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Abstract—Subject identification has several applications. In
transportation companies, knowing who is driving their vehicles
might prevent theft or other ill-intended actions. On the other
hand, privacy concerns, and the respective legislation, hinder
the applicability of several traditional recognition techniques
based on invasive technologies, such as video cameras. Moreover,
in order to keep the driver’s distractions to a minimum, this
technologies must be non-disruptive, that is, they must be able
to identify the subject seamlessly without them taking any action.
In this context, we propose using deep learning applied to smart
watch data for recognizing the person driving a vehicle based
on a training set. Our proposal relies on the possibility of using
transfer learning to avoid long training sessions for new drivers
and to deliver a solution which can be deployed in practice. In
this paper, we describe the convolutional neural network used
in the solution and present results according to a real data-set
collected by us, achieving accuracies ranging from 75 to 94%.

I. INTRODUCTION

According to the most recent transport statistics issued by
the Department for Transport in Great Britain, 78% of goods
are moved by land transport covering 18.6 Billion kilometers
on a domestic scale and which required 2.4 Million powered
vehicles traveling to/from continental Europe in 20171. It is
imperative for the drivers’ safety as well as for the insurance
liability that the identity of the driver is continuously authen-
ticated throughout the journey. The safety of the driver is
highly critical during overnight long-haul journeys where there
is a risk of hijackers or other malicious interventions. There
were 2880 reported cargo thefts in Europe, Middle East, and
Africa (EMEIA) countries in 2015 with a total of C54,986,504
combined loss; 2114 of these crimes involved thefts from
vehicles. Moreover, the recent truck-driven attacks2 in Tokyo
(2019), London (2017), Stockholm (2017), Berlin (2016), and
Nice (2016) have all been carried with stolen vehicles and have
raised real concern of causing deliberate atrocities that could
be prevented if truck drivers can be identified remotely. On
the other hand, insurance policies advocate that the employee
who is designated to drive a vehicle is indeed the driver during
the entire journey and does not arrange for an unauthorized

1https://www.tapa-global.org/fileadmin/public/downloads/Membership/
Tapa Membership Brochure 2018.pdf.

2https://www.express.co.uk/news/uk/794243/terror-attack-lorry-
Westminster-Khalid-Masood-Stockholm-immobiliser-kill-switch.

replacement. Moreover, transportation companies might use
such a system to validate driving logs reported by drivers.

Continuous identification can be performed with high ac-
curacy if a camera were placed in all such vehicles and the
streaming video continuously analyzed [1]. However, such a
system is intrusive and breaches policies related to privacy of
employees and General Data Protection Regulations. To this
end, there have been various efforts to remotely identify a
driver using non-intrusive data collection such as Controller
Area Network bus (CAN bus), wrist bands or similar.

For instance, authors in [2] achieve an accuracy of 73%
in recognizing the identity of the driver by analyzing signals,
such as the use of the accelerator pedal, brake pedal, vehicle
velocity, and distance from the vehicle in front while drivers
are asked to follow a car in a driving simulator. Authors
in [3] and [4] model the pedal operation patterns of drivers
using Gaussian mixture models and manage an accuracy of
76.8% of driver identification in a field test comprised of
276 drivers. A more recent work [5] couples the data from
the CAN bus and the cell phone sensors to solve the driver
recognition problem. The mobile phone sensor data is used
as a “ground truth” for isolating events such as accelerating,
turning, or breaking. However, the work was limited to two
drivers and the accuracy reached only 60%. Authors in [6]
attempt to identify the driver from data collected during
a single turn from 12 sensors reporting every 0.1 second
on the steering wheel parameters, velocity and acceleration,
engine RPM, pedals data, torque, and throttle position with
50~79% accuracy. A different approach is used in [7] based
on Extremely Randomized Tree or Extra-Tree that is used to
analyze data from multiple sources (smart phone, vehicle, and
virtual sensor) to identify a suspect replacing the legitimate
driver with a promising 89% accuracy. Authors is [8] propose
a solution to a different problem by collecting three-axes
accelerometer and gyro-meter data from a remotely controlled
car. Data from all six sensors is jointly analyzed using a Multi-
View Convolutional Neural Network to accurately identify the
car’s manoeuvre such as acceleration, turning, and collision.

The varied efforts in this domain demonstrate further the
need for inferring the driver’s identity and/or behavior re-
motely. Moreover, the importance of jointly analyzing multiple
sources in improving the accuracy of the classification is
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apparent in most of the cited works. However, most of the
experiments carried are mostly dominated by vehicle sensor
data, thus, the classification may be over-fitted to the vehicle
itself as opposed to the independent driver’s signature. In our
work, we extract the data features that capture the driver’s
identity in any vehicle and in any manoeuvre.

The goal of this work is to develop an affordable, reliable,
non-intrusive, and seamless technology for continuous driver
identification. In order to make it affordable, we rely on
off-the-shelf embedded sensors, instead of trying to develop
a solution using expensive—albeit precise—sensors such as
Electrocardiogram (ECG) sensors. Furthermore, we need to
have a transferable technology that can be used for any driver,
or set of drivers. Moreover, we require a tested technology
that produces high accuracy results in order to make it
reliable while keeping false positives to a minimum. False
positives would cause unnecessary disruptions to normal op-
eration incurring inhibitive costs. More importantly, it would
desensitize operators’ reaction to raised alarms, whether true
or false, which would compromise the safety and security
measures. In addition, it must be non-intrusive to comply with
regulations and make it acceptable to staff. Lastly, the method
deployed needs to be seamless so drivers do not have to
interrupt/compromise their driving to trigger the identification
process and it should be continuous so any significant (i.e., not
justified by communication delays) interruption is interpreted
as an anomaly and would generate an alarm.

As demonstrated in the prior art towards subject identifica-
tion, streaming cameras achieve excellent results; however, it
is quite intrusive to permanently aim a camera at drivers as
well as bandwidth expensive. The alternative of processing
the video at the edge and only streaming the results of
classification limits the usage of the camera and undermines
the robustness of the solution. Other technologies are tightly
coupled with the driving behaviour hence may be biased by
the vehicle type and road conditions. Our proposed method
avoids these shortfalls while producing reliable results. Firstly,
the solution relies on detecting a person’s signature from
wearable device data, thus requires streaming real-time concise
measurements over a secure wireless network (e.g., 3GPP
technologies) to a secure server for continuous authentication.
Wearable data qualifies as ”personal data” under the EU Data
Protection Directive 95/46/EC as it can be used to identify
an individual). Moreover, if it can be used to monitor the
physiological or mental health status of the subject, then it
also qualifies as medical data according to European Data
Protection Supervisor as well as Article 29 Working Party.
As such, it is required to obtain an explicit and fully informed
consent from the technology users. In our case, users are fleet
drivers, often on long overnight hauls, and the technology
proposed is the least intrusive that would guarantee their
security throughout the journey. According to a recent survey
conducted in the USA, more than 65% of workers have
positive willingness to use wearable devices if used to improve
their safety [9]. Although in this paper we only cover the
solution for subject identification, wearable devices could also

be used to monitor driver drowsiness and stress levels with
minimal load on the wireless network.

To this end, we explore the usage of deep learning, a
technology that has gained much traction in recent years due
to its outstanding performance and which relies on automatic
feature extraction, such that domain specific expert knowledge
is not an impediment for developers. Furthermore, it enables
the usage of transfer learning, which enables trained feature
extractors to be reused. This is detailed in Section II. More-
over, this work looks at extracting the driver’s signature from
widely available sensors that collect heart rate (HR) informa-
tion, as shown in Section III. The proposed method, presented
in Section IV, is complemented with a post processing step
to enhance the reliability of the identification results. Results
presented in Section V are very promising and demonstrate
the potential of deep learning to reveal the hidden signature
of drivers from their biometric data.

II. BACKGROUND

Machine learning (ML) is defined as designing computa-
tional systems to perform a task without explicitly programing
all the decisions required for their completion [10]. There are
several classes of ML algorithms, such as supervised learning,
unsupervised learning, reinforcement learning, Markov mod-
els, heuristics, etcetera. In this paper, we are concerned with
supervised learning, wherein the computer aims to learn from
past experiences and then generalize what it has learn to make
accurate predictions on unseen data [11]. In other words, our
algorithm takes collected sensory information from test runs
and learns how to classify the driver by training on this data.

There are several types of supervised learning techniques,
such as Bayes’ classifiers, neural networks, decision trees,
K-nearest neighbors, and support vector machines, to name
a few [10]. Supervised learning algorithms can be further
categorized into shallow and deep learning classifiers [12].
Shallow classifiers rely on expert domain to design feature
extractors from the available data. Feature extraction is a key
research direction that requires a high level of expertise.

On the other hand, in deep learning, features are automat-
ically extracted from inputs. One notable area where deep
learning is often used in for image processing. Basically
instead of trying to extract complex features from images,
deep learning relies on feeding the entire image data to an
algorithm and training it based on examples. Deep learning
has gathered a lot of attention in the recent years due to
its power and relative ease of implementation, which does
not rely on expert domain knowledge. Recent publications
show impressive performance when using deep learning for
several challenging tasks, such as video recognition, image
recognition, speech interpretation, and several others [12]. This
massive spur in the recent years is tied to the fact that now
researchers have access to much more powerful computers,
which can learn several parameters in feasible time.

One of the most traditional examples of deep learning
are deep convolutional neural networks (CNNs) for image



Fig. 1. The Ticwatch S from Mobvoi used to collect the data.

recognition. The idea in this case is to input the entire image—
in as many channels are there are available, for instance an
RGB image has 3 channels—and let the network figure out the
features on its own. The first layers of the CNN is responsible
for learning the features via convolutional kernels. That is,
a filter is applied to the image considering only neighboring
pixels and the output is fed into another convolutional layer
to extract more coarse features from this filtered output.
Using this succession of convolutional layers and training the
network on labeled examples, the CNN learns the weights for
the filter coefficients and automatically extract features from
the image, without any image processing expertise.

Typically the output of the convolutional layers is then
fed into a shallow classifier—some fully connected neural
network layers in the case of CNNs—that, in turn, have the job
of classifying the input based on the automatically extracted
features. This is specially powerful as the weights previously
learned in the training for the feature extraction part can
be reused to classify entirely different types of data, thus
potentially saving hundreds—if not thousands— of hours of
computing time. AS such, only the shallow classifier needs
to be trained for the new data. This is known as transfer
learning, and it is an extremely powerful tool, as researchers
from entirely different fields can use similar sets of weights
to obtain good accuracy in classification, all relying on the
fact that the feature extractor is good at recognizing common
features in sets of inputs with the same dimensionality.

In our application, we are not trying to classify an image, but
1-D signals. Deep learning is still applicable, as the same idea
still holds. That is, we want to input several time series, from
different sensors, and gather features that relate the samples
from each time series. In other words, we are capturing the
relationship from neighboring samples in time and extracting,
automatically, features from it, in order to classify the drivers.

III. DATA COLLECTION

Biometric and location data were collected from the drivers
using wrist-worn smart watches. Fig. 1 shows the Ticwatch S
from Mobvoi used in the data collection. Data were collected
using a bespoke Android application installed onto the smart
watches. The data were written to the smart watch internal
memory as CSV files, stored on the smart watch and regularly
downloaded to a PC using the Device File Explorer component
of Android Studio. The bespoke application collected data
from the linear acceleration, gyroscope, orientation, and heart-

TABLE I
DATA COLLECTION

Description Driver I Driver II

Number of trips 74 66
Total time driven (hours) 47.0 36.6
Average trip duration (s) 2289.56 1998.51
Total distance driven (km) 2228.68 1246.74
Average trip length (km) 30.11 18.89

rate sensors. In addition, the global positioning system (GPS)
unit was used to acquire location and speed of the watch.

The watches were generally operated in standalone mode,
i.e. not connected to a phone. The GPS data were regularly
reviewed to ensure that the position data maintained accuracy
despite no connection to a phone to recalibrate the position
and no evidence of location inaccuracy was seen.

Moreover, the drivers were requested to vary the wrist on
which the smart watch was worn over the sampling drives.
Changing wrists was not expected to affect the values collected
for biometric data or vehicle location and speed, but, as
the cars used were manual gear change, linear acceleration,
orientation and gyroscope readings were expected to differ
depending on which wrist was wearing the watch. The result-
ing dataset is separated into trips, such that each unique trip is
labeled according to a trip identifier, the wrist where the watch
was worn and the driver (anonymized) wearing the watch.
Table I contains some summarized information about the data
that has been collected for this experiment. Next we present
a brief description of the output from each of the sensors and
their respective sampling rates.

1) Linear Acceleration: A three dimensional vector indicat-
ing acceleration along each device axis, not including gravity.
All values have units of m/s2. The average interval between
reports over a typical journey was 28 milliseconds.

2) Gyroscope: All values are in rad/s and measure the rate
of rotation around the device’s local x, y and z axes. The
average interval between reports over a typical journey was
28 milliseconds.

3) Orientation: The orientation sensors measures azimuth
(angle between the magnetic north direction and the y-axis),
pitch (rotation around x-axis), and roll (rotation around the
y-axis) 3. The average interval between reports over a typical
journey was 28 milliseconds.

4) Heart Rate: A photoplethysmogram (PPG) optical sen-
sor, reporting HR in beats/min. The average interval between
reports was 1275 milliseconds.

5) GPS: Location and speed were requested from the GPS
unit once every second, however the actual average interval
recorded for GPS data over was 1500 milliseconds.

IV. IMPLEMENTATION

As detailed in Section III, the available data captures the
drivers’ biometric information (i.e., the HR) and the behav-
ioral information (Gyroscope and orientation that reflect the
person’s movement), in addition to the GPS. In this paper, we
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Fig. 2. Examples of original data and interpolated output.

focus our work on the biometrics sensor data in order to extract
the human-centric characteristics that identify the person under
any condition or behavior. To this end, we propose to apply
automatic feature extraction through deep learning and obtain
the person’s signature in three steps: Step one concerns the pre-
processing of raw data to ready it for the deep learning phase;
Step two consist of training and testing the CNN designed
for this classification problem; Step three consists of post-
processing the output of the CNN to improve its accuracy.

A. Pre-processing the data

After having selected which sensors to work with, we then
proceeded with processing the sensory information such that
it could be used in our deep learning model.

The first step is to align the starting and ending point of all
the samples. This has to be done because when collecting the
data, some sensors start and end at different time instants as
the others. This is easily done by only taking data from where
the sensors intersect.

Next, we match the sampling interval such that it is con-
sistent across different measurements. This has to be done
as the hardware does not keep a constant sampling rate and
sometimes reports 2 samples one right after the other. Since
we do not input time information into the CNN, if this is left
untreated, the algorithm’s performance would be hindered.

The strategy to match the sampling frequency is to set a pre-
defined sampling rate and interpolate the data from the sensors
such that all samples fall at the same time instants. In our case
we chose 2 seconds, as this is a slightly lower frequency than
the average for the HR sensor. Note that, for the CNN to
make sense of the combined information from more than one
sensor, all of them must be at the same sampling rate. We
show on Fig. 2 an example of the HR data before and after
the matching of the sampling rates. Note how if we took the
original samples of Fig. 2a their value would align well with
the interpolated data, however for Fig. 2b we can clearly see
that everything would be displaced due to the 2 consecutive
samples within the first 2 seconds.

The inputs for our CNN must have the same length and
thus we must now split the data of each trip into segments.
We must find a balance between the number of samples that
our CNN has to work with in order to perform classification

and the time it takes for us to identify who the driver is in
a real-time deployment. Therefore, we chose to split the trips
into 2 minute long segments, such that we can have a good
response time and at the same time the CNN is fed with 60
samples for each sensor.

Moreover, because the CNN will be running on the real-
time data constantly, we decided to split the trips in over-
lapping segments, such that we can run the classification
every sampling interval (2 seconds). Note that, in the real-
time situation, the sampling interval would also have to be
respected, and if a sample is delayed (i.e. it is collected after
the sampling instant has passed) classification would not be
performed for that instant, while if a sample is collected to
early (i.e. two consecutive samples are collected with almost
no interval between them) it is discarded.

The next step is to split the segments into training and test-
ing datasets. Since we are considering overlapping segments,
the same trip should be entirely placed into either one of the
datasets, to avoid misleading results. This happens because
two consecutive segments share most of their samples (except
for two) and therefore our classifier would have exceptional
performance that cannot be replicated in a practical deploy-
ment. Thus, the trips are randomly assigned to either dataset
with 85/15% ratio, respectively, for training and testing.

Once trips are properly split between datasets, the segments
in each are scrambled and the data is normalized across the
training set. Normalization is essential to avoid bias and also
such that we can combine data from two different sensor
sources with different scales. Normalization is performed
according to

Xs =
Xs − µs

σs
, (1)

where the subscript s indicates the sensor type, Xs is the
interpolated data, µs and σs indicate respectively the average
and standard deviation for sensor s across the training set.

B. The Proposed CNN

The CNN we designed consists of three convolutional
layers, followed by a pooling layer each in order to perform
the feature extraction. The input layer has length 60 and
is comprised of four channels, one for each axis of the
accelerometer plus one for the HR data. After the last pooling
layer, a flatten layer is added and then two hidden fully
connected layer with 50 and 10 neurons, respectively. Finally
the last layer is the output layer with one output per driver
(two in our case).

Each convolutional layer has 60 filters with kernel size 8. In
the first convolutional layer, this corresponds to capturing the
relationship of HR and acceleration within 16 seconds. The
activation function for the convolutional layers is the rectified
linear unit (ReLU), as in [12]. The weights initializer for
the kernel is a normal distribution with mean 0 and standard
deviation [13]

σk =
1√
φi
, (2)

where φi is the number of inputs for that weight tensor.



The activation function for the fully connected hidden layer
is hyperbolic tangent, to improve the convergence of stochastic
gradient descent (SGD) algorithms [13]. To avoid over fitting
of the dataset, we have introduced regularizes between each
layer. The amount of regularization for each layer is 10−4.

Even though we only have two drivers for this trial, in
a practical deployment more drivers would be considered
and therefore binary crossentropy is not adequate for the
loss function. Therefore, on the output layer we have used a
softmax activation function, and the categorical crossentropy
loss function, accordingly. Lastly, the training method is the
SGD, with learning rate 10−5 and momentum 0.9.

C. The post processing algorithm

In order to reduce the number of false-alarms in the real-
time deployment we propose a post-processing algorithm. The
idea is to apply a moving average filter on the measured data
to eliminate false negatives which might appear surrounded
by sequences of true positives. This way, higher frequencies
are removed from the data, meaning that isolated negatives are
removed from the result. After the filter is applied, a threshold
is considered to decide if the entry is positive or negative.

Basically we are sacrificing identification time in order to
increase the reliability, such that when an alarm is fired it is
most likely a true negative. This idea is illustrated in Fig. 3.
In the illustration, the input represented in Fig. 3a, is a signal
which represents positive or negative via zero and one. Fig. 3b
shows the result of testing that signal with a 75% accurate
classifier. After applying the moving average filter, the signal
is much more closely related to the original input, as it can be
observed in 3c. Finally, the result of applying the threshold is
represented in 3d, alongside the original signal. As we can see,
it was properly identified with some delay and high accuracy.

In a practical real-time deployment, wrongly identifying a
driver might be costly due to the triggering of false-alarms
which start safety procedures that might be detrimental to the
transport company’s operations. Since no system is perfect,
we propose that, in a real-world deployment, when a driver is
identified as not the one who is supposed to be driving, another
mechanism could be used to prove the driver’s identity, such
as voice-recognition, since this does not require any additional
hardware to be deployed with the driver and can provide a very
strong level of confidence.

V. RESULTS

In this Section we show the results of using the trained
CNN on the test trips in order to determine between the two
subjects. The parameters of the CNN and of the training are
summarized in Table III. The aggregated results for the test
trips are presented in the confusion matrix at Table II. As we
can see there is a slight bias towards Driver I, and this will
become apparent when we analyze the performance per trip.
Despite this, the 94% and 75% accuracy results are promising.

The accuracy of predictions for each individual trips for both
drivers is plotted in Fig. 4. The trips of Driver I are shown in
Fig. 4a and the ones for Driver II are shown in Fig. 4b. As we
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(b) Input after 75% accuracy.
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Fig. 3. The post processing algorithm. Note how after the low-pass filter and
the decision threshold are applied the original signal can be recovered with a
slight delay.

TABLE II
CONFUSION MATRIX

Predicted

Driver I Driver II Accuracy

A
ct

ua
l

Driver I 11457 647 94.7 %

Driver II 2885 8809 75.3 %

TABLE III
CNN PARAMETERS

Parameter Value
Layers

L1 / L2 Regularizer 10−4

Kernel Initializer LeCun Normal
Bias Initializer 0

Convolutional
Quantity 3
Filters per Layer 60
Kernel Size 8
Activation ReLu

Fully Connected Hidden
Quantity 2
Neurons per Layer 50 & 10
Activation Hyperbolic Tangent

Output
Neurons 2
Activation Softmax

Training
Batch Size 100
Number of Epochs 100
Training / Test ratio 85% / 15%

SGD Optimizer
Learning Rate 10−5

Momentum 0.9
Loss Function Categorical Crossentropy
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Fig. 4. The accuracy of predictions for the test trips for both drivers.
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Fig. 5. The results of post-processing the data with a moving average filter,
with length n, followed by a decision threshold.

can observe, the performance of the classifier is always above
80% for Driver I in all but 1 trip, which has 60% accuracy.
Moreover, for Driver II the performance is above 80% for
more than half the trips. For Driver II, however, we observe 4
trips with poor performance and in those cases an alarm would
be triggered or a fail-safe mechanism would be required.

In order to improve our results, we applied the proposed
post-processing algorithm for all the test trips. The results are
shown in Fig. 5, with Fig 5a and Fig 5b plotting the results
for Drivers I and II, respectively. Moreover, we tested the
algorithm with 3 different lengths of moving average window
(n). Note that the larger the value of n the longer it takes
for the algorithm to compute the classification, and the more
precise it is. This idea is well illustrated in Fig. 5a, where
we are able to obtain 100% accuracy in all trips but one for
n ≥ 120 (n = 120 translates to 4 minutes of delay with a
sampling rate of 2 seconds). However, this idea can only bring
impressive improvements if the underlaying classification is
already somewhat good. Note how Trip 0 for Driver I in Fig. 5a
improved only slightly even for n = 180. The post-processing
also brought improvements to Driver II, as it can be noted in
Fig. 5b. However, because the underlaying classification was
not as good, they only occur in one of the trips.

VI. CONCLUSION

The classification of drivers in a non-invasive manner is a
challenging task and we have presented one alternative that
works well in the dataset we have collected. More research
is needed in order to provide more results with different

datasets in order to consolidate the technology. However, we
have shown in this paper that the approach is valid and with
further improvements can be used in practical deployments
for real-time classification of subjects. Moreover, we have
shown how post-processing the data can improve the results,
especially if the underlaying classification has a good perfor-
mance (i.e. above 80% accuracy). One possible extensions of
this work are: combining biometric and behavioral information
with advanced deep learning techniques, such as imagifica-
tion [14]. Furthermore, this work can also be extended by
studying the transfer learning capabilities of the proposed
method in order to use the obtained features with a different
dataset.

ACKNOWLEDGMENT

This work was funded by Fujitsu Laboratories of Europe.

REFERENCES

[1] J. Zeng, Y. Sun, and L. Jiang, “Driver distraction detection and iden-
tity recognition in real-time,” in Proc. Second WRI Global Congress
Intelligent Systems, vol. 3, Dec. 2010, pp. 43–46.

[2] T. Wakita, K. Ozawa, C. Miyajima, and K. Takeda, “Parametric versus
non-parametric models of driving behavior signals for driver identifi-
cation,” in Proc. International Conference on Audio-and Video-Based
Biometric Person Authentication. Springer, Jul. 2005, pp. 739–747.

[3] C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, K. Takeda, and
F. Itakura, “Driver modeling based on driving behavior and its evaluation
in driver identification,” Proceedings of the IEEE, vol. 95, no. 2, pp.
427–437, Feb. 2007.

[4] C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, and K. Takeda,
“Cepstral analysis of driving behavioral signals for driver identification,”
in Proc. IEEE Int Conf. Acoustics Speech and Signal Processing, vol. 5,
May 2006, p. V.

[5] M. Van Ly, S. Martin, and M. M. Trivedi, “Driver classification and
driving style recognition using inertial sensors,” in Proc. IEEE Intelligent
Vehicles Symp. (IV), Jun. 2013, pp. 1040–1045.

[6] D. Hallac, A. Sharang, R. Stahlmann, A. Lamprecht, M. Huber, M. Roe-
hder, R. Sosič, and J. Leskovec, “Driver identification using automobile
sensor data from a single turn,” in Proc. IEEE 19th Int. Conf. Intelligent
Transportation Systems (ITSC), Nov. 2016, pp. 953–958.

[7] P. H. L. Rettore, A. B. Campolina, A. Souza, G. Maia, L. A. Villas,
and A. A. F. Loureiro, “Driver authentication in vanets based on intra-
vehicular sensor data,” in Proc. IEEE Symp. Computers and Communi-
cations (ISCC), Jun. 2018, pp. 00 078–00 083.

[8] Y. Zhang, J. Li, Y. Guo, C. Xu, J. Bao, and Y. Song, “Vehicle
driving behavior recognition based on multi-view convolutional neural
network (MV-CNN) with joint data augmentation,” IEEE Transactions
on Vehicular Technology, p. 1, 2019.

[9] J. V. Jacobs, L. J. Hettinger, Y.-H. Huang, S. Jeffries, M. F.
Lesch, L. A. Simmons, S. K. Verma, and J. L. Willetts, “Employee
acceptance of wearable technology in the workplace,” Applied
Ergonomics, vol. 78, pp. 148 – 156, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0003687018306094

[10] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey of ma-
chine learning techniques applied to self-organizing cellular networks,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2392–2431,
2017.

[11] S. B. Kotsiantis, “Supervised machine learning: a review of classification
techniques,” Informatica, vol. 31, no. 3, p. 249, 2007.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[13] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient BackProp.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–48.

[14] S. Furuya, A. Sanaee, S. Georgescu, J. Townsend, B. Rasmussen,
P. Chow, D. Snelling, and M. Goto, “Imagification technology and deep
learning accelerating defect detection in non-destructive testing for wind
turbine blades,” FUJITSU SCIENTIFIC & TECHNICAL JOURNAL,
vol. 55, no. 2, pp. 23–29, 2019.


