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ARTICLE INFO ABSTRACT

In this paper, the tools provided by the theory of Optimal Experimental Design are applied to a nonlinear
calibration model. This is motivated by the need of estimating radiation doses using radiochromic films for
radiotherapy purposes. The calibration model is in this case nonlinear and the explanatory variable cannot be
worked out explicitly from the model. In this case an experimental design has to be found on the dependent
variable. For that, the inverse function theorem will be used to obtain an information matrix to be optimized.
Optimal designs on the response variable are computed from two different perspectives, first for fitting the model
and estimating each of the parameters and then for predicting the proper dose. While the first is a common point
of view in a general context of the Optimal Experimental Design, the latter is actually the main objective of the
calibration problem for the practitioners and algorithms for computing these optimal designs are also provided.

The optimal designs obtained have just three different points in their support, but practitioners usually de-
mand for more support points. Thus, a methodology for computing space-filling designs is also provided when
the support points are forced to follow some mathematical rule, such as arithmetic or geometric sequences. Cross
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efficiencies of all these designs are computed in order to show their ability for different goals.

1. Introduction

Calibration models are used in many scientific and industrial fields.
They have been studied widely, e.g. by Osborne (1991). It means a
different perspective from a standard experimental regression model. In
particular, the calibration process is made in two steps. First, for known
values of the explanatory variable, the response is measured and the
parameters of the model are fitted. Then, on a second stage, in order to
calibrate a particular value of the explanatory variable, the response is
computed using the inverse function of the model and after that the
right value of the explanatory variable to be used is predicted. Thus,
while for a standard regression model, generally the main concern is the
estimation of the parameters of the model or the prediction of the re-
sponse at some values of the explanatory variable, for a calibration
model the main concern is to provide the most accurate prediction of
the explanatory variable in order to get a desired specific value for the
response, e.g a specific area properly irradiated.

Optimal designs for calibration models have been rarely considered
in the literature. Kitsos (1992), provided a procedure in a simple case
when the explicit expression of the inverse model can be obtained and
the outline becomes traditional. Francois et al. (2004) computed op-
timal designs for inverse prediction in calibration models and presented
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two criteria, G;—optimality and V;—optimality. The aims of these cri-
teria are the same than G- and V-optimality, but for the case of inverse
prediction. Biedermann et al. (2011) considered a similar problem for
indirect observations through a second variable and shows how a uni-
form design performs quite well for this purpose. Finally, Amo-Salas
et al. (2016) presented a previous work in this field, which is detailed
and extended in this paper from the perspective of calibration. In that
paper the authors gave the theory for non—-invertible functions of cali-
bration, although the nominal values considered allowed obtaining a
closed-form expression for the inverted model (Ramos-Garcia and
Pérez-Azorin (2013)). In this work a case study with more general
nominal values is considered (Reinhardt et al. (2012)). Then, the aim of
this paper is the study of nonlinear models where the explanatory
variable is expressed as a function of the dependent variable and this
function has not a closed—form for its inverse, even for the nominal
values of the parameters. This study is presented from two perspectives,
firstly it is focused on the estimation of the parameters of the model and
then on the final goal is prediction of the explanatory variable.

One of the fields where the calibration has an important role is
dosimetry. The use of digital radiographs has been a turning point in
dosimetry. In particular, radiochromic films are very popular nowadays
because of their near tissue equivalence, weak energy dependence and
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high spatial resolution. In this area, calibration is frequently used to
determine the right dose in radiotherapy for a specific treatment. A film
is first irradiated at known doses for building a calibration table, which
will be used to fit a parametric model, where now the dose plays the
role of the dependent variable.

In this paper a case study from Reinhardt et al. (2012) will be used
to illustrate the procedure. They considered the case of dose verification
in highly conformal radiation therapy taking advantage of the high
spatial resolution offered by radiochromic films such as Gafchromic
EBT, EBT2 or the new generation of these films EBT3. A comparison of
dose response curves of different EBT2 film batches and a single EBT3
film lot was made in that paper. Response curves were fit according to
the Dosimetric GafChromic films literature. In particular, Devic et al.
(2004) states that “a suitable function for a given system i) it has to be
monotonically increasing; ii) it has to go through zero, and finally iii) it
has to give the minimum relative uncertainty for the fitting para-
meters.” Based on these criteria they have chosen the family of func-
tions of the form

netOD = 7n(Dose, 6) + ¢,
where

n~'(Dose, 6) = u(netOD, 6) = a netOD + f netOD?,
Dose € Zpose = [0, B]. (€D)

The error ¢ will be assumed normally distributed with mean zero
and constant variance, o2, and 6 = (a, 3, y)" are unknown parameters
to be estimated using the Least Squares procedure (LSE), actually the
Maximum Likelihood Estimates (MLE) in this case of normality.

Devic et al. (2004) gave some hints for the third term, in particular
for the parameter y. This term tries to account for the nonlinear dose
response. The power y was treated by Devic et al. (2004) as parameter
and it was varied from 0.5 to 5.0 with a step of 0.5. For a given film
type/densitometer combination, the y value leading to a minimal
overall uncertainty was retained. They have also tried to leave the
power v as a fitting parameter and observed that the sum of residuals
would improve negligibly, if at all, by (for the best case) 0.2%. How-
ever, the consideration of a new fitting parameter has introduced higher
fit uncertainties by 1%-2% in their analysis.

Higueras et al. (2020) computed optimal designs for a calibration
dosimetry model that can be inverted for any values of the parameters
and therefore there is a closed—form expression for the prediction of the
dose. Then the optimality criterion to be used is minimizing the var-
iance of this prediction, which is the so called c—optimality criterion.

The main contributions of this paper are basically two. On the one
hand Amo-Salas et al. (2016) considered the case of a nominal value of
% = 2. Although vy remains still unknown this assumption simplifies
very much the problem. Actually this makes the problem computa-
tionally much simpler since the explanatory variable can be worked out
explicitly. In this paper we afford this through the inverse function
theorem at each step of the computations. On the other hand, the two
(inverse) criteria introduced by Francois et al. (2004) are used here,
again for a non-invertible function. The algorithms provided make the
computations possible in this case.

This work is structured as follows, in Section 2 the inverse function
theorem is used to obtain the expression of the Fisher Information
Matrix (FIM), which is needed for computing optimal designs. This
work considers both, estimating the parameters of the model (Section
3) and calibrating the explanatory variable of the radiation dose (Sec-
tion 4) and for both situations optimal designs are computed using a
study case from Reinhardt et al. (2012). Moreover, optimal space—-
filling designs are computed in both cases for reaching the requirements
of the common practice.
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2. Optimal experimental design for calibration

Let a general model be

y=nl,0)+¢ e~N(0,0), 2)
where y is the dependent variable, x is the explanatory variable, 6 is the
vector of parameters of the model and 7(x, 6) is an unknown function
with u(y, 6) = n7'(x, 6) explicitly known. The challenge here is to find
optimal designs for the explanatory variable when the expression of the
function 7(x, 6) is unknown and possibly nonlinear in the parameters.

An exact experimental design of size n consists of a collection of points
X;, i =1, ..,n, in a given compact design space, %Z,. Some of these points
may be repeated and a probability measure can be defined assigning to
each different point the proportion of times it appears in the design.
This leads to the idea of extending the definition of experimental design
to any probability measure (approximate design). From the optimal ex-
perimental design point of view we can restrict the search to discrete
designs of the type

_ X1 X ... Xk
§= b1 Py - Px|’

where x;, i =1, ..,k are the support points and £(x;) = p, is the pro-
portion of experiments to be made at point x;. Thus, p, > 0 and
Z;‘:I p; = 1. In practice this design means realizing n; ~ n X p, experi-
ments for a particular value, x;, of the explanatory variable(s).

For the exponential family of distributions the FIM of a design & is
given by

M(,6) = I(x, 6)§(x),
ng (3)

where I(x, 6) = W%ﬁm is the FIM at a particular point x. It is
evaluated at some nominal value of 6. This is actually the FIM of a
linear model with regressors %. The nominal value usually re-
presents the best guess for the parameters vector 6 at the beginning of
the experiment.

It can be proved that the inverse of this matrix is asymptotically
proportional to the covariance matrix of the parameter estimators. An
optimality design criterion, ®[M (£, 6)], aims to minimize the covar-
iance matrix in some sense and therefore the inverse of the information
matrix. For simplicity ®(§) will be used instead of ®[M (&, 6)]. In this
paper two popular criteria, D- and c-optimality, as well as two cali-
bration-oriented criteria, G;— and V;—optimality, will be considered.

The D-optimality criterion minimizes the volume of the confidence
ellipsoid of the parameters and it is given by ®p(§) = detM—/"(¢, 6),
where m is the number of parameters in the model. The c-optimality
criterion is used to estimate a linear combination of the parameters, say
c’6, and it is defined by ®.(§) = c"M~ (&, 6)c, where the superscript
stands for the generalized inverse class of the matrix. Although the
generalized inverse is unique only for nonsingular matrices the value of
c"™M~ (&, O)c is invariant for any member of the generalized inverse class
if and only if ¢’6 is estimable with the design &.

Francois et al. (2004) computed optimal designs for inverse pre-
diction in calibration models and presented two criteria, G;— and
Vi—optimality. The aims of these criteria are the same that G— and
V—optimality, that is minimizing the maximum and the average pre-
diction variance respectively, but when the interest is in inverse pre-
diction. These criteria will be detailed in Section 4 as well as the al-
gorithms for computing the optimal designs. These criterion functions
are convex and non-increasing. A design that minimizes one of these
functions, say ®, over all the designs defined on %, is called a
d—optimal design, or more specifically, a D-, c-, Gi— or V;—optimal
design.

The goodness of a design, &, is measured by its efficiency, defined by
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where £ is the ®—optimal design.

This efficiency can be multiplied by 100 and be reported in per-
centage. If the function has a homogeneity property there is a practical
statistical interpretation. Thus, if the efficiency of a design is 50% this
means that the design needs to double the total number of observations
to perform as well as the optimal design.

In order to check the optimality of a design the General Equivalence
Theorem (GET) can be used (Kiefer and Wolfowitz, 1960; Whittle,
1973) for a more general version. This theorem is valid for approximate
designs and convex criteria. It is quite useful also for building efficient
algorithms for computing optimal designs. Let (x, £) be the Frechet
directional derivative in the direction of a one-point design at x,

(A~ M, ) +el(x, 6)) = DM, 6)
2

effm(é' )=

P, §) = lim,

This function is frequently called the sensitivity function. The GET
states that under some conditions of the criterion function, (x, &)
achieves its minimum value, zero, at the support points of the optimal
design.

This theorem provides also a bound for the ®-efficiency of a design,

g’

ming (x, §)
o)

For D-optimality ¥(x, £) = m — %M*l(g, G)W.

For c-optimality the Elfving's graphic method (Elfving, 1952) can be
used to construct the optimal design and this will not be needed. The
G;— optimal criterion is not differentiable and for Vi-optimality the
sensitivity function will be given in Section 4.

More details on the theory of optimal experimental designs may be
found, e.g., by Pazman (1986); Fedorov and Hackl (1997); Atkinson
et al. (2007).

2.1. Inverse function theorem for computing the FIM

The experiments are designed for the explanatory variable, x, which
is assumed under the control of the experimenter. However, in this
work it is considered that 7(x, 6) is unknown and invertible within the
design space. Nevertheless, the expression of the inverse with respect to
x, 4, 6) = n7(x, ), is known. Therefore the FIM, which is given by
(3), is defined in terms of y instead of x. In particular, for a specific
point the FIM is

on(x, 6) on(x, 6)

I6e 0 = =50 er

We can calculate the FIM in terms of the response variable y through
the inverse function theorem and the chain rule for differentiating
composed functions. In particular, differentiating the equation

x=pQy, 0) = umn, 0), o),

we obtain
0= (au(y, e)) . ) (6M(y, e))
oy y=7(x,6) 96 66 y=7(x,6)
Then
an(x, 6) _ _(au(y, e))‘l (aucy, e))
96 ay y=n(x,6) 66 y=n(x,6) (4)

For simplicity of notation the last expression will be called f (x).

This result allows the computation of the FIM and therefore optimal
designs on x may be obtained. This is the same model to be used for
designing variable y in the inverse model being heteroscedastic instead
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of homoscedastic, that is with non-constant variance

u@, 0y
ay '

This is meaningful since if the response is considered as the mean
model plus some error with constant variance, then the mean model for
the explanatory variable could be approximated by the inverse of the
original mean plus a different error, now with a non—constant variance
coming from the transformation of the model. Summarizing this idea,
heteroscedasticity needs to be considered when the calibration model is
adjusted. Assuming otherwise constant variance may introduce im-
portant biases. This adds some complexity, not only for estimating the
parameters of the model, but also for outlining the optimal design
procedure.

3. Designs for best fitting the model

The model proposed by Reinhardt et al. (2012) is being considered
for the case study. In this model, the function 5 (Dose, 8) is unknown but
its inverse is known and defined by Equation (1). Using Equation (4),
we obtain

n(Dose, 0)
7 (Dose, 6)70
Bon(Dose, 8)Yolog(n(Dose, 6))

F(netoD) = dn(Dose, 0) _ -1 _
80 oo + Boyyn(Dose, H)01

where ay, f, %, are some nominal values assumed for the parameters to
compute the optimal design. The function f (netOD) is considered here
as a function of netOD since mathematical expression of 7 (Dose, 0) is
not known and it will be considered as the inverse of u (netOD, 6). Thus,
the FIM for a design ¢ is

M (& 6) = ) & (Dose))I (Dosei, 6o),

where 8] = (ao, By» %), netOD has been replaced by 7 (Dose, 6) and

Bon?o+log(n)
Bon*rolog(m) |,
Bon0*og(m) Byn¥olog(n) B nolog?(n)

n 7};/0+1
1

I(Dose, 6)) = ——————— nro+t RC
(a0 + Byrpn©™')?

)

where 1 denotes 7(Dose, 6) for simplicity of notation.

Although the optimal design is computed on Dose the function of the
original model 7 (Dose, ) is unknown, then this function is replaced by
netOD in Equation (5). Using the results of Reinhardt et al. (2012), the
estimated parameters for radiochromic new generation films EBT3 (in
particular the F06110902 film lot and radiation type Proton, Table 1)
are being considered as nominal values: ay = 8.32, §, =49.91 and
% = 2.6. Just for some values of y, the inverse function can be computed
analytically, otherwise it has to be computed numerically when needed,
what makes the problem much more demanding from a computational
point of view. The design space on the netOD, Zp.0p = [0, b] = [0,0.45],
corresponds to the design space for the dose, Zpys. = [0, B] = [0,10.00].

3.1. D-optimal designs

In order to compute the D—optimal design and due to the number of
parameters, a three—point design with equal weights in the support
points will be assumed, say Dose;, Dose, and Dose; with weights 1/3.
The D-optimal is computed on the variable netOD using matrix (5) and
then transformed into a design on the variable Dose. The determinant of
the information matrix for a general three-point design supported on
netOD,, netOD, and netOD; with weights 1/3 at each point is computed
and maximized in the interval Z,.0p = [0, b] = [0,0.45]. The obtained
design, £°P, shown in Table 1, is actually D-optimal. Fig. 1 (left)
shows
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Table 1

Optimal designs (support points and weights within parenthesis when it is the
case). The last point of all the designs, either 0.45 or 10, is ommited. The ef-
ficiencies of the approximate designs are computed with respect to the D-op-
timal design except the efficiencies for the c-optimal designs that are the c-
efficiencies of the D-optimal design. For the sequences the efficiencies are
computed with respect to the corresponding criterion, either D, V; or Gy, for the
optimal approximate design. Superscripts Ar and Ge stand for arithmetic an
geometric optimal designs.

netOD Dose Efficiency
Design  Support points (weights) Support points (weights) %
& 0.09 (1/3)  0.27 (1/3) 0.80 (1/3)  3.90 (1/3) 100
gD 0.13 (1/3) 0.33 (1/3) 1.33 (1/3) 5.54 (1/3) 87
& 0.06 (0.78) 0.27 (0.16) 0.54 (0.78)  4.00 (0.16) 53
§,3 0.29 (0.48) 4.45 (0.48) 0.3
gy 0.06 (0.41) 0.27 (0.40) 0.54 (0.41) 4.00 (0.40) 81
EGI 0.13 (0.06) 0.33 (0.30) 1.33 (0.06) 5.54 (0.30) 59
&, 0.09 (0.19)  0.29 (0.46) 0.84 (0.19) 4.41 (0.46) 93
b‘" 0.07 0.15 0.22 0.30 0.37  0.60 1.50 2.80 4.60 6.90 84
ge 0.07 0.10 0.150.21 0.31  0.60 0.90 1.50 2.60 490 85
55;’ 0.23 0.27 0.31 0.36 0.41  2.90 3.90 5.00 6.40 8.10 37
gGGIE 0.22 0.26 0.30 0.34 0.39  2.80 3.60 4.50 5.80 7.60 29
g‘;‘lﬂ 0.10 0.17 0.240.31 0.38 0.90 1.80 3.204.907.10 83
gg[e 0.13 0.17 0.21 0.27 0.35 1.30 1.80 2.60 3.90 6.20 73
m (0D, g7 = TP ) oy greon, ) 91 (P05e. O

for the design obtained using the transformation of the theorem of the
inverse function. It is lower than the number of parameters, m = 3, and
therefore the sensitivity function, ¢ (netOD, §;“’OD ) > 0. The equivalence
theorem states this design is actually D-optimal.

Transforming the three points through the function (1), with the
previous nominal values of the parameters,

Dose = 8.32 X netOD + 49.91 X netOD>®,

the D-optimal design on variable Dose, Eg"“, is shown in Table 1. These
are the designs (points and weights) related to the Dose, applied in
practice for the calibration procedure.

Now a design for netOD is computed in the usual way for the
function u(netOD, 6) in order to compare it with the previous one and
check the loss of efficiency. This is the wrong way of computing it since
the roles of the independent and the dependent variables are actually
exchanged. In particular the variance term is considered constant in this
way missing the heteroscedasticity induced by inverting the model.
Then, netOD is considered as the explanatory variable and after com-
puting the D-optimal design for netOD, we obtain the transformed de-
sign for Dose. That is, we are assuming u(netOD, ) as the function of

m-w(netoD,£,"e10P)
3.0F

251

201

0.1 0.2 0.3 0.4

Fig. 1. Sensitivity function for £2%°° (left) and &,

* netOD
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the original model. Using the previous nominal values, the D-optimal
design, say fgetOD is given in Table 1.
Fig. 1 (right) shows that

snetOD

m — % (netOD, &, ) retop

_ ou (netOD, G)M‘l(gD 0

g6’

ou (netOD, 6)
06

is lower than the number of parameters, m = 3, and therefore the
sensitivity function is greater than or equal to zero. The equivalence
theorem states this design is actually D-optimal. At this point a design
for the response, Dose, can be obtained by transforming again the de-
sign points using the equation from the model u(netOD, 6) (Table 1).

Apparently this design is quite different from the correct one, e.g.
the first and the second points are sensitively larger than the originals.
But the efficiency provides better information to compare this design
with respect to the right one, g‘“e,

£ Dose

1
Dosey |3
ettp €™ = | 2 D

& Dose

q)D (gD

= 0.868,

which means, in this particular case, a moderate loss of efficiency of a
little less than 15%. This suggests that it is important the use of the right
expression of f(netOD) for computing the optimal design. In the fol-
lowing sections the designs obtained will be computed directly for
netOD using the transformed expression of f(netOD) and then trans-
forming it back to designs on Dose.

For the computation of optimal designs it is necessary to guess some
initial parameters (nominal values). In order to asses how sensitive this
choice is a study for D-optimality has been performed as an example.
For measuring the impact of a wrong choice of the nominal values of
the parameters the efficiency of the computed design (with the nominal
values) has been obtained with respect to different possible true values
of the parameters in a neighborhood of the nominal values
ay = 8.32, B, = 49.91, 5, = 2.6. Fig. 2 shows the efficiencies of the
D-optimal design for the nominal values of the parameters with respect
to different possible true values of the parameters. The design is very
robust for the linear parameters a and f3, but much care has to be taken
for choosing a right nominal value of y. After a true value y = 4 the
efficiency starts to drop quickly. This information is important for the
experimenter in order to choose the appropriate nominal values. Si-
milar results can be obtained for the other criteria considered in the
paper, but they are not shown to avoid been too repetitive.

3.2. c—optimal designs

Frequently the interest is not in estimating all of the parameters of
the model, but some linear combination. A particular case is when there
is special interest in estimating just one particular parameter. For ex-
ample, in the case considered here, there is special interest in y. As
mentioned above the Elfving's method is a graph procedure for calcu-
lating c-optimal designs. Although the method can be applied to any

m—w(netOD,ED”eIOD)
3.0r
25¢
20
- - © netOD
0.1 0.2 0.3 0.4
znetOD

(right) designs.
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Eff Eff Eff
1.01 -0~ 1.0r ./.’,.—0—4—0-—._._._._. 1.0+
08/, 08t 0.8
06 06 06
0.4r 0.4 04r
0.2 0.2r 02F
a 8 . . . . . v
5 10 15 20 20 40 60 80 100 2 4 6 8 10

Fig. 2. Efficiencies of the D-optimal design for the nominal values of the parameters with respect to different possible true values of a (left), beta (center) y gamma

(right).

number of parameters it is not easily visualized for more than two
parameters. Lopez-Fidalgo and Rodriguez-Diaz (2004) proposed a
computational procedure for finding c-optimal designs using Elfving's
method for more than two dimensions. Harman and Jurik (2008);
Bartroff (2011) have also developed these idea.

In the example considered in this paper there are three parameters
and the Elfving locus, convex hull of f (Zneop) U —f (Zneion), where f (x)
comes from Equation (4), is hard to be visualized (Fig. 3). Computing
the intersection point of the boundary with the straight line defined by
vector ¢ for the case of two parameters is rather simple, but for more
parameters, even just three, it is not affordable or too difficult. Thus,
the procedure detailed by Lopez-Fidalgo and Rodriguez-Diaz (2004) is
being applied here. The idea is simple although the formalization is a
bit tedious. Once one has the Elfving locus all it is needed is to find the

Fig. 3. Curves f(Zneton) U —f (Znerop) for the Elfving's locus, properly scaled to
detect the shape details.

intersection of the line defined by vector ¢ (assuming the objective is to
estimate ¢’6) with the boundary of this set. The two possible points are
just symmetric and produce the same design. This point is a convex
combination of at most m points of the set f(Znop) U —f (Zneion)-
Those points will be the support points of the c-optimal design and the
coefficients of the convex combination will be the weights of the design.

The procedure takes into account that any of the non-null compo-
nents of a generic point satisfying the conditions of the Elfving locus
can be considered as objective function. The only exceptions are the
null components of vector c. This point has to be a convex combination
of no more than m support points of the set f(Zneop) U —f (Zneton)-
Thus, a generic point of this type depends on m different points and
m — 1 different coefficients. Now they must satisfy that they are in the
straight line defined by c, so the point must be pc, for some scalar p.
This gives m linear (in the coefficients) equations with the extra p.
Solving the linear system on the coefficients they will disappear. Thus,
the objective function is any of the components of the point such that
¢; # 0, which depends just on the m points of the design. This is now a
standard optimization problem with a number of algorithms and soft-
ware available for computing the optimum.

In this section c-optimal designs will be computed for estimating
each of the parameters in the example considered. The procedure is
being explained in more detail for the computation of the c-optimal
design for v, i.e., corresponding to the vector ¢! = (0,0,1).

The c-optimal design will be of the form:

£ = t s u
1-1-6 1 6)

corresponding to a point on the boundary of the Elfving's locus as well
as on the line defined by ¢’ = (0,0,1). A point in the Elfving's locus has
to be a convex combination of, at least, three points of
[ (Zneton) U —f (Znerop)- Apart from symmetric situations there are two
possibilities. Either the three points come from f(%;.0p) (equivalently
from — f (Ze0p)), that is,

G, 2, )" = (1= 4= O)f (1) + Af () + of (W)

or two come from f(Zp0p) and one from — f(Z,0p) (Symmetrically
two come from — f (Zpeop) and one from f(Z,.0p)), that is,

G, 2, )" = (1 = 4 = O)f (1) + Af (s) — of ().

Fig. 3 shows the point will be of the second kind. At the same time
they must be on the line defined by ¢’ = (0,0,1). Thus, for the second
case,

(1 =2=0)f (1) + Af () = &f (W) = p(0,0,1).

The equations coming from the two first components give the values
of A and § as a function of the three points,

(A =2 =8)f,0) + A, (s) — &, (w) = 0,
(A =2 =8)f0) + M,(s) — 8f,w) = 0,
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that is
At s, ) = HLf, @) = fiOf, W)

o HLWEH® = ) = OGS + HLW) + @ + Hw)
St u) = H6L®) = [Of W)

o LWEH® = L)) = LOEE) + L) + &GO + W)
where

4
o0 = (- xi1 _ xyil ,_57/xlogi '
o+ Pyx o+ Byt o+ Byx?

Plugging (6) into the third component the function

X3(t, s, u) = (1 — AL, s, u) — 8(t, s, w) f;(8) + AL, s, w)fy(s)
= 0(t, s, w)f,(u)

has to be maximized subject tot, s, u € Z,,,0p = [0,0.45]. The maximum
is reached at t* = 0.06, s* = 0.27, u" = 0.45. The weights are them ob-
tained from Equation (6),

1-A(t5 s u) =6, s, u") =041,
5(t", s", u") = 0.19.

At 5", u") = 0.40,

Thus, the c-optimal designs before, 57”"‘0’3, and after, E;)"”, the
transformation, are given in Table 1. This is the best design to estimate
the parameter y. Proceeding in a similar way the best designs for esti-
mating o and f are computed. Since the c-optimal design for estimating
B is a singular two—point design, and therefore the D—efficiency is zero,
the c-efficiencies of the D-optimal design are shown in Table 1 instead
of the D—efficiencies. The c-optimal designs for the parameters a and vy
have the same support points but different weights, this implies that the
D-optimal design has a efficiency greater than 80% for estimating y but
for estimating a that efficiency decreases and it is close to 50%. The c-
efficiency of the D-optimal design for estimating parameter { is too low
due to fact that the c-optimal design is singular. In all cases the designs
(points and weights) applied in practice for the calibration procedure
are those related to the Dose in the right hand side of Table 1. For
instance, the D-optimal design is 0.80 (1/3), 3.90 (1/3), 10 (1/3). Thus,
if we have the chance to realize n = 30 experiments a third of them,
that is 10 experiments, will be performed for each of the doses 0.80,
3.90 and 10. If n is not a multiple of 3 then some compromise has to be
made distributing the leftover replicates.

3.3. Space—filling designs with more than 3 points

Generally, the experimenters do not like designs with few and ex-
treme points. For instance, the design used by Reinhardt et al. (2012)
was the collection of equidistant points between 0.2 and 8 using steps of
0.5, that is

{0.2,0.7,1.2, 1.7, 2.2, 2.7, 3.2, 3.7, 42, 4.7, 5.2, 5.7, 6.2, 6.7, 7.2, 7.7}

for the doses. Using equation (1) the design is transformed into

{0.024, 0.077, 0.12, 0.16, 0.19, 0.22, 0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.35, 0.37, 0.38, 0.39}

for netOD. The D-efficiency of this design is about 51%. But this design
can be very much improved still keeping the requirements of the
practitioners. If an exact design with a number of points, say n, is
searched then three different, but replicated in some way, points are
going to be found always. If more than three different points are wanted
then the search has to be forced to a sequence of points following some
particular rule, such as an arithmetic or geometric sequence. It is
worthy to explain here that this has nothing to do with sequential or
adaptive designs. That is the reason they are called space-filling designs
since they try to be spread along the design space. In these cases, the D-
optimal design can be used as a reference measure of the goodness of
the space—filling design considered. Lépez-Fidalgo and Wong (2002)
optimized different types of sequences according to D-optimality,
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including arithmetic, geometric, harmonic and an arithmetic inverse of
the trend model. In this section, D-optimal space—filling designs are
computed and compared in order to analyze these designs because we
knew by personal communication with our physicists collaborators that
there was particular interest in them.

The target are exact designs of the type

&, = {Dose;, Dose,, ..., Dose,},

after a transformation from a design on netOD.
Each of the two sequences may follow some pattern, e.g. arithmetic
or geometric rules. The FIM is computed as:

M, 6) = % " I(Dose,, ©) = % 3" f (netOD) (netOD)).

Space—filling designs of size n = 6 will be considered in this paper,
although the main idea remains for any sample size. Arithmetic and
geometric sequences are being considered in the sense explained in
what follows. In all the cases appropriate interesting efficiencies will be
obtained.

3.3.1. Arithmetic sequences

Taking into account the last point of the design space Z,e0p = [0, b]
is always in the support of the D-optimal design, the arithmetic se-
quence will be forced to end at the right extreme of the interval,

b(1 = r), b(l S i) ...,b(l —r

2 ),b(l—r L ),b; re (o).
1 n-—1

n—

Just r will be free and it will be optimized. The FIM for this sequence
assuming equal weights at each point, i.e. 1/n, is

1w 1« n—i n-—i
M, 6) = - > 1(Dose;, 0) = - ;f(b(l - r:))ﬂ(b(l - 1))

i=1 -

A ratio of r" = 0.84 maximizes the determinant as it is shown in
Fig. 4 (left). The arithmetic D-optimal sequences on netOD and Dose,
/17, as well as its D-efficiency are shown in Table 1.

3.3.2. Geometric sequences
We consider geometric sequences starting at the last point, b = 0.45,
going backwards,

r"1p, ..,r?b, rb, b.
The ratio, r, has to be optimized. The FIM for a design of this type is

i

M, 6) = % 3" I(Dose;, 6) = % 3 FGmb)fT (b,
i=1

Fig. 4 (right) shows the ratio r* = 0.69 maximizes the determinant.
The geometric D-optimal designs (on netOD and Dose) and its D-effi-
ciency are shown in Table 1. In spite of the designs for both sequences
are different the efficiencies are quite similar and high. The reason
could be related to the presence of the end-point of the design space,
0.45, in these designs and that the first support point of the sequences,
0.07 is close to the first support point of the D-optimal design, 0.09.

Again, in all cases the designs (points and weights) applied in
practice for the calibration procedure are those related to the Dose in
the right hand side of Table 1.

Arithmetic and geometric sequences can be considered on the Dose
as well offering slightly different results.

4. Optimal designs for estimating the right dose

In previous sections the main concern of the experimental design
was the precise estimation of the parameters of the model. But the main
interest in calibration, from the point of view of the practitioners, is the
precise prediction (calibration) of the explanatory variable. Thus, op-
timal designs in the explanatory variable should be computed to
minimize the variance of the prediction in this variable. As mentioned
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Fig. 4. Determinant of the FIM for an arithmetic (left) and a geometric sequence (right) on netOD in function of r.

in the introduction, Francois et al. (2004) computed optimal designs for
inverse prediction in calibration models, in the particular case where
the function of the model is known and invertible. They presented two
criteria, G—optimality and V;—optimality in this paper. The aims of
these criteria are the same that G- and V-optimality, but for inverse
prediction. In this section, we adapt these criteria to the problem faced
in this work.

Taking into account that the explanatory variable Dose is modelled
by the function u(netOD, ), the variance of the prediction of Dose
given a value of netOD is

ou (netOD, 6) 1 Ou (netOD, 6)
O ME, 6)
96 26
Then, from this definition of the variance of the explanatory vari-
able we can define the following criteria,

Var (Dose) =

Dg,(§) =  max Var (Dose)
netOD € ZpetoD
Dy, (§) = f Var (Dose) d (netOD),

ZnetOED

Both criteria can be optimized in netOD and the optimal design in
this variable will be transformed to the optimal design in Dose following
the procedure used in previous sections.

4.1. Computation of G;— optimal designs

For computing the G;—optimal design the following Algorithm is

proposed.

Algorithm 1.

Step 1. Select an initial design §; supported on at least three dif-
ferent points.
Step 2. Let £ be the design obtained at step s. Determine

Ou (netOD, 9) ou(netOD, 6)

max aGT 30

netOD; = arg
netOD € ZpetoD

M, ©)

Step 3. Let §,, = (1 — a9)§; + os§,0p, Where o, is a one-point
design with, e.g. a; = 1/(s + 4), or some optimized step satisfying
the conditions a; — 0, 3 o = .

Step 4. If

q)GI (gs) - ¢GI(§S+1)
q’G](gs)

where &’ is the given bound for the improvement of the criterion
function, then STOP. Otherwise, sets + 1 « s + 2 and go to Step 2.

<d,

Using this Algorithm the G;— optimal design obtained on netOD and the
transformed design are given in Table 1, as well as its D-efficiency. The
designs (points and weights) applied in practice for the calibration
procedure are those related to the Dose in the right hand side of the
table.

4.2. Computation of Vi—optimal designs
For computing the V;—optimal designs, firstly the sensitivity func-

tion is calculated in order to define the Algorithm. The sensitivity
function for Vj—criterion is

fomsf ol

( )M_l(g 9) Gn(Dose ) dn(Dose, e)M_l(g, 9)%)(1(”6[OD),

S

ZnetOD
a0T

where u = u(netOD, 6) for space saving.
Algorithm 2.

Step 1. Select an initial design &, supported on at least three dif-
ferent points.
Step 2. Let £ be the design obtained at step s and compute

¥ (u(netOD, 6), &).

min
netOD € ZnetoD

netOD; = arg

Step 3. Define &, = (1 — a)§ + a§,0p, Where §,,op, is a one-
point design with, e.g. a; = 1/(s + 4), or some optimized step sa-
tisfying the conditions a; — 0, X ot; = oo.

Step 4. If

minnetODe’/y,etOsz (# (netOD, 6), §s+1>
(DVI(§S+I)

where § is the given efficiency aimed, then STOP. Otherwise, set
s+ 1« s+ 2 and go to Step 2.

1+ >,

With this Algorithm the V;—optimal design obtained on netOD, the
transformed design and its D-efficiency are shown in Table 1. In order
to show how the algorithm works the first iteration of the algorithm is
described in detail for the study case.

P (u(netOD, 6), &)

_ Y32 ((a1log(y) — ap)log(y) — a3) — a4y>© — asy>Olog(y) + agy>? + azy'® —agy? + ag
- 2
(a109M + a11)

)

where qaj, ...,a;; are specific numbers varying at each iteration of the
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Algorithm, not written to avoid a larger formula. The minimum of this
function is reached at netOD; = 0.45.

£ = 0.1 0.25 04 045
17 1/4 1/4 1/4 1/4

1/3 1/3 1/3

Step 2. The sensitivity function for this design is

Step 3. Then a new design is generated, § = 3/4§ + 1/4§,,0p,
where ,,op, is a one-point design at netOD; = 0.45. This new design
means just adding one new point with the same weight as the other,
Step 4. A bound of the efficiency is then

Step 1. The initial design is &, = {0'1 0.25 0'4}.

min 7, netOD, —707.
1+ ne[ODe,ly,Etopd’( §4) =1+ 707.97 — 0019 < & = 0.999.
Dy, (5 694.41

It is a really poor bound since it is even negative and we know the
efficiency must be always positive. The reason is that we are still very
far from the optimal design. Thus, a new iteration has to be done in the
same way until the bound for the efficiency will be near 1 enough.
Fig. 5 shows the behavior of these bound along the iterations of the
Algorithm. We can appreciate there is a fast convergence although not
monotonic.

At each iteration of the algorithm a new point is added to the de-
sign. After that we remove those points with a very small weight or we
replace points very near by the mean of them adding their corre-
sponding weights. This is a typical technique in the computation of
optimal designs since it is well known that the actual optimal design has
no many more different points in its support than the number of
parameters to be estimated.

Again, the designs (points and weights) applied in practice for the
calibration procedure are those related to the Dose in the right hand
side of the table. It is remarkable the difference between the D-effi-
ciency of the V;— and G;—optimal design. Thus, while the efficiency for
the estimation of the parameters of the model is about 60% with
G;—optimality, the V;—optimal design is a suitable design both for es-
timation and for prediction.

4.3. A note on the convergence of the algorithms for G; and Vr—optimality

As seen in Section 2.1 the calibration model takes to a transformed
model that is heteroscedastic but the variance of the predictions of the
explanatory variable are considered in these two criteria. In order to
make it more clear a general situation is considered. Let
f @) = g®)/w() as in (4), where the three functions depend also on 0.

1 max  (netOD, g, 1)
—— B4

(Dvl (554—1)
101 ANANAMNAANASAA A INARAyA el
0.8-
067
04
0.2
‘ : : : Step
50 100 150 200

Fig. 5. Convergence of the Algorithm for teh V~optimal design.
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The parameters are omitted here for brevity taking also into account the
nominal values will be provided from the beginning. Then the in-
formation matrix of a design is built with f,

ME 6)= Y fONTOEW).

YeZy

Vr-optimality is again a type of V-optimality with a different mea-
sure, in particular the Lebesgue measure multiplied by w?(y),

oy ME 0) = [ g OIM ©OgIwr()dx,

and therefore the convergence of the Algorithm is known.
For Groptimality the convergence is not so simple. The
Gr-optimality criterion is defined as

M, 0)) = Iygé;;gT(y)M‘l(i)g(y)

Iyrggswz(y)f TOMEf )

maxw?(y)d(y, §),
YEZy

where d(y, &) = fT ()M~ (£)f (¥) is proportional to the variance of the
prediction of the response as usual. This criterion is different from
G-optimality in the factor w?(y). It is convex and if w?(-) is continuous
in the compact set Z, then there exists an optimal design £* with
@* = P(£*) > — co0. Our empirical results seem to lead to an optimal
design.

4.4. Space—filling designs

Following the procedure of Section 3.3 designs with 6 points have
been computed also for these criteria. They are shown in Table 1 with
their efficiencies with respect to the criterion considered, G;— optim-
ality and V;—optimality. The designs (points and weights) applied in
practice for the calibration procedure are those related to the Dose in
the right hand side of the table. We can see how these space-filling
designs are better for V;—optimality than for G;— optimality, where the
efficiencies are lower than 40%.

All of the designs in Table 1 were more efficient than the sequence
used by the researchers. In particular, Table 2 shows the efficiencies of
the design used by the practitioners with respect to the computed de-
signs in this paper. This stresses the importance of using a good design.

4. Conclusions and further work

By using the Inverse Function Theorem, optimal designs were
computed on the dependent variable for estimating the parameters of
the model and for the prediction of the independent variable con-
sidering a dosimetry model. From the perspective of the estimation of
the parameters, the D-optimal design was computed directly on the
response variable and then it was transformed into a design on the
explanatory variable. This is not the proper design to be computed and
may displayed an important loss of efficiency as is the case in our ex-
ample with respect to the right one. The transformed model actually
becomes heteroscedastic. This needs to be considered when the cali-
bration model is adjusted in order to avoid mispecification of the right
model. Optimal designs for estimating each parameter of the model
were also computed. This allowed to measure how efficient was the D-

Table 2
Efficiencies of the experimental design used in practice with respect to different
criteria.

Criterion D Gy V; C Cy Cs

Efficiency 0.51 0.07 0.34 0.19 0.18 0.24
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optimal design for estimating each of them, displaying a good efficiency
for estimating parameter y but neither for a nor for f.

Taking into account that this model has calibration purposes, the
G;— and Vj—optimal designs have been computed in order to optimize
the inverse prediction. Moreover, algorithms for computing them are
provided in this paper.

The main contribution of this work is to establish the methodology
for computing optimal designs when the function of the model is given
as a function of the response variable and there is not a closed-form
available for its inverse. This situation is common with calibration
models as the dosimetry model considered in this work. Thus, the op-
timal designs computed cover different aims from the estimation of the
parameters of the model to the maximization of the precision of the
measured dose.
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