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Abstract We provide strong evidence that all tree-level 4-
point holographic correlators in AdS3 × S3 are constrained
by a hidden 6D conformal symmetry. This property has been
discovered in the AdS5 × S5 context and noticed in the ten-
sor multiplet subsector of the AdS3 × S3 theory. Here we
extend it to general AdS3 × S3 correlators which contain
also the chiral primary operators of spin zero and one that
sit in the gravity multiplet. The key observation is that the
6D conformal primary field associated with these operators
is not a scalar but a self-dual 3-form primary. As an example,
we focus on the correlators involving two fields in the ten-
sor multiplets and two in the gravity multiplet and show that
all such correlators are encoded in a conformal 6D correla-
tor between two scalars and two self-dual 3-forms, which is
determined by three functions of the cross ratios. We fix these
three functions by comparing with the results of the simplest
correlators derived from an explicit supergravity calculation.

1 Introduction

Several different approaches have been developed to study
the correlators of local operators in holographic CFTs when
it is possible to exploit the dual description in terms of
a weakly coupled gravity theory. The traditional approach
uses Witten’s diagrams in AdS [1] which has more recently
been complemented by new tools such as the Mellin space
formulation [2,3], the “position space” method developed
in [4,5], the use of large spin perturbation theory [6] and
Lorentzian inversion formula [7,8], and the approach based
on microstate geometries of [9,10]. In the case of N = 4
SYM/ AdS5 × S5 supergravity, these new techniques made it

a e-mail: stefano.giusto@pd.infn.it
b e-mail: r.russo@qmul.ac.uk
c e-mail: tyukov@pd.infn.it
d e-mail: c.wen@qmul.ac.uk (corresponding author)

possible to study explicitly a large class of correlators and to
extracting interest CFT data such as couplings and anomalous
dimensions [11,12]. This has led to a remarkable observa-
tion [13]: the tree-level 4-point supergravity amplitudes in
AdS5 × S5 enjoy a 10D hidden conformal symmetry and this
can be used to write compact recursion relations capturing
all the tree-level holographic correlators of four half-BPS
operators in N = 4 SYM.

It has been noticed [14,15] that the holographic 4-point
correlators in AdS3 × S3 duality share some key properties
with the AdS5 cousin and so it is natural to ask whether
a hidden conformal symmetry is present also in this case.
The aim of this letter is to answer in an affirmative way this
question and to show how to derive the recursion relations
capturing all AdS3 holographic correlators in the tree-level
supergravity approximation. One aspect that makes this ques-
tion interesting is that it is in general difficult to apply some
of the modern techniques to holographic dualities involv-
ing a CFT2. The chiral nature of the theory implies that the
results for the 4-point correlators can depend separately on
the cross-ratio z and z̄ so it is not known in general how to
rewrite the results in Mellin space. Furthermore the CFT2

considered here is a N = (4, 4) SCFT and so has only half
the amount of supercharges with respect to the AdS5 case.
SCFTs of this type were discussed in [16], but the Mellin
bootstrap approach adopted there cannot be directly applied
to this case for the reason mentioned above.

However there are indications suggesting that the pattern
discovered in [13] should be at play also in the AdS3 × S3

case. First, all the 4-pointN = (2, 0) 6D supergravity ampli-
tudes [17] relevant for the flat-space limit enjoy a hidden 6D
conformal symmetry. Then, when focusing just on external
states that are “matter” multiplets (i.e. tensor multiplet of
the N = (2, 0) 6D supergravity), it was shown [14] that
all 4-point holographic correlators derived in [14,15] can be
obtained via a recursion relation from the lowest AdS3/CFT2

4-point correlator obtained in [18]. We will first review these
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aspects and then show that the approach of [15,18] provides
a natural interpretation of the known examples and a con-
crete way to construct a complete implementation of the 6D
hidden conformal symmetry for all the multiplets in the the-
ory. The crucial observation is that the 6D conformal field
associated with the gravity multiplet operators is a self-dual
3-form, instead of a scalar as for the tensor multiplets or the
AdS5 case. As an example, we will work out how the hid-
den conformal symmetry constrains the correlators with two
fields in the matter multiplets and two fields in the gravity
multiplet. Of course in order to obtain an explicit recursion
relation one needs also the results for some correlators which
fix the initial data of the recursion. We obtained these cor-
relators by generalising the approach of [15]; here we will
quote just the results we need and refer to a forthcoming
paper [19] for their derivation. The framework presented in
this work should make it possible to bring our knowledge of
holographic correlators in AdS3 × S3 up to the same level
as the AdS5 × S5 counterpart and start a systematic study of
the OPE data in the gravity regime, an analysis of loop cor-
rections and possibly also of string corrections by adapting
to AdS3 successful approaches in the AdS5 case [20–32].

2 Hints of a hidden 6D conformal symmetry

Let us start from the tree-level 4-point amplitude in N =
(2, 0) supergravity in flat space [17]

A4 = G6δ
8(Q)δ6(P)

[1â1 2â2 3â3 4â4 ][1b̂1
2b̂2

3b̂3
4b̂4

]
s12s23s13

, (2.1)

where G6 is the 6D Newton constant, si j = (pi + p j )
2

are the Mandelstam variables, δ6(P) indicates the stan-
dard momentum conservation, and the remaining ingredi-
ents are written in terms of 6D spinor helicity formalism:
pi μ(�μ)AB = λA

i aλ
B,a
i = 1

2εABCD λ̃i ,C â λ̃
â
i D . The index

i indicates the external particle, μ is a vector index and
A, B, . . . are spinor indices of 6D Lorentz group, and a
and â are SU (2) × SU (2) indices labelling the little group
SO(4). Finally δ8(Q) involves the supercharges and scales
as λ8, while the square parenthesis in (2.1) is defined as
[iâ1 jâ2kâ3lâ4 ] := εABCD λ̃i A â1 λ̃ j B â2 λ̃k C â3 λ̃l D â4 .

As its 10D counterpart, this amplitude enjoys some special
features. The combination G6δ

8(Q) is dimensionless and we
will focus on the truncated amplitude Ã4 that does not contain
this factor. By writing the 6D conformal generators in terms
of spinor helicity variables [33]

D = 1

2

∑

i

(
λ̃i A â

∂

∂λ̃i A â
+ 4

)
, K AB =

∑

i

∂2

∂λ̃i â A∂λ̃âi B

,

(2.2)

it is possible to check explicitly that Ã4 is annihilated by both
D and K . Let us conclude this discussion of the flat space
amplitude, by pointing out that it is easy to separate the matter
and the gravity parts in (2.1): in order to select a particle in
the gravity multiplet for the i th external state one needs to
symmetrise the little group indices âi and b̂i , while, if the

indices are contracted with εâi b̂i , then a particle in a tensor
multiplet is selected. If all external states are taken to have
antisymmetric little group indices, (2.1) simplifies yielding1

Ãten ∼ δ6(P)

(
δ f1 f2δ f3 f4

s12
+ δ f1 f4δ f2 f3

s23
+ δ f1 f3δ f2 f4

s13

)
.

(2.3)

When considered in the AdS3 × S3 background the
N = (2, 0) supergravity discussed above captures the strong
coupling limit of a N = (4, 4) SCFT2. Let us recall
the main features of this theory. The R-symmetry group
SU (2)L × SU (2)R can be identified with the isometries
of the S3 on the bulk side. The Chiral Primary Opera-
tors (CPOs) of the theory are labelled by the holomorphic
and antihomorphic conformal dimensions (h, h̄) and are in
the ( j, j̄) = (h, h̄) representation of the R-symmetry. For
each tensor multiplet there is a family of CPOs sk with the
quantum numbers (h, h̄) = (k/2, k/2) with k = 1, 2, . . ..
There is another left/right symmetric family of CPOs σk
with (h, h̄) = (k/2, k/2) and k = 2, 3, . . .. Finally there
are two families of CPOs V±

k with (h, h̄) = (k/2, k/2 + 1)

and (h, h̄) = (k/2 + 1, k/2) respectively and2 k = 0, 1, . . ..
Here we are following the notation of [14], see the Tables 1–3
in that reference for more details. From the 6D point of view,
the CPOs σk and V±

k arise from the Kaluza-Klein reduction
of the supergravitons over the S3 and so are on a different
footing from the sk that follow from the reduction of the ten-
sor multiplets. One can encode the R-symmetry indices of
each operator in terms the SU (2)L × SU (2)R spinors Aα ,
Āα̇ or equivalently, to emphasise the higher dimensional ori-
gin of the SCFT2 primaries, in terms of an SO(4) vector
tμ ≡ σ

μ
αα̇A

α Āα̇ satisfying3 t2 = 0:

1 We generalised the result obtained from (2.1) to the case of particles
in different tensor multiplets: each contribution 1/si j is multiplied by
delta functions ensuring that in the si j the particles i , j involved are in
the same tensor multiplet.
2 For k = 0 these CPO represent the R-symmetry currents and their
correlators are determined by the affine Ward identities in terms of lower
points correlators. We will not consider them in our analysis.
3 As usual σμ = (σ , i 12×2), σ̄ μ = (σ ,−i 12×2) are the chiral blocks
of the 4D gamma matrices written in terms of Pauli matrices σ and the
identity.
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sk(zi , z̄i ; ti ) = ti μ1 . . . ti μk s
μ1...μk
k (zi , z̄i ),

σk(zi , z̄i ; ti ) = Ai α Āi α̇ti μ1 . . . ti μk−1σ
α α̇,μ1...μk−1
k (zi , z̄i ),

V+
k (zi , z̄i ; ti ) = Ai αAi β ti μ1 . . . ti μk (V

+
k )α β,μ1...μk (zi , z̄i ),

(2.4)

with V−
k written in a similar way in terms of the bilinear

Āi α̇ Āi β̇ . In the expression for σk we wrote one of the SO(4)

vector indices μk in terms of the bilinear (α, α̇). The reason
is that, as we will see, it is convenient to consider the descen-
dants obtained by acting on each CPO Ok(zi , z̄i ; Ai , Āi ) with

an appropriate combination of the supercharges4 Gα ÂG̃α̇ B̂

yielding a superdescendant Bk in the R-symmetry representa-
tion jB = jO−1/2, j̄B = j̄O−1/2. The lowest Kaluza-Klein
mode of each of these superdescendants will be characterised
just by the A, Ā without any t’s.

Let us start from the simple case of the 4-point correla-
tors involving just the CPOs ski [14,15,18]. For the lowest
possible value k = 1 the superdescendant is a scalar of the
R-symmetry group and has spin zero, so it is naturally related
to a 6D scalar field in a supergravity tensor multiplet and, as
usual, the higher values of k arise from the Kaluza–Klein
reduction of the same field with a S3 spherical harmonics of
level k − 1. We saw that, in the flat-space limit, the truncated
amplitude Ãten in (2.3) is identical to the tree-level 4-point
correlator of a scalar φ3 theory in 6D. Thus, if this hidden
conformal symmetry holds also in AdS, then it is natural to
expect that all CFT2 4-point correlators among ski are related
to a single CFT6 correlator with four 6D scalar primaries.
To show that this is indeed the case, we parametrise the con-
nected tree-level supergravity contribution to the correlator
as follows5

〈Ok1 Ok2 Ok3Ok4〉(1) =
( |ζ13|k21+k43 |ζ23|−k21+k43

|ζ12|k1+k2+k43 |ζ34|2k4

) [
G(0)

{ki }

+
∣∣∣∣
1 − αcz

1 − αc

∣∣∣∣
2 (

G̃{ki } + G̃(0)
{ki }

)]
,

(2.5)

where ki j = ki −k j , zi j = zi − z j , ti j = (ti − t j )2, Ai · A j =
Ai

1A
j
2 − Ai

2A
j
1,

|ζi j |2 = |zi j |2
t2
i j

, z = z14z23

z13z24
, αc = A1 · A3 A2 · A4

A1 · A4 A2 · A3 .

(2.6)

The superconformal algebra requires that the functions G̃{ki }
and G̃(0)

{ki } be regular when αc → 1/z or ᾱc → 1/z̄ and

4 The SU (2) indices Â, B̂ label an outer isomorphism of the algebra.
We will not need to specify the precise form of this supercharges.
5 For concreteness we are working with the conventions of “case I” of
Eq. (2.8) of [14]; the final results do not depend on this choice.

that G(0)
{ki } become a holomorphic function of z and αc when

ᾱc → 1/z̄ [14]. This last condition can be satisfied by taking
G(0)

{ki } to be a polynomial in the variables σ U and τ U V−1,

where σ ≡ |αc|2
|1−αc|2 , τ ≡ 1

|1−αc|2 , U ≡ |1 − z|2, V ≡ |z|2;
the order of the polynomial is finite and depends on the ki ’s.
The split between G̃{ki } and G̃(0)

{ki } is required, in general, to
single-out the part of the correlator that is encoded in the 6D
CFT correlator. It turns out that G̃(0)

{ki } can be taken to be a

finite-order polynomial in the variables σ U , τ U V−1 and
also V−1. Given the “dynamical” part of the correlator G̃{ki },
the finite set of coefficients that are needed to reconstruct
G(0)

{ki } and G̃(0)
{ki } can be fixed by imposing basic consistency

requirements on the OPE in the various channels, like the
vanishing of the extremal three-point functions.

With these choices, all G̃{ki }’s can be repackaged in a single
scalar CFT6 correlator

C(Zi ) = 〈φ(Z1)φ(Z2)φ(Z3)φ(Z4)〉 = f (Z)

|Z12|4|Z34|4 ,

(2.7)

where Zi = (zi , z̄i , t
μ
i ) are 6D coordinates. Here we took

the conformal weight of φ to be 
φ = 2 and parametrised
the result in terms of a single function of the 6D cross ratio
Z defined in a similar way to the 2D case (2.6). The relation
between the 6D and 2D CFT correlator is [13,14]

( |ζ13|k21+k43 |ζ23|−k21+k43

|ζ12|k1+k2+k43 |ζ34|2k4

)
G̃{ki }

= c{ki } t2
12t

2
34|z13|2|z24|2C(Zi ) , (2.8)

where the identity should be interpreted in a Taylor-expanded
way by matching the terms with the same number of each
ti . The numerical coefficients c{ki } are determined in such a
way that G̃{ki } gives the correlator of normalised operators.
The function f (Z) can be determined by imposing that (2.8)
holds for the correlator G̃1111 between operators in the lowest
Kaluza Klein mode ki = 1, using its explicit form found6

in [18]:

f (Z) = 2

π
(1 − Z)4(δ f1 f2δ f3 f4 D̂1122(Z)

+δ f1 f3δ f2 f4 D̂1212(Z) + δ f1 f4δ f2 f3 D̂2112(Z)) .

(2.9)

The relation (2.8) was checked in [14] for sk correlators up
to k = 3, 4 and it can be shown [19] to reproduce the Mellin
space results of [15] for all k.

6 See [18] for our conventions on the functions D̂ and how they are
related to the Bloch-Wigner dilogarithm and 4-point contact integral in
AdS.
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3 The CFT6 4-point correlator

In order to generalise the approach of the previous section to
the full theory, one needs to look for new 6D primaries. Actu-
ally a single primary should encode all the remaining CPOs
since the fields σk and V±

k have the same higher dimensional
origin from the gravity multiplet. The intuition developed so
far is that the 6D primary should be more directly related to
the superdescendants. This is also supported by the fact that
in 2D/6D relation (2.8), the combination appearing on the
CFT2 side is G̃ without the factor of |1 − αcz|2/|1 − αc|2
which naturally follows form the Ward identity relating the
correlator between the CPOs O and the one between the
superdescendants GG̃O [15]. Notice that this explains the
choice of the conformal weight 
φ = 2 made above: the
quantum numbers of the 6D primary, including the confor-
mal weight, can be read from the lowest Kaluza Klein of the
2D superdescendant: since Bs1 = GG̃s1 has h = h̄ = 1 and
j = j̄ = 0, it is natural to relate it to a scalar 6D primary
with 
φ = 2.

The same argument leads to a superdescendant for σ2 with
h = h̄ = 3/2 and j = j̄ = 1/2, to a superdescendant for
V+

1 with (h, h̄) = (2, 1) and ( j, j̄) = (1, 0), and similarly
with h ↔ h̄, j ↔ j̄ for V−

1 . We then have ten degrees
of freedom (four from the representation j = j̄ = 1/2
and three each from those with j = 1 or j̄ = 1) which
need to be encoded by a single 6D primary. Then it can-
not obviously be a scalar. By identifying the space-time and
the R-symmetry groups of the CFT2 with the decomposi-
tion SO(2, 2) × SO(4) ⊂ SO(2, 6) of the 6D conformal
group, we deduce the the 6D primary should contain a vector
of SO(4) which is a Lorentz scalar and a 2-form of SO(4)

which is a SO(1, 1) 1-form in space-time. Actually the latter
should split in two irreps with the self-duality of the SO(4)

and SO(1, 1) parts linked together, for instance taking them
to be both self-dual to describe V+

1 or both anti-self-dual
to describe V−

1 . In summary, this suggests to consider a 6D
primary field which is a self-dual 3-form w with 
w = 3.
Notice that such primary has ten of degrees of freedom as
required by the counting above.

It is now clear how to make the hidden 6D symmetry of
our general CFT2 correlators manifest. One should first start
from the 6D correlator involving the appropriate number of
scalar fields φ and self-dual 3-forms w

wm1m2m3 = − i

3!εm1m2m3m4m5m6w
m4m5m6 , (3.1)

and parametrise its most general expression in terms of arbi-
trary functions of the 6D cross ratio Z . These function can be
determined by using some explicit CFT2 data from correla-
tors involving low Kaluza-Klein modes. Finally the generic

CFT2 correlators can be extracted again from (2.8) where
now the appropriate 6D correlator C(Zi ) is used.

As an example, here we will work out the 6D correla-
tor involving two scalars and two 3-forms 〈φ(Z1)φ(Z2)w

(3)

(Z3)w
(4)(Z4)〉. This should capture all CFT2 correlators with

two sk CPOs and two CPOs in the σk or V±
k multiplets. In

order to write the most general 6D correlator in this case
we proceed in two steps. First, we need to count the number
of independent functions present in this result which can be
easily done by following [34]. The logic is to fix a conformal
frame where two operators are in a plane: for instance we
can take the scalars to be in the CFT2 directions. Then we
take the polarizations wm1m2m3 of the 3-forms and decom-
pose the 6D indices in the CFT2 directions a = 1, 2 and the
remaining SO(4) directions μ = 1, . . . , 4. There is an inde-
pendent function in the general expression of the correlator
for each SO(4)-invariant combination we can construct from
the 3-form polarizations; of course in the counting we need to
impose the 6D self-duality constraint, which means we can
focus on the SO(4) scalars obtained from the independent
components wμνρ and wμνa . For the case of two scalars and
two 3-forms mentioned above we have four structures linear
in both w(3) and w(4).

Then we need an explicit expression for each of the four
independent structures and for this, it is convenient to follow
the embedding formalism [35,36]. We introduce 8D coordi-
nates PM

i = (P+
i , P−

i , Zm
i ) = (1, |zi |2 + t2

i , zai , t
μ
i ), with

a metric (Pi , Pj ) = P+
i P−

j + P−
i P+

j − 2Zm
i Zm

j . Similarly

we promote w(i) to an antisymmetric tensor in 8D W (i)
M1M2M3

which is transverse W (i)
M1M2N

PN
(i) = 0 and whose pull-back in

6D agrees, of course, with the original polarization w
(i)
m1m2m3 .

It is possible to consistently impose W (i)
MN+ = 0 and the

remaining components of the 3-form in the embedding space
read

W (i)
mn− = − Zr

i

Z2
i

W (i)
mnr , W (i)

mnr

= w(i)
mnr − 2Zs

i

Z2
i

(Zi mw(i)
nrs − Zi nw

(i)
mrs

+Zi rw
(i)
mns). (3.2)

If we restrict ourselves to the correlators containing only σ ’s
we should take

w(i)
μνρ = εμνρσ t̂i σ , w

(i)
abμ

= i εab t̂i μ, (3.3)

with all other components of wmnr set to zero. In order to pre-
serve the 6D conformal invariance one should take arbitrary,
but constant vectors t̂i . For the purposes of making contact
with the CFT2 correlators, we break the full 6D symmetry to
SO(2, 2) × SO(4) by identifying t̂i with ti , the 4D part of
the position Zi : t̂i ≡ ti . If we are to describe the operators
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V±, we conjecture that one should take wμνρ = wμab = 0
and wμνa as follows

w
(i)±
μν1 = t̂±i μν, w

(i)±
μν2 = ±i t̂±i μν, t̂±i μν

= ±1

2
εμνρσ t̂

±
i ρσ , t̂±i μν t

μ
i = 0. (3.4)

As before t̂i μν should be a constant polarization to pre-
serve the 6D invariance, but here we link it to the 4D

part ti of Zi : t̂+i μν = t+i μν ≡ Āi α̇ Āi β̇ σ̄
α̇β̇
μν , t̂−i μν =

t−i μν ≡ Ai αAi βσ
αβ
μν . This automatically solves the con-

straints in (3.4). Of the four possible 6D conformal struc-
tures for 〈φ(Z1)φ(Z2)w

(3)(Z3)w
(4)(Z4)〉, it turns out that

only three of them are independent when t̂i is identified with
ti in the polarizations (3.3) and (3.4); they can be written in
terms of the following expressions in embedding space

S i j = − 4

(P(1), P(2))

[
(W (3)

MN AW
MNB
(4) P(i)

A P( j)
B )(P(3), P(4))

− (W (3)
MN AW

MNB
(4) PA

(4)P
( j)
B )(P(i), P(3))

− (W (3)
MN AW

MNB
(4) P(3)

B P A (i))(P( j), P(4))

− 2(W (3)
MPAW

MQB
(4) P(3)

Q PP (4)PA (i)P( j)
B )

+ 1

3
(W (3)

MN PW
MNP
(4) )(P(i), P(3))(P( j), P(4))

]
, (3.5)

and

T i j

= − 16 i εM1...M8

(P(1), P(2))2
[
W (3)

M1M2P
W (4)

M3M4Q
P(3)
M5

P(4)
M6

P(1)
M7

P(2)
M8

PP
(i)P

Q
( j)

−1

3
W (3)

M1M2M3
W (4)

M4M5Q
P(4)
M6

P(1)
M7

P(2)
M8

PQ
( j)(P

(i), P(3))

+1

3
W (3)

M1M2P
W (4)

M3M4M5
P(3)
M6

P(1)
M7

P(2)
M8

PP
(i)(P

( j), P(4))

+1

9
W (3)

M1M2M3
W (4)

M4M5M6
P(1)
M7

P(2)
M8

(P(i), P(3))(P( j), P(4))
]
,

(3.6)

where we can choose (i, j) = (1, 2) or (i, j) = (2, 1). The
symmetric and antisymmetric parts of S i j , and the antisym-
metric part of T i j yield independent structures, so we can
parametrise the 6D correlator in terms of three functions
fi (Z) as follows

〈φ(Z1)φ(Z2)w
(3)(Z3)w

(4)(Z4)〉
= 1

|Z12|4|Z34|8
[
f1(Z)S(12)

− f2(Z)S[12] + f3(Z) T [12]] . (3.7)

4 A new recursion relation

In this section we focus on the case where the 3-form 6D
primary describes the CFT2 CPO σk in (2.4). As a first step,
we use (3.3) in (3.7) in order to write explicitly S and T in
terms of the 2D coordinates and the R-symmetry variables
obtaining

C(Zi ) = 〈φ(Z1)φ(Z2)w
(3)(Z3)w

(4)(Z4)〉
= 1

|Z12|4|Z34|8
{
f1(Z) t2

34|z34|2

+ f2(Z)
[(
t2
14t

2
23 − t2

13t
2
24

) |z34|2
|Z12|2

+t2
34

|z14|2|z23|2 − |z13|2|z24|2
|Z12|2

]

+ f3(Z)
[ (t2

13t
2
24 + t2

14t
2
23)|z34|2 + t2

34(|z14|2|z23|2 + |z13|2|z24|2)
2|Z12|2

− t2
12t

2
34|z13|2|z24|2(z + z̄)

|Z12|4

− t2
13t

2
14|z23|2|z24|2 + t2

23t
2
24|z13|2|z14|2

|Z12|4

− t2
13t

2
24(|z12|2|z34|2 − |z13|2|z24|2) + t2

14t
2
23(|z12|2|z34|2 − |z14|2|z23|2)

|Z12|4

−4 εμ1μ2μ3μ4 t
μ1
1 tμ2

2 tμ3
3 tμ4

4
|z13|2|z24|2

|Z12|4 (z − z̄)
]}

. (4.1)

Then, as for the case discussed in Sect. 2, we should match
the general expression (4.1) with some explicit results for
〈sk1sk2σk3σk4〉(1) in the CFT2. The matching is done again
by using (2.8), but now using (4.1) for C(Zi ). It is, of course,
convenient to use the correlators involving the lowest Kaluza-
Klein modes, so we will use the functions G̃1122 and G̃2222

as defined in (2.5); notice that while G̃1122 does not depend
on αc, G̃2222 contains four different αc-dependent structures,
proportional to 1, σ , τ and (αc − ᾱc)/|1 − αc|2, so these
correlators already over-constrain the problem. The structure
(αc − ᾱc)/|1 − αc|2 cannot be written in terms of scalar
products of the ti ’s and, hence, it cannot arise from a 6D
correlator between two scalars and two symmetric tensors
of any spin. One can use this term to fix f3 since the only
structure that can yield such combination is the one in the
last line of (4.1). By using the results in [19] we have

f3(z) = 16

3 c2222
|1 − z|8

(
1

2
D̂2123 − 1

3
D̂2233 − 1

3
D̂3223

)
.

(4.2)

Then one can focus on the term proportional to τ and deter-
mine the function f2

f2(z) = 8

3 c2222
|1 − z|6

[
1

2
(D̂1223 − D̂2123)

+ 1

3
(D̂2323 − D̂3223)

]
. (4.3)

The term proportional to σ in G̃2222 involves the same func-
tions f2, f3 and provides a first consistency check of (4.1).
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Finally from G̃1122 and the τ and σ components of G̃2222 we
deduce

f1(z) = − 16

c2222
|1 − z|8 D̂1144 , c2222 = −2c1122. (4.4)

A further consistency check comes by using the functions
fi to compute the αc-independent component of G̃2222. It
is now possible to expand (2.8) with C(Zi ) given by (4.1)
and (4.2)–(4.4) to obtain predictions for correlators with
arbitrary weights. We checked [19] that the results are
consistent with the explicit correlators of several different
weights (k1, k2, k3, k4): (1, 1, l, l) for arbitrary l, (3, 1, 2, 2),
(2, 2, 3, 3), and (3, 3, 2, 2).
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