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Abstract

The hydrodynamic stability of an imploding cylindrical liquid liner is analytically and numerically

investigated. Such dynamic system can be used to compress gas trapped by the liner, as one may

seek in a hydrogen fusion reactor. For such system it is vital for the liner to stay intact at least up to

the turnaround point, which marks the point of maximum compression of the inner gas. New two-

dimensional  linear  stability  of  Bell-type  equation  and  Wentzel-Kramers-Brillouin  (WKB)

approximations are derived to account for the rotation of the liner. Excellent agreement is achieved

between CFD and 1D analysis for the trajectory of the unperturbed liner. Very good agreement is

also achieved between the Bell type linear stability solution and the CFD until non-linear effects

take hold near the turnaround point. The WKB approximation also agrees well but only at the early

stage of the liner motion. Viscosity, surface tension and inner gas stability waves are found to have a

small effect for a liner’s radial compression of up to ten. 

It is seen that the rotation has little effect on the perturbation amplitude  during the accelerating

stage of the liner, which  is dominated by a  slow oscillatory growth of a Bell-Plesset type at the

studied  conditions.  However,  at  the  decelerating  stage  towards  the  turnaround point,  Rayleigh-

Taylor rapid perturbation growth is suppressed at sufficiently large rotation rates.  Hence, when

coupled with non-linear saturation effects, the liner stays much intact until the turnaround point for

radial  compression  ratios  of  up  to  ten. New simple  linear  stability  limits  are  derived  and  are

analysed.

Keywords:  Imploding  cylindrical  liner,  linear  stability,  Rayleigh-Taylor,  rotation,  perturbation

suppression, 
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List of symbols:

A – Atwood number; (r-rin)/(r+rin)

ac – centripetal acceleration at the liner’s inner surface

at – effective centripetal acceleration at the liner’s inner surface

cin – inner gas speed of sound

L – angular momentum

m – polar mode number

p – pressure, i.e. p = p0 + p'

p0 – unperturbed pressure

p' – perturbation pressure

Rin – the radial location of the liner inner surface

Rout – the radial location of the liner outer surface

r – radial distance

t – time

S=Rin/Rout

u – velocity, i.e. u = u0 + u' 

u0 – unperturbed velocity

u' – perturbation velocity

V – radial velocity of liner inner surface, i.e. dRin/dt

V0 – initial radial velocity of liner inner surface, i.e. dRin/dt at t=0

f – perturbation velocity potential in the liner

fin – perturbation velocity potential in the inner gas

h – surface perturbation

ha – surface perturbation polar mode

g – specific heat ratio

q – polar angle

s – surface tension coefficient

r – incompressible liner density

rin – compressible inner gas density 

W – unperturbed rotational speed of the liner

W0 – unperturbed initial rotational speed of the liner inner surface

W∞ – unperturbed initial rotational speed of the liner at formal limit r→∞

w – perturbation frequency and ω≡ω+mΩ
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1. Introduction

The flow of liquid in the form of a circular  cylindrical  shell  can be found in a wide range of

dynamic systems from problems of drainage, mechanical bearing, off-shore structures (Wang et al.

2018),  co-axial  jets  to  liners  used  to  shield  an  interior  object  or  to  compress  an  interior  gas

(Huneault et al. 2019). The focus of this study is the liner used to compress interior gas as in a

prototype of a fusion reactor system (Turchi 2017a). By considering compression of the gas, rather

than a plasma target (as in a fusion reactor),  we omit additional magnetohydrodynamic (MHD)

effects during implosion of the liner.  Achieving energy generation using nuclear hydrogen fusion

has attracted significant attention and effort since the 50’s of the last century. However, it still has to

produce energy in a commercially viable way. The use of the liquid metal liner to compress  plasma

target is  part  of the magnetized target fusion (MTF) approach,  where both magnetic fields and

mechanical forces are used to compress the plasma containing the hydrogen fuel until sufficient

high temperature and pressure are achieved for fusion to occur. It is a mixture of two systems; the

magnetic confinement fusion (MCF) and the inertial confinement fusion (ICF). MCF is based on

torodial machines as tokamaks that squeeze the plasma and thus raising its temperature as required

for fusion. ICF heats and compresses the plasma using usually high energy lasers. Both approaches

requires large facilities as the ITER in South France for the MCF. The MTF combines magnetic

confinement and mechanical compression and thus can be deployed in much smaller facilities, see

Suponitsky et al (2014, 2107) for further details.

The MTF approach has the promise of a reduced cost and system’s size, but still has to overcome

technical challenges that are inherent to such a dynamic system with requirements of very short

time scales due to the short life span of the plasma. One of the challenges is to keep the metal liner

intact with no significant deformation until at least the plasma has been sufficiently compressed

(Barcilon et al.  1974). A typical liner is in the form of a circular cylindrical shell whose cross-

section is illustrated in Fig. 1 or in the  form of a spherical shell. The focus of this study is on the

circular cylindrical shell, where ideally it should go through a cycle of first radially converging

inwards  (compressing the inner gas)  until a turnaround point is reached  and the liner changes its

radial direction of motion and starts  diverging outwards  approaching the starting point of the cycle

(Barcilon et al. 1974, Turchi 2017a).

In the 1970s as part of the Linus project, the liner was proposed to be pushed by an axial magnetic

field, which  led to the onset of  Rayleigh-Taylor instability (RTI) capable of breaking down the

liner during the implosion. This instability is triggered  when a  lighter fluid pushes the heavier fluid
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as in the case of a layer of water above a layer of air. It can be found in a wide range of applications

from oceanic and atmospheric stratification flows to jet atomisation (Kull 1991). Rotating the liner

was found to reduce RTI, in particular,  two-dimensional liner stability analysis of a liner driven by

an axial magnetic field has revealed  that the rotational energy has to be at least 60% of the total

liner energy in order to avoid RTI (Barcilon et al. 1974). This can have a significant effect on the

ability to achieve highly compressed plasma at the turnaround point.

Increasing the initial thickness of the liner can also decrease RTI effect in the linear stability sense

(Barcilon  et  al.  1974),  and also  in  non-linear  stability  sense.  This  is  because  of  the  instability

saturation in the non-linear stage of the RTI (Kull 1991). Hence, the thick liner does not break

down, but it can still lead to a reduced uniform compression of the plasma (Turchi 2017a). High

rotation and/or an initially thick liner can also reduce the compression efficiency of the plasma by

increasing  the  radius  of  the  turnaround  point  and  increasing  the  time  required  to  reach  the

turnaround point, thus caution must be applied  to chose the right level of rotation and thickness

(Book & Winsor 1974).  The ability  of rotation to  reduce RTI was later  confirmed by a  set  of

experimental flow visualisations, showing the need for the effective centripetal acceleration to be

negative (Turchi et al. 1976). This was also recently demonstrated in the experiments of Huneault et

al. (2019), showing that rotation can suppress low mode number perturbations RTI growth, leading

to geometrical growth instead. 

Another way to reduce RTI is to push the liner using an array of circular pistons (Turchi et al.

1977). It can suppress    feed-through RTI effects by preventing perturbation growth on the outer

side  of  the  liner  as  is  analysed  in  this  study.  The  liquid  liner’s  motion  is  assumed  as  of

incompressible  flow  following  Barcilon  et  al.  (1974),  Kull  (1991),  Turchi  et  al.  (1976)  and

Velikovich & Schmit (2015). When the compression level is extremely high, it may reach the level

of the liquid’s bulk modulus causing compressibility to mildly slow down the motion and reduce the

transfer of the liner’s kinetic energy towards the compression of the inner gas (the plasma) (Book

and Turchi, 1979). Such case is left for a future study.

An innovative dynamic system of steam-driven pistons transmitting an acoustic pulse into the liner

and causing it to implode was analysed by Suponitsky et al. (2017), showing a significant uniform

compression of the plasma near the turnaround point. However, energy losses during the acoustic

pulse transfer and very strict synchronization requirements can put significant constraints on this

kind of system. An alternative design,  based on a single switch of high compression gas to push the
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liner, was analysed by Avital et al. (2017). As in the case of the highly compressed liner near the

turnaround point, it yielded a fluid hammer phenomenon of a return azimuthal pressure wave that

increased compression forces over the liner but reduced the compression uniformity. A third and

slower system was suggested by Suponitsky et al. (2018), in a form of a rotating turbine-like drum

with radially-tilted blades filled with liquid between them. The drum then was rapidly decelerated,

causing the liquid to radially flow inwards and  form a rotating liner  converging towards the centre.

Experiments using water and complementary computational fluid dynamics (CFD) have shown the

ability of  such a system to achieve a stable cylindrical imploding liner  when the effective radial

acceleration is noticeably negative.

The subject of this study is the hydrodynamics of an imploding cylindrical liner pushed by pistons,

where the analysis of the kind of pistons is left to other studies. The focus here is on the motion and

stability  of  the  cylindrical  liner  system.  A  similar  system  was  also  recently  experimentally

investigated  by  Huneault  et  al.  (2019),  where  the  main  focus  was  to  provide  experimental

demonstration that sufficient rotation of the liner can suppress RTI during decelerating stage of the

liner and after the turnaround point.  New linear stability analysis is presented which includes the

effect of rotation and instability waves in the inner compressed gas. Two approaches of stability

analysis  are  used.  The  first  approach  is  deriving  an  exact  (in  the  linear  sense)  hydrodynamic

stability equation of the Bell type as was done by Mikaelian (2005) for liners with infinite outer

radii but adding the effect of rotation. Hence, this approach approximates the instability process in

thick  liners.  The  second  approach  is  the  Wentzel-Kramers-Brillouin  (WKB)  approximation

previously  used by Velikovich & Schmit  (2015) in a detailed study for the case of non-rotating

liner  and no aerodynamic instability waves in the compressed gas. The approximation is in the

assumption that development of the instability wave occurs in a much faster time scale compared to

that of the liner’s radial motion.  Two-phase CFD simulations  using the OpenFoam software are

also performed to complement the analysis by providing further comparison for the linear stability

analysis results and looking at non-linear effects of the perturbation  development.  

In both forms of the stability analysis and the CFD computations, the perturbation is  assumed as

two-dimensional as in the stability analysis of Barcilon et al. (1974), Mikaelian (2005) and Epstein

(2004).  Extension  for  3D  instability  wave  is  readily  possible,  particularly  in  the  WKB

approximation  where  a  Bessel  function  expansion  can  be  used  (Velikovich  &  Schmit  2015,

Vadivukkarasan & Panchagnula 2019). However, the 2D instability assumption already captures the

main features of the stability process in terms of the liner’s acceleration. It also allows deriving a
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simple limit  for  Rayleigh-Taylor  (RT) stability  beyond the known limit  of  a  negative effective

centripetal acceleration at the turnaround point and  significantly reduces the computational cost of

the CFD computations. Hence, 3D stability analysis is left for a future study. 

2. Methodology

A circular cylindrical liner is assumed, where its cross-section is illustrated in Fig. 1. The liner

motion is assumed to experience pressures that do not lead to strong compression and refraction

waves and, hence, liquid liner is assumed incompressible, while the inner gas is compressible for

the 1D unperturbed motion analysis (Barcilon et al. 1974, Velikovich & Schmit 2015). The outer

surface of the liner is assumed to be exposed to a pressure p0
out carried by a ring of pistons and thus

the surface perturbation can only exist on the inner surface of the liner. The 1D equation of motion

is derived for the unperturbed liner motion. It is followed by linear stability analysis accounting for

hydrodynamic forces and rotation inside the liner. Finally the methodology of the complementary

CFD computations is presented.

2.1 Equation of motion of the unperturbed liner

The momentum equation in the radial direction while assuming perfect symmetry and no motion in

the axial direction is:

∂ur
0

∂ t
+ur

0 ∂ ur
0

∂ r
−
(uθ

0
)

2

r
=−

1
ρ
∂ p0

∂r
, (1)

where u0
r = (Rin dRin/dt)/r due to incompressibility, u0

q=W(r)r and the angular momentum L= ru0
q is

preserved during motion. The superscript 0 denotes an unperturbed property. Eq. (1) converges to

the known non-rotating liner equation of motion when u0
q=0 (Kull  1991, Velikovich & Schmit

2015) and to the base flow for rotational flow stability analysis (Drazin and Reid 2004). It should be

also noted, that because ru0
r is constant in space due to continuity, the viscous term is exactly zero in

the  1D radial  Navier-Stokes  equation  and,  hence,  it  does  not  appear  in  Eq.  (1).  Following the

derivations of Kull (1991) for a non-rotating liner and Suponitsky et al. (2018) for a rotating liner,

while neglecting surface tension, one gets the equation of motion as:

[R in

d2 R in

dt 2 +V 2] ln 1
S
−

V 2

2
(1−S2 )=−

pout
0
− pin

0

ρ +∫
R in

Rout

L2

r3 dr , (2)

where

V (t)≡
dRin

dt
, S(t )=

Rin

Rout

, L(r , t)=r 2
Ω(r , t) . (3)
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It is shown in Section 2.2.1 that a particular distribution of an angular momentum is required to

ensure potentiality of velocity perturbation (Eqs. 13, 14):

L(r , t)=a(t)r2
+b(t ),

where coefficients a(t) and b(t) are determined by initial rotation profile and by the compression

trajectory of liner (due to conservation of angular momentum). Cases of a particular interest are

liner  initially  rotating  as  a  solid  body (mainly studied in  the  work),  and as  a  potential  vortex.

Distributions of angular momentum for those two cases are given by

Lsolid body(r , t)=Ω0(r
2
−R in

2
(t)+Rin

2
(0)) and Lpotential vortex (r , t)=Ω0 Rin

2
(0) .

In order to solve Eq. (2) for inner liner surface radius Rin, initial conditions for the liner motion have

to be provided. Here it is assumed that liner is initially at rest (with respect to the radial motion

component) and starts to implode due to a sudden increase of external pressure. For this case the

initial conditions are S(0)=Rin(0)/Rout(0) and V(0)=0 along with the mass conservation requirement

of R2
out(t)-R2

in(t) = R2
out(0)-R2

in(0).  Alternatively, one can consider a liner that already has some

initial radial velocity. In this case V(0)=V0, where V0 is initial radial velocity of the inner surface.

However, one should keep in mind that if liner’s initial radial velocity is not zero, initial rotation of

the liner can not be prescribed as a solid body rotation. Hence, the initial radial distribution of the

angular momentum in the liner should be provided. 

Temporal pressure distribution acting on the inner and outer surfaces of the liner should be also

provided in order to solve Eq. (2). Assuming isentropic compression of the inner gas;

p in
0
(t)

p in
0
(0)

=[ ρin( t)
ρin(0) ]

γ

=[ R in(0)
Rin(t) ]

2γ

. (4)

Taking g=2 will mimic the effect of a magnetic pressure due to an inner magnetic field (Velikovich

& Schmit 2015). Temporal outer pressure distribution is determined by the system used to implode

the liner, and can be  nearly constant, pulse shaped etc.. Increase in the rotational speed of the liner

with all other  parameters in Eq. (2) kept unchanged, delays the occurrence of the turnaround point

and increases liner’s minimum radius.  It also increases the dwell time at the turnaround point and

leads to a more gradual re-bounce. Thus, if the same temporal outer pressure is applied for different

initial rotational speeds of the liner, the different implosion trajectories of the liner are obtained. The

goal of this work is to identify the pure effect of rotation on the stability process, hence, it is argued,

that  liners  of the same geometry and  trajectory but with different  rotational  speeds should be

compared. 
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This can be done by adjusting the temporal outer pressure distribution acting on the liner. By taking

the  trajectory of  the  non-rotating liner  as  the one that  all  other  liners  should  follow,  the  outer

pressure required to achieve the same trajectory for different rotational speeds can be calculated as:

pout
0
(L ,t)=pout

0
(L=0 , t)+ρ ∫

Rin (t )

Rout(t) L2
(r , t)

r3 dr . (5)

This means the outer pressure should be increased for higher rotational speeds in order to overcome

the centrifugal force expressed by the last term in Eq. (5). For the cases considered in this study, a

constant outer pressure has been taken for a non-rotating liner and then Eq. (5) has been used to

calculate the required temporal pressure profile at different rotational speeds.

In Eq. (2) it was assumed that the pressure of the liner at r=Rout is equal to the outer pressure p0
out

and p=p0
in at r=Rin. If the surface tension is accounted then the relation is (Drazin and Reid 2004):

pliner
0

(r=Rout,in)=pout,in
0

± σ
Rout,in

, (6)

where the plus sign is for the outer surface and the minus sign is for the inner surface. Typical

values  of  s is  0.072 N/m for  water-air  interface  and 0.38 N/m for  liquid lithium-air around a

temperature of 500 K. Rin is in the order of 1 cm. Hence, the effect of the surface tension on the

unperturbed motion is very small as compared to p0
out of 5 bars or more and can be neglected as

done by Kull (1991),  Velikovich & Schmit (2015) and  Suponitsky et al.  (2018). The numerical

results in Section 3 have shown that the effect of the surface tension on the unperturbed motion and

the perturbation development of the liner can be neglected as further discussed in Section 3.3.

Eq.  (2)  was solved for  Rin using a  4th order  Runge-Kutta  method.  Numerical  convergence was

checked by varying number of points across the thickness of the liner and the time step of the

Runge-Kutta method.

2.2 Liner linear stability analysis

Two approaches are used: the Bell-type stability equation and the WKB approximation. Both have

their  merits  and drawbacks,  while  both  account  for  the  rotational  effect  that  includes  both the

centrifugal and Coriolis forces in the linear sense using the linearly perturbed cylindrical Euler

equations (Drazin and Reid 2004). The WKB approximation assumes that the development of the

liner motion and its perturbation operate at different time scales, therefore the stability analysis is

carried out assuming a liner frozen in time, yielding a wave growth rate that varies in time when

assuming an exponential  time solution. This is obviously an approximation, particularly at  time

stages near the turnaround point where rapid changes can occur within the liner’s trajectory. On the
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other hand, this approach is well established (Barcilon et al. 1974, Velikovich & Schmit 2015) and

can be easily extended to include stability waves inside the inner gas as done in this study. The

derivation of the Bell-type stability equation is exact in the linear sense, but it is not straight forward

to include the inner gas perturbations. Hence, it will be assumed the Atwood number is one in the

derivation, A=1. Later it will be observed in Section 3 that the effect of the inner gas perturbations is

small for the studied cases.

In both derivations presented in this study, viscous and surface tension forces are not accounted as

in previous stability analyses for liners with no rotation or with no perturbations in the inner gas

(Barcilon et al. 1974, Epstein 2004, Mikaelian 2005, Velikovich & Schmit 2015). Both effects tend

to stabilise the motion as the polar wave number m increases (Avital 1995, Drazin and Reid 2004).

However, the very small  time scale of the liner motion in the examples studied here, means that

viscous effects do not have sufficient time to affect the perturbation’s growth as is confirmed by the

complementary CFD computations  and the scaling analysis  in  Section 3.3.  The surface tension

increases the effective unperturbed pressure gradient in the WKB approximation and thus makes the

effective centripetal acceleration more negative for the stability process. Hence, it can increase the

2D stability as was also experimentally observed by Huneault et al. (2019). For non-rotating 3D

liners the surface tension can cause 3D long wave axial and helical instabilities as found using the

WKB approximation  (Vadivukkarasan  & Panchagnula  2019).  However,  again  the  effect  of  the

surface tension was found to be small for the investigated rotating 2D liners as evident from the

CFD computations and the scaling analysis in Section 3.3 and thus it is left for a future study.

Finally, it is worth re-iterating that linear stability analysis in the paper is limited to the azimuthal

perturbation only, with the effect of liner rotation on the axial perturbations is left for the future

work. 

2.2.1 The Bell-type stability equation

Here we derive the Bell-type equation for linearized dynamics of liner surface perturbation η when

the outer radius of liner is infinite. We restrict our derivation to the case of perturbations with no z-

dependence and assume Atwood number  A=1 during the entire implosion. As usual in linearized

analysis, perturbations with different polar mode numbers m (i.e., different Fourier harmonics eimθ)

can be treated separately since they are decoupled.

First,  we  consider  the  velocity  perturbation  in  the  liner  and  derive  its  relation  with  pressure

perturbation. The perturbation of liner velocity is assumed to be potential and incompressible.  It is
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worth noting, that the assumption of potential flow is fully justified for a non-rotating liner, as in

this case flow can be assumed to be both inviscid (as the small time scale of the motion renders

viscous effects  negligible)  and irrotational (as the motion departs  from rest,  which by Kelvin’s

theorem, gives an irrotational flow). For the initially rotating liner, however, certain limitation on

angular momentum distribution is applied, as discussed farther in this section. As such:

u⃗ '=∇ ϕ , ∇
2
ϕ=0. (7)

In polar coordinates, the solution for potential that decays at infinity is

ϕ=B(t )r−m ei mθ , m>0. (8)

Taking into account that

(u⃗⋅∇) u⃗=∇
u⃗2

2
−u⃗×(∇×u⃗) ,

we can write the linear part of the perturbed Navier-Stokes equation as

∂ u⃗ '
∂ t

+∇ (u⃗0
⋅u⃗ ')−u⃗'×(∇×u⃗0

)− u⃗0
×(∇×u⃗ ')+∇

p '
ρ =0. (9)

Here prime denotes the perturbed part of corresponding variable, and 

u⃗0
=ur

0 e⃗r+uθ
0 e⃗θ=

R in( t)

r

d R in (t)

dt
e⃗r+rΩ(r , t) e⃗θ. (10)

is the unperturbed velocity. For potential velocity perturbation this becomes:

∇ (∂ ϕ∂ t
+u⃗0

⋅∇ϕ+
p '
ρ )−∇ϕ×(∇×u⃗0

)=0. (11)

In order for velocity perturbation to stay potential during dynamics described by Eq. (11), the last

term in this equation should be a full gradient, i.e., the curl of it should be zero. Since unperturbed

vorticity is

ω⃗
0
≡∇×u⃗0

=
1
r
∂(ruθ

0
)

∂r
e⃗z ,

the condition for potentiality of velocity perturbation is

∇×(∇ ϕ×ω⃗
0
)=−(∇

2
ϕ)ω⃗

0
−(∇ϕ⋅∇)ω⃗

0
=−

∂ϕ

∂r
∂
∂ r (

1
r
∂(ruθ

0
)

∂r ) e⃗ z=0. (12)

This condition requires that profile of unperturbed angular momentum stays quadratic in radius at

all times t (including t=0), namely,

L(r , t)≡ruθ
0
=r2

Ω(r , t)=a(t )r2
+b (t ) , (13)

where  coefficients  a(t)  and  b(t)  are  determined  by  initial  rotation  profile  and  by  compression

trajectory of the liner (due to conservation of angular momentum), so that: 

a( t)=Ω∞ , b(t )=Ω0 Rin
2
(0)−Ω∞R in

2
(t) , (14)
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with  Ω0 and  Ω∞ being initial (at time t=0) angular velocities at inner liner surface and at infinity,

respectively. For such angular momentum profile, the vorticity is given by

ω⃗
0
=2Ω∞ e⃗z ,

and the last term in Eq. (11) then becomes:

−∇ϕ×(2Ω∞ e⃗z)=−2Ω∞(
imϕ

r
e⃗r+

mϕ

r
e⃗θ)=∇(2iΩ∞ϕ) . (15)

Here we used the fact that for ϕ given by Eq. (8)

∂ϕ

∂ r
=−

mϕ

r
,

∂ϕ

∂θ
=i mϕ .

Removing gradient in Eq. (11), we obtain:

∂ϕ

∂ t
−

m Rin

r2

d Rin

dt
ϕ+i mΩϕ+2iΩ∞ϕ+

p '
ρ =0. (16)

From this equation we can find the pressure perturbation p' at r=Rin:

p' (Rin)=
ρ

Rin
m (−∂B

∂ t
+

mB
R in

dR in

dt
−i mΩin B−2 iΩ∞B)ei mθ , (17)

where Ωin is the angular velocity at the inner liner surface (due to angular momentum conservation):

Ωin(t )=Ω0

R in
2
(0)

R in
2
(t)

.

The perturbation of liner velocity is related to the surface perturbation by the kinematic boundary

condition. If the radius of perturbed surface is given by

R(θ , t)=R in (t)+η(θ , t) ,

then the kinematic boundary condition is 

ur |R=
dR
dt |R≡( dR in

dt
+
∂η

∂ t
+Ω

∂η

∂θ )|R , (18)

where ur is the full perturbed radial component of velocity

ur=ur
0
+
∂ϕ

∂r
,

and all quantities are evaluated at perturbed surface  R. Taylor expansion of Eq. (18) up to linear

terms in perturbations η and ϕ is

(ur
0
+η

∂ ur
0

∂ r
+
∂ϕ

∂ r )|Rin

=(
dR in

dt
+
∂η

∂ t
+Ω in

∂η
∂θ )|

Rin

, (19)

where now all quantities are evaluated on the unperturbed surface  Rin. Eq (19) converges to the

kinematic boundary condition of Velikovich & Schmit (2015) for a non-rotating imploding liner

when taking Ωin=0. Using ansatz
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η(θ , t)=ηa(t)e
i mθ,

from Eq. (19) we obtain:

−
mB
R in

m+1=
d ηa

dt
+ imΩinηa+

1
Rin

dR in

dt
ηa . (20)

Finally,  pressure  and  surface  perturbations  are  related  by  the  dynamic  boundary  condition

(Mikaelian  2005,  Velikovich  &  Schmit  2015),  implying  that  the  full  perturbed  pressure  is

continuous across the perturbed surface:

(p0
+ p' )|R= ( p in

0
+ p ' in )|R , (21)

where the left side of equation corresponds to the liner fluid pressure and the right side corresponds

to the gas pressure inside cavity. Taylor expansion of Eq. (21) up to linear terms in perturbations is

( p0
+η

∂ p0

∂ r
+ p ' )|

Rin

=( p in
0
+η

∂ pin
0

∂r
+ p ' in)|

Rin

, (22)

Note  that  unperturbed  pressures  also  satisfy  dynamic  boundary  condition,  i.e.,  p0(Rin)=p0
in(Rin).

Besides, we assume that gas in cavity is a passive medium which quickly equalizes the pressure

inside  an available  volume.  Therefore,  p0
in is  uniform in  space (∂p0

in/∂r=0) and  p'in=0 in linear

approximation. Then Eq. (22) leads to

p' (Rin )=−η(∂ p0

∂r )|
Rin

. (23)

The gradient of unperturbed pressure can be found from equation of liner motion:

R in

r
d2 Rin

dt2 +
1
r (

dR in

dt )
2

−
R in

2

r3 ( dR in

dt )
2

−Ω
2 r+

1
ρ
∂ p0

∂r
=0. (24)

At r=Rin this gives:

(∂ p0

∂r )|
R in

=ρ(Ωin
2 R in−

d2 R in

dt2 ) ,
and so

p' (Rin)=ρ( d2 R in

dt 2 −Ωin
2 R in)ηa e i mθ. (25)

Eqs. (17), (20) and (25) constitute a closed system. Excluding p'(Rin) and B from them, we obtain

the new Bell-type equation for the surface perturbation ηa:
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d2
ηa

dt 2
+2

d ηa

dt ( 1
R in

dRin

dt
+ imΩ in+iΩ∞)+ηa[ (1−m)

Rin

d2 R in

dt2
+(m−m2

)Ωin
2
+2iΩ∞( 1

R in

d Rin

dt
+imΩin)]=0 .

(26)

This equation converges to the known Bell stability equation for a non-rotating liner when taking

W∞= Ω0=0 (see, for example, Eq. (1b) in Mikaelian 2005). In this study Eq. (26) with the initial

conditions ha(0)=ha0 and dha/dt(0)=0 is solved numerically using a 4th order Runge-Kutta scheme to

obtain a complex solution for  ha.  In order to follow the initial  maximum and minimum points

(spikes and bubbles) of the surface perturbation as the liner implodes,  the corresponding polar

angle  q(t)  should  be  determined  from  the  implosion  trajectory  and  angular  velocity.  As  first

approximation, it is assumed that perturbation rotates with the base flow, i.e. the difference between

angular velocity of perturbation minima/maxima and that of unperturbed liner is negligible. Then

corresponding angle can be calculated as

θ(t )=θ(0)+∫
0

t

Ω in(t ')dt ' , (27)

and the real evolution of perturbation maxima/minima is  

ηreal=ℜ(ηa(t)ei mθ(t)
). (28)

This evolution of perturbation maxima/minima is compared with full CFD simulations in Section 3.

Eq. (26) can be simplified if we account for the phase shift of the perturbation:

ηa=η̄aexp (−i m∫
0

t

Ωin(t ' )dt '−iΩ∞ t) ,

then

d2
η̄a

dt 2
+2

d η̄a

dt
1

Rin

dR in

dt
+η̄a((1−m)

R in

d2 R in

dt 2
+mΩ in

2
+Ω∞

2 )=0 . (29)

Eq. (29) is similar in form to Eq. (2.20) from Huneault et al.  (2019), the only difference is the

presence of the term  Ω2
∞ in Eq. (29). We claim that our Eq. (29) can be applied to a liner with a

general profile of angular momentum given by Eqs. (13), (14), whereas Eq. (2.20) from Huneault et

al. (2019) only applies to a case of potential vortex, when  L is constant in both radius and time

(although analysis in that paper is done assuming initial solid body rotation with L=Ω0r2).

Eq. (29) can be futher simplified by introducing function h(t), such that:

η̄a=h( t)
Rin(0)
R in( t)

.

Then Eq. (29) becomes:
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d2h

dt 2
+h(− m

R in

d2 Rin

dt 2
+mΩin

2
+Ω∞

2 )=0 . (30)

For convenience, we give the relation of function h(t) with full surface perturbation η:

η(θ , t)=h( t )
Rin(0)

R in(t)
exp(i mθ−im∫

0

t

Ωin(t ')dt '−iΩ∞ t) . (31)

Eqs.  (30),  (31) describe the wave-like perturbation on the inner surface of the liner.  The phase

angular velocity of this wave (angular velocity of its spike) is 

Ωph(t)=Ω in(t)+
Ω∞

m
. (32)

Note that it is different from angular velocity of the inner surface of the liner Ωin(t). The amplitude

of this wave is growing as Rin(0)/Rin(t) when liner is converging, as described by pre-factor in Eq.

(31), and, in addition, it is oscillating or exponentially growing in time, depending on sign of the

expression in brackets in Eq. (30). If

1
R in

d2 Rin

dt2 −Ωin
2
−
Ω∞

2

m
<0, (33) 

then the amplitude of perturbation is oscillating and the system is stable. In WKB approximation,

the frequency of stable oscillations and growth rate of instability can be estimated by 

ωWKB=ℑ√ m
Rin

d2 R in

dt 2 −mΩin
2
−Ω∞

2 , (34)

γWKB=ℜ√ m
R in

d2 Rin

dt2 −mΩin
2
−Ω∞

2 . (35)

Presented  analysis  can  be  potentially  extended  to  the  case  of  a  thin  liner  or  for  a  number  of

cylindrical shells as part of a future work.

2.2.2 The WKB approximation

The perturbation on the liner outer surface is taken as zero as it is assumed to be pushed by a ring of

pistons (Turchi et al. 1977). The perturbation motion is taken as governed by potential flow, as in

the analysis presented in section 2.2.1 (Epstein 2004, Mikaelian 2005, Velikovich & Schmit 2015).

As it has been shown in section 2.2.1, for the initially rotating liner angular momentum has to be of

a certain form to ensure potentiality of the flow. In this WKB analysis we assume that the initial

liner rotation corresponds to a potential vortex, i.e., 

L(r , t)=Ω0 Rin
2
(0)
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 Therefore, for the potential velocity perturbation:

u⃗ '=∇ ϕ , ∇
2
ϕ=0 . (36)

The general solution to the Laplace equation in polar coordinates is:

ϕ=[ Arm
+Br−m ]e i(mθ+ωt ) , m>0 , (37)

where the WKB approximation is in the assumption of exponential time variation. 

The kinematic boundary condition on the liner inner surface was already given in Eq. (19). On the

outer surface of the liner we assume that the surface perturbation  h=0 which yields the simple

boundary condition of a zero perturbation radial velocity; u'r  =0 at r=Rout. The dynamic boundary

condition was given in Eq. (22). Similar to Eq. (16), the perturbation pressure p'  can be found

through  the  linearised  Bernoulli  equation  (Velikovich  &  Schmit  2015),  i.e.,

− p ' /ρ=∂ϕ/∂ t+u⃗0
⋅∇ϕ , with u⃗0  being the unperturbed velocity vector, so; 

p'=−Aρ [ iω+mur
0
/r ] rm

−Bρ [iω−mur
0
/r ]r−m , ω≡ω+mΩ , (38)

where A and B are the same as in Eq. (37). Note that Eq. (38) does not contain terms with Ω∞ as in

Eq. (16), since Ω∞=0 in a case of potential vortex rotation. 

In order to find the characteristic equation for w we combine the expressions for the perturbation

velocity in Eqs. (36) and (37), pressure in Eq. (38) and the boundary conditions in Eqs. (19) and

(22) which leads to a set of two linear equations that is symbolically written as:

(
d11 d12

d21 d22
)(A

B )=0 . (39)

Taking the determinant of the matrix D leads to the characteristic equation for w, where 

d11=mRout
m−1 , d12=−mRout

−(m+1 ) , (40)

by requiring u'r=0 at r=Rout. 

Neglecting  the  effect  of  the  inner  gas  disturbance  (i.e.  taking  Atwood  number  A=1)  greatly

simplifies the equations. Furthermore, it was found for the cases studied in Section 3 that it did not

affect much the stability for the studied examples. It should be noted, that the inner gas effect on the

liner’s unperturbed motion discussed in Section 2.1, is still accounted. Taking ∂p0
in/∂r=0 and p'in=0

in Eq. (22), leads to:

d21=−ρ(iω+mur
0
/Rin)[ iω−

∂ur
0

∂r ]R in
m
+m

∂ p0

∂r
Rin

m−1 , (41)

and
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d22=−{ρ(iω−mur
0
/R in)[ iω−∂ur

0

∂r ]R in
−m
+m

∂ p0

∂ r
Rin
−(m+1)} . (42)

At the turnaround u0
r=0, ∂u0

r/∂r=0 and by Appendix A, one can show that in order to have a real w

the unperturbed pressure gradient  ∂p0/∂r has to be positive, and by the momentum equation (1) it

means  a  negative  effective  centripetal  acceleration,  i.e.  at=d2Rin/dt2-(u0
q)2/Rin<0.  An  explicit

analytical limit of stability for the liner’s trajectory during implosion is derived in Appendix A to

show that at<-(dRin/dr)2/Rin for stability during the implosion. For the sake of completeness, a WKB

approximation accounting for the perturbations inside the inner rotating gas is detailed in Appendix

B.

The WKB approach can also be implemented in the new Bell-type stability equation (26) when

assuming  ηa=η̂a eiω t  and  substituting  it  into  Eq.  (26)  while  taking d ηa /dt≃iωηa ,

d2
ηa/dt 2

≃−ω
2
ηa and similarly for h if using Eq. (30). It leads to a quadratic equation for  w,

where the coefficients of (iw)n, n=0,1,2 are the terms corresponding to dnha/dtn in Eq. (26) or dnh/dtn

if  Eq. (30) is  used.  In essence,  the WKB approximation turns  the differential  equation into an

algebraic equation and it is an exact method of solution only when the algebraic equation does not

depend on time (i.e. constant coefficients). Since the WKB approximation in Eqs. (26) or (30) and

(39) is applied at different stages of the derivation, the two methods will yield different equations

for w. For sufficiently large m and/or large compression ratios (when Win>>Ω∞), we have Win
2>>Ω∞

2/

m and the WKB approximation of Eq. (30) leads to a negative effective centripetal acceleration as a

necessary condition for stability (see Eq. (33)), pointing to the stabilising effect of the rotation.

2.3 CFD methodology

Full numerical simulations of the Navier-Stokes equations have been performed for the selected test

cases to compare against the results obtained with linear stability analysis. Simulations are carried

out  using   'compressibleInterFoam'  solver,  which  is  part  of  the  open  source  C++  libraries  of

OpenFOAM.  'compressibleInterFoam'  is  a  multiphase  solver  which  uses  second-order  VOF

(Volume of Fluid) phase-fraction-based interface-capturing approach and is suitable for modelling

two  compressible  immiscible  fluids.  The  choice  of  the  compressible  solver  was  due  to  the

compressibility of the inner gas. This solver has been extensively validated by the authors for a

similar kind of problems and has been found to provide consistently reliable results with respect to

the  interface  dynamics  (Suponitsky  et  al.  2014  &  2017).  Others  approaches  as  the  discrete
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Boltzmann modelling are also possible (Lin et al. 2017), but the current approach was found to be

sufficient. The schemes are all based on Gauss integration, using the flux and the advected field

being interpolated to the cell faces by one of a selection of schemes. Second order “Gauss linear”

scheme has been used in this study. For the viscous terms  second order “Gauss linear uncorrected”

scheme has been utilised. Second order temporal accuracy was achieved using the Crank-Nicolson

approach. For more details see in OpenFOAM manual (2019). No turbulence modelling was used

because of the very short  time scale of the liner’s implosion as compared to the viscous time scale

as shown in Section 3.3.

A schematic of the numerical setup used to study the evolution of the surface perturbations during

the implosion of the 2D cylindrical liquid liner is shown in Fig. 2. Computations are done on a

segment  rather than over an entire cylindrical domain in order to reduce computational cost. The

size  of  the  segment  is  based  on the  polar  mode  number  m of  the  perturbation;  thirty  degrees

segment  is  used  to  study  the  evolution  of  m=6  perturbation  (the  lowest  mode  number  being

considered numerically) and the ten degrees segment for the mode  m=36 and 72 perturbations.

Periodic boundary conditions are applied on the sides of the segment as shown on Fig. 2. In the

CFD simulations a compression of a gas target by an imploding liquid liner of a certain initial

thickness is  simulated.  Implosion of the liner  is  caused by a  pressurised gas with a  prescribed

temporal profile pushing on the outer surface of the liner. 

Problem of the liner’s inner surface stability investigated with such a numerical setup is very similar

to that considered in previous sections, but there are also some differences that worth emphasising.

Here pressurised gas is used to implode the liner, rather than an array of pistons as considered in the

linear stability analysis. Pushing pressure is applied as a boundary condition at the outer boundary

of the computational domain, position of which remains unchanged during the simulation (Eulerian

approach).  As a result, as  liner moves inwards, a volume occupied by gas is formed in between

outer  surface  of  the  liner  (that  has  now  moved  inwards)  and  stationary  boundary  of  the

computational domain. As pushing gas is treated as a compressible fluid, there is no guarantee that

the pressure acting on the outer surface of the liner is identical to that imposed at the boundary of

the computational domain. For the cases considered in this study the variation in the pressure felt by

the outer surface of the liner and that prescribed at the boundary is negligible, but it can be more

severe depending on the choice of implosion trajectory and parameters of the liner. When using gas

to implode the liner, there is also a potential for development of interface instabilities (Rayleigh-

Taylor and Kelvin-Helmholtz) at the outer surface of the liner, as light non-rotating gas is pushing

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32



onto heavy rotating liquid.  To minimize those effects, a sufficiently thick liner with unperturbed

outer surface perfectly aligned with mesh lines, has been simulated. For those conditions the liner

remains nominally smooth during the entire implosion apart of very small (fraction of mm in size)

short  wave-length  Kelvin-Helmholtz  structures  developing  from a  numerical  noise  late  in  the

compression. 

The second important  difference is  that  the dynamics  of  the inner  gas during the implosion is

actually been simulated. Hence, one can not ensure a spatially uniform pressure of the inner gas

during the compression, and degree of uniformity depends on implosion trajectory and speed of

sound in the gas. Again, with parameters considered in this study, this seems to have a very little

effect on the inner liner surface evolution. One should keep in mind, that in the case of the rotating

liner, there is a potential for development of Kelvin-Helmholtz instability at the inner surface of the

liner if there is a jump in azimuthal velocity between gas and liquid. To minimize this, a rotational

motion has been also imposed on the inner gas as initial condition for the simulation (as described

farther  below).  It  is  also  worth  mentioning,  that  as  gas  target  is  being  compressed  during  the

implosion, the density ratio of liquid to gas decreases, by that effectively reducing Atwood number.

For the cases considered here, density ratio remains high throughout implosion, so effect of Atwood

number  is  expected  to  remain  small.  However,  for  implosion  trajectories  attaining  very  high

compression ratios and also when  lighter liners compress heavier gases, effect of Atwood number

may  become  significant.  Finally,  viscosity  and  surface  tension  have  been  included  in  CFD

simulations, unless it is stated otherwise.

At the start of simulations  a liquid liner of  predefined thickness surrounds a gas target that is to be

compressed during the implosion. Initial velocity field in the liquid and inner gas is either set to

zero  for  the  non-rotating  liner  or  to  rotating  as  a  solid  body with  angular  velocity  of  W0,  i.e.

uθ

0
=Ω0r . As explained above, initial rotation of the inner gas is set to delay development of

Kelvin-Helmholtz instability at  the inner surface of the liner. The liquid liner is assumed to be

incompressible,  such  that  the  corresponding  initial  pressure  field  i  is  prescribed  as:

p0
(r , t=0)=pin+ρΩ0

2 (r2
−Rin

2
(t=0)) /2 . Time dependent pushing pressure pout(t) is applied to the

outer  boundary  causing  the  liner  to  implode.  Radial  extension  of  the  computational  domain

corresponds to the outer radius of the liner or extends slightly beyond (as in Fig. 2). In the latter

case, the initial pressure inside this thin gas layer is equal to the pushing pressure at time zero,

pout(t=0). It has been concluded that the presence or absence of the thin gas layer does not affect the
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resulting implosion trajectory. Both  gas target and pushing gas behave as an ideal gas with an

adiabatic constant of g=1.4.

Simulations  have  been  run  for  both  unperturbed  and  perturbed  at  different  polar  modes  and

amplitudes inner surface of the liner. Perturbation imposed on the inner surface  is defined as:

η=Rin (0)+η0 cos (mθ ) , (43)

where h0 is the initial perturbation amplitude and m is a polar mode number. Perturbed at m=6 and

unperturbed inner  surface are  shown in Fig.  2.  The initial  perturbation wavelength is  therefore

λ0=2π Rin(0) /m .  All simulations have been performed for a liner with inner and outer radii

equal  to  Rin(0)=0.2  m  and  Rout(0)=0.282  m.  For  the  low  mode  number  (m=6)  perturbation

simulations, the number of grid points in the radial direction is N r=3350, where 3000 points are

placed inside the initial gas target and 350 are across the initial thickness of the liquid liner. Hence,

the  grid  spacing  varies  monotonically  from  Dr=2*10-4 m  to  Dr  =3*10-4  m  for  r<Rin(t=0)  and

similarly for Rin(t=0)<r<Rout(t=0). One thousand grid points were used in the polar direction. For the

higher perturbation modes m=36 and 72, the number of the grid points in the radial direction was

increased to Nr=5400, with 5000 points inside the gas target and 400 across the liner, leading to

twice the resolution in the radial direction as compared to the low  m=6 perturbation case. Four

hundreds and two hundreds grid points were used in the polar direction for the simulations of m=36

and  m=72  perturbations.  Such  grid  resolutions  resolve  the  relatively  small  amplitude  initial

perturbations as relevant for linear stability.

In the current  setup,  a small  central  portion of the computational domain r<5*10-3 m has been

excluded to avoid extremely small grid cells near the centre. For the cases in this study, maximum

attained radial contraction ratios up to 10, and the effect of excluding a central part of the domain

was found to be negligible. One should also note, that for implosions with high maximum radial

contraction ratios, the non-linear effects will start manifesting themselves at some stage during the

implosion,  as  the  liner’s  inner  surface  converges  towards  the  centre  causing  the  perturbation’s

wavelength to decrease. 

3. Results

All computations were carried for a liner with initial radii of Rout(0) = 0.282 m and Rin(0)=0.2 m.

The liner was assumed to be composed of water with density of 1000 kg/m3 surrounding air at room

temperature and 1 bar pressure at t=0. Viscosity and surface tension coefficients typical for water

and air were assumed for the CFD simulations, but as it will be seen these coefficients had small
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effect on the liner motion and perturbation. A constant pushing outer pressure of pout(0) = 5 bar was

taken to implode non-rotating liner, this was increased according to Eq. (5) for the rotating liners in

order to achieve the same trajectory as of the non-rotating liner. In the CFD, the liner was assumed

to be surrounded by air as illustrated in Fig. 2, but pout(t) at the boundary  was specified according to

Eq. (5).

The rotating liners were assumed to rotate as solid body at t=0 and thus W∞=W0, see section 2.1 for

details. First, analysis of the unperturbed liner trajectory is presented, followed by a comparison of

the  perturbation  time development  between the  CFD and the  new Bell-type  stability  Eq.  (26).

Consideration is given for non-linear perturbation development as exhibited by the CFD results near

the turnaround point as well as effects of viscosity and surface tension, and finally a comparison

between the Bell-type stability equation results and the WKB approximation is discussed.

3.1 Unperturbed Motion of the Liner

The  pushing pressure profiles of pout(t) required to yield the same trajectory motion as of the non-

rotating liner are shown in Fig. 3 for W0=30 rad/s and 60 rad/s along with a constant pressure profile

used for a non-rotating liner. As expected, the higher initial rotational speed of the liner becomes, a

higher pushing pressure is required in order to achieve the same implosion trajectory of the non-

rotating liner and counter-act the centrifugal force caused by the liner’s rotation. In fact, it is seen

from Fig.  3,  that  the  peak pressure  increases  as  a  square  of  rotational  velocity  relative  to  the

constant pushing pressure for the case of a non-rotating liner, as per Eq. (5). For the current set of

parameters, the peak pushing pressure, occurring near the turn-around point, for the liner initially

rotating at 60 rad/s is about ten times higher than for a non-rotating liner. 

Numerical simulations have been run for the non-rotating and rotating at W0=60 rad/s liners with the

corresponding  pushing  pressures  shown  in  Fig.  3.  Implosion  trajectory  obtained  in  those

simulations together with that obtained from the 1D model given by Eq. (2), are shown in Fig. 4.

One can see that the implosion trajectories obtained from the numerical simulations at different

rotational speeds and adjusted pushing pressures are identical and are also in an excellent agreement

with the trajectory obtained by the 1D model given by Eq. (2). Therefore, we have a numerical set-

up proven to be capable of reproducing the same implosion trajectory at various rotational speeds.

The results agree well with those obtained by Eqs. (2) and (5), that are also used in the linear

stability analysis.
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The radial compression ratio is up to about ten is shown in Fig. 4. This yields a maximum pressure

of about 35 MPa at the turnaround point by Eq. (4). Such pressure is much smaller than the bulk

modulus  of  water  which  is  2.15  GPa  and  compose  the  liner.  Hence,  the  assumption  of

incompressible flow for the liquid liner is justified for the studied cases.

While implosion trajectories are the same at all rotational speeds due to the increase in pout(t) to

counteract  the  centrifugal  force  acting  on  the  implosion  trajectory,  the  effective  centripetal

acceleration at = d2Rin/dt2 – W2
inRin experienced by the liner’s inner surface depends on the rotation

rate.  Acceleration  curves  for  the  liners  are  shown  in  Fig.  5  which  also  include  the  WKB

approximation stability limit of at <-(dRin/dt)2/Rin that was derived in Appendix A. All liners initially

show an effective centripetal acceleration at that is lower than the WKB stability limit and thus by

that approximation they should show linear stability. However, towards the turnaround point both

the  non-rotating  liner  and the  one  with  W0=30 rad/s  show a positive at and  thus  by the  WKB

approximation they should show linear  instability.  On the other  hand,  the fast  rotating liner  of

W0=60 rad/s shows an effective centripetal acceleration that is sufficiently negative to be lower than

the WKB stability limit. Thus by that approximation, the liner should be linearly stable up to the

turnaround  point  and show no  exponential  growth of  perturbation  as  the  WKB approximation

assumes.

3.2 Perturbation time development

CFD simulations have been carried out for the non-rotating and rotating liners of W0=30 rad/s and

60 rad/s with the inner surface perturbed at polar mode numbers m=6, 36 and 72. Before presenting

and discussing the results it is important to re-iterate several points:

(i) A reasonable agreement between the results of CFD simulations and linear stability analysis can

be expected only when the ratio between perturbation amplitude and wavelength is small, i.e.

h/l<<1. 

(ii) Because of the liner’s geometrical convergence, the perturbation wave length l decreases during

the implosion until reaching the turnaround point, since  λ (t)=2πR in(t)/m . Therefore, even if

the perturbation amplitude does not grow during the implosion, non-linear effects will  manifest

themselves  sooner  or  later  if  high  radial  compression  ratios  are  attained.  For  the  implosion

trajectory considered in Fig. 4, the maximum contraction ratio is around 10, therefore even without

perturbation growth and for the initial perturbation amplitudes considered here, some non-linear

effects are expected to appear near turnaround point and, in particular, at high polar mode numbers

perturbations.
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(iii) The WKB approximation assumes an exponential time growth or a sinusoidal time oscillation.

This  is  not  necessarily  accurate.  A more  accurate  solution  is  given  by  the  Bell-type  stability

equation (26) that yields results that are also easier to compare to those obtained with CFD. Hence,

in  this  section  the Bell-type  stability  solution is  compared with  the CFD results.  This  stability

equation assumes infinitely thick liner.  The current  liner  starts  with a  thickness  ratio  of  0.4 as

compared to the inner radius, and it grows during implosion. Furthermore, the effect of the liner

finite thickness rapidly decreases with the polar mode number m because the perturbation decays as

1/rm away  from  the  inner  surface,  see  Eq.  (8).  Therefore,  at  least  at  high  polar  modes,  the

assumption of the infinitely thick liner should hold well.

To extract the perturbation evolution from the CFD simulations, the locations of minimum (spike)

and maximum (bubble) of the initial perturbations have been tracked during the simulations by the

VOF value  equal  to  0.5.  In  order  to  obtain  a  perturbation  amplitude  during  the  implosion  the

corresponding position of the unperturbed liner inner surface has been subtracted.  For the non-

rotating  liners,  the  polar  angle  q initially  corresponding  to  minimum  and  maximum  of  the

perturbation, remains unchanged during the implosion. For the rotating liner, a specific point placed

on the inner surface rotates during the implosion. The polar angle q(t) of a particular point initially

placed at polar angle q(0) is given by Eq. (27). That equation assumes the angular velocity of the

perturbed interface is the same of the unperturbed one. As the ratio between perturbation amplitude

and  unperturbed  radius  h(t)/Rin(t)  increases  (mainly  due  to  the  decrease  in  R in(t)  as  the  liner

converges),  the angular  velocity on the perturbed surface starts  to deviate from its  unperturbed

value due to the conservation of angular momentum resulting in transforming the initially `cosine'

shaped perturbation towards the `breaking wave' shape as will be seen in the next sub-section. This

study is focused on the linear stability process and hence, the unperturbed rotational speed Win is

used in Eq. (27). 

'Spike' is referred to the evolution of a point initially extending into the gas, whereas 'bubble' is

referred  to  the  evolution  of  a  point  initially  extending  into  the  liquid  as  illustrated  in  Fig.  2.

Depending on the number of phase inversions a 'spike' can become a 'bubble' and vice-versa, but the

names in this paper are determined by the positions at the start of the simulation. For the small

amplitude perturbations, evolution of 'spike' and 'bubble' is the same, but when non-linear effects

start to play a role, the differences  are expected to develop, and one of them may correlate better

with the linear solution than the other.
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   Keeping this in mind, the time-developments of the perturbation amplitude for m=6, 36, 72 and

W0 = 0, 60 rad/s are given in Figs. 6 and 7, where for the linear stability the real part of η(t) (see Eq.

(28)) is plotted. As expected, there is a very good agreement between the Bell type linear stability

(Eq. 26) and CFD results for early times in all cases. The non-rotating liners also show amplitude

growth, particularly for m=6 near the turnaround point. This is expected due to the positive effective

centripetal  acceleration  at shown  in  Fig.  5a,  leading  to  Rayleigh-Taylor  rapid  growth.  The

agreement between the linear stability and CFD deteriorates at later times, particularly around the

turnaround point. We believe this is due to non-linear effects that particularly manifest themselves

at the high m=72 as explained earlier. Similar observation was experimentally made by Huneault at

al. (2019). Increasing the polar mode  m also enhances the oscillatory behaviour of  h, yielding a

Bell-Plesset  behaviour.  This  increase  in  oscillatory  behaviour  can  be  explained  examining  the

expression for perturbations growth rates obtained with WKB analysis of Bell-type equation, see

Eqs. (34) and (35) for the details. From those equations one can see that oscillation frequency is

proportional to square root of polar mode m for non-rotating liners. 

Increasing  the  rotational  speed  to  W0=60  rad/s  has  damped  the  amplitude  growth  for  m=6

perturbation near the turnaround point (t~7.2 ms) as can be seen from Fig. 7a and is in agreement

with the negative at seen in Fig. 5c.  In reality, non-linear effects near the turnaround point can

saturate and even damp the perturbation amplitude growth as seen in Fig. 7c for m=72.   One can

also see from  Figs. 6 and 7 that increase in rotation increases frequency of oscillatory behaviour for

the  perturbation  at  the  same polar  mode.  The perturbation  amplitude,  however,  is  not  affected

significantly during the acceleration stage of the liner implosion.

3.3 Consideration of non-linear evolution of the inner surface near the turnaround point.

Although the analytical analysis presented here focuses on the linear stability process, the CFD

results also provide valuable insight into the non-linear process that can dominate the perturbation

development at later times and particularly for high polar modes. Hence for completeness, a brief

description of this process is given here. It should be noted that since the CFD only considered an

annular segement of the liner, the non-linear interaction between the polar modes was limited.

The time evolutions of the inner surface are  shown in Fig. 8 for the CFD results   corresponding to

m=6 and  W0=0, 30 and 60 rad/s. The perturbation develops into a bubble and spike and remains

symmetric for  W0=0 rad/s keeping its initial form as expressed in Eq. (27). The rotational speed

causes a deformation in the perturbation, breaking the symmetry and leading to a breaking wave as
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particularly seen in Fig. 8d for W0=30 rad/s. It also leads to a breaking of a small part of the liner

from the rest.  On the other hand, the liner of  W0=60 rad/s shows an intact liner but with wavy

surface at t=7.4 ms. Shape of breaking wave structures developed in case of rotating liners, seem to

resemble Kelvin-Helmholtz rollers.  We tend to believe that those structures  develop because of

different  rotational  velocity  at  different  radii,  rather  than  being a  product  of  Kelvin-Helmholtz

instability. As radius decreases, rotational velocity increases, this causes crest of perturbation at the

smaller radius to experience higher rotational velocity, whereas the gas penetrating into the liner

experiences the slower rotational velocity.  For a lower polar mode m=6 perturbation evolution,

there is only one phase inversion during the compression being considered, therefore, from about

3.5 ms, the same portion of liquid/gas experiences  higher or slower azimuthal velocity which over

a time results in  inclination of the structure.

The time evolutions of the inner surface for  m=72 are shown in Fig. 9. The case of  W0=0 rad/s

shows a clear development of bubbles penetrating the liner, breaking the integrity of the liner’s

inner  surface.  Increasing  the  rotational  speed  to  W0=60  rad/s  significantly  damps  the  surface

perturbation as already seen by Fig. 7c for the amplitude’s time-development, leading to an inner

surface that is intact for this mode. This finding qualitatively agrees with the non-linear RT stability

analysis of Tao et al. (2013), who pointed to the saturation effect of the rotation in the non-linear

stage  of  the  perturbation  development.  However,  it  should  be  noted  that  the  acceleration  or

deceleration of the interface surface was due to the disturbance in Tao et al’s (2013) analysis and not

due to any imploding motion as in this study. 

Removing the surface tension from the CFD simulation as it was done for the liner on the right-

hand side of Fig. 9, shows no noticeable difference with the simulation that accounts for the surface

tension seen at the centre of Fig. 9. Hence, the damping of the perturbation is due to non-linear

effects and not surface tension. This can be re-enforced by the following scaling analysis. First, the

viscous time scale is l2
/υ , where l is the shortest relevant length scale and in this case is taken as

the liner’s inner surface perturbation wave length, i.e. l=2π Rin /m≃0.22 cm  for m= 72 near the

turnaround. The water’s kinematic viscosity coefficient is υ=0.0114 cm2/s , yielding a viscous

time scale of 4 s which is much longer than the implosion’s time scale of 8 ms seen in Fig 4. More

specific estimates for particular cases as the Taylor and Oseen vortices confirm a viscous time scale

between  4  s  to  1  s  (Panton  2005).  The  ratio  of  the  initial  amplitude  and  wave  length  of  the

perturbation  for  m=72 polar  mode,  is  about  0.0175 for  the  parameters  being  considered.  With

maximum radial compression of about 10, this ratio will increase 10 times to about 0.175 even if
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perturbation does not grow as liner implodes.  The ratio of 0.175 between amplitude and wave

length of perturbation is sufficiently large for nonlinear effects to manifest themselves. 

The scaling of the surface tension effect can be estimated using the “classical RTI” as suggested by

Turchi (2017b) for imploding liners, i.e. neglecting the term η∂ ur
0
/∂r  and rotation in Eq. (19),

the liner’s radius for a high polar mode and using the WKB approach. Adding the effect of the

surface tension leads to (Lamb 1945);

ω
2
=
ρin−ρ
ρin+ρ

at k+
γk3

ρin+ρ
. (44)

The surface tension coefficient is γ=0.0714 N /m  for water-air interface, the inner surface wave

number is k=m/Rin and the effective centripetal acceleration is at~ 104 m/s2 or higher by Fig. 5. This

yields a magnitude of 10-5 for the second term on the right hand side of Eq. (44) as compared to the

first term on the right hand side, further justifying the omission of the surface tension from the

current stability analysis.

It is finally worth mentioning, that despite imposing initial rotation in the inner gas, development of

Kelvin-Helmholtz instability has been observed late into the compression. For the low polar mode

perturbation m=6, small scale Kelvin-Helmholtz structures have developed on top of a primary low

mode perturbation, whereas for the high mode m=72 perturbation, zooming into the interface region

reveals  presence  of  short  wave-length  Kelvin-Helmholtz  structures  along  the  entire  interface,

making interface look more like a thin foamy region, rather than a sharp line. Zoom into interface

region near the turnaround point is shown in Fig. 10, where the left and right parts of the figure

correspond to low and high polar mode perturbation, respectively. It should be noted, however, that

the size of those structures is very small compared to the radius of the liner's inner surface, e.g. near

the turnaround point, radius of the inner surface is just under 3 cm, while the radial extension of

Kelvin-Helmholtz structures is about 1/3 of a millimeter (Fig. 10b).

3.4 The WKB approximation

The time development of the inner surface perturbation η according to the WKB approximation of

Appendix  A was  compared  to  the  exact  solution  of  the  Bell-type  equation  (26)  and  its  WKB

approximation. The comparison is shown in Fig. 11 for the liners of  W0=0 and 60 rad/s and m=6

and 72. In all cases there is a good agreement between all three solutions at early time stages except

for m=72 and W0=60 rad/s where the WKB approximation of the Bell-type equation (26) starts to

deviate and show strong oscillations. It shows that the WKB approximation can be considered as an
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accurate solution at early development of the perturbation and when there is no rapid change in the

liner’s unperturbed motion.

The  WKB approximation  of  Eq.  (A1)  is  more  affected  by  the  polar  mode  m than  the  initial

rotational speed W0, where it is re-iterated that for simplicity W∞ was taken as zero for the derivation

in Appendix A, i.e. the liner started from a vortex motion. This follows the argument of Turchi

(2017) that the initial stage of rotation whether solid or vortex has a small effect on the stability

towards the turnaround point. Nevertheless, comparing Fig. 11a with Fig. 11c shows damping for

W0=60 rad/s towards the turnaround point of t=7.3 ms, which agrees with the stability limit derived

in  Appendix  A.  On  the  other  hand,  the  exact  solution  of  Eq.  (26)  shows  oscillatory  growing

amplitude towards the turnaround point as was already seen in Fig. 7c.  CFD solution also showed

an oscillatory motion for the perturbation, but with a decreasing amplitude towards the turnaround

point due to non-linear effects. Hence, stability arguments based on linear theory should be applied

with caution near the turnaround point. Nevertheless, in overall the exact solution of Eq. (26) agrees

best with the CFD solution seen in Figs. 7 when also comparing the WKB approximations.

Adding  the  effect  of  the  inner  gas  perturbations,  using  Appendix  B  WKB approximation  that

accounts for the deviation of the Atwood number A from one, did not change much the solution and

only moderately deviated from the solution of Appendix A towards the turnaround point. This can

be understood by the initial high density ratio of about 1000 between the liner’s liquid and the inner

gas which reduced to about 10 at  the turnaround point.  Hence,  the mild change in the Atwood

number during the liner’s implosion caused expressions (B5) and (B6) to be similar to those which

yielded solution (A5). Therefore, for radial contraction ratios of up to at least ten, the inner gas

perturbations may be neglected in the linear stability analysis with a small effect on the solution,

strengthening again the approach of the new Bell-type stability equation (26) for these kinds of

contraction ratios.

4. Conclusions

New  linear  hydrodynamic  stability  theory  was  presented  for  the  case  of  imploding  rotating

cylindrical liquid liner compressing an inner trapped gas. The study was divided into two parts; (i)

unperturbed motion analysed using a 1D equation of motion and (ii) the time development of an

inner surface perturbation. New Bell-type stability equation was derived for the case of infinitely

thick rotating liner along with new WKB approximations for a finite and an infinitely thick rotating

liners. CFD solution was used to compare with the two approaches. To pinpoint the effect of the
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rotation,  the pushing pressure on the rotating liner was increased in  order to achieve the same

trajectory of unperturbed motion as the non-rotating liner that was subject to a constant pushing

pressure.

Excellent  agreement  was  achieved  between  the  CFD  solution  and  the  1D  solution  of  the

unperturbed motion. Very good agreement was also achieved between the CFD solution and the

perturbation  growth  according  to  the  new Bell  type  stability  equation,  except  when non-linear

effects started to kick in near the turnaround point. Good to fair agreement was achieved between

the Bell type solution and the WKB approximations, pointing to a need of caution when using that

approximation. Effects of viscosity, surface tension and inner gas stability waves were found to be

small for the liners studied here, reaching a contraction ratio of up to 10:1 in the liner’s inner radius.

This was justified by the CFD results and scaling analysis. 

Hence the following conclusions can be made about the physical behaviour of the stability process:

1) During the initial accelerating stage of the liquid liner, perturbation undergoes slow oscillatory

growth due to the convergence, i.e. Bell-Plesset effects. Rotation has an insignificant effect on the

perturbation amplitude  during this time for the liner’s parameters and perturbations studied here.

2) During the decelerating stage of the liquid liner,  exponential  perturbation growth due to the

classical Rayleigh-Taylor instability can be suppressed by a sufficiently high rotation of the liner.

Linear stability analysis predicts that slow oscillatory growth remains even when the exponentially

growing RT instability is suppressed. Results of CFD simulations demonstrate that this oscillatory

growth is damped when ratio of amplitude to wavelength of perturbation becomes sufficiently high

for non-linear effects become significant. 

3) While operating in the range of the suppressed exponential growth during the decelerating stage,

a ‘smooth’ collapse of the initially unperturbed liner can be achieved. As a result,  a non-linear

evolution of the initially perturbed liner can be studied in the a ‘clean’ numerical environment, i.e.

without contamination by high frequency sporadicly growing perturbations. Numerical simulations

have  shown  that  in  the  case  of  the  initially  perturbed  liner  in  the  regime  of  suppressed  RT

instability,  the  inner  surface  of  the  liner  does  not  disintegrate  despite  presence  of  evolving

perturbation.
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List of Figures:

Figure 1: Schematic description of the cylindrical liner cross-section

Figure 2: A schematic of the numerical set-up for the CFD simulation

Figure 3: Pushing pressure pout(t) profiles as required by Eq. (5) in order to overcome the centrifugal

force and achieve the same trajectory as of the non-rotating liner that is subject to a constant pout(t) =

5 bars.

Figure 4: The implosion trajectories as calculated by the 1D motion equation (2) which is noted as

1D model and the CFD unperturbed simulations for  W0=0 and 60 rad/s that were subject to the

pushing pressure pout(t) plotted in Fig. 3.

Figure 5: Acceleration time histories that were calculated for the implosion trajectory shown in Fig.

4 and for (a) W0=0 rad/s, (b) W0=30 rad/s and (c) W0=60 rad/s.

Figure 6: Time developments of perturbation amplitude normalised by its initial absolute value as

predicted by the CFD computations and the Bell-type linear stability Eq (26) for the non-rotating

liners and polar mode number of (a) m=6, (b) m=36 and (c) m=72.

Figure 7: Time developments of perturbation amplitude normalised by its initial absolute value as

predicted by the CFD computations and the Bell-type linear stability Eq (26) for the rotating liners 

of W0=60 rad/s and polar mode number of (a) m=6, (b) m=36 and (c) m=72.

Figure 8: Instantaneous contours of the liner’s inner surface around the turnaround point for polar

mode m=6 as produced from the CFD simulations. Radial extension of the enlarged central portion

of the domain is 5 cm. Red (outer)- liquid liner, blue (inner) – gas target, black line – position of

unperturbed interface.

Figure 9: Instantaneous contours of the liner’s inner surface around the turnaround point for polar

mode m=72 as produced from CFD simulations, where the right- column liner simulation did not

account for surface tension (σ=0) unlike the other two simulations. Radial extension of the enlarged

central portion of the domain is 5 cm. Red (outer)- liquid liner, blue (inner) – gas target.

Figure 10: Zoom in on the interface for polar mode m=6 (a) and m=72 (b) for the results shown in

Figs. 8 and 9. Scale (distance between major ticks on the grid)  is 5 mm for m=6 plot and 1 mm for

m=72 plot. Red (outer) – liquid liner, blue (inner) – gas target.

Figure 11: Time developments of perturbation amplitude normalised by its initial absolute value as

predicted  by  the  Bell-type  linear  stability  Eq  (26),  its  WKB approximation  of  an  exponential

solution and the WKB approximation of Appendix A for (a) m=0,  W0=0 rad/s, (b)  m=72,  W0=0

rad/s, (c)  m=6, W0=60 rad/s and (d)  m=72, W0=60 rad/s.
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Figure 1: Schematic description of the cylindrical liner cross-section

Figure 2: A schematic of the numerical setup for the CFD simulation

31



Figure 3: Pushing pressure pout(t) profiles as required by Eq. (5) in order to overcome the centrifugal

force and achieve the same trajectory as of the non-rotating liner that is subjected to a constant

pout(t)=5 bars.

Figure 4: The implosion trajectories as calculated by the 1D motion equation (2) which is noted as

1D model and the CFD simulations of unperturbed liners  for W0=0 and 60 rad/s that were subjected

to the pushing pressure pout(t) plotted in Fig. 3.
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(a)

(b)

(c)

Figure 5: Acceleration time histories that were calculated for the implosion trajectory shown in Fig. 

4 and for (a) W0=0 rad/s, (b) W0=30 rad/s and (c) W0=60 rad/s.
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(a)

(b)

(c)

Figure 6: Time developments of perturbation amplitude normalised by its initial absolute value as 

predicted by the CFD computations and the Bell-type linear stability Eq. (26) for the non-rotating 

liners and polar mode number of (a) m=6, (b) m=36 and (c) m=72.
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(a)

(b)

(c)

Figure 7: Time developments of perturbation amplitude normalised by its initial absolute value as

predicted by the CFD computations and the Bell-type linear stability Eq. (26) for the rotating liners 

of W0=60 rad/s and polar mode number of (a) m=6, (b) m=36 and (c) m=72.
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 (a)

t=6.8 ms, Ωo=0         t=6.8 ms, Ωo=30 rad/s
  

t=6.8 ms, Ωo=60 rad/s  
             

 (b)

t=7.0 ms, Ωo=0 rad/s  t=7.0 ms, Ωo=30 rad/s    t=7.0 ms, Ωo=60 rad/s

  (c)

t=7.2 ms, Ωo=0 rad/s                t=7.2 ms, Ωo=30 rad/s     t=7.2 ms, Ωo=60 rad/s 

  (d)

t=7.4 ms, Ωo=0 rad/s              t=7.4 ms, Ωo=30 rad/s   t=7.4 ms, Ωo=60 rad/s

Figure 8: Instantaneous contours of the liner’s inner surface around the turnaround point for polar

mode m=6 as produced from the CFD simulations. Radial extension of the enlarged central portion

of the domain is 5 cm. Red (outer) – liquid liner, blue (inner) – gas target, black line – position of

unperturbed interface.
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 t=6.8 ms, Ωo=0                 t=6.8 ms, Ωo=60 rad/s      t=6.8 ms, Ωo=60 rad/s, σ=0

t=7.35 ms, Ωo=0 t=7.35 ms, Ωo=60 rad/s t=7.35 ms, Ωo=60 rad/s, 
σ=0 

Figure 9: Instantaneous contours of the liner’s inner surface around the turnaround point for polar

mode m=72 as produced from CFD simulations, where the right- column liner simulation did not

account for surface tension (σ=0) unlike the other two simulations. Radial extension of the enlarged

central portion of the domain is 5 cm. Red (outer) – liquid liner, blue (inner) – gas target.
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  (a) 

t=7.4 ms, Ωo=60 rad/s     

   (b)

t=7.35 ms, Ωo=60 rad/s                                  
   
Figure 10: Zoom in on the interface for polar mode m=6 (a) and m=72 (b) for the results shown in

Figs. 8 and 9. Scale (distance between major ticks on the grid)  is 5 mm for m=6 plot and 1 mm for

m=72 plot. Red (outer) – liquid liner, blue (inner) – gas target.
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(a)

(b)
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(c)

(d)

Figure 11: Time developments of perturbation amplitude normalised by its initial absolute value as

predicted  by  the  Bell-type  linear  stability  Eq  (26),  its  WKB approximation  of  an  exponential

solution and the WKB approximation of Appendix A for (a) m=0, W0=0 rad/s, (b) m=72, W0=0 rad/s,

(c)  m=6, W0=60 rad/s and (d) m=72, W0=60 rad/s.
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Appendix A – Analytical limit for stability during the liner’s implosion

For simplicity, the effects of the inner gas disturbance are neglected in the following derivations.

This means taking A=1. These effects have small influence on the stability of the imploding liners

discussed in Section 3.  Requiring the determinant of Eq. (39) to be zero leads to the quadratic

equation:

a2 ω̄
2
+a1ω̄+a0=0 . (A1)

After some patient derivation, one gets:

a2=ρ [Rout
m−1 R in

−m
+Rout

−(m+1 )R in
m ] , (A2)

a1=iρ(m−1)ur
0 [Rout

m−1 Rin
−(m+1)

−Rout
−(m+1)R in

m−1 ] , (A3)

a0=m(∂ p0

∂ r
+ρur

0 ∂ ur
0

∂ r ) [Rout
−(m+1) Rin

m−1
−Rout

m−1 R in
−(m+1 )] , (A4)

where  in  the  derivation  of  a1 the  following  expression  was  used  ∂ur
0
/∂r=−ur

0
/r ,  due  to

continuity. 

One can see that a2>0, and a0<0 if ∂ p0
/∂ r+ρur

0
∂ur

0
/∂r>0 . The imaginary part of a1 is always

negative during implosion since u0
r<0 and zero at the turnaround point. Hence, a negative effective

centripetal acceleration is a sufficient condition for stability at the turnaround point. Assuming a

very thick liner, i.e. Rout>>Rin the solution of Eq. (A1) is;

ω̄=
1
2 [− i(m−1)ur

0

R
±√−(m−1)2(ur

0
)

2

R2 +
4m
R (ur

0 ∂ur
0

∂r
+

1
ρ
∂ p0

∂r )] . (A5)

Thus it is sufficient to require ∂ p0
/∂ r+ρur

0
∂ur

0
/∂r>0  during implosion (u0

r<0) in order to avoid

a negative imaginary part of ω̄  that will lead to instability by this WKB approximation. Taking

that  ∂ur
0
/∂ t=(dRin /dt )2/R in+d2 Rin /dt 2 at r=Rin leads by Eq. (1) to a stability condition during

implosion;

at=
d2 R in

d t 2 −
(uθ

0
)
2

Rin

<−
(dR in /dt)2

R in

. (A6)

If the liner does not implode Eq. (A6) is automatically fulfilled. One should note that requiring

angular momentum conservation for the unperturbed motion also fulfils the Rayleigh criterion for

centrifugal stability of a non-imploding liner d (Ωr2
)/dr≥0  (Drazin & Reid, 2004).
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Appendix B – WKB approximation for the inner rotating gas perturbation

It is assumed that the Mach number of the perturbation defined as |ω|R in /(m c in)  is small, where

cin is the speed of sound in the gas. In all cases studied in Section 3, this perturbation Mach number

was found to be smaller than 0.1 Hence, the governing equation for the perturbation is the Poisson

equation as for the perturbation in the liner. The velocity potential of the perturbation in the inner

gas is taken as 

ϕ=A inr me i(mθ+ω t) , m>0 . (B1)

The kinematic condition from Eq. (20) at r=Rin when applied to the inner gas perturbation and

taking the same Ωin as of the liner:

m A in R in
m−1

=(iω−∂ uin,r
0

∂r )η , (B2)

while the kinematic condition on the side of the liner yields:

m A R in
m−1

−m B R−(m+1)
=(iω−∂u r

0

∂r )η . (B3)

The dynamic boundary condition of Eq. (22) becomes:

−Aρ(iω+mur
0

R in
)Rm

−Bρ(iω−m ur
0

Rin
)R−m

+A inρin(iω+mur
0

R in
)Rm

+(∂ p0

∂ r
−
∂ pin

0

∂r )η=0 . (B4)

Substituting Eqs. (B2) and (B3) into Eq. (B4) will lead to an equation that symbolically can be

written  as  Ad21+Bd22=0,  thus  replacing  the  expressions  for  d21 and  d22 in  Eqs.  (41)  and  (42)

respectively, that were derived when neglecting the effect of the inner gas disturbance. If that effect

is to become significant, the inner gas density ρin should be at the same magnitude as of the liner’s

density  ρ.  This  may  happen  at  late  time  stages  of  the  implosion  when Rout>>Rin.  Hence,  it  is

reasonable to assume the liner is infinitely thick by taking A=0 in the equations above. It will lead

to a quadratic equation in the form of Eq. (A1) where

a2=1+
ρin
ρ , a1=i (1+

ρin
ρ )

d R in

dt
(m−1)

R in

, (B5)

and

a3=(1+
ρin
ρ )

m

R in
2 (

d Rin

dt )
2

−m (1−
ρin
ρ )(Ωin−

1
R in

d2 R in

dt 2 ) . (B6)

Inside the liner, u0
r=dRin/dt Rin/r to yield incompressibility, and inside the gas, u0

in,r=dRin/dt r/Rin to

yield  a  uniform gas  density  by  the  continuity  equation.  Hence  by  the  unperturbed  momentum

equation for the inner gas one gets  ∂ p in
0
/∂ r=ρin (Ω in

2
−d2 R in /dt2

) . Taking  ρin=0 will yield the

solution of Eq. (A5).
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