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Complex non-linear time series are ubiquitous in geosciences. Quantifying complexity

and non-stationarity of these data is a challenging task, and advanced complexity-based

exploratory tool are required for understanding and visualizing such data. This paper

discusses the Fisher-Shannon method, from which one can obtain a complexity measure

and detect non-stationarity, as an efficient data exploration tool. The state-of-the-art

studies related to the Fisher-Shannon measures are collected, and new analytical

formulas for positive unimodal skewed distributions are proposed. Case studies on both

synthetic and real data illustrate the usefulness of the Fisher-Shannon method, which can

find application in different domains including time series discrimination and generation of

times series features for clustering, modeling and forecasting. The paper is accompanied

with Python and R libraries for the non-parametric estimation of the proposed measures.

Keywords: Fisher-Shannon complexity, Fisher-Shannon information plane, Shannon entropy power, Fisher

information measure, statistical complexity, non-linear time series, dynamical behavior characterization, high

frequency wind speed

1. INTRODUCTION

The ubiquity and extensive growth of available temporal data requires the development of reliable
techniques to extract knowledge from them and to understand multifaceted time-dependent
phenomena. Over the last decades, an increasing attention was payed toward the use of
Fisher-Shannon information as a measure to characterize the complexity and non-stationarity
of non-linear time series. Originally proposed for statistical estimation purposes (Fisher, 1925),
the Fisher information measure (FIM) has been extensively used in theoretical physics (Frieden,
1990). FIM and Shannon entropy power (SEP) (Shannon, 1948) are closely related, as shown
by information theory (Dembo et al., 1991; Cover and Thomas, 2006). The Fisher-Shannon
complexity (FSC)—the FIM and SEP product—was proposed as a possible definition of atom
complexity (Angulo et al., 2008; Esquivel et al., 2010).

Following Frieden work, FIM has found applications in non-linear time-series analysis. Martin
et al. (1999) analyzed complex non-stationary electroencephalographic signals and showed that
FIM can have better discrimination performance than Shannon entropy. FIM was also used
to detect behavior changes of dynamical systems (Martin et al., 2001). Vignat and Bercher
(2003) showed that a joint analysis of both SEP and FIM can be required to perform effective
discrimination of non-stationary signals.
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The Fisher-Shannon method has been used to analyse
complex dynamical processes in geophysics. Discrimination
between the electric and magnetic components of magnotelluric
signals is performed in Telesca et al. (2011). Tsunamigenic and
non-tsunamigenic earthquakes were efficiently separated in the
Fisher-Shannon information plane, using FSC (Telesca et al.,
2013). Micro-tremors time series were identified depending
on the soil characteristics of the measurement sites (Telesca
et al., 2015b). Telesca et al. (2015a) proposed a classifier of
(non-)tsunamigenic potential of earthquake build on several time
series features, including FIM, SEP, FSC. Finally, FIM was also
used dynamically with sliding window techniques in order to
study precursory patterns in seismology (Telesca et al., 2009b)
and volcanology (Telesca et al., 2010).

Many environmental processes have also been studied using
the Fisher-Shannon method. Lovallo et al. (2013) and Pierini
et al. (2011) studied climatic regimes identification in rainfall
time series. Hydrological regimes discrimination have also been
investigated (Pierini et al., 2015). Analyzing remotely sensed sea
surface temperature, Pierini et al. (2016) have shown that the
Fisher-Shannon method is able to clearly identify the Brazil-
Malvinas Confluence Zone, which is known to be one of the most
energetic area of oceans. Telesca and Lovallo (2011) analyzed
more than 10 years of hourly wind speed data in the Fisher-
Shannon information plane. The same authors studied yearly
variation of the FIM, the SEP and the FSC onwindmeasurements
(Telesca and Lovallo, 2013). Guignard et al. (2019b) have found
correlations between daily variance of temperature and daily
FSC of high-frequency wind speed records in urban area.
Authors have also pointed out relationships between Fisher-
Shannon analysis of wind speed daily means and topographical
features—height and slope—in complex mountainous regions
(Guignard et al., 2019a). Telesca et al. (2009a) discriminated
some pollutants, including cadmium, iron, and lead, in the
Fisher-Shannon plane. Similarly, Amato et al. (2020) have shown
a relationship between the Fisher-Shannon analysis outputs of
three air pollutants—Nitrogen dioxide, Ground level ozone and
Particulate Matter—and measurement location in term of land
use and of anthropogenic sources of pollutant emission.

The research involving Fisher-Shannon method is rather
scattered and comes from various fields, e.g., information theory,
physics, dynamical systems, machine learning, and statistics.
Therefore, the present paper contributes to the methodological
studies on Fisher-Shannon information measures along with
some applications.

The main objectives of this research can be summarized
as follows:

• discussing the state-of-the-art of Fisher-Shannon information

measures and their applications,
• identifying FSC as a sensitivity measure of the SEP and as a

scale-independent non-Gaussianity measure of data,
• presenting some new theoretical results on FIM and SEP,
• developing operational FIM and SEP tools for the nonlinear

time-series analysis,
• demonstrating through two case studies, based on

simulated (chaotic) and real data (high frequency wind

speed measurements), the efficiency and usefulness of the
proposed methods.

The remainder of the paper is organized as follows. Concepts
of Fisher-Shannon analysis, including SEP, FIM, FSC, and
information plane, are presented and reviewed in section
2. Section 3 provides analytical formula for such quantities
in the particular cases of random variables following some
positive skewed distributions, namely Gamma, Weibull, and log-
normal ones. Then, a non-parametric kernel based estimation
of the density function—for which Python and R packages are
proposed—is presented in section 4. Experiments on simulated
and real-world data are performed in section 5. Finally, section 6
concludes the paper.

2. FISHER-SHANNON ANALYSIS

2.1. Shannon Entropy Power and Fisher
Information Measure
Let us consider a univariate continuous random variable X with
its probability density function (PDF) f (x), which is supposed
to be sufficiently regular for the exposition of our purpose. Its
differential entropy (Cover and Thomas, 2006) is defined as

HX = E
[

− log f (X)
]

= −
∫

f (x) log f (x) dx. (1)

For example, if X is a centered Gaussian random variable of
variance σ 2, a direct computation gives HX = 1

2 log(2πeσ
2).

However, it will be more convenient to work with the
following quantity, called the Shannon Entropy Power
(SEP) (Dembo et al., 1991),

NX = 1

2πe
e2HX , (2)

which is a strictly monotonically increasing transformation of
HX . The SEP is constructed such that in the Gaussian case we
have NX = σ 2. Very often, entropies HX and NX are interpreted
as global measures of disorder / uncertainty / spread of f (x). The
higher the entropy, the higher the disorder.

The Fisher Information Measure (FIM) (Vignat and Bercher,
2003), also known as the Fisher information of X with respect to a
scalar translation parameter (Dembo et al., 1991), is defined as

IX = E

[

(

∂

∂x
log f (X)

)2
]

=
∫

[

∂
∂x f (x)

]2

f (x)
dx. (3)

This quantity should not be confused with the Fisher information
of a distribution parameter. In particular, the derivative of the
log-density is relative to x and not to some parameter. However,
the FIM is equivalent to the Fisher information of a location
parameter of a parametric distribution (Cover and Thomas,
2006). Under mild regularity conditions, one has the following
alternative formulation (Lehmann, 1999),

IX = E

[

− ∂2

∂x2
log f (X)

]

. (4)
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The quantity IX is sometimes interpreted as a measure of order
/ organization / narrowness of X. If X is Gaussian, IX = 1/σ 2.
It should be noted that HX ,NX , and IX only depend on the
distribution f (x).

2.2. Properties
The SEP and the FIM respect several properties. First, both
quantities are positive. It is also easy to see the scaling properties
of the SEP and the FIM (Rioul, 2011),

NaX = a2NX ,

IaX = a−2IX .
(5)

for any real number a 6= 0, by change of variable. Notice also that
the SEP and the FIM are invariant under additive deterministic
constant, by the same argument. Harder to show are the entropy
power inequality (Dembo et al., 1991) and its dual the Fisher
information inequality (Zamir, 1998),

NX+Y ≥ NX + NY , (6)

I−1
X+Y ≥ I−1

X + I−1
Y , (7)

for a random variable Y independent of X, with equality if X and
Y are Gaussian.

Moreover, several relationships show that the FIM closely
interact with the SEP and the differential entropy. Let Z be
a random variable independent of X with finite variance σ 2

Z .
The de Bruijn’s identity (Cover and Thomas, 2006; Rioul, 2011)
states that

d

dt
HX+

√
tZ

∣

∣

∣

∣

t=0

= 1

2
σ 2
ZIX , (8)

i.e., the variation of the differential entropy of a perturbed X
is proportional to IX . Therefore, a possible interpretation of
the FIM is that it quantifies the sensitivity of HX to a small
independent additive perturbation Z. Using the entropy power
inequality (6) and de Bruijn identity (8), one can show the
isoperimetric inequality for entropies,

NXIX ≥ 1, (9)

with equality if and only if X is Gaussian. The proof and the
nomenclature motivation of equation (9) can be found in Dembo
et al. (1991), where a remarkable analogy is done with geometry.
This shows that SEP and FIM are intimately interlinked.

2.3. Fisher-Shannon Complexity
The joint FIM/SEP analysis has been used as a statistical
complexity measure, albeit there is no clear consensus about
the definition of signal complexity (Esquivel et al., 2010). The
Fisher-Shannon Complexity (FSC) is defined as CX = NXIX
(Angulo et al., 2008). From the scaling properties (5), it is easy
to show that the FSC is constant under scalar multiplication and
addition. In particular, normalization or standardization of X has
no effect on the FSC. Additionally, the isoperimetric inequality
for entropies (9) states that CX ≥ 1, with equality if and only if
X is Gaussian. An interpretation of this quantity is the following.

FIGURE 1 | The Fisher-Shannon information plane with a random variable X of

FSC equal to 10. Scalar multiplication of X corresponds to a displacement

along the iso-complex curve passing through X. The unreachable points are in

gray. Note the logarithmic scale.

If Z is independent of X and has a finite variance σ 2
Z , one obtains

the following relationship by using the de Bruijn identity (8),

d

dt
NX+

√
tZ

∣

∣

∣

∣

t=0

= 2NX
d

dt
HX+

√
tZ

∣

∣

∣

∣

t=0

= σ 2
ZNXIX = σ 2

ZCX .

Hence, the FSC can be interpreted as a sensitivity measure of NX

to a small independent additive perturbation.

2.4. Fisher-Shannon Information Plane
The PDF of X can be analyzed displaying the SEP and FIM
within the so-called Fisher-Shannon Information Plane (FSIP),
see Figure 1 (Vignat and Bercher, 2003). Although standard
linear scale plot are very often used for the FSIP in the literature,
a log-log plot is more adequate in practice. In the FSIP, the only
reachable values are in the set D = {(NX , IX) ∈ R

2|NX > 0, I >
0 and NXIX ≥ 1}, due to (9). Vignat and Bercher (2003) showed
that for any point (N, I) ∈ D, it exists a random variable X (from
an exponential power distribution) such thatNX = N and IX = I.

A curve in D is said to be iso-complex if the FSC along the
curve is constant. As CX is constant up to a multiplicative factor
a 6= 0, and looking up at the scaling properties (5), one can
move on any iso-complex curve by varying a. Figure 1 shows
the iso-complex curve of complexity CX = 10 as an example.
The boundary of D is the iso-complex curve with FSC equal to
1, and is reached if and only if X is Gaussian, as states by (9).
On this boundary, the standard deviation σ (which plays the role
of the scaling parameter in the Gaussian case) is equivalent to
the multiplicative factor a. Hence, while a point in the FSIP is
described by (NX , IX), one can also describe it by (a,CX). In the
light of this, one can also think of FSC as a scale-independent
measure of non-Gaussianity of X.
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3. ANALYTICAL SOLUTIONS FOR
SOME DISTRIBUTIONS

In this section, we propose analytical formulas for the SEP, FIM
and FSC for several parametric distributions. They can be used
directly for parametric estimations. Vignat and Bercher (2003)
obtained analogous results for the Student’s t-distribution and
the exponential power distribution (also known as generalized
Gaussian distribution). The Gaussian case was already presented
in section 2 as an example.

The differential entropy of the distributions proposed in this
section have been computed by Lazo and Rathie (1978), from
which the SEP is directly obtained. However, to our knowledge,
the FIM-based calculations for Gamma, Weibull and log-normal
distributions were never presented. Proofs can be found in
the Appendix.

3.1. Gamma Distribution
The PDF of a Gamma random variable X is given by

f (x) = f (x; θ , k) = xk−1e−
x
θ

θkŴ(k)
, for x ≥ 0,

and f (x) = 0, for x < 0, where Ŵ denotes the gamma function
and θ , k > 0 are, respectively, the scale and shape parameters.

Proposition 1. The SEP of the Gamma distribution with scale
θ > 0 and shape k > 0 is

NX(θ , k) =
θ2Ŵ2(k)

2πe
e2[(1−k)ψ(k)+k],

where ψ is the digamma function.
The FIM and the FSC of the Gamma distribution with scale

θ > 0 and shape k > 2 are, respectively,

IX(θ , k) =
1

(k− 2)θ2
,

CX(k) =
Ŵ2(k)

2πe(k− 2)
e2[(1−k)ψ(k)+k].

3.2. Weibull Distribution
The PDF of a Weibull random variable is

f (x) = f (x;µ, λ, k) = k

λ

(

x− µ
λ

)k−1

e−( x−µ
λ

)k , for x ≥ 0,

and f (x) = 0, for x < 0, where µ is the location parameter, λ > 0
is the scale parameter and k > 0 is the shape parameter.

Proposition 2. The SEP of the Weibull distribution with location
µ, scale λ > 0 and shape k > 0 is

NX(λ, k) =
(1− α)2λ2e

2π
e2αγ ,

where α = k−1
k

and γ is the Euler-Mascheroni constant.

The FIM and the FSC of the Weibull distribution with location
µ, scale λ > 0 and shape k > 2 are, respectively

IX(λ, k), =
α2

(1− α)2λ2Ŵ(2α − 1),

CX(k) =
α2e

2π
Ŵ(2α − 1)e2αγ .

3.3. Log-Normal Distribution
The log-normal PDF with parameters µ and σ > 0 is

f (x) = f (x;µ, σ ) = 1

xσ
√
2π

e
− (log x−µ)2

2σ2 , for x > 0,

and f (x) = 0, for x ≤ 0.
The notation of the parameters µ and σ are motivated by the

fact that the logarithm of a log-normal random variable follows a
normal distribution of mean µ and variance σ 2. However, µ and
σ play, respectively, the role of the scale parameter and the shape
parameter for the log-normal distribution.

Proposition 3. The SEP, the FIM and the FSC of the log-normal
distribution with µ and σ > 0 are given by

NX(µ, σ ) = σ 2e2µ,

IX(µ, σ ) =
(

1+ 1

σ 2

)

e2(σ
2−µ),

CX(σ ) = (1+ σ 2)e2σ
2
.

4. DATA DRIVEN NON-PARAMETRIC
ESTIMATION

Complex real-world data sets rarely follow parametric
distributions. Providing enough data, it is also possible to
carry out Fisher-Shannon analysis with a non-parametric
estimation of density, which release parametric assumptions
on the distribution (Telesca and Lovallo, 2017). In this paper,
integral estimates of the SEP and the FIM are considered, which
consist of substituting the kernel density estimators (KDE) of
both f (x) and its derivative in the integral forms of (1) and (3)
(Bhattacharya, 1967; Dmitriev and Tarasenko, 1973; Prakasa Rao,
1983; Györfi and van der Meulen, 1987; Joe, 1989). Python and
R implementations of this section content are proposed, see the
software availability section at the end of this paper.

Following (Wand and Jones, 1994), letX1, . . . ,Xn be a random
sample of size n from a PDF f (x). Consider also the kernel K(u), a
bounded PDFwhich is symmetric around zero, has a finite fourth
moment and is differentiable. The KDE of f (x) is

f̂h(x) =
1

nh

n
∑

i=1

K

(

x− Xi

h

)

, (10)

where h > 0 is the bandwidth parameter. In this paper, the
Gaussian kernel defined by K(u) = (2π)−1/2 exp(−u2/2) is used
and the estimator (10) becomes

f̂h(x) =
1√
2πnh

n
∑

i=1

exp

{

−1

2

(

x− Xi

h

)2
}

.
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The integral estimate of (2) is

N̂X = 1

2πe
exp

{

−2

∫

f̂h(x) log f̂h(x) dx

}

.

Let us note f ′, the derivative of f with respect to x. Usually, f ′

is estimated by f̂ ′
h
. With the Gaussian kernel we obtain

f̂ ′h(x) =
−1√
2πnh3

n
∑

i=1

(x− Xi) exp

{

−1

2

(

x− Xi

h

)2
}

.

Then, the integral estimate of (3) is

ÎX =
∫

(

f̂ ′
h
(x)

)2

f̂h(x)
dx.

The FSC is estimated by multiplying N̂X by ÎX .
Several techniques exist in order to automatize the bandwidth

choice (Wand and Jones, 1994). In the following, the 2-stages
direct plug-in method (Sheather and Jones, 1991) is used.
This method estimates the optimal bandwidth regarding the

asymptotic mean integrated squared error of f̂h. The interested
reader can found further technical details in (Wand and Jones,
1994) and (Sheather and Jones, 1991).

FIGURE 2 | Logistic map with different level of noise. From top to bottom : bifurcation diagram, SEP, FIM, FSC, and Lyapunov exponent sliding windows. Note the

logarithmic scale on the y-axis for SEP, FIM, and FSC.
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FIGURE 3 | Trajectory of the logistic map in the FSIP.

5. CASE STUDIES

In this section we explore two applications of SEP, FIM and
FSC to time series. First, a synthetic experiment is used to
show the usefulness of the method in detecting the dynamical
behavior of chaotic systems. Then, an example of application
of the proposed method to real complex environmental data
is discussed.

5.1. Logistic Map
A synthetic experiment is designed to investigate how SEP, FIM,
and FSC can be used to detect behavioral changes in non-
linear dynamical systems. In the present research, the well-known
logistic map is considered as a benchmark simulated case study,
that illustrates and helps to understand important features of the
considered measures.

Following the experiment proposed by Martin et al. (2001),
the logistic map defined by

xn+1 = cxn(1− xn), x0 ∈ [0, 1], c ∈ [0, 4],

where c is the control parameter, is analyzed using sliding window
technique. Analysis within the sliding window pursues the goal
of revealing dynamical evolution of properties of time series like
Gaussianity and non-stationarity.

The sequence (xn) is computed up to n = 1, 000 for c ∈
[3.5, 4]. Centered Gaussian noise with different level of variance,

0.05, 0.10, 0.15, is added to xn. The well-known bifurcation
diagram of the logistic map is displayed in Figure 2. The SEP,
FIM, and FSC are computed on data included in the overlapping
windows of width 2.5 · 10−3 along the control parameter, and the
results are shown in the same figure. The Lyapunov exponent is
also added for comparison reasons (Kantz and Schreiber, 2004).
The results are also displayed in the FSIP, see Figure 3.

Analyzing the results obtained from the data without noise,
it is easy to see how the SEP, FIM and FSC peak occurrences
correspond to dynamic changes shown by the bifurcation
diagram and the Lyapunov exponent. With the logarithmic
scale on the y-axis, the behavior of the SEP is somewhat
symmetric to the behavior of the FIM, i.e., the FIM seems to be
inversely proportional to the SEP. However, this is not exactly
the case, otherwise the FSC would be constant. In some sense,
the perturbations in the FSC reflect the departure from the
inverse proportionality between the SEP and the FIM. In the
FSIP, perfect inverse proportionality corresponds to iso-complex
curves. Indeed, the trajectory of the logistic map in the FSIP is
stretched along iso-complex curves, see Figure 3.

Adding noise shows that most of the peaks become
undetectable, see Figure 2. However, FSC seems to be the
measure which suffers the least to noise in data. Note also,
that FIM is less impacted than SEP. The noise effect is more
interesting in the FSIP, see Figure 3. While the uncorrupted data
is quite hard to interpret due to the superposition of the trajectory

Frontiers in Earth Science | www.frontiersin.org 6 July 2020 | Volume 8 | Article 255

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Guignard et al. Advanced Analysis Using FS Information

FIGURE 4 | High-frequency wind speed time series. From top to bottom : time series, SEP, FIM, and FSC moving windows, histograms and Q-Q plots of some time

series subsets.

with itself, adding some noise seems to clarify complexity and
trajectory behaviors in the FSIP. Noise stimulates the emergence
of protuberances roughly corresponding to “islands of stability”

of the (uncorrupted) bifurcation diagram, where Lyapunov
exponent is negative. This emergence is due to the fact that FIM
is less impacted than SEP, as it was seen above.
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FIGURE 5 | Scatter plot of hourly variance against hourly mean of the

high-frequency wind speed data.

5.2. Application to High Frequency
Wind Data
The Fisher-Shannon information method can find a wide
application in the geo-environmental domains. In the present
section, we demonstrate how they can be applied to retrieve
relevant knowledge from environmental time series. Specifically,
high frequency wind speed data are analyzed. The time series
consists of 1Hz frequency wind speed data, from 28 November
2016 to 29 January 2017 (Figure 4). The data (motus.epfl.ch)
were measured at 25.5 m above the ground by a sensor which
is placed on meteorological mast located on the campus of the
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Notice that the mast is surrounded by a building layout of 10 m
average height. More information on these measurements can be
found in Mauree et al. (2017a,b).

The Fisher-Shannon quantities are computed with non-
overlapping moving windows of 1 hour width along the time
axis. Globally, all quantities vary with time, indicating non-
stationarity, see Figure 4. The SEP seems to roughly replicate the
behavior of the original time series. This is due to a proportional
effect between the mean and the variance of the data, as shown
in Figure 5. As for the logistic map case, the FIM is roughly
inversely proportional to the SEP (not shown in logarithmic
scale). The FSC is close to 1 during long period of time, e.g.,
between the 17th and the 27th January 2017. This should indicate
a local behavior of wind speed close to a Gaussian one. During
these periods, wind speed is not necessarily calm, e.g., the 17th
January. Conversely, The FSC also exhibits some peaks where
wind speed is rather low, which should indicate a more complex
distribution of the data.

To verify this, a closer exploration of the data is required. To
this aim, we considered four subsets of 3 hours length, denoted
by A, B, C, and D and represented on Figure 4 by color red,
purple, blue, and green, respectively. Histograms and quantile-
quantile (Q-Q) plots of these data subsets are also plotted with
the corresponding colors. The subset D is chosen during the

period of almost unitary FSC. The corresponding histogram and
Q-Q plot confirms the very-close-to-Gaussian behavior of the
data. The subset C is also chosen with a FSC close to 1, but
centered on the maximum of SEP of the 17th January 2017 which
corresponds also to a high wind speed activity. The histogram
shows again a distribution close to a Gaussian one, but with
a higher variance than C. This was an expected output, since
for Gaussian distribution the SEP equals to the variance and
C was chosen with a high SEP. The Q-Q plot shows little
departure for the left tail, but the data are still relatively close
to what was expected. The subset B is centered on a peak of
FSC. The histogram shows a distribution which is very far from
Gaussianity. It is clearly asymmetric and has at least twomodes—
maybe three. The Q-Q plot shows a strong departure from the
Gaussian distribution, especially on the left tail. The subset A is
centered on the highest FSC value. Its histogram shows three—
maybe four—modes. The corresponding Q-Q plot shows how for
this subset data are even farther from Gaussianity than for the
previous subset.

These results show the high complexity of these data,
whose behavior can rapidly change locally in time or even
during calm weather. Further analysis on a larger set of these
measurements using the FSC can be found in Guignard et al.
(2019b), where authors analyzed wind speed and temperature
data gathered by sensors similar to the one used to collect
the data analyzed in this section, fixed along a mast located
in a urban canyon. A FSC analysis suggested different wind
dynamics induced by the building layout. The daily variation
of temperature was also found to be an important predictor
for high-frequency wind speed daily complexity. Moreover, FSC
was used to show that wind speed and height are related by a
non-linear relationship. More generally, this demonstrates the
high versatility of analysis based on Fisher-Shannon information,
which had yield numerous and various insight on these data.

6. CONCLUSIONS

The paper discusses the Fisher-Shannon information method as
an effective data exploration tool able to give diverse insights into
complex non-stationary time series. The Fisher-Shannonmethod
was presented in a unified framework and new interpretations of
FSC were pointed out. In particular, the FSC was identified as a
sensitivity measure of the SEP and as a scale-independent non-
Gaussianity measure, which both provide interpretation of this
quantity as well. The detection of potential Gaussian behavior
in the data was successfully showed on high-frequency wind
speed data.

In the methodological part of the paper, FIM and FSC were
computed in closed forms for several parametric distributions
which are widely used in geo-environmental data analyses.
Theoretical formulas for other random variables can be derived
depending on the problem at hand. Furthermore, it was
also shown—by injecting noise in the logistic map—how
these information measures can be used to detect potential
dynamic changes in a quite robust manner—especially with
FSC. While SEP, FIM and FSC were presented as versatile
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information-based exploratory tools, they can also be used as
time series discrimination or, more generally, to generate time
series features for clustering, modeling, and forecasting.

The Fisher-Shannon method has been widely used in
geosciences, as shown in the first part of this paper. However,
according to our opinion, its full potential is still unexploited
and underestimated. To simplify the access to this method for
environmental data analysis and foster reproducibility, open
source libraries written in R and Python for the computation
of the three measures via a non-parametric kernel density
estimation are provided.

From a theoretical point of view, future studies should
involve generalization of the Fisher-Shannon method to the
multivariate case. Several numerical investigations could be
carried out for the KDE of the FIM. In particular, other
estimates could be provided by re-substitution techniques as
with entropy. Optimal bandwidth choice regarding to asymptotic
mean squared error of FIM—or even FSC—could be derived.
More practically, a challenging exploratory analysis of spatio-
temporal data is planned.

SOFTWARE AVAILABILITY

A Python package is proposed on PyPI and GitHub
(https://github.com/fishinfo/FiShPy), as well as
an R package available on CRAN and GitHub
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and FSC.
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7. APPENDIX

The differential entropyHX for Gamma,Weibull and log-normal
distributions can be found in (Lazo and Rathie, 1978) and (Cover
and Thomas, 2006). The SEP is simply a non-linear transform
of HX .

Proof of proposition 1: Computing the second derivative of
log f (x), one has

∂2

∂x2
log f (x) = −k− 1

x2
,

and then, using (4), the variable change x = θy and the properties
of the Gamma function,

IX = (k− 1)E[X−2]

= k− 1

θkŴ(k)

∫ ∞

0
xk−3e−

x
θ dx

= k− 1

θ2Ŵ(k)

∫ ∞

0
yk−3e−y dy

= (k− 1)Ŵ(k− 2)

θ2(k− 1)(k− 2)Ŵ(k− 2)
,

yielding the FIM for the Gamma distribution. The FSC is directly
obtained by multiplying the SEP and the FIM.

Proof of proposition 2: Starting from the Weibull PDF, one has

∂2

∂x2
log f (x) = − k− 1

(x− µ)2 − k(k− 1)

λk
(x− µ)k−2 ,

and with the variable change y = ( x−µ
λ

)k,

IX = (k− 1)E
[

(X − µ)−2
]

+ k(k− 1)

λk
E

[

(X − µ)k−2
]

= k(k− 1)

λ3

[

∫ ∞

0

(

x− µ
λ

)k−3

e−( x−µ
λ

)k dx

+ k

∫ ∞

0

(

x− µ
λ

)2k−3

e−( x−µ
λ

)k dx

]

= k− 1

λ2

[∫ ∞

0
y−

2
k e−y dy+ k

∫ ∞

0
y1−

2
k e−y dy

]

= k− 1

λ2

[

Ŵ

(

1− 2

k

)

+ kŴ

(

2− 2

k

)]

= k− 1

λ2

[

1+ k

(

1− 2

k

)]

Ŵ

(

1− 2

k

)

= (k− 1)2

λ2
Ŵ

(

1− 2

k

)

.

Proof of proposition 3: The second derivative of log f (x) is

∂2

∂x2
log f (x) = log x− µ+ σ 2 − 1

σ 2x2
,

and using the variable change y = log x− µ, one have

IX = 1

σ
√
2π

∫ ∞

0

1− σ 2 − (log x− µ)
σ 2x3

e
− (log x−µ)2

2σ2 dx

= 1

σ
√
2π

∫ ∞

−∞

1− σ 2 − y

σ 2
e
− y2

2σ2
−2y−2µ

dy.

Note that

− y2

2σ 2
− 2y− 2µ = − (y+ 2σ 2)2

2σ 2
+ 2(σ 2 − µ).

Using this and the definition of a Gaussian distribution
N (−2σ 2, σ ),

IX = 1

σ
√
2π

∫ ∞

−∞

(

1− σ 2

σ 2
− y

σ 2

)

e
− (y+2σ2)2

2σ2
+2(σ 2−µ)

dy

= e2(σ
2−µ)

σ 2

[

1− σ 2

σ
√
2π

∫ ∞

−∞
e
− (y+2σ2)2

2σ2 dy

− 1

σ
√
2π

∫ ∞

−∞
ye

− (y+2σ2)2

2σ2 dy

]

= e2(σ
2−µ)

σ 2

[

1− σ 2 + 2σ 2
]

= 1+ σ 2

σ 2
e2(σ

2−µ),

and the FIM is obtained. The FSC is

CX = (1+ σ 2)e2µ+2(σ 2−µ) = (1+ σ 2)e2σ
2
.
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