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We report on a new type of Taylor Couette instability, that is neither driven by inertia nor by
elasticity. Instead the instability is driven by anisotropic viscous stresses induced by suspended disk-
shaped particles, that redirect azimuthal momentum transfer from the radial to the axial direction.
We provide experimental evidence for the instability, using suspensions of mica flakes, which act
as flow destabilisers and also as flow visualisers. As a function of the mica concentration, there
is good agreement between theory of dilute disk suspensions and experiment in the concentration
dependence of the critical speed for instability onset and of the axial wavelength of the corresponding
instability mode.

PACS numbers:

Taylor Couette flow (TCF) is the flow in the gap be-
tween two counter rotating cylinders. When the outer
cylinder is held fixed, and the rotation speed of the inner
cylinder exceeds a threshold value, the circular Taylor
Couette base flow destabilises, which is accompanied by
the emergence of so-called Taylor vortices [1]. For New-
tonian fluids, the onset of instability corresponds to the
Taylor number Ta = ρΩ

√
∆R3R1/ηs, exceeding a crit-

ical value Tac, that, depending on the cylinder radius
ratio R2/R1, is around Tac ≈ 50. Here ηs is the fluid
viscosity, Ω is the angular velocity of the inner cylinder,
∆R = R2 − R1 is the gap width between the cylinders,
and R1 and R2 are the radii of the inner and of the outer
cylinder, respectively.

In non-Newtonian fluids the behaviour is different, and
to date two types of non-Newtonian TCF instabilities
have been observed. The first type is driven by centrifu-
gal forces, similar to the Newtonian instability, described
above. In this case the non-Newtonian rheology only al-
ters the details of the instability, i.e. the onset speed,
the shape and the dynamics of the vortical structures,
while the driving force remains the same. Examples of
this type of instability include fluids with a shear thin-
ning rheology [2–4] or suspensions of rod-like polymers,
e.g. polyacrylic acid, xanthan and carboxymethyl cellu-
lose [5–8]. Other examples include dense suspensions of
spheres [9–11], where non-Newtonian effects arise from
an anisotropic microstructure as well as from slippage
between the fluid and solid phases [9, 12].

The second type of non-Newtonian TCF instability is
driven by viscoelastic stresses and persists even in the
absence of centrifugal forces. This so-called “elastic in-
stability” has been observed in polymer solutions: [13–
15] and in micelle solutions [16] where in the later case,
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the instability is also affected by shear banding, i.e. by
a non-monotonic relationship between the stress and the
strain rate. The elastic instability is well understood and
reproduced by numerical simulation using constitutive
equations of viscoelastic fluids [14, 17].

In this work we report on a third type of TCF insta-
bility, that is neither driven by inertia nor by elastic-
ity. This instability is driven by the anisotropic viscous
stresses in suspensions of disk-shaped particles, which
redirect azimuthal momentum transfer from the radial
to the axial direction. Theory predicts that for infinite
disk aspect ratio and for vanishing rotary diffusion, the
instability persists for vanishing flow inertia, albeit with
a vanishing instability growth rate. Rotary diffusion and
finite aspect ratio both have an adverse effect on the in-
stability, requiring a finite flow speed for instability onset
[8].

a) b)

FIG. 1: (a) A rod with its major axis n in the azimuthal
direction ϕ, does not rotate when subjected to an azimuthal
vorticity perturbation. (b) A disk on the other hand tilts its
normal n away from the radial direction r towards the axial
direction z. The mean flow field Uϕ(r) is drawn relative to
the motion of the particles.

We explain the destabilising effect of suspended disks,
by contrasting it to the negligible effect of suspended
rods. Fig. 1a illustrates a rod in the Taylor Couette base
flow which has a strain rate sϕr. The flow, gradient and
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FIG. 2: (a) Mica size distribution, obtained from micro-
graphs, as shown in the inset which has a 200 µm scale bar.
(b) The theoretical, intrinsic viscosity [η] as a function of the
rotary Peclet number Pe in dilute suspensions of disks with
an aspect ratio of r−1

a = 102. The dotted lines indicate the
rotary Peclet value Pe ≈ 22 that corresponds to the measured
[η] ≈ 10. The inset shows the experimentally measured in-
trinsic viscosity in mica suspensions as a function of the shear
rate, for c = 5×10−3 (downward triangle), c = 10−2 (upward
triangle), c = 2× 10−2 (rightward triangle) and c = 5× 10−2

(leftward triangle).

vorticity directions are ϕ, r and z, respectively. In the
limit of an infinite aspect ratio and zero rotary diffusion,
the rod major axis n points in the ϕ-direction and gener-
ates no additional stress. A Taylor vortex perturbation
corresponds to azimuthal fluid vorticity ω′

ϕ, i.e. to fluid
rotation around n. Consequently n remains fixed and
the rod generates no hydrodynamic stress.

For a disk, the situation is sketched in Fig. 1b. In the
base flow, the disk normal n points in the r-direction.
A Taylor vortex perturbation ω′

ϕ rotates n away from
the r-axis and towards the z-axis. The perturbation of
the disk normal in the z-direction n′

z generates a stress
perturbation σ′

ϕz ∼ sϕrnrn
′
z [Eq. (3) below]. This stress

perturbation has an amplifying feedback on the Taylor
vortex perturbation ω′

ϕ via ∂tu
′
ϕ ∼ ∂zσ

′
ϕz and ∂tu

′
r ∼

(U/R)u′
ϕ [Eq. (2) below] and ω′

ϕ ∼ ∂zu
′
r.

The TCF instability in dilute disk suspensions is driven
by anisotropic viscous stresses and in theory the insta-
bility persists in the absence of inertial stresses, elastic
stresses and shear thinning effects [8]. A related but
not entirely similar instability has been observed in sus-
pensions of disk-shaped clay particles [18]. These clay
suspensions however generate elastic stresses and shear
thinning due to rotary diffusion and electrostatic inter-
particle forces [19]. These effects destabilise TCF even
in the absence of anisotropic viscous stresses [2].

In this work we provide experimental evidence for the
TCF instability in dilute suspensions of non-Brownian
and (nearly) non-adhesive disks. To this end we use sus-
pensions of mica flakes (Cornellius Ltd.) with a thick-
ness of d ≈ 1 µm and a mass density of 2.93 g cm−3. In
addition to inducing hydrodynamic instability, the mica
flakes also serve to visualise the flow. Fig. 2a shows the
distribution of the major particle axis l which is obtained
from 20 micrographs, as shown in the inset of Fig. 2a.

We examine one Newtonian fluid, i.e. with a very low

disk concentration c = 10−4, and five disk suspensions
with volume fractions ranging between c = 10−3 and c =
5×10−2. The suspending medium is a mixture of glycerol
(volume fraction G), distilled water (volume fraction W)
and aqueous food dye to aid flow visualisation (volume
fraction 0.02). For c ≤ 10−2 and c ≥ 2 × 10−2 we used
(G,W) = (0.71, 0.27) and (0.9, 0.08) respectively, which
correspond to a density and a viscosity of (ρ [g cm−3], ηs
[Pa s]) of (1.18, 0.036) and (1.24, 0.3), where the more
viscous liquid was used to suppress sedimentation effects
at the higher mica concentrations.

The steady shear viscosity ηeff of the suspensions is
measured using a rotational rheometer (TA Instruments)
equipped with a cone-and-plate geometry. The inset of
Fig. 2b shows the measured intrinsic viscosity [η] =
(ηeff − ηs)/(cηs), as a function of the shear rate γ̇ for the
various suspensions. The shear rate range 5 ≤ γ̇ ≤ 103

Hz would correspond to a Taylor number range in the
TCF setup of approximately 3 ≤ Ta ≤ 6 × 102. The
measured [η] collapse for the various c, i.e. [η] is inde-
pendent of c, causing overlapping and invisible markers
in the inset of Fig. 2b. Moreover, for c ≤ 2×10−2 we see
that [η] is independent of γ̇, and for c = 5 × 10−2 there
is a slight shear thinning [η] ∼ γ̇−0.02. The suspensions
are therefore (nearly) rate independent, which confirms
absence of adhesion forces and the corresponding elastic
behaviour.

The cylinders in the TCF setup have length L = 155
mm and radii R1 = 21.66 mm and R2 = 27.92 mm which
correspond to a radius ratio of R1/R2 = 0.77 and an as-
pect ratio of L/∆R = 21.56. The flow cell is enclosed
within a rectangular chamber in which water is recircu-
lated, to keep the fluid temperature in the flow cell at
20± 0.1◦C [4].

For c ≤ 2 × 10−2 we accelerate the inner cylinder
from rest with dΩ/dt = 0.16 rad/s2 to a maximum
speed of 114 rad/s. To suppress sedimentation effects
we also conducted runs where we decelerate from 114
rad/s with dΩ/dt = −0.16 rad/s2. All runs were re-
peated for both acceleration and deceleration, giving
very similar results for critical speed and size of vor-
tices. the non-dimensional acceleration rate: dΩ∗/dt∗ =
(ρ2R1∆R3/η2eff)|dΩ/dt| < 1 to ensure a quasi-steady flow
[20].

To observe the flow patterns, we illuminate the flow cell
using a white light-emitting diode (SugarCUBE, Edmund
Optics) and we image a strip of the flow cell with a CMOS
camera (Phantom Miro 340) at a frame rate of 60 Hz and
a resolution of 2224× 16 pixels in the z and ϕ directions.
Each image is averaged over ϕ into an axial profile with
2224 pixels and all profiles are combined into a matrix,
or ‘flow map’, of the light intensity as a function of z and
Ta [4].

The flow maps in Figs. 3a-b for c = 10−4 and c = 10−2

show that above a critical Ta the circular base flow tran-
sitions into a vortical flow, indicated by the appearance
of intensity bands. Flow maps for the higher concen-
trations are provided in the Supplementary Information.
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FIG. 3: Flow visualisation for mica suspensions with concen-
trations of c = 10−4 (a) and c = 10−2 (b). The intensity
maps show the onset of instability as the appearance of the
banded structures above a critical speed, indicated by the
dashed white lines.

These bands are horizontal which shows that the vor-
tices are axisymmetric and non-oscillatory. The onset of
instability corresponds to critical values, kc and Tac, of
the axial vortical wavenumber k and of the effective Tay-
lor number Ta = ρΩ

√
∆R3R1/ηeff which is based on the

measured effective viscosity ηeff (inset of Fig. 2b). For
the details of determining these critical values, we refer
to the Supplementary Information.

In the suspension with negligible mica concentration
c = 10−4 (Fig. 3a), Ekman vortices develop at the ends
of the flow cell before the instability sets in across the
entire axial span, at Tac ≈ 49, which is very close to the
theoretical value Tac ≈ 48 [21]. For Ta > Tac, there
are no significant changes in the intensity map (Fig. 3a),
suggesting that the magnitude of the instability mode
does not depend strongly on Ta in this regime.

In the suspension with substantial mica concentration
c = 10−2 (Fig. 3b) faint ridges appear for Ta > Tac ≈ 24,
which gradually become more distinct as Ta is increased
further. This indicates that at Ta = Tac the vortex
strength is weak relative to the Newtonian mode, and
it grows for Ta > Tac. It is noted that this gradual de-
velopment of the mode intensity is not observed in similar
measurements of solutions of flexible or rod-like polymers
[4].

The flow map for c = 10−2 in Fig. 3b shows another in-
teresting feature of the disk mode; as Ta is increased, the
number of vortices (indicated by the number of bright
and dark bands) abruptly decreases at several points,
corresponding to sudden increases in the axial vortical
wavelength. This phenomenon has also been observed in
solutions of polymers [4, 22]. It is also noted that these
jumps are due to the finite L/∆R of the TCF setup, while
for L/∆R → ∞ these changes are continuous.

We now compare the experimental results to a theo-
retical model [8]. The model is based on the constitutive
equations for dilute suspensions of spheroids which are
given by the continuity equation [23]:

∇ · u = 0, (1)

and the momentum equation:

ρ∂tu = ∇ ·
(
−ρuu− pδ + ηs

(
∇u+∇uT

)
+ σ

)
, (2)

where the spheroid stress σ:

σ

ηs
= 2α1s+ 2α2s : aa+ α3 (s · a+ a · s)

+ α4Dr

(
a− 1

3δ
)
, (3)

depends on the microstructure a = ⟨nn⟩ where n is the
unit vector along the spheroid polar axis and ⟨· · · ⟩ is
the average that is weighted with the probability density
function of n. The microstructure tensor a evolves as:

∂ta = −u ·∇a+∇uT · a+ a ·∇u

+ (B − 1) (s · a+ a · s)− 2Bs : aa−Dr

(
a− 1

3δ
)
.

(4)

Here u is the velocity, ρ is the suspension mass density, p
is the pressure, s = 1

2

(
∇u+∇uT

)
is the rate of strain

tensor, Dr ∼ kBT/(ηsd
3) is the rotary diffusivity which is

added to mimic the effects of hydrodynamic interactions
between the non-Brownian disks, c is the spheroid volume
fraction, ra = a/b is the aspect ratio, a is the polar radius
b is the equatorial radius, αi are material constants that
depend on c and ra and B = (r2a − 1)/(r2a + 1). The
cases: ra < 1, ra = 1 and ra > 1 correspond to oblate
spheroids (disks), spheres and prolate spheroids (rods),
respectively.

In order to estimate the effective aspect ratio that
corresponds to the size distribution in Fig. 2a, we use
that the disk stress σ scales with the disk major axis
cubed [23]. Therefore the relevant particle dimension
is the cube root of the third moment of this distribu-
tion leff = ⟨l3⟩1/3 ∼ 102 µm, giving an aspect ratio of
r−1
a = leff/d ∼ 102.
In the dilute theory [Eqs. (1-4)] hydrodynamic inter-

actions are not taken into account rigorously. The num-
ber of these interactions per particle is proportional to
the volume fraction of the disk-circumscribing spheres
∼ cr−1

a . In the present work, we consider mica suspen-
sions with concentrations up to cr−1

a ∼ 5, for which hy-
drodynamic interactions are expected to be important.
We model these effects with the rotary diffusion terms
(Dr terms) in Eqs. (3-4). Theoretical and experimental
studies have shown that rotary diffusion is an adequate
model for hydrodynamic interactions between rods [24–
28]. For disks on the other hand there are no equivalent
studies and at present it is not clear if interactions can
adequately be modelled by rotary diffusion. Below, we
shed some light on this issue by comparing the theoret-
ical model [Eqs. (1-4)] to experimental data, for both
steady shear flow and for the TCF instability.

First we show in Fig. 2b the theoretical [Eqs. (1-4)]
intrinsic viscosity [η] in the steady shear flow of a suspen-
sion of oblate spheroids with an aspect ratio of r−1

a = 102

as a function of the rotary Peclet number Pe = γ̇/Dr.
The theoretical viscosity in Fig. 2b decreases as a func-
tion of Pe. For Pe ≈ 22 the model matches the experi-
mental data [η] ≈ 10 (inset of Fig. 2b). We reemphasize
that the mica flakes are non-Brownian and that rotary



4

10-4 10-3 10-2 10-1
0

0.5

1

1.5

2

FIG. 4: The critical Taylor number Tac (black lines and
squares) and the critical vortical wavenumber kc (grey lines
and triangles), normalised by their Newtonian values, plotted
versus the disk concentration c. Comparison between exper-
imental data (markers) and theory (lines) . The theory uses
an aspect ratio of r−1

a = 102 and a rotary Peclet number
of Pe = 1 × 102 (solid lines), Pe = 1 × 103 (dashed lines),
Pe = 1 × 104 (dotted lines) and Pe = 1 × 105 (dash-dotted
lines).

diffusion is used as a model for the effects of hydrody-
namic interactions between the disks. We further note
that the (near) shear rate γ̇ invariance of [η] (inset in
Fig. 2b) indicates a constant rotary Peclet number, i.e.
Dr ∼ γ̇.

We now present linear stability analysis of the cylindri-
cal coordinate version of Eqs. (1-4), w.r.t. axisymmet-
ric perturbations u′(r) exp(ikz) exp(λt) where k is the
axial wavenumber and λ is the growth rate. The ax-
isymmetry of the instability modes is experimentally ob-
served in Figs. 3a-b. Details of the stability analysis
are given in Ref. [8]. Briefly, we discretise Eqs. (1-4)
using the Chebyshev collocation method on 30 colloca-
tion points. After computing the base state, we compute
λ by numerically solving the corresponding generalised
eigenvalue problem. All λ are found to be real-valued,
i.e. non-oscillatory, in agreement with the experimental
observations in Figs. 3a-b.

To match the experimental system, we use a radius
ratio of R1/R2 = 0.77, a disk aspect ratio of r−1

a = 102

and we vary the disk concentration between c = 10−4

and c = 10−1 and the rotary Peclet number between
Pe = 102 and Pe = 105. For each c and Pe we vary
the wavenumber k of the perturbation and for each k we
vary the rotation speed Ω. We thereby find the critical
wavenumber kc and the critical Taylor number Tac that
mark the transition between positive and negative λ, i.e.
the onset of instability.

Fig. 4 shows good qualitative agreement between the
computed and measured Tac and kc as functions of c.
The experimentally measured kc show a slight discon-
tinuity between c = 10−2 and c = 2 × 10−2 which is
likely due to the change in the suspending medium (see
experimental section) and the corresponding changes in
sedimentation and inter-particle adhesion. These effects
are considered weak, however, since the measured Tac
(Fig. 4) does not show a discontinuity. The experimen-
tal data for Tac agree well with the numerical results

for 103 ≲ Pe ≲ 104. This range is beyond the value of
Pe ≈ 22, that was required to match the constitutive
model to experiments for steady shear flow (Fig. 2b).
This discrepancy highlights that rotary diffusion is not an
accurate model for hydrodynamic interactions between
disks. This seems consistent with the notion that in ad-
dition to a randomising effect, interactions between disks
may also have the opposite effect of suppressing rotation
due to geometrical constraints [29]. Nevertheless there is
good qualitative agreement between the theory and the
experimental data, in both Tac and kc as functions of
c. This agreement supports the finding of a new Taylor
Couette instability that is driven by anisotropic viscous
stresses in suspensions of disks.
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FIG. 5: Real part (black) and imaginary part (grey) of com-
puted instability mode in a Newtonian system (a) and in a
disk suspension (b), using an aspect ratio of r−1

a = 102, a
rotary Peclet number of Pe = 3× 103 and a concentration of
c = 10−2.

Fig. 5 shows the computed velocity profiles for the
Newtonian mode with c = 0 and Ta = Tac ≈ 48 and
for the disk mode with c = 10−2 and Ta = Tac ≈ 24.
Compared to the Newtonian mode, the disk mode has
a suppressed cross stream velocity. These results agree
qualitatively with the intensity maps in Figs. 3a-b, show-
ing that the Newtonian mode has a relatively large in-
tensity immediately at Ta = Tac which stays roughly
constant for Ta > Tac, whereas the disk mode has a rel-
atively small intensity at Ta = Tac which increases for
Ta > Tac.

Summarising, we have provided experimental evidence
for a new type of Taylor Couette instability that is driven
by neither centrifugal forces nor by fluid elasticity. In-
stead it is driven by anisotropic viscous forces in sus-
pensions of disks that redirect the transfer of azimuthal
momentum from the radial to the axial direction. The
instability is qualitatively well described by constitutive
equations of dilute spheroid suspensions. Quantitative
differences between the theory and the experiments are
most likely due to hydrodynamic interactions between
the disks, and we expose the limitations of rotary diffu-
sion as a model to quantitatively account for these effects.
This new hydrodynamic instability has a range of poten-
tial industrial applications, e.g. to enhance mixing in
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chemical reactors or to enhance heat transfer in drilling
equipment. The instability may also be important when

interpreting Taylor Couette rheometer measurements.
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