sheet and extremely cold climate
during the largest glaciation could have caused fragmentation of
ancestral populations, contributing to isolation and eventual
extinction of populations located at high-altitude regions,
especially if one considers the fact that all the current
northwestern and southwestern populations occur at more
than 4,000 m (Table S1). By contrast, the eastern populations,
occurring at lower altitude, could have survived in an eastern
refugium (Figures 6 and 7) during the largest glaciation. When
the climate became less cold, these populations could have
recolonized high-altitude areas again and further gave rise to
other genetic lineages triggered by the afterward glacial and
interglacial events (Wang et al., 2009; Opgenoorth et al., 2010).

The timeframes of the divergence between groups G1, G4,
and G6 and the ancestral populations (i.e., G3) are congruent
with a period when two other glaciation events and multiple
interglacial periods occurred in the QTP and Hengduan
Mountains (Ou et al., 2015). The glaciations during this period
became progressively less extensive, but a cold climate prevailed
in the QTP until 0.17 Ma (Shi, 2002), which may have triggered
these divergences. The ABC modeling of changes in populations
for each group indicates that both G4 and G6 have experienced
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ancient expansions while G1 has stayed stable through time until
the end of the LGM (Figure 6). Such different demographic
changes may depend on their specific ecological niches (e.g., Ren
et al., 2017). The current population of G1 occurs at an altitude of
4845 m. The cold climate and fewer available ecological niches as
indicated in the SDMs for this population (Figure 7) may have
prevented the ancient expansion of this group. By contrast, the
current populations of the other two groups G4 and G6 occur at
lower altitudes (4,170 m and average 4,583 m, respectively). The
open new habitats may have facilitated their ancient expansions.

Finally, the remaining two groups G2 and G5 were formed in
different ways during the last interglacial when the climate was
warm (Figure 6). It seems that during the ancient expansions of
G6 and ancestral populations (G3), the two groups came into
secondary contact and resulted in the formation of G2. The
divergence between G5 and G4 may due to complex topographic
features in this region (Figure 1). The deep valleys and high
mountains may have caused fragmentation of the ancient
expansion of G4, reduced gene flow between them and
reinforced divergence. Taken together, Quaternary climatic
fluctuations pre-dating the LGM have had a much stronger
influence on the evolutionary histories of plants in the QTP
and Hengduan Mountains than previously thought (Qiu et al.,
2011; Li et al., 2013; Muellner-Riehl, 2019), especially the largest
glaciation period which may have caused massive extinction of
ancient populations of plants (see also Ren et al., 2017). However,
the results of this study, combined with previous studies (Wang
et al., 2009; Opgenoorth et al., 2010; Ren et al., 2017), clearly
indicate that the alpine species in the QTP and its adjacent
regions could have survived in different refugia at high altitude,
conflicting with Renner's opinion that a unique ice-sheet had
covered the QTP (Kuhle, 1998; Renner, 2016). Recently,
Muellner-Riehl (2019) has provided a nice glacial map in his
Figure 4, which provides the currently most commonly accepted
scheme of glaciation in the region. Furthermore, all genetic
lineages have experienced bottlenecks or remained stable
during the last glaciation and post-glacial expansions. This
result, taken together with those recently reported for other
alpine herbs (Hu et al., 2016; Wan et al., 2016; Ren et al.,
2017), suggests that alpine plant species survived the last
glaciation (i.e., 0.015–0.075 Ma) in multiple refugia in the QTP
where most of the diverged lineages were preserved.

It should be noted that the timeframes of divergence
estimated by DIY-ABC were converted into years using a
generation time of one year. Whereas generation times for
perennial species could be different and the biological
characteristics of the species are not well described, our results
using one year per generation are therefore should be treated
with caution. However, another study on related species of
Primula (Yan et al., 2012) has also used one year to study the
demography history of P. obconica, and our ABC results are well
consistent with the SDMs under past climatic conditions, which
may suggest that a generation time of one year for P. fasciculata
is acceptable. Further field and experimental studies are needed
to confirm this assumption.
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CONCLUSIONS

Our analysis of population genomic data in a spatially and
ecologically explicit context using appropriate model
comparisons could identify the genetic structure and test
several hypotheses about the detailed demographic history of
an alpine plant species. Our model-testing framework combined
niche modeling allowed us to demonstrate a clear effect of past
climatic changes on the intraspecific divergence of P. fasciculata.
Knowing these possible effects of past climatic changes on
current populations may be useful for predicting their future
range dynamics in facing ongoing climatic warming and for
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future management strategies. Although the 12 populations (17–
20 individuals were selected from each population) are selected
from our 54 sampled populations based on geographical
distributions and ecological variables, bias on the genetic
grouping and inferences regarding populations size and dating
may exist because of the relatively small sampling size. More
populations, especially the sampling sites with limited dispersal
area are needed to further uncover its evolutionary history.
Nevertheless, our results on P. fasciculata, considered in light
of results recently reported for its closely related, Himalayan
species P. tibetica (Ren et al., 2017), and a study that investigated
interspecific divergence between them (Ren et al., 2018), suggest
that the largest glaciation has markedly affected the evolution
and demography of these two species. Additionally, it probably
caused extensive extinction of their ancestral populations.
The ancestors of the current divergence populations may have
survived in the Hengduan Mountains refugium or microrefugia
in the Himalayas (Xing and Ree, 2017; Muellner-Riehl, 2019).
Subsequent episodes of divergence are associated with following
climatic fluctuations. By contrast, the LGM had less effect on
recently diverged lineages that may have survived in multiple
refugia, as also suggested by other studies in this area (e.g., Wang
et al., 2009; Opgenoorth et al., 2010; Li et al., 2013; Hu et al.,
2016) and in other mountains (e.g., European mountains,
Theodoridis et al., 2016; North America, Beatty and Provan,
2010; Anatolian mountains, Ansell et al., 2011; South America,
Cosacov et al., 2010; Turchetto-Zolet et al., 2013). This response
pattern to past climatic changes may be also applicable for other
alpine plant species in the QTP that share a preference for
cold environments.
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