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Figure 1: Reconstruction of example point clouds from the McGill dataset [SZM*08]. First row: Input Point cloud. Second row: Our
reconstruction of the shape in the first row. Third row: Poisson surface reconstruction [KBH06] of the shape in the first row. Shapes showcased
(left to right) are two chairs, cup, octopus, snake, dolphin, teddy and table respectively.

Abstract
We present an approach to incorporate topological priors in the reconstruction of a surface from a point scan. We base the
reconstruction on basis functions which are optimized to provide a good fit to the point scan while satisfying predefined topo-
logical constraints. We optimize the parameters of a model to obtain a likelihood function over the reconstruction domain.
The topological constraints are captured by persistence diagrams which are incorporated within the optimization algorithm to
promote the correct topology. The result is a novel topology-aware technique which can (i) weed out topological noise from
point scans, and (ii) capture certain nuanced properties of the underlying shape which could otherwise be lost while performing
surface reconstruction. We show results reconstructing shapes with multiple potential topologies, compare to other classical
surface construction techniques, and show the completion of real scan data.

CCS Concepts
• Theory of computation → Computational geometry; • Computing methodologies → Shape modeling; • Mathematics of
computing → Algebraic topology;

1. Introduction

Shapes are characterized by a number of markers that are repre-
sentational and explain their different properties. These could be
geometric, structural, topological, functional, or stylistic. These

properties add to our understanding of shape collections and can
be instrumental in solving important problems in 3D vision, ge-
ometry processing, and computer graphics. Applications include
shape alignment, shape correspondences, surface reconstruction,
and shape synthesis. Of these different considerations, the topolog-
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ical invariance of shapes is an oft-observed trait across collections
that is seldom explicitly exploited. It is an important property of
many collections, especially those where the shapes have common
structure. This phenomenon can be observed in human body parts.
For example, the topology of a healthy human heart is always the
same, whether it comes from a child or an adult. One of the rea-
sons this has not been explicitly addressed is that most shape pro-
cessing problems, in particular surface reconstruction techniques,
involve choices that are both continuous and combinatorial. Con-
tinuous choices involve parameter regression, where a certain set
of parameters can be regressed from within a continuous set. This
could include learning chair leg lengths or the radius of a spheri-
cal object. The more computationally difficult choices are combi-
natorial or discrete and often involve making decisions about shape
classifications; topological information is of this type. For example,
this appears in regression of shape grammars, where an example of
a combinatorial choice is that of having an armrest or not. Combi-
natorial choices are extremely challenging to make and prove to be
a bottleneck in many shape processing tasks.

To make topological information more amenable to optimiza-
tion, we use persistent homology. This is a tool that provides topo-
logical markers, called persistence diagrams, that capture these
combinatorial choices through a continuous proxy, describing the
topology of point clouds over multiple scales. Surface reconstruc-
tion from a point scan usually involves being oblivious to the scale
of the point scan which can lead to topologically incorrect recon-
structions. We present a technique to extract a surface from a point
scan while preserving the predefined topology of the shape. Since
persistence-based tools range across different scales, we manage to
filter out a reliable reconstruction of the point scan which respects
the requisite topology.

Most surface reconstruction techniques manage topology in a
post-processing step, such as removing spurious components in the
reconstruction or ensuring that an extracted surface is watertight.
However, topological information can aid in completing sparse
point scans reliably, as well as resolve topological ambiguities, es-
pecially in the case of non-intersecting close regions on the sur-
face of the shape. We highlight the advantages of topology-aware
shape completion with multiple examples in Section 8. Our tech-
nique constructs likelihood functions that take high values on points
that likely lie on or near the surface. These functions are informed
by backpropagation from the persistence diagrams of candidate sur-
faces, aiding to obtain one of requisite topology. These diagrams act
as an intermediary between continuous scale information around
the points of the scan and the combinatorial nature of topology. A
summary of our contributions is:

• A novel topology-aware likelihood function, optimized on a
point cloud, and based on persistent homology measures of any
dimension.
• An automated surface reconstruction algorithm that may pre-

serve or even create the requisite topology.
• A new measure of topological fidelity for reconstruction along

with a comparison of our approach with existing methods.

2. Related Work

Reconstructing surfaces from point clouds is a difficult problem
which has received extensive attention. We first describe related
work in surface reconstruction, followed by an overview of related
topological techniques.

2.1. Surface Reconstruction from Point Clouds

The problem of surface reconstruction has multiple facets and
many interesting sub-problems, we direct the reader to the survey
by Berger et. al. [BTS*14] for further reading. Surface reconstruc-
tion from point clouds appears in numerous scenarios including ur-
ban reconstruction [MWA*13] and completing partial surfaces or
point scans [ACK13]. The specfic problem we consider is interpo-
lating a point cloud to generate a surface [HDD*92; GG07; Dey06].

Most surface reconstruction techniques model the surface to be
characterized by the zero-level set of a function that is defined
over space [KBH06; CBC*01; SAAY06]. These works approxi-
mate the signed Euclidean distance from the underlying surface,
and essentially interpolate values between the input points, extract-
ing the underlying surface as a zero set of this interpolated distance
field. Since there is no additional information in this sort of tech-
nique, there is nothing to prevent points far from the surface to have
extremely low values. Therefore, many techniques use an inside-
outside points approach where points inside the surface and outside
it are provided so as to guide the function sign at various regions in
space. Moreover, while this is an extremely elegant representation
of a shape, it is also restrictive, with the optimization step including
multiple equality constraints. The work by Poranne at al. [PGK10]
takes a minor detour from this, where they do not necessarily force
the surface value to be zero. Instead, they obtain the surface by
applying an algorithm based on the watershed transform [RM00]
which extracts the low-level set of the function values as the sur-
face. In this work, we build a likelihood function where points on
the surface are given high values, with no value constraints. This
way, the surface values can develop organically. A simple surface
reconstruction technique from existing function values can then be
used to obtain the actual surface.

Topological control in surface reconstruction has been per-
formed by user interaction [SLS*07; YHZ*], fixed template
optimization [BP05; GDP*18; ZSCP08], removing topologi-
cal errors from an existing surface [JZH07; WHDS04], and
optimization-based surface reconstruction [SLS*06; HZCJ17;
ZCL14; LDK*18]. In this work, we approach the topology-guided
reconstruction along the lines of the optimization-based technique,
locating parameters that maximize the function values at surface
points, while preserving the topology, using ideas from persistent
homology as discussed below.

2.2. Persistent Homology

Persistent homology, or simply persistence, is a well-established
tool in applied and computational topology. Topological simplifi-
cation based on function optimization is present in some of the ear-
liest work on persistence [ELZ00]. More generally, it been used
as a tool to satisfy topological criteria in a variety of geometry pro-
cessing applications including shape matching [CZCG05], optimal
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pose-matching [DLL*10], and shape segmentation [SOCG10]. The
problem of topological simplification of shapes while preserving
persistent features in given data has traditionally been performed
in the context of function denoising [AGH*09; BLW12]. The in-
clusion of topological information in optimization has appeared in
the work of Gameiro et al. [GHO16] where the authors attempt to
perform point cloud continuation for dynamical systems based ap-
plications. Recent work by Poulenard et al. [PSO18] use the idea of
function optimization for the purpose of shape matching. The work
in this paper mirrors that of Poulenard et al. by performing function
optimization on basis coefficients, which are used as the building
blocks of a given function, which in our case is representative of the
shape surface. This general approach has received a large amount of
attention recently including theoretical analysis [LOT19] as well as
numerous applications [BND*20]. We refer the reader to [LOT19]
for a recent overview of applications.

Overview: The rest of the paper is arranged as follows: we begin
with a discussion of classical surface reconstruction in Section 3,
followed by the required topological preliminaries in Section 4. The
two ideas are combined to perform topology-aware surface recon-
struction. In Section 5, we discuss the optimization to find locally
optimal parameters to a topology-aware likelihood function. Once
the likelihood function has been computed, we extract a surface us-
ing the technique described in Section 6. Section 8 showcases the
technique in practical example cases and evaluates it against other
state-of-the-art reconstruction techniques. Section 9 concludes the
paper with a brief discussion on future work.

3. Implicit Surface Representation

Using level sets of functions to represent surfaces reconstructed
from point scans is a well-established technique [KBH06;
CBC*01]. At a high level, previous techniques optimize the func-
tion so that the level set and hence the extracted surface closely
approximate the point cloud. We perform the optimization while
promoting the correct topology of the extracted surface.

Classical surface reconstruction techniques use different ap-
proaches to build a function to fit a surface to a point scan. Poisson
reconstruction constructs a function which evaluates to 0 on the
surface. It requires normal information to label points as inside and
outside the surface, assigning +1 to points outside the surface and
−1 inside the surface. This can be used to then reduce the problem
to solving the Poisson equation [KBH06]. Alternatively, radial ba-
sis functions can be used, again evaluating to 0 on the surface and a
small value at nearby points not on the surface [CBC*01]. To avoid
confusion, we note that in our approach, we attempt to build the
surface to be higher-valued as opposed to lower-valued as in the
above two techniques. We construct multivariate Gaussians cen-
tered around the points in the scan, and then minimize a topology-
aware loss function using stochastic gradient descent to optimize
the covariance matrices of the Gaussians. We then use a topology-
aware surface reconstruction technique to obtain the surface. More
generally, we consider basis functions ϕp that are defined for every
point in the point cloud, p∈P . Each function is parameterized by a
vector αp. The likelihood function of the surface including a point

Figure 2: An example of a persistence diagram for the sum of three
Gaussians in 2D. (a) Heat map of the function, and (b) The cor-
responding persistence diagram. The critical points of the height
function p, q, and s are local maxima, r, t, and u are saddles, and v
is a local minimum. Each of the local maxima creates a component
(the red points on the right represent 0D homology classes where
the heights are the birth times). Saddles r and t merge components
and correspond to the death times of two of the red points. The sad-
dle u creates a ring (1D homology class), which is closed when the
minimum at v is reached, corresponding to the black point in (b).

x ∈ Rd is a linear combination of these basis functions:

f (x,αP ) = ∑
p∈P

ϕp(x,αp) (1)

where αP refers to the collection of parameters αp for all points
p ∈ P . The choice of basis functions ϕp are a design choice, and
are ideally functions whose maxima are at the point p around which
they are centered.

As mentioned above, we use multivariate Gaussians as our basis
functions. A Gaussian centered at a point µ is given by

G(x;µ,Σ) =
√

(2π)−3|Σ|−1exp(−(x−µ)T
Σ
−1(x−µ))

where Σ is a symmetric covariance matrix. We define the Gaus-
sian basis-function around point p of P to be ϕp(x;αp) =
G(x; p,αT

p αp). The covariance matrix is a symmetric positive def-
inite matrix and hence can be decomposed as M = AT A for some
matrix A. The singular value decomposition (SVD) of M is given
by M = UΛUT , defining A = UΛ

1/2UT . If Λ = diag(λ1,λ2,λ3),
then Λ

1/2 = diag(
√

λ1,
√

λ2,
√

λ3). We define our parameters to
be the symmetric square roots of the covariance matrix, i.e. αp = A.

The parameters of the likelihood functions, that is the covariance
matrices, are initialized such that the derivative of the Gaussian
is maximized at the average distance between points. To improve
computational efficiency we only evaluate the likelihood function
on a grid, which we denote by X .

In the rest of the paper, we use the notation p ∈ P to denote
points in the point cloud and x ∈ X to denote the grid points where
the function is evaluated. The resolution of the grid ensures non-
trivial distances between points in the point cloud and the grid
points. Rather than use a uniform grid, we enlarge X by treating
the likelihood function as a probability distribution over a much
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finer grid from which we sample additional points. This allows us
to have a higher grid-resolution around the points P and so capture
more detail without significantly increasing computational costs.

In the following sections, we build on the framework from
[PSO18] to derive a backpropogation function to optimize the like-
lihood function with respect to topological constraints.

4. Topological Preliminaries

Our main tool to promote certain topological structures is persistent
homology. Here we review the relevant topological notions which
will be used in later sections. For readers who are unfamiliar with
persistence we provide some intuition; however, for a more com-
plete introduction to the underlying theory, we refer the reader to
[EH10]. We focus on our specific setting, although many of the
techniques readily generalize.

The idea of the likelihood function, f (·,αP ), is that it should
evaluate to larger values close to surface. The super-level set
f−1([t,∞),αP ) should therefore contain the surface with the cor-
rect topology for some known t. Hence our goal is to optimize f
so that super-level sets of f both fit the points and have the correct
topology.

To study the topology of a space, we first construct a combi-
natorial representation of that space. This is done by building a
triangulation of the space in the form of an embedded simplicial
complex K where the vertices are the points X . Recall that a k-
dimensional simplex is the convex combination of k + 1 vertices
(or equivalently, k+1 points in X ). We restrict ourselves to R2 and
R3, and so we only need to consider vertices, edges, triangles, and
tetrahedra. As previously mentioned, for computational reasons we
only compute f on a set of points x ∈ X . We initialize the vertices
of K as the points of X and construct a Delaunay triangulation to
obtain the higher dimensional simplices. The function f on X can
be extended to K in a piecewise-linear fashion. In the following,
we do not distinguish between the PL-approximation and the true
function, but we address this at the end of this section.

To describe the topology, we use homology, which captures cer-
tain aspects of connectedness of a space. For completeness, we de-
fine homology as we refer to it at the end of this section. For a
simplicial complex K, we can consider the vector spaces gener-
ated by the k-simplices, with one vector space per dimension, de-
noted by Ck(K), i.e. the chain groups constructed with field coeffi-
cients. One can define a boundary operator, which is a linear map
∂k : Ck(K)→Ck−1(K) such that ∂k ◦∂k+1 = 0. The k-dimensional
homology is defined as

Hk(K) =
ker ∂k

im ∂k+1

where elements of ker ∂k are called k-cycles and elements of
im ∂k+1 are called k-boundaries. Two cycles are homologous if their
difference can be written as a linear combination of boundaries, and
the set of all cycles that are homologous to a given cycle is called a
homology class. The rank of the k-th homology counts the number
of k-dimensional features, i.e. 0-dimensional features are connected
components, 1-dimensional features are holes, and 2-dimensional

features are voids. We cannot optimize directly for the correct ho-
mology as the rank or number of holes is a discrete quantity. Rather,
we use persistent homology which tracks how homological features
appear and disappear over a filtration, i.e. a sequence of spaces re-
lated by inclusion. In our setting, we consider the filtration induced
by the super-level sets of the likelihood function f : K→R. Defin-
ing,

Kα = {σ ∈ K | ∀v ∈ σ, f (v)≥ α}

This defines a filtration since Ka ⊆ Kb for all a ≥ b. Surprisingly,
the homology of filtrations can be fully described by the appearance
and disappearance of features, called births and deaths. The set of
the pairs of births and deaths are called a persistence diagram. We
omit the formal algebraic definition, but for our purposes we can
define a persistence diagram as a map from a space and a function
to a set of points in R2.

PD f (k) : (K, f )→{bi,di}i∈Ik

where PD f (k) refers to the births and deaths of k-dimensional ho-
mological features, and we drop subscript f when the function f
is clear from the context. We define PD f = ∪kPD f (k). We often
refer to the collection of points as the persistence diagram, with the
implication that K and f are fixed; see Figures 2 and 3 for ex-
amples in 1D and 2D (where PD(0) and PD(1) are superimposed)
respectively.

Crucially, it is possible to define meaningful distances between
diagrams. This makes it possible to talk about how far a given space
is from the desired topology, which in turn allows for the optimiza-
tion of topology over persistence diagrams. There is a large litera-
ture on distances between diagrams and their respective properties
[CEH07; CEHM10; Bub15]. However, we do not use these dis-
tances directly; instead we introduce specific cost functions used in
Sections 5 and 8.

A key ingredient is the existence of an inverse map from the
points of the persistence diagram back to K

π
′
f : {bi,di}i∈Ik → (σ,τ)

where σ,τ ∈ K. This map is formally defined and used in [PSO18;
LOT19]. Intuitively, this map can be understood algorithmically.
For each homological feature, there is one simplex which creates it
and one simplex which bounds it (or kills it); π

′
f is simply this cor-

respondence. In the setting of a super-level set filtration, the func-
tion value of a simplex is given by a vertex value:

f (σ) = min
v∈σ

f (v)

Hence, we can refine the inverse map to

π f : {bi,di}i∈Ik → (xb,i,xd,i)

where xb,i,xd,i ∈X are the extremal vertices in corresponding sim-
plices, see Figure 3.

The final concept we define is the cycle representative of a ho-
mology class which is our initial candidate for the reconstructed
surface. For simplicity, we assume homology with Z2 coefficients
since we use the support of the cycle, i.e. all simplices with non-
zero coefficients. A cycle representative of a homology class is a
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Figure 3: A one dimensional example of a persistence diagram
and the inverse map π. The function on the left has critical points
at points p, r, and q. The local maxima create components in the
super-level sets and so represent birth times (y-axis), while the min-
imum kills one of the components (the younger one) and so is a
death time (x-axis). The inverse map for a point in the diagram re-
turns the corresponding critical points/simplices.

cycle which represents the entire homology class. This is precisely
equivalent to choosing a basis element for a vector space.

In computing persistent homology, most algorithms compute a
cycle basis†. This cycle is canonical under some genericity as-
sumptions as it equivalent to a minimum weight basis [STY17].
In practice, the cycle is stable to small perturbations although it is
not difficult to construct cases where it is not. We refer this cycle as
the Persistent Cycle Representative (PCR) of a point in the persis-
tence diagram. This cycle most often serves as our initial estimate
of the surface (see Section 6). This works well when the desired
surface is a manifold and so there is a unique top-dimensional ho-
mology class which captures the surface. When there are multiple
top-dimensional classes, as in the wedge of two circles as in Fig-
ure 7, we return the union of the PCRs corresponding to the top-
dimensional classes. In cases where there is no top dimensional
class as in Figure 12, we output the super-level set itself as a thick-
ened surface – see Section 6 for a further details.

We conclude this section with the following remarks. For com-
putational efficiency, we use a PL-approximation of the likelihood
rather than the true function. For this approximation, there is an
equivalence between super-level set and upper-star filtrations which
we use implicitly when defining the inverse map. Furthermore, us-
ing the stability of persistence diagrams, it is possible to rigorously
bound the error in the persistence diagrams introduced by this ap-
proximation in terms of the chosen grid spacing. We omit this as the
derivation and proof would introduce additional technicalities with-
out adding much substance to our results, as there are no stability
results for the inverse maps and cycle representatives. We note the
work of [EFR13], which showed that there do exist specific config-
urations where the error could be non-negligible, but that these do
not occur in practice. Finally, we do not discuss the algorithms for
computing persistence diagrams as it has been extensively studied,
with a number of efficient implementations available. We direct the
reader to [OPT*17] for a recent survey.

† Some algorithms only output the barcode or use cohomology, however
the standard algorithm [books/daglib/002566] returns a cycle bases.

5. Topology-aware Optimization

Our optimization procedure assumes that we have prior informa-
tion about the topology of our surface. Determining the topology
from a point cloud is a related but separate problem, which we do
not address here. We build on the framework from [PSO18] to opti-
mize the parameters of the likelihood function αP . Specifically, we
derive a backpropogation function to compute the gradient with re-
spect to a topological prior. In this section, we consider the parame-
terized function f (αP ) : K→R with the associated persistence di-
agram PD f (αP ) and inverse mapping π f (αP ) : (bi,di)→ (xb,i,xd.i)
where x ∈ X .

We define a topological prior as a functional on the space of
diagrams:

E(PD f ) : {(bi,di)}I → R (2)

In general, the functional can take in persistence diagrams for all
dimensions but we often restrict to a single fixed dimension.

From this point on, we assume that the index Ik = {1, . . . ,Nk}
is sorted by decreasing persistence. In other words, |di − bi| >
|d j−b j| for i < j. We also note that Ik is not static throughout the
optimization process but recomputed for every new changed func-
tion f . For a reconstruction, a topological prior is expressed via
Betti numbers. That is, how many components we would like the
reconstruction to have, how many holes, or voids. In principle, we
could include higher dimensional information, but here we focus on
surfaces in R3. Hence, if we would like the reconstruction to have
` k-dimensional features, the functional we use emphasizes the `-
most persistent k-dimensional features (and de-emphasizes the less
peristent features, i.e. tries to send them to the diagonal) in the re-
construction is:

E(PD f (αP )(k)) =−((d`−b`)
2− (d`+1−b`+1)

2), (3)

Or in other words, it maximizes the difference between the lifetime
of the `-th most persistent feature and the (`+1)-th most persistent
feature. This does not guarantee convergence to a "reasonable" so-
lution, i.e. we have no guarantees about the resulting features, but
in practice it converges to what one would expect.

There are many factors to consider when creating topological
priors and we describe precise functionals in Section 8. Here we
derive the general formula, assuming the functional is of the form
given in Equation 2. Using the chain rule,

∂E
∂αP

= ∑
i∈I

∂E
∂bi

∂bi

∂αP
+

∂E
∂di

∂di

∂αP

= ∑
i∈I

∂E
∂bi

∂ f (xb,i)

∂αP
+

∂E
∂di

∂ f (xd,i)

∂αP
(4)

where we use π f (αP )(bi,di) = (xb,i,xd,i). In our setting,

f (x,αP ) = ∑
p∈P

G(x; p,αT
p αp),
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Figure 4: Steps of the Surface Reconstruction algorithm. (a) Sim-
plicial complex (b) Generator/Proposed surface (c) Enumerating
intersecting cofaces (d) 1D surface output

and hence

∂ f (x,αP )
∂αP

= ∑
p∈P

f (x,αp)

(
−1

2

(
(αT

p αp)
−1

−(αT
p αp)

−1(x− p)(x− p)T (αT
p αp)

−1
)

∂α
T
p αp

∂αp

)
where

∂α
T
p αp

∂αp
= α

T
p Ji j + J ji

αp such that (Ji j)kl = δikδ jl

This can be evaluated at xb,i and xd,i and substituted into Equa-
tion 4. It remains to compute the derivative of the functional to
complete the formula. For example given the functional in Equa-
tion 3, we obtain

∂E
∂αP

= ∑
p∈P

(αT
p αp)

−1(D(αp, p,xb,`,xd,`,b`,d`)

−D(αp, p,xb,`+1,xd,`+1,b`+1,d`+1)
)
(αT

p αp)
−1 ∂α

T
p αp

∂αp

with

D(αp, p,xb,i,xd,i,bi,di) = − (di−bi)
2(αT

p αp)

+
(
(xd,i− p)(xd,i− p)T di− (xb,i− p)(xb,i− p)T bi

)
(di−bi)

This was implemented as a PyTorch module making experimen-
tation with different cost functions straightforward. As the back-
propagation is separated for the diagrams, the pipeline only re-
quires an implementation of the derivative of the functional. Note
that the cost function above is an illustrative example and the dif-
ferentiable functions used to generate the examples are given in
Section 8.

6. Surface Reconstruction

The optimization in the previous section produces a likelihood
function and a super-level set with the desired topology. In the ideal
case, this super-level set is highly concentrated around the surface,
but a surface with the correct topology must still be extracted. There
are multiple ways to extract a 1D or 2D surface. One could apply
the watershed algorithm [PGK10] to the inverse of the likelihood
function, but then we lose control of the topology of the result. A
further complication is that multiple super-level sets might need to
be considered to flexibly locate the desired topology.

From a topological perspective, a natural candidate for the sur-
face is a cycle representative of the desired homology class. In
practice we also consider the representative of the top dimen-
sion we consider (i..e 1-dimensional homology for curves and 2-
dimensional homology for surfaces). As described in Section 4, we
can associate a special representative, namely a Persistent Cycle
Representative (PCR), with each point in the diagram. This is a k-
dimensional cycle, which in our setting is either a 1-cycle (loop)
or 2-cycle (sphere) and is part of the super-level set of the sim-
plicial complex, Kα. The following assumes the optimization was
successful and that the PCR has the correct topology. For example
in R3, we only consider 2-cycles such that the 2-cycles have the
appropriate lower dimensional homology. If this is not the case, we
declare that the optimization has failed to converge to a good local
minimum.

The PCR, while topologically correct, is generally not the ideal
geometric representation of the surface, e.g. it can be highly non-
smooth and/or non-manifold. We therefore iteratively improve the
PCR while ensuring that the correct topology is maintained. This
is done through a local optimality function. We use the number of
simplices as a proxy for smoothness, trying to minimize the number
of simplices in the cycle while maintaining topology. This is essen-
tially improvement via simple homotopy, a sequence of “moves"
which do not change the topology.

Consider the 1D case, where we start with a 1-cycle PCR g. For
each edge in g, we consider its adjacent triangles which lie in the
superlevel set. There are two possible moves as shown Figure 5.
Say we are considering e = (a,b) and the triangle (a,b,c). If nei-
ther (b,c) nor (a,c) are part of g, the triangle is added, replacing
(a,b) by the pair (b,c) and (a,c) if c has a higher function value
than both a and b, i.e. f (a) < max( f (b), f (c)). As the function is
a proxy for a likelihood function, this has the effect of steering the
path through a higher likelihood region. Alternatively, if (a,c) is
also part of g, the triangle addition essentially removes a from the
path, which only occurs if f (a) < max( f (b), f (c)), again pushing
the path into a higher likelihood region. The procedure is illustrated
in Figure 4. At each step, we check that this does not cause any
self-intersections and the algorithm terminates when no modifica-
tion can be made. The algorithm works in any dimension and by
construction the changes in the candidate surface do not change the
topology. It also extends naturally to 2D surfaces, where we con-
sider tetrahedra adjacent to triangles rather than triangles adjacent
to edges.

As mentioned, in Section 4, if there is no suitable representa-
tive (due to the requested topology), we output the simplicial com-
plex associated with the appropriate super-level set with the cor-
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a b

c

a b

c

a b

c

a b

c
f(c) > max(f(a), f(b)) f(a) < max(f(b), f(c))

Figure 5: The two moves for modifying the candidate surface in
1D. (left) Only a and b are part of the surface. Vertex c has a higher
function value than a or b and so is added to the surface by replac-
ing (ab) by (ac). (right) a has a lower function value than b or c
and so is removed by replacing edges (ac) and (ab) by (bc).

rect topology. The choice of the super-level set can be determined
automatically from the persistence diagram. While it may occur
that there is no super-level set with the appropriate topology, which
again can be determined from the persistence diagram, we say the
algorithm has failed – see Section 7. In most cases, if the opti-
mzation converged, a suitable super-level set could be found. We
conclude that extracting a true surface in these cases is left for fu-
ture work.

7. Choice of Parameters and Failure Cases

The parameters of the likelihood functions are initialized such that
the derivative of the Gaussian is maximized at the average distance
between points. This is done to make the basis functions as ex-
pressive as possible and empirically proved to be a good balance
between a granular and a smoothed-out perspective. Other initial-
izations that favored extreme and unexpected topologies did cause
failure cases. Furthermore, a weak point can be the fact that the map
from the points in the persistent diagrams to the complex, is not sta-
ble. In practice, this was not an issue. This could be explained by
our desired topologies not being contingent on single simplices but
instead on a larger set of simplices, making the ambiguity in the
correspondences irrelevant. Lastly, large step sizes for gradient de-
scent made the optimization process unstable, as expected, but it
was straightforward to find a step size that worked for all our prob-
lems.

8. Results

Our topology-aware surface reconstruction is novel in its flexibil-
ity in computing different topological reconstructions. Our tech-
nique also accepts topological information of any dimension. In
this section, we discuss multiple results that validate our approach
and compare it to other state-of-the-art surface reconstruction tech-
niques.

We remind the reader that in describing the cost functions, we
use the convention that the points in the persistence diagram are
sorted in decreasing lifetime, i.e. |di−bi| ≥ |d j−b j| for i < j.

8.1. Topological Flexibility

Our technique can produce any topology that exists at any filtra-
tion value after the optimization process has finished. Thus, while
it cannot always guarantee a certain topology, in practice and when

the topology is not too far from those that are present in the origi-
nal point cloud, our technique can be expected to produce it. This
is true even if that exact topology is not present for any filtration
value in the persistent homology of the original point cloud.

To illustrate this flexibility, we show reconstructions from the
same point cloud with different prescribed topologies. In Figure 6,
we see that a spider can be reconstructed to have one void or two.
We used cost functions in PD(2), i.e. the persistence diagram for
2-dimensional features. To reconstruct one void we used cost func-
tion:

−((d1−b1)
2− (d2−b2)

2)

effectively maximizing the gap between the most persistent and the
second most persistent homology classes. For two voids, we used
the cost function:

−((d2−b2)
2− (d3−b3)

2)

maximizing the gap between the second and third most persistent
classes. Most surface reconstruction techniques provide one major
void, while the other is flattened out, while in our case, we can force
this second void by means of predefining the requisite topology.

This topological flexibility can be further exemplified in the ring
as shown in Figure 7. This is a two-dimensional case, with a point
cloud as shown in Figure 7(a). The sampling makes it ambiguous
whether the source shape contains one hole or two; but if this infor-
mation is available, then our technique can be utilized to reconstruct
the ring accordingly as in Figure 7(b) and (c) respectively. Most
surface reconstruction techniques use tangent and normal informa-
tion of points to reconstruct the underlying surface from them. This
means that the reconstruction with one hole would almost always
be produced. Specifying the underlying topology beforehand can
therefore be very useful.

The steering wheel in Figure 8 provides another example. Here,
different topologies (3,2 or 1 rings) are used to reconstruct an input
point cloud, and the reconstructions are vastly different from each
other. It is observed that for each of the different topologies, the
technique progressively closes the less persistent ring. To achieve
this, we used cost functions of the form

−((dk−bk)
2− (dk+1−bk+1)

2)

for k = 1,2,3 taken over PD(1). By equipping the technique with
a measure of topological preservation, it is able to obtain recon-
structions that are seemingly very far off from the original point
cloud or surface as in Figure 8(a) and (b), but respect topological
requirements.

8.2. Shape Completion

Shape completion is an important problem that we tackle from a
topological perspective. We perform shape completion in both 2-
dimensional and 3-dimensional examples. We show how an incom-
plete face in Figure 9 is completed by means of our technique with
the cost function: −((d1− b1)

2) over PD(1). Here, the topology,
i.e. one loop, of the face is provided as the only input apart from
the input point cloud, and the technique performs the completion
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Figure 6: Reconstructing spider model with multiple possible
topologies. (a) Input spider point cloud. (b) Creating 1 void inside
the spider. (c) Creating 2 voids inside the spider. Cross sections in
red.

Figure 7: Reconstructing dual circle with multiple possible topolo-
gies. (a) The 2-D dual circle point cloud. (b) Reconstruction of dual
circle as two adjacent circles. (c) Reconstruction of merged dual
circle with one hole.

accordingly. It is also seen here that using the reconstruction tech-
nique described in Poranne et al. [PGK10] captures the high level
structure of the shape but introduces a lot of topological noise.

Another situation where our technique proves useful is when
sparse sampling introduces topological ambiguity. In Figure 10(a),
there are too few points in the input point cloud. By reconstructing
the surface with a single 2-dimensional hole, it forces the recon-
struction to produce a consistent, bunny-like reconstruction, Fig-
ure 10(b), using the cost function:−((d1−b1)

2−(d2−b2)
2) taken

over PD(2). This is not necessarily the case when other reconstruc-
tion techniques are used. For example, the Poisson surface recon-
struction of the sparse Stanford bunny can be seen in Figure 10(c).
The sparsity of the point cloud creates three major concentrations
of points in the shape, therefore producing a topologically incorrect
reconstruction.

Figure 8: Reconstruction of steering wheel with multiple ring
topologies. (a) 1 ring, (b) 2 rings, and (c) 3 rings

Figure 9: (a) 2-D incomplete head point cloud (b) Completing
the point cloud with topological information (1-hole) (c) Using the
generalized distance based watershed algorithm as in Poranne et
al. [PGK10] to complete the point cloud.

Figure 10: Densifying the Stanford bunny. (a) A sparse point cloud
sampled from the Stanford bunny. (b) Reconstruction of this sam-
pling, preserving only the essential 2-dim hole (c) Poisson recon-
struction of the sparse Stanford bunny.

8.3. Medical Data

One of the central motivations for topology-aware surfaces is the
potential application to medical data. As described in Section 1, the
topology of medical data is almost always predefined and invariant
across numerous instances. This is a property that can be utilized,
along with other medical priors, to reconstruct various medical or-
gans from scan data.

Here we show examples of how one could use our technique
to reconstruct scans of different medical organs. In Figure 11, we
show the reconstruction of the brain from the scan data provided in
Lerma-Usabiaga et al. [LCP18]. We used the cost function:

−((d2−b2)
2− (d3−b3)

2)

over PD(2). In this case, even though the input point cloud is
dense, it is fairly complex to reconstruct. While our technique re-
constructs the brain fairly close to the input point cloud, the more
classical Poisson surface reconstruction [KBH06] fails to obtain
a topologically correct reconstruction, producing a single three-
dimensional void, while the correct topology would consist of two
three-dimensional voids, one for each hemisphere of the brain.

We also attempted to reconstruct synthetic point clouds of human
hearts. The reconstruction in Figure 12 was obtained using the cost
function:

−((d3−b3)
2− (d4−b4)

2)

over PD(1). While our method reconstructs the four openings in the
human heart, Poisson reconstruction smooths the holes, changing
the topology of the reconstructed surface.
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Figure 11: Reconstruction of the human brain as seen from the top-
view. (a) A point cloud of an example brain from Lerma-Usabiaga
et al. [LCP18]. (b) Reconstruction of this brain, preserving two
central voids. (c) Poisson Reconstruction of the brain. Cross sec-
tions in red.

Figure 12: Reconstruction of the human heart model. (a) A point
cloud of a human heart model. (b) Our reconstruction with four
openings; the red markings here indicate the four holes in the re-
construction. (c) Poisson reconstruction.

8.4. Comparisons to other Surface Reconstruction techniques

We compare our topology-aware technique to two major surface
reconstruction techniques. For 2D surface reconstruction, we com-
pare our technique to that of Poranne et al. [PGK10], and for 3D
surface reconstruction, we compare primarily to Poisson surface
reconstruction [KBH06] as implemented in MeshLab. These qual-
itative comparisons can be seen in Figures 1 and 9. While the Pois-
son reconstruction is very good on smooth water-tight surfaces, it
tends to fail for more natural cases where the inherent topology is
non-manifold. This is observed in the non-manifold examples of
Figure 1 such as chair, cup, octopus, and table examples, where the
Poisson reconstruction attempts to obtain a water-tight surface and
fails both topologically and in reconstruction quality. We perform
our 2D quantitative comparison experiments on the 2D point clouds
used in Poranne et al. [PGK10], specifically the hand, spiral, helix,
face, circle and blob datasets, and the 3D comparisons on 8 cate-
gories of the McGill segmentation benchmark dataset [SZM*08].

We develop two different metrics to compare with exist-
ing algorithms. We compare against Poisson surface reconstruc-

Method - 2D N = 1000 N = 500 N = 200
Ours (k=0) 0 0 0
Watershed [PGK10] 0.25 0.33 0.81
Ours (k=1) 0 0 0
Watershed 2.25 3.08 3.63
Method - 3D N = 1000 N = 500 N = 200
Ours (k=0) 0 0 0
Watershed [PGK10] 0.25 0.375 0.375
Poisson [KBH06] 0.75 1.125 0.25
Ours (k=1) 0 0 0
Watershed 1.625 2 2.125
Poisson 0.875 0.875 0.875
Ours (k=2) 0 0 0
Watershed 0.375 0.375 0.375
Poisson 0.5 0.5 0.625

Table 1: TFI0,TFI1 (and TFI2) for 2D (and 3D) surface recon-
struction comparing our technique to the generalized-distance Wa-
tershed algorithm by Poranne et al.[PGK10] (and the Poisson sur-
face reconstruction by Kazhdan et al.[KBH06] respectively) for
point clouds of size N points. The lowest values are captured in
bold.

Method - 2D N = 1000 N = 500 N = 200
Ours 1.0040 1.0026 0.9979
Watershed [PGK10] 1.0363 1.0479 1.0723
Method - 3D N = 1000 N = 500 N = 200
Ours 1.9170 1.9143 1.9127
Watershed [PGK10] 1.9867 1.9828 1.9800
Poisson [KBH06] 2.0348 2.0309 2.0117

Table 2: One-way Chamfer distance for 2D (and 3D) surface re-
construction comparing our technique to the generalized-distance
Watershed algorithm [PGK10] (and the Poisson surface recon-
struction [KBH06] respectively) for point clouds of size N points.
The lowest values are captured in bold.

tion [KBH06] for 3D reconstruction and Generalized distance
based reconstruction [PGK10] for both 2D and 3D reconstruc-
tion. Since our technique aims at topological accuracy, we compare
against the topological accuracy of other techniques. This is done
by computing the average number of erroneous k-dimensional com-
ponents: TFIk =

1
N ∑

N
i=1 |ni,k− nrecon

i,k |, where N refers to the num-
ber of shapes. We refer to TFIk as the k−dimensional Topological
Fidelity Index. Here, if k = 1, then ni,1 is the number of true 1-D
holes in shape i, nrecons

i,k refers to the number of 1-D holes in the
reconstruction of shape i. We present this for multiple scan sizes of
our input point cloud. This is presented in Table 1. Our topological
flexibility ensures a TFI of 0 for our technique, while a bigger TFI
value for other techniques is a measure of how far from ideal their
reconstruction capabilities are topologically. The high TFI values
for both competing methods shows the value of our method that
provides topological flexibility.

While the TFI captures topological fidelity, another important
factor is the quality of reconstruction. To capture this, we compute
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the one-way Chamfer distance between a point cloud and its recon-
struction. This score is normalized for all shapes in a collection and
averaged over the collection. The comparison of these scores across
the corresponding techniques for 2D and 3D is provided in Table 2.
Here we show that our technique, in addition to high topological
fidelity, also obtains high quality surface reconstruction.

9. Conclusion and Future Work

In this work we introduce a technique that performs surface re-
construction from point scans while optimizing the topology of the
surface. The results show that the optimization converges to the de-
sired topology and yields accurate reconstructions. There are many
potential future directions for improvement. For example, while
our choice of basis and cost functions are intuitive and work well
in practice, there are many other possibilities which could be ex-
plored. While we do not have guarantees on the reconstruction, if
the functional does not converge or converges to a large value, we
can detect the failure. Likewise, if the extracted generator does not
have the correct topology or is far from the points, we can again de-
tect failure. As our algorithm is based on gradient descent we can
retry with different initializations.

Our approach for extracting the surface from the super-level set
and subsequently optimizing it is currently quite simple and could
clearly be improved. As the examples show, the result is “close" and
has the correct topology, the results would be improved if local ge-
ometric features such as smoothness could be taken into account.
This could produce much higher resolution reconstructions while
remaining “close" to the topologically correct surface. This could
also take normal information into account which could further im-
prove both the optimization and the final extracted surface. An al-
ternative approach would be to use the super-level set as a guide
or constraint on implicit methods to extract the final surface. It re-
mains an open question how implicit methods could be modified
to extract non-manifold surfaces, e.g. manifolds with boundaries,
intersections of manifolds, etc. This is a future direction which we
intend to pursue.

The general area of topology-aware geometry processing re-
mains largely unexplored, with many possible future directions of
research. Here we addressed only single scan reconstructions while
it may be possible to jointly optimize over a collection as shape cat-
egories in collections often share many topological properties. Sim-
ilarly, this type of approach could also be applied to time-varying
scans, e.g. point clouds representing motion, where the codimen-
sion of the surface is greater than 1. Finally, in the case of collec-
tions our approach could be extended to combine topology infer-
ence with reconstruction or representation learning by inferring the
topology at the same time as optimizing with respect to it.
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